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Abstract

Self-attention operation, the core operation of the vision transformer (VT), is position-
independent. Therefore, VT uses positional embedding to encode spatial information.
However, we found that the role of positional encoding is very limited, and VT is insensitive
to spatial structure. We demonstrated a significant sensitivity gap to random block shuffling
and masking between VT and convolutional neural network (CNN), which indicates that
VT does not learn the spatial structure of the target well and focuses too much on small-
scale detail features.

We argue that self-attention should use position-dependent operations to encode spatial
information instead of relying on positional embedding. We replace the linear projection
of self-attention with convolution operation and use regular receptive field for each feature
point, which significantly increases VT’s sensitivity to spatial structure without sacrificing
performance.
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1. Introduction

The convolutional neural network (CNN) and vision transformer (VT) are the two most
mainstream architectures in computer vision. CNN matches image-specific inductive bias
(e.g., locality, two-dimensional neighborhood structure, and translation equivariance). The
convolution operation aggregates the features within the receptive field in a specific way.
The output of the convolution operation is dependent on the spatial structure of the input
feature map. On the contrary, VT has much less image-specific inductive bias. The self-
attention operation, the core operation of the VT, is position-independent. It generates a
key, query, and value for each point on the input feature maps through linear projection.
The key and query are used to generate a weight matrix. Then, self-attention performs
feature aggregation based on the weight matrix. During this process, the spatial structure
information of feature points does not participate in the calculation. Randomly shuffling
the position of feature points within the receptive field does not alter the self-attention
output. To solve this problem, VTs use positional embedding (e.g., absolute positional
embedding Dosovitskiy et al. (2020)) to encode spatial information. However, we observe
that positional embedding does not make VTs have a sufficient positional dependency and
learn the spatial structure of the target object. If we perform random block shuffling on
images, which destroys the structure of objects, VTs still predict the existence of the target
object with high confidence.

Figure 1 shows the vulnerability of VTs. We compare the Swin-T Liu et al. (2021) model
with ResNet50 He et al. (2016) (both are pretrained on ImageNet-1K Deng et al. (2009)).
They both output the correct category with high confidence (Swin-T: 87%, ResNet50: 99%)
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Figure 1: The sensitivity to random block shuffling of ResNet50 and Swin-T

when fed with a clear image (from the validation set of ImageNet-1K) containing a redshank.
Then, we divide the image into blocks of size 8 × 8 and randomly shuffle the positions of
all image blocks. ResNet50 classifies the shuffled image as redshank with a confidence of
only 0.16%. However, Swin-T still classifies the shuffled image as redshank with a high
confidence (56%). This indicates that VTs pay little attention to the position of features.
In other words, VTs are insensitive to spatial structure.

Moreover, the insensitivity of VTs is severe. Figure 2 shows this phenomenon. We
perform random block (16 × 16) shuffling on the redshank image, then paste a normal
mountain bike image into the center. We feed the merged image to Swin-T; the output is
redshank (85%) and mountain bike (2.2%). The disorganized redshank feature wins over
the well-structured bicycle feature.

VTs learn a certain degree of spatial structure through positional embedding Jelassi et al.
(2022); Raghu et al. (2021), as the prediction confidence decreases after block permutation
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Figure 2: VT is insensitive to spatial structure. The disorganized feature wins over the
well-structured features.



(see figure 1). However, a significant spatial structure sensitivity gap exists between VTs
and pure CNNs (more quantitative analysis in Section IV). In fact, VT treats images as
a set of patches. It focuses on learning which patches are included in the image, not the
spatial structure of the image patches.

Why spatial structure sensitivity is important? We believe that vision models
need to have high spatial structure sensitivity. First, low sensitivity represents abnormal
generalization. After random permutation, images do not belong to their original category.
VTs’ high-confidence prediction on permutated images is wrong. Generally speaking, vision
models should perform well on images from a similar distribution of the training dataset
and make random predictions on images from a distribution different from the training
set. Second, low-sensitivity models may pose security risks in real scenarios. For instance,
attackers can induce the model to make the wrong prediction by adding noise blocks to the
background (as shown in figure 2). For autonomous driving or facial recognition systems,
this will have catastrophic consequences.

We argue that the spatial insensitivity of VTs mainly comes from the following two
reasons. First, self-attention uses linear projection for query, key, and value generation.
Linear projection only considers the features of the current feature point and does not encode
the spatial structure of the feature map. Second, self-attention uses irregular receptive fields.
Each feature point is at a different relative location inside its receptive field. Some feature
points are located in the center of the receptive field, while others are at the edges. This
results in different spatial extension topologies for feature aggregation of different feature
points, which prevents the model from achieving high spatial structure sensitivity. Current
VTs use positional embedding to encode spatial structure information of images. However,
we have shown that the function of positional embedding is very limited.

Based on the above arguments, we made the following two modifications to the self-
attention operation. First, we use convolution operations with a small kernel to replace the
linear projection of key generation. This encodes the local structural information around
feature points into the key tensor. Second, we use regular and consistent receptive fields.
All feature points are at the center of its receptive field. Our modifications do not affect
the performance of VTs since the power of self-attention comes from two aspects. (1) It
can model long-dependency relationships. Patches that are far apart in the image can
interact with each other in the shallow layers of the model. (2) It has a more complicated
feature extraction ability than convolution operation. It learns a weight matrix for feature
aggregation. In fact, self-attention does not limit how query, key, and value are generated
or the shape of the receptive field.

We evaluate our idea on the ImageNet-1K dataset, and the experimental results show
that our solution significantly improves the spatial structure sensitivity of VTs without
sacrificing their performance.

2. Related work

2.1. Convolutional neural network

CNN has a long history in computer vision. Convolution operation highly matches the
inductive bias of images. With the emergence of GPUs and large vision datasets, CNN has
dominated the field of computer vision and achieved astonishing results in various vision
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tasks (e.g., classification and object detection). The success of Alexnet Krizhevsky et al.
(2017) on ImageNet is seen as the starting point for CNN’s prosperity. Since then, the
model has become increasingly large. Researchers improve the power of CNNs by adding
more layers and increasing the number of features (e.g., VGG Simonyan and Zisserman
(2014)). The emergence of ResNet He et al. (2016) brings revolutionary changes to CNN.
The residual structure allows gradients to propagate very efficiently to the shallow layers
of the model, making it possible to train very deep networks. Nowadays, network struc-
tures containing hundreds of convolutional layers are very common and lots of different
architectures have been proposed in recent years (e.g., ResNext Xie et al. (2017), Res2Net
Gao et al. (2019), ConvNext Liu et al. (2022), GoogleNet Szegedy et al. (2015), DenseNet
Huang et al. (2017), EfficientNet Tan and Le (2019)). No matter how the model architec-
ture changes, convolution has always been CNN’s core operation. Since the convolution
utilizes the spatial structure information of input feature maps, CNN is spatial structure
sensitive.

2.2. Vision transformers

Transformer Vaswani et al. (2017) rises in the natural language processing (NLP) field.
Google introduced transformer architecture into computer vision and proposed the first
vision transformer named ViT Dosovitskiy et al. (2020), which treats images as patch
sequences and needs to be pretrained on a vast dataset to achieve performance similar to
CNN. Since then, many new vision transformers (e.g., Swin Transformer Liu et al. (2021),
DeiT Touvron et al. (2021), DaViT Ding et al. (2022), Cswin Dong et al. (2022), XCiT Ali
et al. (2021)) and training methods Touvron et al. (2021); Steiner et al. (2021) have been
proposed. Swin Transformer is an excellent vision transformer. It performs self-attention
in 7 × 7 windows and models the far relation of image patches through shifted window
partitioning. In addition, it generates multi-scale feature maps through patch merging,
which makes it suitable for fine-grained vision tasks (e.g., object detection and semantic
segmentation). The vision transformer has achieved similar or even better performance
than CNN on various tasks and does not need to be pre-trained on a vast dataset.

Self-attention is position-independent; the random shuffling of inputs does not change
the output. Vision transformers try to solve this problem by using positional embedding.
For instance, ViT merges the positional embedding into patch embedding. Swin transformer
merges positional embedding into the self-attention process, and different self-attention
layers learn different positional embeddings. Some work Jelassi et al. (2022); Cordonnier
et al. (2019); Raghu et al. (2021) have investigated the working mechanism of positional
encoding and shown that VTs learn spatial structure to some extent. They also show that
VTs are less sensitive to spatial structure change than pure CNNs. For instance, Jelassi
et al. (2022) shows that ViT trained on block permutated training set can still perform well
on normal validation set. On the contrary, the performance of CNN decreases significantly
if trained on block permutated training set.

2.3. Hybrid model

There exist hybrid models, which include both convolutional and self-attention. For exam-
ple, Steiner et al. (2021) proposes stacking attention layers after convolutional layers. The



shallow layers of the model are convolutional layers, and the deeper layers are attention
layers. Pan et al. (2022) performs convolution and self-attention operations simultaneously
inside each layer. We will show that hybrid models have a spatial structure sensitivity
between pure CNN and pure VT.

3. Preliminaries

Convolution and self-attention are the core operations of CNN and VT, respectively, and
result in different behaviors of the two architectures. This section reviews the working
mechanism and characteristics of these two operations.

3.1. Convolution

We consider the standard convolution with kernel size k. Then the kernel K ∈ Rk×k×Cin×Cout ,
where Cin and Cout are the input and output channel size. Given input feature map
F ∈ RH×W×Cin , the output feature map G ∈ RH×W×Cout , where H, W denote the height
and width (we suppose strides = 1). We denote fi,j ∈ RCin , gi,j ∈ RCout as the feature
tensors of location (i, j) on F and G respectively, where 0 ≤ i < H and 0 ≤ j < W . Then,
the convolution process can be formulated as follows:

gi,j =
∑
p,q

Kp,qfi+p−⌊k/2⌋,j+q−⌊k/2⌋

where Kp,q = K[p, q, ...] ∈ RCin×Cout represents kernel weights with regard to the indices
of position (p,q). p, q ∈ {0, 1, . . . , k − 1}. The convolution process can be summarized into
two stages. The first stage performs linear projection on the input feature, corresponding
to the formula’s matrix multiplication. The second stage performs feature aggregation,
corresponding to the formula’s summation part. Convolution operations have the following
characteristics. First, the linear projection in the first stage is position-dependent. Since
Kp,q is different for different p, q. The pixels on the input feature map undergo different
linear projections. The output of convolution encodes the spatial information of the input
feature map, which is why CNN is sensitive to spatial structure. Second, the feature ag-
gregation in the second stage is primitive. Features at different locations have the same
significance.

3.2. Self-attention

We consider the standard one-head self-attention operation. Similarly, we denote F ∈
RH×W×Cin and G ∈ RH×W×Cout as input and output feature map. Let fi,j ∈ RCin , gi,j ∈
RCout denote the corresponding feature tensor of location (i, j) on F and G. Then, the
standard self-attention can be summarized as following equations.

queryi,j = Wqfi,j

keyi,j = Wkfi,j

valuei,j = Wvfi,j

gi,j = softmax(f(queryi,j , key))value
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where f represents the function for weight matrix generation, and the dot product is widely
used as f. Wq,Wk,Wv are the projection matrices for query, key, and value generation. Self-
attention can also be summarized into two stages. The first stage performs linear projection
with parameter Wv on F to generate value. The second stage performs feature aggregation
based on the weight matrix. Compared to convolution, the second stage of self-attention is
more complicated. It filters features through the weight matrix.

As shown in the equation, the generation of query, key, value is position-independent.
For each (i, j), queryi,j , keyi,j , valuei,j is only related to fi,j and is independent of pixels
in other positions. This causes self-attention to be insensitive to spatial structure. Some
vision transformers like the swin transformer add positional embedding B into self-attention
and change the equation to:

gi,j = softmax(f(queryi,j , key) + B)value

3.3. Receptive field

Convolution and self-attention have different receptive field designs. For convolution, the
receptive field is always regular. Each feature is at the center of its receptive field, and
the receptive field size is always small (e.g., 3 × 3). For self-attention, the receptive field
is always irregular. For instance, the receptive field of ViT Dosovitskiy et al. (2020) is the
whole feature map; different feature points have different locations inside the feature map.
Swin Liu et al. (2021) uses 7 × 7 window as the receptive field. However, different feature
points are at different positions within the window. The irregular receptive field of VTs
prevents the model from learning the spatial structure of the target in images.

4. Spatial structure sensitivity analysis

In this section, We quantitatively analyze the sensitivity of various models to spatial struc-
ture. We use the accuracy on the block permutated test set (the spatial structure of the
image has been disrupted) to measure model sensitivity. The higher the accuracy, the lower
the sensitivity. All experiments are conducted on the ImageNet-1K validation dataset, and
we use public pretrained models (pretrained on the ImageNet-1K training set) for analysis.

4.1. Random block shuffling

Figure 3 shows the visual effect of the random block (8× 8) shuffling under different config-
urations. We divide each image into blocks and choose different proportions (α) of blocks
for shuffling. For instance, α = 0.6 means randomly choosing 60% blocks for shuffling, and
other 40% blocks remain unchanged. The image is visually unrecognizable when α > 0.6
since the object’s structure has been destroyed.

We compare the following four models: ResNet50 He et al. (2016), Swin-T Liu et al.
(2021), ViT-B/8 Dosovitskiy et al. (2020) and ViT-R26-S/32. ResNet50 is a pure CNN,
Swin-T (uses positional embedding multiple times) and ViT-B/8 (uses positional embedding
once) are pure vision transformers. ViT-R26-S/32 is a hybrid model. The shallow 26 layers
are convolutional layers and the deeper layers are self-attention layers.

Figure 4 shows the result. We observed the following characteristics. (1)ResNet50 is
very sensitive to random block shuffling. When using 8 as the block size, the accuracy of



Figure 3: The visual effect of random block shuffling, α represents the ratio of blocks
engaged in shuffling.
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Figure 4: The sensitivity to the random block shuffling of different models under different
configurations.

ResNet50 rapidly decreases as the ratio α increases. When α is about 0.4, the accuracy is
close to 0. (2)Vision transformers are much less sensitive to random block shuffling than
CNN. (3)There is no significant difference between ViT-B/8 and Swin-T. This indicates
that using positional embedding multiple times does not increase the sensitivity. (4)The
sensitivity of the hybrid model ViT-R26-S/32 is between pure CNN and pure VT. This
indicates that the impact of self-attention operations on the spatial sensitivity of the model
is essential. Even though ViT-R26-S/32 contains 26 convolutional layers, subsequent self-
attention operations still significantly reduced the spatial structure sensitivity of the model.

Table 1: The AC of VTs on shuffled dataset (α=1.0).

Model
Block Size

8 × 8 16 × 16 24 × 24 32 × 32

Swin-T Liu et al. (2021) 30.2% 52.6% 60.2% 69.3%

ViT-B/8 Dosovitskiy et al. (2020) 50.5% 65.5% 76.2% 81.8%

Table 1 shows the AC (Average Confidence) of VTs on the shuffled validation set. AC
measures the confidence that the model predicts correctly on the shuffled images and is
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calculated as:

AC =
1

N

N∑
i=1

p(xi, yi)

where N represents the number of correctly classfied images, p(xi, yi) represents the confi-
dence that the model predict the image xi as its true label yi. Swin-T and ViT-B/8 both
predict correct labels on shuffled images with high confidence. In addition, ViT-B/8 is more
spatial structure insensitive than Swin-T as it achieves higher AC. This may be because
ViT uses a larger receptive field (whole feature map), and the repeated use of positional
encoding (Swin) has also played a role.

4.2. Random block masking
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Figure 5: The sensitivity to random masking of ResNet50 and Swin-T

Another manifestation of the model’s insensitivity to spatial structure is its excessive
focus on detailed features. VTs can make the right prediction even when the vast majority
of information in the image is masked. Figure 5 shows this phenomenon. We randomly
choose 20% blocks and keep them unchanged, and the other 80% blocks are replaced with
Gaussian noise (the noise has the same mean and standard deviation as the original image).
We feed the image after random masking to ResNet50 and Swin-T. The two models output
completely different results. ResNet50 predicts the image as redshank with confidence
0.04%. On the contrary, Swin-T predicts the redshank category with high confidence (77%).

Similarly, we quantitatively analyze the sensitivity of CNN and VT to random block
masking in this subsection. Figure 6 shows the visual effect of random masking under
different configurations. k represents the block size, and α represents the proportion of
blocks that are masked. Figure 7 shows the results. We obtained experimental results
similar to those in the previous subsection. ResNet50 is very sensitive to random masking;
the classification accuracy decreases to less than 10% if more than 30% percent blocks are
masked. Swin-T and ViT-B/8 are much less sensitive to random masking. When nearly
80% of the image blocks are masked, the accuracy is still high. This indicates that the VTs
pay great attention to detail features.



Figure 6: The visual effect of random block masking, α represents the ratio of blocks engaged
in masking and k represents block size.
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Figure 7: The sensitivity to the random block masking of different models under different
configurations.

Table 2 shows the AC of Swin-T and ViT-B/8 on the masked validation set. Similarly,
the two models are confident in classifying masked images, and ViT-B/8 achieves a slightly
higher AC than Swin-T.

Table 2: The AC of VTs on masked validation set(α=0.8).

Model
Block Size

8 × 8 16 × 16 24 × 24 32 × 32

Swin-T 66.4% 67.4% 72.7% 66.1%

ViT-B/8 77.7% 78.1% 79.3% 77.5%
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4.3. Dicussion

Vision Transformers regard images as a bunch of patches, and image patch is the basic unit
of information. If we perform random shuffling or masking with a block size smaller than
the patch size, which destroys features inside each patch, vision transformers should behave
similarly to CNN.
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Figure 8: Random block shuffling
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Figure 9: Random block masking

Figure 8 shows the results of random shuffling. We perform random shuffling on the
validation set with block size set to 1 (pixel level shuffling) and 2. When α is small (<0.5),
the accuracy of Swin-T and ViT-B/8 is still significantly higher than ResNet50 since most
patches are not severely damaged. When α is large (>0.8), almost all patches have been
severely damaged, the accuracy decreases to 0 like ResNet50. Figure 9 shows the result of
random masking. When α is large than 0.8, the accuracy of Swin-T and ViT-B/8 decreases
to 0, like ResNet50.

5. Analysis

We argue that the following two modifications can increase the spatial structure sensitivity
of vision transformers. First, use convolution operation to replace the liner projection of
self-attention. Second, use a regular receptive field. Each feature point needs to be at the
center of its receptive field.

In this section, we evaluate the effectiveness of the proposed two modifications. All
experiments are conducted on the ImageNet-1H dataset (a randomly selected subset of
ImageNet-1K), which contains 100 categories. All models are trained from scratch with the
same configuration. We use SGD optimizer and train all models for 60 epochs. The initial
learning rate is 0.01, and we decay the learning rate with a factor of 10 at the 40th and
50th epochs. We only use random flip and random crop as data augmentation and abandon
other complicated methods (e.g., Cutmix Yun et al. (2019), MixUp Zhang et al. (2017))
used by standard vision transformers training.

5.1. Replace linear projection

Since convolution operation is an excellent position-dependent operation, we try to replace
the linear projection of self-attention with convolution and investigate how this changes the
sensitivity of VTs to spatial structure. We train the following five models: ResNet50, Swin-
T, Swin-Tkey (use 3× 3 convolution for key generation), Swin-Tquery (use 3× 3 convolution



for query generation) and Swin-Tvalue (use 3 × 3 convolution for value generation). For
Swin-Tquery, Swin-Tkey and Swin-Tvalue, we remove positional embedding.
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Figure 10: Random block shuffling
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Figure 11: Random block masking

Figure 10 shows the sensitivity to random shuffling of different models. We observed the
following characteristics: (1) Replacing the linear projection with 3×3 convolution does not
reduce model performance. Swin-T achieves 77% classification accuracy on the validation
set. The accuray of Swin-Tquery, Swin-Tkey and Swin-Tvalue are all about 77%. (2) Swin-
Tquery, Swin-Tkey and Swin-Tvalue are significantly more sensitive to random shuffling than
Swin-T. This proves that using position-dependent operations like convolution is better than
positional embedding. In addition, key, value, and query have different degrees of influence
on the model’s sensitivity. The influence of the key is the strongest, while the influence of
the query is the weakest. (3) There is still a sensitivity gap between ResNet50 and Swin-
Tquery,Swin-Tkey,Swin-Tvalue. This may be because Swin-T uses an irregular receptive field
(each feature point is not located at the center of the receptive field), which prevents the
model from learning spatial structure. Figure 11 shows the sensitivity to random masking
of different models under different configurations (block size). We observed similar results.
Replacing linear projection with convolution significantly increases the sensitivity. Since all
models are trained under the same configuration. The sensitivity differences result from
the difference in model architecture. Compared to Swin-T, Swin-Tquery, Swin-Tkey, Swin-
Tvalue are less focused on the local features of the object and more dependent on the spatial
structure.

5.2. Regular receptive field

In this subsection, we create a model named Swin-Tr. For each self-attention layer of Swin-
Tr, we use a regular receptive field. The size of the receptive field is 7 × 7 (the same as
the standard Swin-T model), and each feature point is located at the center of its receptive
field. Similarly, Swin-Tr does not use positional embedding.

Figure 12 and 13 show the sensitivity of different models to random block shuffling and
random block masking. We can observe that using a regular receptive field can signifi-
cantly increase model sensitivity. When α is larger than 0.5, Swin-Tr has almost the same
sensitivity as the pure CNN model ResNet50.
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Figure 12: Random block shuffling
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Figure 13: Random block masking

6. Experiment

In this section, we evaluate our methods on the standard ImageNet-1K dataset. We use
the standard Swin-T as the baseline. Swin-Tm represents the modified model. It uses a
regular receptive field (7 × 7) and uses 3 × 3 convolution for key generation. We use the
same training configuration as the official Swin-T (e.g., training 300 epochs, using 1024 as
batch size, using AdamW Loshchilov and Hutter (2017) as the optimizer).
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Figure 14: The sensitivity to the random block shuffling of different models under different
configurations.

Spatial structure sensitivity. Figure 14 shows the sensitivity of different models.
We can see that Swin-Tm has high sensitivity (close to pure CNN ResNet50, even better
than hybrid model ViT-R26-S/32), much better than standard Swin-T. This validates the
effectiveness of our solution.

Performance. Another interesting descovery is that Swin-Tm achieves higher perfor-
mance. Its accuracy on the ImageNet validation set is 82.1%, better than standard Swin-T
(81.2%). This indicates that our solution also enhances the generalization of the model.

7. Conclusion

In this paper, we point out that vision transformers are insensitive to spatial structure. The
positional embedding cannot encode spatial information very well. Through experiments, we
demonstrated a significant sensitivity gap to random block shuffling and masking between
vision transformers and pure CNN. Vision transformers are more focused on small-scale
features and do not learn the spatial structure of the object sufficiently.



We argue that self-attention should use position-dependent operations to encode spa-
tial information and use a regular receptive field. We replaced the linear projection of
self-attention with 3×3 convolution and placed each feature point at the center of its recep-
tive field, significantly increasing the sensitivity of vision transformers to spatial structure
without sacrificing performance.
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