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1 INTRODUCTION

Machine learning in drug discovery has predominantly focused on molecular or cellular-level in-
teractions, such as predicting binding affinities between small molecules and a protein (Vamathe-
van et al., 2019). Organism-level behavioral screening offers a powerful complementary approach.
Behavior provides a holistic view of compound effects by capturing interactions across biological
pathways and enabling validation of therapeutic outcomes at the whole-organism level. In model
organisms such as C. elegans (O’Brien et al., 2025) and zebrafish (Kokel et al., 2010; Rihel et al.,
2010), behavioral screening can be performed at scale (>10,000 compounds), making it viable for
machine learning. When combined with genetic perturbations (Harpaz et al., 2021; O’Brien et al.,
2023), these methods become a powerful tool for drug discovery.

Two recent advances are particularly promising for improving behavioral drug screening:

• Molecular embeddings can capture complex chemical properties (Chithrananda et al.,
2020; Suryanarayanan et al., 2024).

• High-resolution behavioral analysis in zebrafish larvae can identify subtle changes in loco-
motion (Marques et al., 2018).

Here, we leverage these advances in two complementary studies: (1) establishing a cross-modal
mapping between molecular structure and behavior, and (2) enhancing the sensitivity of behavioral
phenotyping for drug screening.

2 USING MULTIVIEW REPRESENTATION TO LINK MOLECULAR AND
BEHAVIORAL SPACE

To connect molecular structure with behavioral outcomes, we use multiview representation learning,
a framework that learns shared representation across multiple sources simultaneously. In particular,
we apply Canonical Correlation Analysis (CCA) (Chapman & Wang, 2021), a linear method that
identifies projections maximizing correlation between two datasets.

We analyzed the published dataset of Gendelev et al. (2024), where zebrafish larvae (8 per well)
were exposed to 653 CNS-targeting compounds. Behavior was quantified as the average time series
of the motion index (overall pixel intensity changes over time) during exposure to various auditory
and visual stimuli (see A.1 for details). Molecular embeddings were derived from the Simplified
Molecular-Input Line-Entry System (SMILES) using pre-trained transformer models. We bench-
marked three models: ChemBERTa (Chithrananda et al., 2020), MMELON (Suryanarayanan et al.,
2024) and Unikei (unikei, 2025). For each model, we performed dimensionality reduction with
Principal Component Analysis (PCA) to retain 50 components (capturing over 94% of the variance
for molecular embedding and and 69% for the behavioral time series), and then applied CCA. In
the remainder of this section, we focus on the Unikei embedding, which achieved the highest CCA
correlation (see 1). CCA identified two statistically significant projection dimensions (Supp. Fig. 3
and Supp. Fig. 4). The first CCA dimension meaningfully separated different neurotransmitter class:
dopaminergic/serotonergic ligands clustered distinctly from purines and metabotropic glutamate lig-
ands (Fig. 1a). The corresponding behavioral projections revealed distinct sensitivity to the stimuli:
high projections were associated with stronger responses to salient stimuli, while low projections
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corresponded to higher baseline activity (Fig. 1b). These results demonstrate that, despite the com-
plexity of linking molecular structure to organism-level behavior, multiview learning can uncover
meaningful relationships.

As a direction for future work, exploring nonlinear multiview representations may help capture ad-
ditional relationship between compounds and behavior. Another potential improvement is to refine
behavioral quantification beyond the coarse motion index. In the next section we show that high-
resolution behavioral analysis enhances our ability to distinguish drug phenotypes.

Figure 1: a. First CCA dimension for molecular and behavioral projection, color-coded by drug
class. The drug class labels were not used to compute the representation b. Behavioral profiles for
fish with the highest (top 10% in orange) and lowest (bottom 10% in green) projections on the first
behavioral CCA axis, highlighting the extremes of the distribution.

3 IMPROVING THE SENSITIVITY OF BEHAVIORAL PHENOTYPING

Recent work in mice (Wiltschko et al., 2020) has shown that fine-grained behavioral analysis en-
hances the detection of drug effects. However, these approaches remain constrained to small-scale
experiments, as scaling up rodent studies to high-throughput remains impractical. In zebrafish, be-
havioral screens have faced a similar trade-off: high-throughput assays rely on coarse metrics (e.g.,
motion index), while detailed analyses sacrifice scale. Advances in high-resolution imaging hard-
ware, such as gigapixel cameras (Thomson et al., 2022), and machine learning pipelines, including
Megabouts for pose estimation and action classification (Jouary et al., 2024), now resolve this con-
flict. Here, we assess how improved behavioral quantification enhances our ability to distinguish
between drug phenotypes (see Fig. 2).

We recorded 162 zebrafish larvae exposed to 9 pharmacological compounds across diverse con-
texts (spontaneous behavior, photomotor/optomotor responses or visually driven escapes, see A.2
for details). To predict drug identity from behavioral time series, we used a MiniRocket classifier
(Dempster et al., 2021) and evaluated performance using 10-fold cross-validation (Supp. Fig. 5).

The classifier achieved a test accuracy of 31% using a binary time series (movement vs. no move-
ment) and 40% accuracy with the locomotion speed as input. Performance increased to 52% ac-
curacy when using action categories (one-hot encoded tail movement categories), compared to a
chance level of 11%. These results indicate that improving the quantification of behavior signifi-
cantly boost the sensitivity of pharmacological phenotyping.

Figure 2: Classifying treatments based on zebrafish behavior measured via a binary movement indi-
cator, locomotion speed, or the time series of tail movement categories.
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MEANINGFULNESS STATEMENT

Meaningful life representations should capture hierarchical biological processes, bridging molecular
to organism levels. Zebrafish behavioral screening offers a powerful and scalable readout of small
molecule effects. However, current methods struggle to generalize across chemical space and rely on
coarse behavioral quantification. We address these by (1) using pretrained molecular embeddings
to map drug compounds to behaviors, successfully generalizing to new compounds, and (2) em-
ploying high-resolution behavioral data to enhance drug effect detection sensitivity. These advances
highlight the value of integrating molecular and behavioral data to enhance drug discovery.
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A APPENDIX

A.1 CANONICAL CORRELATION ANALYSIS PIPELINE

SMILES embedding train test
CC1 CC2 CC1 CC2

ChemBERTa 0.77 0.61 0.65 0.28
MMELON 0.76 0.63 0.66 0.21

unikei* 0.78 0.64 0.68 0.24

Table 1: Table of Canonical Correlations. First canonical correlations of SMILES embeddings with
motion indices, CCA fitted on training data and evaluated on both train and test data.

MOTION INDICES

The dataset consisted of 6144 time series (or ”motion indices”) of 17 min sampled at 100 Hz. To
avoid contamination from high-frequency artifact, we reduced the sampling by 10 fold using max-
pooling. We then averaged all the motion indices from the same drug exposure, to obtain an average
response per drug, and dropped all motion indices for which we had no SMILES representation
information. This resulted in 653 motion indices, each corresponding to a unique drug; this data
was then split 80%-20% into train and test sets, and all further fitting (PCA, CCA) were done on
the training set. The dimensionality of the motion indices was then reduced to 50 via Principal
Component Analysis (PCA), capturing 69% of the total variance.

SMILES EMBEDDINGS

For the purpose of finding a vector for each drug, we embedded their SMILES. We tried three
pretrained models, with results shown in Table 1. No further training was done on the models.

In each case, we then used PCA with 50 components to further reduce the dimensionality of the
embeddings.
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Figure 3: Canonical Correlations and Permutation Test Distribution. Canonical correlations for each
latent dimension as computed on the training (left) and test (right) datasets. The shaded regions show
the 1-99, 5-95, and 32-68 inter-percentile regions (with increasing opacity) of the permutation test
distribution.

Figure 4: First (left) and second (right) CCA dimension for molecular and behavioral projection,
color-coded by drug class. The drug class labels were not used to compute the representation.

REGULARISED CCA

We used regularised CCA Chapman & Wang (2021) which entails selecting a pair of regularisation
parameters c1, c2 ∈ [0, 1]. To this end, we used grid search with 4-fold cross validation to select
these parameters.

PERMUTATION TEST

To determine the validity of our results, we didn’t solely rely on the test canonical correlations but
also performed permutation tests. To this end, we permuted, and refit our models on, the training
dataset to determine a distribution of canonical correlations when the data are artificially decorre-
lated (see Figure 3).
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A.2 HIGH-RESOLUTION BEHAVIOR QUANTIFICATION DETAILS

FISH CARE

Adult fish were maintained at 28◦C on a 14:10 hour light cycle. Embryos were collected and lar-
vae were raised at 28◦C in E3 embryo medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2 and
0.33 mM MgSO4) in groups of 25. Sexual differentiation occurs at a later stage, and therefore the
sex of the animals cannot be reported. Behavioral experiments were conducted using the wild-type
line Tubingen (Tu) between 5 and 7 days post fertilization (dpf). Larvae were fed with rotifers (Bra-
chionus sp.) from 5 dpf onwards. All experimental procedures were approved by the Champalimaud
Foundation Ethics Committee and the Portuguese Direcção Geral Veterinária, and were performed
according to the European Directive 2010/63/EU.

SETUP

Larvae swimming behavior was recorded in an array of 20 wells, with each larva placed in an
individual circular acrylic arena (44 mm diameter, 4 mm depth). Fish were imaged using an EoSens
4CXP Camera (MC4086, Mikrotron) operating at 400 fps. The frame grabber used was a Silicon
Software GmbH AQ8 CXP6D. Fish were illuminated by an infrared array of 64 LEDs at 850 nm
(TSHG6400, Vishay Semiconductor), controlled by a T-Cube LED Driver (LEDD1B, Thorlabs),
with spacing sufficient to cover the full field of view. Imaging was performed using a fixed focal
length lens (Xenoplan 2.0/28, Schneider Optische Werke) and an infrared long-pass filter (LP780-
37, 780 nm, VisionLightTech).

For visual stimulation, a video projector (ML750e, Optoma) and a cold mirror (64-452, Edmund Op-
tics) projected images onto a diffuser screen (three layers of Rosco Cinegel White Diffuser #3000)
positioned 5 mm below the larva.

QUANTIFICATION OF BEHAVIOR

Larval position and orientation were tracked in real time using custom C# software. From these
tracking datasets, we used the Megabouts Python package. Using the trajectory-tracking pipeline,
we segmented the trajectory into individual tail bout movements and classified each tail bout into 11
categories, excluding prey-capture movements.

STIMULI PRESENTATION

• Approaching Dot: A black disk (1 mm radius) started 2 cm from the fish, approached at 5
mm/s, and remained beneath the fish for 1 second, moving perpendicular to the fish’s head
vector (±90◦).

• Directional Optomotor Response: A moving grating (10 mm period) moved at 10 mm/s at
angles ranging from 0◦ to 315◦ relative to the fish’s heading. It remained stationary for 5
seconds before moving for 10 seconds.

• Light/Dark Transition: The projector switched from 1000 lux to 0 for 30 seconds.

Stimuli were displayed at 60 fps using a custom OpenTK/OpenGL rendering engine. Stimuli were
presented in pseudo-randomized blocks over a 2-hours experiment.

DRUG TREATMENT

Fish were treated with nine neuroactive drugs:

• Ketanserin (serotonin 5-HT2 antagonist, 8.5 µM)
• Quipazine (serotonin 5-HT2/3 agonist, 25 µM)
• Trazodone (serotonin antagonist and reuptake inhibitor, 25 µM)
• Quinpirole (selective D2/D3 receptor agonist, 25 µM)
• Clozapine (atypical antipsychotic, 8.5 µM)
• Fluoxetine (selective serotonin reuptake inhibitor (SSRI), 8.5 µM)
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• Haloperidol (D2 receptor antagonist, 8.5 µM)
• Apomorphine (non-selective dopamine agonist, 25 µM)
• Valproic acid (GABAergic voltage-gated sodium channel blocker, 25 µM)

Stock solutions were prepared by dissolving the compounds in autoclaved Milli-Q water. For drugs
with low water solubility, an initial solution in 10% (v/v) DMSO was prepared, ensuring that the
final DMSO concentration in the stock did not exceed 0.3%, a threshold below which no behavioral
changes have been reported. Drug stocks were stored at -20◦C after confirming stability via UV-Vis
spectroscopy.

To prepare the arena solution, the appropriate stock volume was diluted in 600 mM Tris-buffered E3
medium to a final volume of 5 mL. All arena solutions had a final pH of 7± 0.3. The concentration
for each drug was set to half of the maximum non-lethal dose. Larvae were allowed to habituate
to the arena and drug solution for 1 hour before data collection. Each drug and concentration was
tested on 18 fish.

DRUG CLASSIFICATION ANALYSIS

We applied the Mini-Rocket classifier to three different time-series: binary movement indicators,
locomotion speed, and a multivariate one-hot encoded time series of movement categories. We
employed a 10-fold stratified cross-validation. Each dataset was transformed using MiniRocket-
Multivariate with 5000 kernels. The transformed data was then classified using a ridge classifier.

Figure 5: Confusion matrix displaying the classification performance of the Mini-Rocket model
across different quantification of behavior.
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