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ABSTRACT

Federated fine-tuning (FFT) aims to fine-tune a pre-trained model with private
data from distributed clients by exchanging models rather than data under the
orchestration of a parameter server (PS). However, as large models are acing in
almost every machine learning task, the communication overhead and memory
demand are surging accordingly, hindering the practical deployment on consumer
devices. To overcome the bottleneck forged by the growing communication over-
head of federated learning and lower the high memory demand of large model
fine-tuning, we propose FeedSign, an FFT algorithm where a client uploads its
update model and downloads the global model of any size using exactly 1 bit
per step, while the memory demand is squeezed to the amount needed for infer-
ence. This is realized by utilizing zeroth-order (ZO) optimizers on large models
and shared pseudo-random number generators (PRNG) across devices to split the
gradient estimate from the clients to 1) a direction corresponding to a designated
random seed and 2) a binary vote from the client indicating whether the seed-
corresponding direction grants a local loss descent, which is the only information
the clients should convey to the PS. We conduct theoretical analysis on FeedSign
and show that it converges at an exponential rate O(e−t), where t is the number
of elapsed steps, the same rate as in first-order (FO) methods can attain in big O
notation. Moreover, it is also found that FeedSign enjoys good robustness against
data heterogeneity and Byzantine attacks. We conduct extensive experiments on
models across different structures and sizes (11M to 13B) and found that the pro-
posed method performs better or closely, depending on scenarios, compared to
its ZO and FO counterparts albeit an orders-of-magnitude lower communication
overhead. We also discuss some interesting advantages as byproducts guaranteed
by the minimalistic design of FeedSign.

1 INTRODUCTION

The development of deep learning (DL) has allowed us to enjoy better intelligent services by training
larger models on broader data. While large models demonstrate good performance in general cases,
they hold promise to provide more tailored services and greatly improve their ability on intelligent
applications if the rich but privacy-sensitive local data of users can be accessed for learning. Fed-
erated learning (FL) McMahan et al. (2017) stands out as a solution to achieve privacy-preserving
distributed learning by frequently averaging the model parameters generated by the local data but
leaving the data intact at their holders. The algorithm is known as federated averaging (FedAvg).
When the paradigm is applied on a fine-tuning task, it is often termed federated fine-tuning (FFT)
Popov et al. (2018).

Such a learning paradigm demands that stochastic gradient descent (SGD) algorithms to be run on
client devices. However, the assumed participating client devices are usually resource-restrictive
devices like phones and tablets, where SGD can be a heavy computation burden. Moreover, as large
models become increasingly popular due to their versatility and great performance, model update
aggregation under the FFT paradigm becomes prohibitively expensive. Different methods have been
proposed to lower communication and computation costs. Pioneering works include model splitting
Thapa et al. (2022) that proposed to split the DL model into two parts so that most of the computation
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Figure 1: Left: Overview of FedAvg and FeedSign; Right: Comparison of FedAvg and FeedSign in terms of
communication cost, measured by the number of parameters communicated in a communication round, taking
FFT task on a RoBERTa-large model as an example. The y-axis is in logarithmic scale.

overhead can be unloaded to the PS as well as reducing communication costs. As for the special
case of large models, one of the most successful methods is Parameter-efficient Fine-tuning (PEFT),
focusing on updating only a small part of the large models hence lowering the communication and
computation costs. Some of the techniques include LoRA Hu et al. (2021), Prefix Fine-tuning Li &
Liang (2021), BitFit Zaken et al. (2021) and Adapter Narayanan et al. (2021); Pfeiffer et al. (2020).

However, while the aforementioned methods hold the promise of largely reducing the number of
trainable parameters (which scales to the communication cost) with little performance drop, the
communication cost of FFT tasks is still formidable. As a qualitative comparison, to participate in
FFT on a RoBERTa-large model, a client device will upload around 53 million float numbers during
a communication round, which takes up around 100 MB, the size of 5 minutes of YouTube full high
definition (FHD, 1080p) video, whereas FFT usually takes thousands of communication rounds to
converge, apart from the huge memory demand.

A series of pioneering works Xu et al. (2024); Qin et al. (2023) leverages zeroth-order optimization
and the shared Pseudo Random Number Generators (PRNG) across modern deep learning frame-
works like PyTorch Paszke et al. (2019) and Tensorflow Abadi et al. (2016) to lower the per-step
uplink communication overhead to KB level and the memory demand to an almost equal amount of
that of inference. However, we show that the per-step uplink and downlink communication over-
head can be further reduced to 1 bit per step regardless of model size with little performance loss
but several advantages, including data heterogeneity, Byzantine resilience, and parameter security.
Specifically, our contributions are as follows:

1. Establishing upon MeZO Malladi et al. (2023), we proposed FeedSign, an FFT framework
compatible with both full-parameter fine-tuning and PEFT, featuring per-step uplink com-
munication overhead of 1 bit and inference-level memory demand, regardless of model
size. This is realized by utilizing zeroth-order (ZO) optimizers on large models and shared
pseudo-random number generators (PRNG) across devices to split the gradient estimate
from the clients to 1) a direction corresponding to a designated random seed and 2) a bi-
nary vote from the client indicating whether the seed-corresponding direction grants a local
loss descent, which is the only information the clients should convey to the PS.

2. We provide the convergence analysis of our method. We found that it converges at an ex-
ponential rate O(e−t), the same rate as in first-order (FO) methods can attain in big O
notation, where t is the number of elapsed steps. The analysis implies that FeedSign has
surprising effects addressing some long-standing problems of FL, including communica-
tion bottleneck, data heterogeneity, and Byzantine vulnerability.

3. We conduct comprehensive experiments across different model types (ResNet, ViT,
RoBERTa, and OPT) and scales (11M to 13B) to verify the performance of FeedSign across
various downstream language and vision tasks. It is observed that,

(a) Compared with the conventional FO counterpart, with close-to-zero communication
overhead regardless of the model size (1 bit versus 24 GB per step for OPT-13B)
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and inference-level memory (around 1/12 for transformer-based models Malladi et al.
(2023)), FeedSign achieves comparable test performance;

(b) Compared with federated ZO baselines, with at most 1/64 of communication over-
head, FeedSign achieves comparable test performance in general settings while out-
performing remarkably under data heterogeneity and Byzantine attacks.

4. We discuss some interesting features as byproducts that FeedSign will bring to a FL system
on parameter security, hardware requirements, and differential privacy.

2 RELATED WORKS

2.1 FEDERATED LEARNING

Federated learning (FL) contrasts with centralized learning by training a shared model using data
from distributed owners without directly sharing the data thereby preserving data privacy McMahan
et al. (2017). Although centralized learning usually provides an upper bound of performance, FL
has its unique advantages as it can access data originally unavailable to centralized learning due to
privacy concerns Yang et al. (2018); Hard et al. (2018); Cormode et al. (2018). It is also suitable
for uniting siloed raw data without compromising confidentiality as in various fields like healthcare
Ogier du Terrail et al. (2022); Rieke et al. (2020) and financing Long et al. (2020).

However, FL’s privacy protection comes at the cost of frequent model parameter exchanges, creat-
ing a communication bottleneck Konečnỳ et al. (2016); Kairouz et al. (2021). The success of large
pre-trained models in various tasks Liu et al. (2019); Achiam et al. (2023); Jiang et al. (2023a); Doso-
vitskiy et al. (2020) highlights the need to address this bottleneck. Parameter-efficient fine-tuning
techniques, which can reduce the number of trainable parameters, show promise when combined
with FL to minimize communication overhead Sun et al. (2024); Cho et al. (2023); Zhang et al.
(2023); Kim et al. (2023). However, the communication overhead inevitably scales to the number
of trainable parameters in all of methods above.

2.2 ZO OPTIMIZATION FOR DL AND FL

Over the years, FO methods like SGD and its variants have been the default choice for DL model
training Gardner (1984); Amari (1993); Bottou (2010); Kingma (2014); Bottou et al. (2018). This
method aims to minimize an objectiveL(w) that characterizes how bad a function fw parameterized
by a numerical vector w is mapping from an input space X to an output space Y using the chain
rule and automatic differentiation Griewank (2014); Paszke et al. (2017) to approach the deriva-
tive of L(w) with respect to w. Nonetheless, some objectives of interest are non-differentiable or
whose gradients are expensive to compute calling for alternatives. They are usually known as ZO
optimization since they do not require explicit gradient information for objective minimization.

The combination of ZO optimization and FL has been a hot research topic in recent years since in
FL settings clients are usually resource-limited and ZO can make the estimation of gradients less
expensive Fang et al. (2022); Qiu et al. (2023); Chen et al. (2024a); Ling et al. (2024); Maritan et al.
(2024). However, the communication bottleneck is still a huge problem for real deployment.

Notably, FwdLLM Xu et al. (2024) and FedKSeed Qin et al. (2023) are the closest works to ours,
where the authors discuss a federated fine-tuning framework that exchanges models by exchang-
ing seed-projection pairs. However, our work aims to push the method of seed-projection pairs
for model exchange to its limits. We show that our method enjoys numerous surprising benefits
compared to its predecessors. Moreover, we extend the experiments to models of larger scales and
account for vision models also.

2.3 DATA HETEROGENEITY, BYZANTINE ATTACKS, AND COMPRESSION IN FL

Data heterogeneity is a critical concern in federated learning Ye et al. (2023) where each user holds
inconsistent shards that do not represent the overall data distribution well, causing divergent updates
and undermining training effectiveness. This can cause the global model to converge to suboptima
with potential performance loss Karimireddy et al. (2020); Li et al. (2020). Efforts to address this
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challenge under an FO setting are ongoing Qu et al. (2022); Fang et al. (2023); Jiang et al. (2023b);
Chen et al. (2024b). Notably, Li et al. (2019) proposes to do a one-bit element-wise compression on
the model weights to simultaneously promote data heterogeneity resilience and reduce communica-
tion load, pushing elementwise compression to its limit. However, the communication overhead still
scales to the parameter size, hindering integration with large models.

Additionally, FL performance can be degraded by Byzantine clients who maliciously alter their
data or models Fang et al. (2020), necessitating robust FL algorithms So et al. (2020); Tian et al.
(2022). Within the context of zeroth-order (ZO) optimization, CYBER-0 Delgado Neto et al. (2024)
marks an initial attempt by using trimmed mean aggregation to enhance the Byzantine resilience
of ZO-based FL. Various aggregation methods have been proposed to improve FO-based FL re-
silience against such attacks Blanchard et al. (2017); Yin et al. (2018); Alistarh et al. (2018); So
et al. (2020). Allouah et al. (2023) explores a joint defense method against data heterogeneity and
Byzantine attacks. However, the communication load is not reduced and will be prohibitively high.
Notably, Lang et al. (2023a;b) introduces a Byzantine resilient compressed aggregation method for
FO-based FL systems where the communication overhead is reduced to 1 bit per step using a nested
lattice coding with strict privacy guarantees, demonstrating that well-designed lossy compression
can induce strong robustness without obviously compromising the performance of FL systems.

However, we notice that most efforts addressing this issue are separately doing accurate gradient
estimation followed by lossy compression, leading to potentially unnecessary computational loads,
as the compression eventually negates the costly effort of acquiring an accurate gradient estimation
in FO-based methods. Motivated by this, we envisage a more integrated and efficient framework that
runs on gradient estimation that is less accurate but attainable and communicable with much lower
overheads with marginal performance loss. This marks a difference in rationale between our work
and conventional methods addressing data heterogeneity and Byzantine attacks by compression.

3 FeedSign: ALGORITHM DESIGN AND CONVERGENCE ANALYSIS

Algorithm 1: FL with model exchange using seed-projection pairs
Input: Initialized model parameters w0 ∈ Rd, loss function L : Rd → R, step budget T , client index set

k ∈ K = {1, . . . ,K}, collections of client datasets {Dk}k∈K, perturbation scale µ, learning rate η
Output: Trained model parameters wT

Clients initialize model to w0

for t = 1, . . . , T do
PS broadcasts seed st // only for FeedSign
for k = 1, . . . ,K do

// clients do in parallel
Client update local model according to Equation 3 if receives a projection broadcast
Client sample PRNG seed st,k // only for ZO-FedSGD
Client set PRNG seed to st // only for FeedSign
Client compute pk according to Equation 2
Client send pk to PS
Client send st,k to PS // only for ZO-FedSGD

end for
PS collects p1, . . . , pk calculate projection f(p1, . . . , pk) according to Equation 4
PS broadcasts projection f(p1, . . . , pk)

end for

3.1 ALGORITHM DESIGN FOR MODEL EXCHANGE USING SEED-PROJECTION PAIRS

For transformer-based large models, training using gradient-based methods usually takes up 12
times of memory that is required by inference Malladi et al. (2023). The excessive demand for
memory is due to complex operations of gradient backpropagation Rumelhart et al. (1986). One
effective method of depriving the extra demand is using backpropagation-free optimizers, as is ap-
plied in FwdLLM Xu et al. (2024) and FedKSeed Qin et al. (2023). The methods proposed by these
two works will be referred to as ZO-FedSGD for convenience. A brief description of the whole
ZO-based FL is as Algorithm 1. Missing proofs can be found in the Appendices.
Definition 1 (Client Update). Consider a batch B from the datasetD, a DL model whose parameter
vector is w ∈ Rd, and a loss function L, the applied ZO gradient estimator SPSA (Simultaneous
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Perturbation Stochastic Approximation) estimates the gradient as

p =
L(w + µz,B)− L(w − µz,B)

2µ
, (1)

where z ∼ N (0, Id) is a Gaussian vector and µ is the perturbation scale and p is the gradient
projection.

Given Definition 1, we apply a different update rule for FeedSign elaborated as

(ZO-FedSGD) ∇̂wL(w,B) = pz; (FeedSign) ∇̂wL(w,B) = Sign(p)z. (2)

The gradient estimate generated by SPSA can be broken into two parts, the random vector z and
its corresponding gradient projection p. As a result, only the seed and the gradient projection are
needed to be sent to PS. Different from Lang et al. (2023a;b), the shared PRNG is used directly to
spawn the random vector z after which the devices scale it by p to perfectly reconstruct the gradient
estimation1, which is done as follows:
Definition 2 (Update Aggregation). The global model of FL updates with learning rate η under the
following rule:

(at client) w ← w − f(p1, . . . , pk)ηz, (3)

where

(ZO-FedSGD) f(p1, . . . , pk) =
1

K

K∑
k=1

pk; (FeedSign) f(p1, . . . , pk) = Sign

(
K∑

k=1

pk
|pk|

)
(4)

with K participating clients.

Remark 1. Different from ZO-FedSGD, FeedSign always assumes that in a communication round,
all clients perturb its model in the same direction for gradient estimation. Also, FeedSign left the
sampling of random seeds to the PS and discards the amplitude of the gradient projection, whereas
the PS uses a majority vote to determine whether the model should march or retreat a step of fixed
size along the designated direction, allowing a 1-bit per step communication overhead for FeedSign.

As a result, a comparison of communication overhead between FeedSign and the baseline ZO-
FedSGD is elaborated as follows, assuming that only one random seed is explored per step.

(ZO-FedSGD) 1︸︷︷︸
number of random seed

× 32︸︷︷︸
float number as gradient projection

bits

+ 1︸︷︷︸
number of random seed

× 32︸︷︷︸
long integer as random seed

bits = 64 bits,

(FeedSign) 1︸︷︷︸
number of random seed

× 1︸︷︷︸
float number as gradient projection

bit = 1 bit.

(5)

3.2 CONVERGENCE ANALYSIS

Some well-adopted assumptions are needed to facilitate the convergence analysis.
Assumption 1 (L-smooth, Bottou et al. (2018)). For any unbiased gradient estimate g(w) with
finite second momentum, it satisfies

L(wt+1) ≤ L(wt) + ⟨∇L(wt),wt+1 −wt⟩+
L

2
∥wt+1 −wt∥22. (6)

1The premise that all clients participating in the FL system share a PRNG is fulfilled since DL algorithms
are often involved with random operations hence mainstream DL frameworks like Tensorflow and PyTorch
provide PRNGs in consideration of reproducibility in random operations in training DL models. The default
choice of PRNG is Philox Salmon et al. (2011) in Tensorflow and PyTorch, a deterministic algorithm with a
guarantee that a fixed seed will always produce the same random integer stream while satisfying some statistical
constraints.
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Assumption 2 (Local r-Effective Rank, Malladi et al. (2023), Assumption 1). There is a matrix
H(wt) ⪯ ℓId such that with G(wt) = max(x,y)∈D ∥∇L(wt, (x,y))∥2,

1. For all w such that ∥w −wt∥ ≤ ηdG(wt), we have ∇2L(w) ⪯H(wt).

2. The effective rank of H(wt), i.e., tr(H(w))/∥H(wt)∥op, is at most r.

Assumption 3 (Unbiased Gradient Estimator with Bounded Data Heterogeneity). The gradient es-
timator in Definition 1 is unbiased, specifically,

EB[∇̂Lk(w,B)] = ∇Lk(w), (7)

EB

[
∥∇̂Lk(w,B)∥22

]
≤ cg∥∇Lk(w)∥22 +

σ2
g

KB
V[∇L(w)], (8)

Ek

[
∥∇Lk(w)−∇L(w)∥22

]
≤ ch∥∇L(w)∥22 + σ2

h. (9)

Assumption 4 (Polyak-Łojaciewicz Inequality, Polyak (1964); Karimi et al. (2016); Malladi et al.
(2023)). Assume L∗ := minw∈Rd L(w) > −∞, then there is a constant α > 0 such that for any
w ∈ Rd, L(w) satisfies

∥∇L(w)∥22 ≥ 2δ(L(w)− L∗), V[∇L(w)] ≤ 2α(L(w)− L∗). (10)

Assumption 5 (Sign Reversing Probability). The gradient estimator has a reversed sign with the
true gradient with probability pt. Specifically, the expectation of Equation 2 satisfies

pt := Prob[pp̄ < 0], EB

[
∇̂L(w,B)

]
= p̄z. (11)

Theorem 1 (Global Convergence for FedSGD, ZO-FedSGD, and FeedSign). Given all assumption
including Assumptions 1-5 satisfied, with corresponding conditions met, after

t = A log
L(w0)− L∗ − C̃

ϵ
(12)

steps, we will have the gap between the expected loss E[L(wt)] and its possible lowest value L∗+C̃
smaller than ϵ with

(FedSGD) A =

(
2δη − Lδη2cg(1 + ch)−

Lασ2
gη

2

KB

)
, C =

Lcgσ
2
hη

2

2
; (13)

(ZO-FedSGD) A =

(
2δη − Lζδη2cg(1 + ch)−

Lζασ2
gη

2

KB

)
, C =

Lζcgσ
2
hη

2

2
; (14)

(FeedSign) A = 2δη(1− 2max
t

pt)

√
2

π
, C =

Lη2

2
, (15)

where C̃ = C/A is the error floor with 0 < A < 1 and C > 0, and ζ is a low-rank factor of the
pre-trained model.

Remark 2. Convergence Rate Comparison. Theorem 1 above shows that under a FedSGD-style
setting, both ZO-FedSGD and FeedSign converges at an exponential rate O(e−t), the same rate as
in FO methods can attain in big O notation. Notably, ZO-FedSGD differs from FedSGD to only a
term characterizing the low-rank property of the pre-trained model ζ ∼ O(r). The parameter r is
found to be small compared to model size d in well-trained DL models as reported in Papyan (2020);
Ghorbani et al. (2019); Yao et al. (2020); Sagun et al. (2017); Wu et al. (2020).

Remark 3. Data Heterogeneity Resilience. It is observed that the error floor of ZO-FedSGD scales
to the data heterogeneity parameters cg and σh while that of FeedSign is independent of them. As
a result, under an ideal iid case, the error floor vanishes with σh = 0 and cg ≪ ∞, but grows
under high data heterogeneity. Contrarily, the error floor of FeedSign is fixed. In summary, we trade
for more resilience against data heterogeneity at the cost of having a fixed but small error floor in
FeedSign.
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Table 1: Results on RoBERTa-large over language tasks. The best results obtained using federated ZO op-
timization is bolded, and the metric gap to that of the FO method is reported in the rightmost column. More
results in Appendices.

Task SST-2 SST-5 SNLI MNLI RTE TREC GapType —- sentiment —- - natural language inference - – topic –
Zero-shot 79.0 35.5 50.2 48.8 51.4 32.0 –

k = 16
FO 91.8 47.5 77.5 70.0 66.4 85.0 –
MeZO 90.5 45.5 68.5 58.7 64.0 76.9 -5.6
ZO-FedSGD 89.7 46.8 63.1 60.5 63.1 70.0 -7.5
FeedSign 88.9 45.0 69.7 59.7 65.3 75.6 -5.8

k = 512
FO 93.9 55.9 88.7 84.4 82.7 97.3 –
MeZO 93.3 53.2 83.0 78.3 78.6 94.3 -3.7
ZO-FedSGD 93.0 52.0 84.9 74.8 76.8 94.4 -4.5
FeedSign 92.6 50.4 83.1 76.0 74.3 93.0 -5.5

Remark 4. Byzantine Resilience. Nevertheless, pt is a key factor influencing the performance of
FeedSign. It is noticed that for ZO-FedSGD and FeedSign, any attacks altering gradient estimation
boils down to altering the gradient projection due to the deterministic nature of PRNG. While in
ZO-FedSGD, clients have some degree of freedom to enact their strategies of attack hence being
more unpredictable, the most effective method of damaging convergence of FFT due to the binary
voting scheme in FeedSign is to always send a reversed sign to PS. The analytic characterization of
its impact is succinct.

Proposition 1 (Reversed Sign Probability with Byzantine Clients). The batch gradient estimator
∇̂Lk(wt,B) will have a reversed sign to the true gradient∇L with a probability of

pt = pt,e + pt,b − pt,ept,b, (16)

where pt,e is the inherent reversed sign probability due to batch gradient estimation error and pt,b
is the proportion of Byzantine clients at step t.

4 EXPERIMENTS

To validate the effectiveness of the proposed approach, we conducted extensive experiments across
different tasks, data heterogeneity levels, and models of different types and sizes.

Baselines. To ensure consistency with previous research, we run the evaluation on RoBERTa-large,
OPT-125M, and OPT-13B as is done in MeZO. We compare our method with standard FO methods
(use backpropagation, takes up at least 6 times of memory), centralized ZO method MeZO Malladi
et al. (2023) and ZO-FedSGD Xu et al. (2024); Qin et al. (2023). We kept the number of total
perturbations consistent with that adopted in MeZO. As a result, the number of elapsed steps of
MeZO is K times that of ZO-FedSGD and FeedSign. We run both of the algorithms for the same
number of steps, so the total communication overhead of FeedSign is 1/64 of that of ZO-FedSGD.

4.1 MAIN RESULTS IN GENERAL SETTINGS

Language models. As is done in MeZO, we run few-shot learning for classification tasks on
RoBERTa-large under two different settings, k = 16 and k = 512 samples per category, and general
fine-tuning on OPT models. We employ test accuracy as the metric for classification and multiple-
choice tasks and F1 score for generation tasks. Results are reported in Table 1 and 2, respectively.

It can be observed that FeedSign manifests no obvious performance gap to MeZO despite being a
federated method with gradient projections of the lowest numerical resolution. This property scales
up to an OPT model with 13B parameters. The largest metric gap between MeZO and centralized
FO in the experiments is −9.4%.

When fine-tuning RoBERTa-large using FO method and FeedSign, the mean performance gaps
across the 6 few-shot learning tasks with k = 16 and k = 512 are −5.8% and −5.5%, respec-
tively. Besides, fine-tuning OPT-13B yields a mean gap of −6.0% over 11 tasks, narrower than that

7
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Table 2: Main results on OPT-13B over language tasks. The highest metric obtained using federated ZO
optimization is bolded, and the metric gap to that of the FO method is reported in the rightmost column.

Task SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD SQuAD DROP GapType ———————– classification ———————– – multiple choice – — generation —
Zero-shot 58.8 59.6 46.4 59.0 38.5 55.0 46.9 80.0 81.2 46.2 14.6 –
FO 92.0 70.8 83.9 77.1 63.5 70.1 71.1 79.0 74.1 84.9 31.3 –
MeZO 91.4 66.1 67.9 67.6 63.5 61.1 60.1 88.0 81.7 84.7 30.9 -3.1
ZO-FedSGD 84.7 60.2 67.8 64.1 52.8 55.3 54.1 84.0 81.7 76.1 29.4 -7.9
FeedSign 87.7 62.0 67.8 64.5 60.5 55.7 57.3 88.0 81.7 77.6 28.5 -6.0

Table 3: Main results on OPT-125M over language models with iid with different sizes of client pool.

Task K SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD SQuAD DROP
Zero-shot - 51.2 53.0 48.2 41.5 37.5 51.2 49.7 69.0 51.7 9.5 4.4
MeZO - 82.2 55.9 67.8 61.0 59.6 51.0 53.3 68.0 47.1 44.1 15.2

ZO-FedSGD 5 84.4 57.0 67.8 59.1 57.6 49.5 51.2 60.0 48.7 46.9 16.1
25 84.2 53.0 66.0 59.9 55.7 51.4 46.6 68.0 49.2 34.0 12.5

FeedSign 5 84.2 59.9 67.8 61.0 46.1 57.6 62.3 59.0 45.7 46.9 18.2
25 85.0 60.6 67.8 60.6 51.9 56.5 55.4 63.0 49.3 45.9 16.0

of the ZO baseline. We observe that both ZO-FedSGD and FeedSign reach test accuracy pardonably
lower but comparable to ZO-FedSGD.

We report the performance of FeedSign and ZO-FedSGD in Table 3 with client pool size K = 5 and
25. It can be observed that both of the methods maintain performance with a larger client pool size.

Table 4: Results on ViT-large FFT.
Dataset CIFAR-10 CIFAR-100

ZO-trained SOTA 86.5 34.2

ZO-FedSGD 94.0 62.7
FeedSign 91.7 45.3

Vision models. Table 4 reports the test accuracy
of ZO-FedSGD and FeedSign on CIFAR-10 and
CIFAR-100. We download a pre-trained model
checkpoint 2 and replace the classifier layer with a
random initialized layer. It is shown that FeedSign
attains a test accuracy of 91.7% in only 2×104 steps
with the support of a pre-trained model, faster than
the ZO-based training SOTA Chen et al. (2023); Zhang et al. (2024) to the best of our knowledge
with a much lesser number of steps.

4.2 DATA HETEROGENEITY RESILIENCE

Figure 2: Loss curve versus
number of steps elapsed.

Settings. A common approach to generating heterogeneous splits of
a dataset is to have the number of samples from a class c being pro-
portional to pc ∼ Dirichlet(β) for a client where α is a controlling
parameter. Smaller β will result in larger data heterogeneity among
client datasets Vahidian et al. (2023).

Language models. Table 5 reports the test metric of ZO-FedSGD and
FeedSign. We observe a drastic drop in test metrics through all tasks,
confirming FL’s vulnerability to data heterogeneity. However, it is
clear that FeedSign outperforms ZO-FedSGD on most of the entries.

Vision models. We conduct a full-parameter FFT on a ResNet-18
checkpoint3. We observe that although ZO-FedSGD outperforms
FeedSign on iid data, FeedSign turns the tide under high data het-
erogeneity. This affirms the theoretically implied data heterogeneity
robustness of FeedSign.

However, we also notice that for the last-layer FFT on a ViT-large
model, although FeedSign performs closely to ZO-FedSGD, it cannot
outperform. We infer that this could be accounted for by the good feature extraction ability of ViT
models.

2from https://huggingface.co/google/vit-base-patch16-224
3from https://huggingface.co/microsoft/resnet-18
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Table 5: Main results on OPT-125M over language models with iid and non-iid data. We bolded the higher
result within FeedSign and ZO-FedSGD.

Task SST-2 RTE CB BoolQ WSC WIC MultiRC
Zero-shot 51.2 53.0 48.2 41.5 37.5 51.2 49.7
ZO-FedSGD 82.3 50.9 69.6 59.0 51.9 50.7 54.4
FeedSign 84.2 54.5 67.8 60.2 49.0 53.4 56.0
ZO-FedSGD, β = 1.0 70.7 47.2 64.2 40.6 36.5 50.3 44.6
FeedSign, β = 1.0 73.0 47.2 66.0 40.8 36.5 50.0 44.5

Table 6: Main results on OPT-125M over language models with a Byzantine attacker.

Task SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD SQuAD DROP
Type ———————– classification ———————– – multiple choice – — generation —

Zero-shot 51.2 53.0 48.2 41.5 37.5 51.2 49.7 69.0 51.7 9.5 4.4
ZO-FedSGD 80.0 54.5 67.8 60.7 44.2 52.3 52.4 62.0 48.7 34.7 11.7
FeedSign 83.4 54.1 66.0 58.6 45.1 53.2 54.7 67.0 49.6 42.3 14.7

4.3 BYZANTINE RESILIENCE

Figure 3: Loss and accuracy curve versus
number of steps elapsed.

Settings. We assume that there is one Byzantine client
and 4 honest clients. The Byzantine client always trans-
mits a random number as the gradient projection in ZO-
FedSGD, and always transmits a reversed sign in Feed-
Sign. All other settings are consistent with those listed in
Section 4.2.

Language models. Table 6 reports the test metric of ZO-
FedSGD and FeedSign with one of the clients as a Byzan-
tine client. The test metric of FeedSign is higher than that
of ZO-FedSGD with the largest gap of +7.6%. It estab-
lishes that FeedSign expresses an inherent advantage in
resisting Byzantine attacks.

Image models. Table 7 and Figure 3 report the test ac-
curacy with one of the clients as a Byzantine client fine-
tuning a ViT-large model. It can be observed that ZO-
FedSGD is completely compromised with the Byzantine
attack, while FeedSign maintains its performance.

5 DISCUSSIONS

Table 7: Results on ViT-large FFT.
CIFAR-100 No attacker One attacker

ZO-FedSGD 62.7 10.9
FeedSign 45.3 40.8

CIFAR-10 No attacker One attacker

ZO-FedSGD 94.0 82.2
FeedSign 91.9 91.4

With the performance of FeedSign well evaluated, we
look further for some byproducts brought by the design
of the framework.

5.1 EFFICIENT MODEL STORAGE AND SHARING

It is estimated that over 600, 000 models are stored in model sharing platforms like Huggingface,
90% of them are fine-tuned models Ning et al. (2024). Frequently moving them results in PBs
of monthly information transmission and storage demand. Notably, the platform can save only a
small number of well-recognized checkpoints and save the orbits, which is the collection of seed-
projection pairs elapsed from a checkpoint to fine-tuned models by using FeedSign-like methods,
as shown in Figure 4. For example, for a fine-tuned OPT-13B model with 10, 000 fine-tune steps,
24GB of additional storage is required. However, the orbit generated by FeedSign will occupy less
than 200 bytes of storage and guarantees perfect recovery of the fine-tuned model.

5.2 PARAMETER SERVERS CAN BE SMALL AND TASK AGNOSTIC

9
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Figure 4: Orbit-
based model sharing
from a model agnostic
third-party.

A byproduct of PS holding no actual DL model parameter of FeedSign is
parameter security. This is because if operating FedAvg without special de-
sign like homomorphic encryption Liu et al. (2022), Mansouri et al. (2023),
generic secure multiparty computation Burkhart et al. (2010), or additive
masks So et al. (2021); Goryczka & Xiong (2015), the PS always knows
the model parameters and hence has to be a legal holder of the final model.
However, not only data but also models are kept private and local in FL
systems featuring alike designs to FeedSign. In fact, according to Section
5.1, the PS can be a device that is too small to host the actual model. More-
over, conventional model-sharing platforms need to maintain large storage
to store millions of models. However, with a FeedSign-like seed-projection
pairs design as shown in Figure 4, the platform will not need to store the ac-
tual parameters, but only the orbits of elapsed seed-projection pairs during
fine-tuning from some well-recognized checkpoints.

5.3 PRIVACY-CONVERGENCE TRADE-OFF

FeedSign can serve as an extremely memory-efficient framework that provides a strong privacy-
convergence trade-off for different task requirements with a small modification on the aggregation
rule.
Definition 3 (Differentially Private Update Aggregation). The global model of FL updates with
learning rate η under the following rule:

(DP-FeedSign) w ← w − fDP(p1, . . . , pK)ηz. (17)
where fDP is a random variable with probability

Prob(fDP = 1) = p+/(p+ + p−), Prob(fDP = −1) = p−/(p+ + p−), (18)
where

p± = exp
(ϵq±

4

)
, q± =

K∑
k=1

(
1

2
± pk
|pk|

)
(19)

with K participating clients.
Theorem 2 (Differential Privacy Guarantee). Algorithm 1 with its update rule replaced as Definition
3 is (ϵ, 0)-DP.
Remark 5. By pushing ϵ to 0, we will have a stronger differential privacy (DP) guarantee, while the
behavior of fDP will become more similar to Bernoulli(0.5). This will result in pt in Theorem 1
approaching 1/2, slowing down the convergence of FeedSign.
Remark 6. Like Tang et al. (2024), our DP follows a new mechanism by only privatizing the gradient
projection while it differs by having a discrete output. This is based on the fact that with the seed
being broadcast and all machines sharing the same PRNG, the only uncertainty about the gradient
for a malicious user is the sign of the corresponding gradient projection.

6 CONCLUSION

We have presented a novel FFT framework FeedSign that can operate in an extremely deficient
communication and memory budget. Facilitated by ZO optimization and shared PRNG, each client
needs only to upload one bit to the PS and then download one bit as a global update direction
metric in a step, and use up the memory amount equaling to that needed for inference. We conduct
theoretical analysis implying that FeedSign has many interesting properties including different kinds
of robustness. Extensive experiments have shown that reducing communication overhead affects the
performance of FeedSign little. We discuss some surprising advantages brought by the minimalistic
design of FeedSign and how it can facilitate better FL deployment.
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Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and trends® in machine learning,
14(1–2):1–210, 2021.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-
ojasiewicz condition. In Machine Learning and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings,
Part I 16, pp. 795–811. Springer, 2016.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pp. 5132–5143. PMLR, 2020.

Yeachan Kim, Junho Kim, Wing-Lam Mok, Jun-Hyung Park, and SangKeun Lee. Client-customized
adaptation for parameter-efficient federated learning. In Findings of the Association for Compu-
tational Linguistics: ACL 2023, pp. 1159–1172, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.
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Table 8: Descriptions of Symbols

Symbol Description
B Batch size
B Data batch

cg, σg Batch gradient estimation noise factor
ch, σh Client-wise gradient estimation noise factor
D Dataset
d Number of model parameters
k Index of clients
K Number of clients in an FL system
L Loss function
L∗ Infimum value of loss function
L Smooth constant of the loss function
N Gaussian distribution
pb Probability of a client being a Byzantine client
pe Inherent probability of a batch gradient estimate having a reversed sign
pt Overall probability of a batch gradient estimate having a reversed sign
s Random seed
T Number of global steps (step budget)
t Index of global epochs (the number of total communication rounds)
w Model parameter vector
α, δ Polyak-Łojaciewicz property constant
ϵ Toleration threshold of the gap to error floor
ζ Low-effective rank factor of the gradient estimator
η Learning rate
∇ Gradient operator
E Expectation operator
V Variance operator
Rn n-dimensional real number set
⟨·, ·⟩ Inner product
tr Trace operator

∥ · ∥op Operator norm of matrices
L(w) Loss function at model parameter w
Lk(w) Loss function of client k at model parameter w

L̂k(w,B) Loss function measured on data batch B at model parameter w on client k
N (µ,Σ) Multivariate Gaussian distribution with center µ and Σ

A DESCRIPTION OF SYMBOLS

Descriptions of the symbols used in this paper can be found in Table 8.

B DOES FeedSign HAVE BLIND SPOTS?

Figure 5: Optimum
lying outside of the
reachable space.

The problem is equal to “can the gradients generated by FeedSign span
Rd?” We provide a positive answer that will eliminate the possibility that
the optimum lies outside of the reachable space of FeedSign as shown in
Figure 5, granting the possibility for a model to reach optimum as follows.
Proposition 2. Gradients of FeedSign span Rd with probability 1 after d
steps.

This conclusion follows directly that Gaussian random matrices are full
rank with probability 1 and applies to ZO-FedSGD as well.

C PROOFS

Note that
V[∇L(w)] = B

(
E
[
∇L(w;B)∇L(w;B)⊤

]
−∇L(w)∇L(w)⊤

)
. (20)
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C.1 PROOF TO THEOREM 1

For FedSGD, we have a well-known result
Lemma 1 (Dimension-free Descent Lemma for FedSGD). Given L(w) being a L-smooth function
and ∇̂L(w,B) an unbiased gradient estimator, the expected per-step loss descent can be bounded
as follows:

E [L(wt+1)] ≤ L(wt)− η∥∇L(wt)∥22 +
Lη2

2
Ek,B

[
∥∇Lk(wt,B)∥22

]
. (21)

This result follows combining the unbiasedness of the FO gradient estimator and Assumption 1.

For ZO-FedSGD, we will need the following lemma 2,
Lemma 2 (Dimension-free Descent Lemma for ZO-FedSGD, Malladi et al. (2023)). Given L(w)

being a L-smooth function and ∇̂L(w,B) an unbiased gradient estimator, the expected per-step
loss descent can be bounded as follows:

E [L(wt+1)] ≤ L(wt)− η∥∇L(wt)∥22 +
Lζη2

2
Ek,B

[
∥∇Lk(wt,B)∥22

]
. (22)

where

ζ =
dr + d− 2

n(d+ 2)
+ 1 (23)

characterize the low-rank effect of the gradient estimator.
Remark 7. Lemma 2 is the premise of successful ZO-based fine-tuning of large models. It can be
observed that there is only an additional term in the quadratic term compared to that of the FO.
It is the previous sense that SPSA-like algorithms result in a O(d) times larger gradient variance
compared to FO methods Nemirovskij & Yudin (1983); Spall (1992); Jamieson et al. (2012); Oktay
et al. (2020), prohibiting successful training of large models. However, Lemma 2 refined the bound
and found that the gradient variance can be controlled by O(r), where r is a loss landscape-related
parameter known as local effective rank. The parameter is found to be small in well-trained DL
models as reported in Papyan (2020); Ghorbani et al. (2019); Yao et al. (2020); Sagun et al. (2017);
Wu et al. (2020).

Proof. We have
E [L(wt+1)] (24)

≤L(wt)− η∥∇L(wt)∥22 +
Lζη2

2
Ek,B

[
∥∇Lk(wt,B)∥22

]
(25)

≤L(wt)− η∥∇L(wt)∥22 +
Lζη2

2
cg(1 + ch)∥∇L(wt)∥22 +

Lζσ2
gη

2

2KB
V [∇L(wt)] +

Lζcgσ
2
hη

2

2
(26)

≤L(wt)−
(
η − Lζη2cg(1 + ch)

2

)
∥∇L(wt)∥22 +

Lζσ2
gη

2

2KB
V[∇L(wt)] +

Lζcgσ
2
hη

2

2
(27)

≤L(wt)−

(
2δη − Lζδη2cg(1 + ch)−

Lζασ2
gη

2

KB

)
(L(wt)− L∗) +

Lζcgσ
2
hη

2

2
, (28)

with a small enough η satisfying
0 < η < 2/Lζcg(1 + ch). (29)

Substract L∗ on both sides, then apply Assumption 4, we have

E[L(wt+1)]− L∗ ≤

1−

(
2δη − Lζδη2cg(1 + ch)−

Lζασ2
gη

2

KB

)
︸ ︷︷ ︸

A2

 (L(wt)− L∗) +
Lζcgσ

2
hη

2

2︸ ︷︷ ︸
C2

.

(30)
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With proper redistribution of the C1 term, we have an error bound C̃2 = C2/A2, and to reach an
optimality gap smaller than ϵ will take

t = A2 log
L(w0)− L∗ − C̃2

ϵ
(31)

steps with 0 < A2 < 1.

We will have

E[L(wt+1)]− L∗ ≤

1−

(
2δη − Lδη2cg(1 + ch)−

Lασ2
gη

2

KB

)
︸ ︷︷ ︸

A1

 (L(wt)− L∗) +
Lcgσ

2
hη

2

2︸ ︷︷ ︸
C1

.

(32)

with a similar processing for FedSGD for its exponential convergence.

For FeedSign, since FeedSign does not guarantee unbiased gradient estimation, we will have to start
from Assumption 1.

Lemma 3 (Dimension-free Descent Lemma for FeedSign). Given L(w) being a L-smooth function,
the expected per-step loss descent can be bounded as follows:

E [L(wt+1)] ≤ L(wt)− η(1− 2pt)

√
2

π
∥∇L(wt)∥22 +

Lη2

2
, (33)

where π is the circumference ratio.

Proof. Start from Assumption 1, with ∇̂L(w,B) being the unbiased estimator used by ZO-FedSGD,

E[L(wt+1)] ≤ L(wt)− η
〈
∇L(wt),EB

[
Sign(∇̂L(wt,B))

]〉
+

Lη2

2

∥∥∥Sign(∇̂(wt,B))
∥∥∥2
2
.

(34)

With Assumption 5, we have

EB

[
Sign(∇̂(wt,B))

]
= Ez,B

[
Sign(z⊤∇L(wt,B))

]
= (1− 2pt)Ez

[
Sign(z⊤∇L(wt))

]
, (35)

where the estimator can be elaborated as

∇̂L(wt,B) = z⊤∇L(wt,B)z. (36)

Noticing that Sign(x) = x/|x| and ∥Sign(·)∥ = 1, we have the following

E[L(wt+1)] ≤L(wt)− η(1− 2pt)Ez

〈
∇L(wt),

z⊤∇L(wt)

|z⊤∇L(wt)|
z

〉
+

Lη2

2
(37)

=L(wt)− η(1− 2pt)Ez

[
z⊤∇L(wt)z

⊤∇L(wt)

|z⊤∇L(wt)|

]
+

Lη2

2
(38)

=L(wt)− η(1− 2pt)Ez

[
|z⊤∇L(w)|

]
+

Lη2

2
. (39)

Since z ∼ N (0, Id), z⊤∇L(w) ∼ N (0, ∥∇L(wt)∥22), and the property of half-normal distribution
tells that

Ez

[
|z⊤∇L(w)|

]
=

√
2

π
∥∇L(wt)∥22. (40)

arriving at Equation 33.
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The quadratic term of weight difference vanishes since FeedSign does not contain “amplitude” of
the gradient projection, only a binary choice. Apply Assumption 4, we have

E [L(wt+1)] ≤ L(wt)− 2ηδ(1− 2pt)

√
2

π
(L(wt)− L∗) +

Lη2

2
. (41)

Subtract L∗ on both sides, we have

E[L(wt+1)]− L∗ ≤

1− 2ηδ(1− 2pt)

√
2

π︸ ︷︷ ︸
A3

 (L(wt)− L∗) +
Lη2

2︸︷︷︸
C3

, (42)

with an error bound C̃3 = C3/A3. To reach an optimality gap smaller than ϵ will take

t = A3 log
L(w0)− L∗ − C̃3

ϵ
(43)

steps with 0 < A3 < 1 and C3 > 0.

C.2 PROOF TO PROPOSITION 1

Proof. In FeedSign, assume at a particular point wt, the sign of the true gradient is ft =
∇L(wt)/|L(wt)|. We say that a client successes if it sends a correct sign to the PS, and fails
otherwise. After local computation, honest clients always send the sign, and Byzantine clients al-
ways reverse the sign and then send it. Due to batch gradient noise, the probability of an honest
fail is pt,e and an honest success is 1 − pt,e. Contradictorily, the probability of a Byzantine fail
and Byzantine success is 1 − pt,e and pt,e, respectively. Assume the probability of a client being
Byzantine is pt,b.

During a vote, the number of fails is a random variable V that follows a binomial distribution with

E[V ] =
1

2
K + (

1

2
− pt,e)(2pt,b − 1)K, (44)

V[V ] = (
1

4
− p2t,e). (45)

The adjusted error rate with Byzantine clients will be E[V ]/K.

C.3 PROOF TO THEOREM 2

Proof. Denote F := {1,−1}, and p := (p1, . . . , pK). Denote ∥·, ·∥1 the Hamming distance of
two vectors. Then for any p ∈ SK with ∥p,p′∥1 ≤ 1 and any f ∈ F , denoting f̂ := fDP(p),
f̂ ′ := fDP(p

′),

Prob(f̂ = f)

Prob(f̂ ′ = f)
=

exp(ϵqf̂/4)

exp(ϵqf̂ ′/4)

exp(ϵqf̂ ′/4) + exp(ϵq−f̂ ′/4)

exp(ϵqf̂/4) + exp(ϵq−f̂/4)
(46)

= exp

(
ϵ(qf̂ − qf̂ ′)

4

)
exp(ϵ(qf̂ + 2)/4) + exp(ϵ(q−f̂ + 2)/4)

exp(ϵqf̂/4) + exp(ϵq−f̂/4)
(47)

≤ exp

(
2ϵ

4

)
exp

(
2ϵ

4

)
exp(ϵqf̂/4) + exp(ϵq−f̂/4)

exp(ϵqf̂/4) + exp(ϵq−f̂/4)
(48)

= exp(ϵ). (49)

C.4 PROOF FOR PROPOSITION 2

We begin the proof with a lemma regarding the property of Gaussian matrices.
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Lemma 4 (Gaussian Matrices are Full-rank with Proabability 1). Gaussian random matrices M ∈
Rq×d, whose elements are Mij ∼ N (0, 1), i = 1, . . . , q, j = 1, . . . , d are full rank with probability
1.

Proof. M is not full rank if and only if det(MMT ) = 0, which is equivalent to the existence of a
polynomial p : Rqd → R such that p(M⃗) = 0, where M⃗ ∈ Rqd stands the flattened M , a vector
with all its elements collected non-repeatedly from M . Thus

Prob(M is not full rank) =
∫
p(M⃗)=0

dF (M⃗), (50)

where F (M⃗) is the cumulative distribution function (CDF) of M⃗ . Note that p is continuous, then
Z(p) = {x|p(x) = 0} is Lebesgue measurable. Denote by µ(·) the Lebesgue measure on Rqd. By
observing that µ(Z(p)) = 0 for any polynomial p, it implies that M is full rank with probability 1.

We prove the above observation by induction. Suppose the conclusion holds for polynomials of
order n− 1. Then for any polynomial of order n, we can write

p(x, xn) =

k∑
j=0

pj(x)x
j
n, (51)

where x ∈ Rn−1 and at least pk is nontrivial. Denote x̃ = (x, xn), then x̃ ∈ Z(p) requires one of
the following disjoint events:

A. p0(x) = · · · = pk(x) = 0,

B. xn solves px(t) =
∑k

j=0 pj(x)t
j .

Let A and B be the respective sample set of the events. It is clear that µ(A) = 0 by inductive
hypothesis. The fundamental theorem of algebra shows that B consists of at most k points (atoms)
and thereby µ(B) = 0. Fubini’s theorem guarantees that based on the above the set of x satisfying
either A or B has a Lebesgue measure of zero. Then by µ(Z(p)) = µ(A∪B) ≤ µ(A)+µ(B) = 0
and noticing the case of n = 1 is trivial establishes the induction.

With Lemma 4, it is clear that the gradients will span Rd with a sufficient number of steps.

D WHEN WILL FeedSign BE UNBIASED?

It is clear that FeedSign does not provide general unbiased gradient estimation. We will discuss a
specific case where FeedSign is unbiased.

Assume the true gradient projection for a specific model is p, and the estimation yielded by ZO-
FedSGD is p1 and FeedSign p2. Consider a noise n with CDF F (x) on p due to batch gradient
estimation, specifically, p1 = p+ n, then

Prob(p2 = 1) = F (p), (52)
Prob(p2 = −1) = F (−p). (53)

To make p2 an unbiased estimator of p, we need
E[p2] = F (p)− F (−p) = p (54)

for any p in the support of F (x). This result implies that FeedSign is unbiased only when

1. the noise CDF is uniform on [−1, 1],
2. p takes value on [−1, 1] only.

This is an obviously unrealistic setting. However, there could be methods that distort the true dis-
tribution of p and n so that they behave similarly to the abovementioned case, making FeedSign an
unbiased FL method. This could be a topic for future investigation.
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E HYPERPARAMETERS

Table 9: Hyperparameters settings. *: See Table 10 for details.
B T η K µ β

Table 1 64 1× 105
1× 10−6 for ZO-FedSGD,

5 1× 10−3 -
5× 10−5 for FeedSign

Table 2 16 2× 104
1× 10−7 for ZO-FedSGD,

5 1× 10−3 -
5× 10−6 for FeedSign

Table 3 16 * 1× 10−7 for ZO-FedSGD, * 1× 10−3 -
5× 10−6 for FeedSign

Table 4 16
2× 104 for CIFAR-10

1× 10−3 5 1× 10−5 -
6× 104 for CIFAR-100

Table 5 16 6× 104
1× 10−7 for ZO-FedSGD,

5 1× 10−3 1.0
5× 10−6 for FeedSign

Table 6 16 6× 104
1× 10−7 for ZO-FedSGD,

5 1× 10−3 -
5× 10−6 for FeedSign

Table 7, Figure 3 64
2× 104 for CIFAR-10

1× 10−3 5 1× 10−5 -
6× 104 for CIFAR-100

Figure 2 64 1.2× 105 1× 10−4 25 1× 10−5 1.0

Table 10: Step budgets and numbers of perturbations used in Table 3.
K Step budget The number of perturbations T

MeZO 6× 104 6× 104

5 6× 104 3× 105

25 1.2× 104 3× 105

In Table 1 and Table 2, we kept the number of perturbations rather than step budget aligned to MeZO.
In Table 3, we align the step budgets for K = 5 in our comparison with the centralized counterpart.
However, since the computation complexity scales to the number of perturbations hence to client
pool size K also, we report the result of K = 25 with 1/5 of step budgets. Other hyperparameters
in Table 1-3 is set to be consistent to MeZO Malladi et al. (2023). In language model experiments,
we set a larger learning rate η since FeedSign may have a smaller gradient norm. We believe that
this will be partially accounted for outperforming the reported figures in MeZO in several instances.

Additionally, we added a random multiplier following 1 +N (0, 1) to gradient projection estimates
of both ZO-FedSGD and FeedSign to simulate a high data heterogeneity with a high value of cg in
Theorem 1 in Figure 2, apart from higher σh caused by Dirichlet distributed client dataset.

F EXAMPLES OF PYTORCH PRNG

We include several snippets demonstrating the behavior of PyTorch PRNG and describe how it helps
FeedSign cut down the communication overhead.

F.1 USING PRNG FOR RGE

We repeatedly call torch.randn_like to spawn an identical random perturbation from a ran-
dom seed.

1 def seed_perturb(self, seed, scale):
2 torch.manual_seed(seed)
3
4 for k, v in self.model.named_parameters():
5 dv = torch.randn_like(v).to(v.device)
6 v.data += dv * scale

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

F.2 BRIEF DEMONSTRATION ON THE BEHAVIOR OF THE PYTORCH PRNG

We include a snippet as in Section F.3 to demonstrate the behavior of PRNG in PyTorch. We mainly
execute the following operations in Python:

1. Set the random seed to 42. (line 2)
2. Generate three Gaussian random arrays a, b, and c. (line 7 to 23)
3. Some operations that access the previously generated arrays. (line 24 to 26)
4. Reset the random seed to 42. (line 27)
5. Some operations that access the previously generated arrays. (line 29 to 31)
6. Generate three Gaussian random arrays a1, b1, and c1 with shapes (line 32 to 51)

identical to a, b, and c, respectively.

It is observed that:

1. Array a, b, and c are identical to a1, b1, and c1, respectively, even with some operations
that access the arrays.

2. Array a and c are not identical though they have the same shape. This is because between
the two random array generations, torch.manual_seed is not called.

This above result is reproducible on the following four devices we have tested:

Type OS/CPU/GPU Python PyTorch CUDA cuDNN

Alienware x15 R1
Windows 11

3.10.6 2.3.1 12.4 8.011th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz
1x NVIDIA GeForce RTX 3070 Laptop GPU

ASUS ESC8000 G4
Linux 5.10.0, amd64

3.10.13 2.3.0 12.1 8.9Intel(R) Xeon(R) Gold 6133 CPU @ 2.50GHz
6x NVIDIA GeForce RTX 3090 GPU

Inspur NF5488A5
Linux 4.18.0, x86 64

3.11.9 2.2.0 12.1 8.9AMD EPYC 7742 64-Core Processor
8x NVIDIA A100-SXM4-80GB

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

F.3 CODE BLOCK

1 >>> import torch
2 >>> torch.manual_seed(42)
3 <torch._C.Generator object at 0x7fd2e469e890>
4 >>> a = torch.randn((5, 5))
5 >>> b = torch.randn((4, 6))
6 >>> c = torch.randn((5, 5))
7 >>> a
8 tensor([[ 1.9269, 1.4873, 0.9007, -2.1055, 0.6784],
9 [-1.2345, -0.0431, -1.6047, -0.7521, -0.6866],

10 [-0.4934, 0.2415, -1.1109, 0.0915, -2.3169],
11 [-0.2168, -1.3847, -0.3957, 0.8034, -0.6216],
12 [-0.5920, -0.0631, -0.8286, 0.3309, -1.5576]])
13 >>> b
14 tensor([[ 0.3211, 1.5736, -0.8455, 1.3123, 0.6872, -1.0892],
15 [-0.3553, -0.9138, 0.8564, 2.2181, 0.5232, 0.3466],
16 [-0.1973, -1.0546, 1.2780, 0.1453, 0.5238, 0.0566],
17 [ 0.4263, 0.5750, -0.6417, -2.2064, -0.7508, 2.8140]])
18 >>> c
19 tensor([[-0.3387, -1.3407, -0.5854, 0.5362, 0.5246],
20 [ 1.1412, 0.0516, 0.7281, -0.4816, 0.1877],
21 [-0.3576, -0.3165, 0.5886, -0.8905, 0.4098],
22 [-1.4570, -0.1023, 0.3499, 0.6173, -0.1693],
23 [ 0.2332, 4.0356, 1.2795, -0.0127, 0.2408]])
24 >>> d = 3 + b[3, 2]
25 >>> d
26 tensor(2.3583)
27 >>> torch.manual_seed(42)
28 <torch._C.Generator object at 0x7fd2e469e890>
29 >>> e = 1 + b[2, 4]
30 >>> e
31 tensor(1.5238)
32 >>> a1 = torch.randn((5, 5))
33 >>> b1 = torch.randn((4, 6))
34 >>> c1 = torch.randn((5, 5))
35 >>> a1
36 tensor([[ 1.9269, 1.4873, 0.9007, -2.1055, 0.6784],
37 [-1.2345, -0.0431, -1.6047, -0.7521, -0.6866],
38 [-0.4934, 0.2415, -1.1109, 0.0915, -2.3169],
39 [-0.2168, -1.3847, -0.3957, 0.8034, -0.6216],
40 [-0.5920, -0.0631, -0.8286, 0.3309, -1.5576]])
41 >>> b1
42 tensor([[ 0.3211, 1.5736, -0.8455, 1.3123, 0.6872, -1.0892],
43 [-0.3553, -0.9138, 0.8564, 2.2181, 0.5232, 0.3466],
44 [-0.1973, -1.0546, 1.2780, 0.1453, 0.5238, 0.0566],
45 [ 0.4263, 0.5750, -0.6417, -2.2064, -0.7508, 2.8140]])
46 >>> c1
47 tensor([[-0.3387, -1.3407, -0.5854, 0.5362, 0.5246],
48 [ 1.1412, 0.0516, 0.7281, -0.4816, 0.1877],
49 [-0.3576, -0.3165, 0.5886, -0.8905, 0.4098],
50 [-1.4570, -0.1023, 0.3499, 0.6173, -0.1693],
51 [ 0.2332, 4.0356, 1.2795, -0.0127, 0.2408]])
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G TEST ACCURACY OF OTHER ZO METHODS ON CIFAR-10 DATASET

We list the test accuracy on CIFAR-10 dataset obtained
by some previous ZO methods in Figure 6, including
Pattern Search Chiang et al. (2022), Align-Ada Boopa-
thy & Fiete (2022), LG-FG-A and FG-W Ren et al.
(2022), and DeepZero Chen et al. (2023). To conduct
a fair comparison, we present the test accuracy when
FeedSign is run with only one client to simulate a cen-
tralized training manner since the listed baseline per-
formances are all obtained under a centralized learning
setting.
Notably, we are not able to compare our approach
with DeepZero at the same scale. This is because in
DeepZero, the authors used ResNeta-20, a version of
ResNet tailored for images of small sizes (3× 32× 32,
the standard CIFAR-10 size). Unfortunately, there are
no available “pre-trained models” for models at this
scale. In our implementation, we upsample the CIFAR-
10 images to 3×224×224 to adapt to the standard input
shape of the standard version of ResNet-18. Moreover,
DeepZero cannot scale up to ViT-large models due to
prohibitively high computation overhead.

Figure 6: Test accuracy on CIFAR-10
dataset of some ZO baselines.

H IMPLEMENTATION DETAILS

H.1 EXPERIMENTAL SETTINGS

To ensure consistency with previous research, we run the evaluation on RoBERTa-large, OPT-125M
and OPT-13B as is done in MeZO. Additionally, we adapt the method to image models and run
evaluations on ViT-base. Language models are run on a server equipped with 8 NVIDIA A100-
80GB GPUs, and image models are run on a smaller server equipped with 6 NVIDIA GeForce RTX
3090 GPUs.

For hyperparameters, we follow the configuration of MeZO for language models and develop our
own set of parameters for image models. The number of participating clients is set to K = 5. We
set the random seed to t at t-th step in FeedSign.

H.2 MODEL PARAMETER UPDATE USING ZO METHODS

Two approaches can be used to update the model parameters in PyTorch:

1. Put the SPSA gradient estimate to the corresponding param.grad, and use the standard
PyTorch optimizer.step() to update the model parameters.

2. Inplace subtracting the entries of the state_dict object of the PyTorch model by the
SPSA gradient estimate.

Table 11: Memory consumption of RoBERTa-large when using batch size 16 with the MultiRC task.
The reported memory does not include the cost of storing the model on the GPU.

Task FeedSign, Approach 2 FeedSign, Approach 1 FO methods (common FedAvg)
Inference Inference+optimizer Backpropagation

Excess Memory (MB) 327.50 830.66 24156.23

In terms of memory requirement, our methods is essentially same to what is done in Malladi et al.
(2023). The benefit of the first approach is that it is compatible with optimizers like Adam and RM-
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SProp provided by PyTorch, and the drawback is that those optimizers often use momentum, result-
ing in 2x or 3x times the memory consumption compared to model inference, but still significantly
smaller than that of the memory consumption of FO methods. The second approach consumes the
exact same amount of memory compared to inference, however, it can result in slower convergence.
We use the first approach for image models and the second for language models.

H.3 IMPLEMENTING FedSGD OVER LLM

A common way of building an FL system simulation is maintaining K + 1 model instances in the
memory (K as the clients, one as the PS). However, the largest experiment we have carried out is
FO full-parameter fine-tuning OPT-13B with FedAvg over K = 5 clients. Fine-tuning an instance
of an OPT-13B model costs 316 GB (4xA100 GPU) GPU memory, and 6 of them is unaffordable
for us. So we make use of the behavior of the auto-differentiation of PyTorch to detour the problem.

In a nutshell, we simulate only the global model on a virtual PS in the memory, and the local up-
dates from different clients are accumulated to param.grad by calling loss.backward() for
K times, each time on the loss computed from a corresponding client. The loss.backward()
implicitly simulates three steps in a communication round: 1) clients computing local updates,
2) clients sending local updates to the PS, 3) PS aggregates the local gradients. Next, a call of
optimizer.step() subtracts the parameters by the corresponding entries of param.grad,
simulating the global model marching a step along the gradient direction and broadcasting the up-
dated model. In this way, we simulate the FedSGD over K clients using only 1x inference memory.

We illustrate the process using the following snippet.

1 for t in range(T):
2 optimizer.zero_grad()
3 for c in range(C):
4 ’’’
5 sample a batch from its private dataset
6 calculate local loss
7 ’’’
8 loss.backward() # accumulate local gradients to global model
9 optimizer.step()

H.4 MORE RESULTS

In this section, we will illustrate more experimental details.

Main results. We additionally compare two ZO-FedAvg baselines with different aggregation fre-
quency, l = 5 steps and l = bn steps, where bn is the number of batches in the dataset. Table 12
provides supplemental results of Table 1. In fine-tuning an RoBERTa-large model, compared to the
best federated ZO method, the performance gaps are within−2% in 10 of the 12 entries, including 2
where FeedSign outperforms the baseline methods. Table 13 provides supplemental results of Table
2. In fine-tuning an OPT-13B model, compared to the best federated ZO method, the performance
gaps are within −2% in all of the 11 entries, which includes 8 entries that FeedSign outperforms the
baseline methods.

Heterogeneity resilience. Table 14 contains the results presented in Table 5, offering additional
results for various settings of the Dirichlet distribution’s control parameter α and training step T .

H.5 WHY FINE-TUNING OVER FROM-THE-SCRATCH TRAINING

In language models, the approach uses prompts that ensure the objective is close to that of the per-
taining in finetuning, guaranteeing its good performance. In image models, the most straightforward
way to adapt a pre-trained model to a new dataset with different number of classes is to change the
size of the classifier layer.
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Table 12: Detailed results on RoBERTa-large over language tasks. Best results obtained using federated ZO
optimization is bolded, and metric gap to that of FO method is reported in the rightmost column. We mark the
performance gap between FeedSign and the best federated ZO method in a bracket.

Task SST-2 SST-5 SNLI MNLI RTE TREC GapType —- sentiment —- - natural language inference - – topic –
Zero-shot 79.0 35.5 50.2 48.8 51.4 32.0 –

k = 16
FO 91.8 47.5 77.5 70.0 66.4 85.0 –
MeZO 90.5 45.5 68.5 58.7 64.0 76.9 -5.6
ZO-FedSGD 89.7 46.8 63.1 60.5 63.1 70.0 -7.5
ZO-FedAvg-1 89.3 46.5 68.5 59.9 66.0 73.8 -5.7
ZO-FedAvg-2 89.3 46.5 68.5 59.9 66.0 73.8 -5.7
FeedSign 88.9 45.0 69.7 59.7 65.3 75.6 -5.8

(-0.8) (-1.8) (–) (-0.8) (-0.7) (–)
k = 512

FO 93.9 55.9 88.7 84.4 82.7 97.3 –
MeZO 93.3 53.2 83.0 78.3 78.6 94.3 -3.7
ZO-FedSGD 93.0 52.0 84.9 74.8 76.8 94.4 -4.5
ZO-FedAvg-1 92.6 52.7 83.7 77.0 79.7 94.6 -3.7
ZO-FedAvg-2 93.8 54.1 82.8 77.1 78.7 95.0 -3.5
FeedSign 92.6 50.4 83.1 76.0 74.3 93.0 -5.5

(-1.2) (-3.7) (-1.8) (-1.1) (-5.4) (-2.0)

Table 13: Detailed results on OPT-13B over language tasks. Best results obtained using federated ZO opti-
mization is bolded, and metric gap to that of FO method is reported in the rightmost column. We mark the
performance gap between FeedSign and the best federated ZO method in a bracket.

Task SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD SQuAD DROP GapType ———————– classification ———————– – multiple choice – — generation —
Zero-shot 58.8 59.6 46.4 59.0 38.5 55.0 46.9 80.0 81.2 46.2 14.6 –
FO 92.0 70.8 83.9 77.1 63.5 70.1 71.1 79.0 74.1 84.9 31.3 –
MeZO 91.4 66.1 67.9 67.6 63.5 61.1 60.1 88.0 81.7 84.7 30.9 -3.1
ZO-FedSGD 84.7 60.2 67.8 64.1 52.8 55.3 54.1 84.0 81.7 76.1 29.4 -7.9
ZO-FedAvg-1 84.7 61.3 67.8 64.8 52.8 54.3 54.0 86.0 81.6 76.1 29.8 -7.6
ZO-FedAvg-2 84.7 62.0 69.6 63.4 52.8 53.7 52.9 83.0 81.0 75.4 29.9 -8.1
FeedSign 87.7 62.0 67.8 64.5 60.5 55.7 57.3 88.0 81.7 77.6 28.5 -6.0

(–) (–) (-1.8) (-0.3) (–) (–) (–) (–) (–) (–) (-1.4)
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Table 14: More results on OPT-125M over language models with iid and non-iid data. We bolded
the results that FeedSign performs equally with or better than ZO-FedSGD.

Task SST-2 RTE CB BoolQ WSC WIC MultiRC
Zero-shot 51.2 53.0 48.2 41.5 37.5 51.2 49.7

———————– iid STEP=20000 ———————–
ZO-FedSGD 72.7 49.0 69.6 58.8 50.0 51.4 55.0
FeedSign 75.1 52.3 67.8 59.5 55.7 54.5 54.5

———————– non-iid STEP=20000 ———————–
ZO-FedSGD, β = 1.0 58.4 48.0 50.0 41.8 36.5 51.4 45.0
FeedSign, β = 1.0 55.0 48.0 58.9 43.1 36.5 50.6 44.6
ZO-FedSGD, β = 2.0 79.8 52.7 58.9 62.6 63.4 49.5 55.5
FeedSign, β = 2.0 79.2 52.7 62.5 62.1 63.4 50.7 54.6
ZO-FedSGD, β = 3.0 78.7 53.0 62.5 62.8 63.4 50.1 55.5
FeedSign, β = 3.0 78.6 52.3 64.2 61.8 63.4 51.2 54.6
ZO-FedSGD, β = 4.0 81.0 52.3 62.5 62.6 61.5 50.0 55.5
FeedSign, β = 4.0 79.7 53.4 67.8 61.4 63.4 51.4 55.5
ZO-FedSGD, β = 5.0 81.1 53.0 41.0 61.8 61.5 50.4 55.4
FeedSign, β = 5.0 79.4 53.4 46.4 61.9 63.4 50.4 55.1

———————– iid STEP=40000 ———————–
ZO-FedSGD 79.0 51.2 67.8 58.9 50.9 52.3 54.9
FeedSign 82.9 54.8 67.8 59.3 50.9 53.4 55.7

———————– non-iid STEP=40000 ———————–
ZO-FedSGD, β = 1.0 64.1 47.6 57.1 41.9 36.5 51.0 44.7
FeedSign, β = 1.0 66.9 47.2 67.8 41.5 36.5 50.9 44.5
ZO-FedSGD, β = 2.0 82.3 52.7 64.2 62.6 63.4 50.1 55.5
FeedSign, β = 2.0 82.1 52.3 66.0 63.1 63.4 50.3 55.4
ZO-FedSGD, β = 3.0 81.1 52.7 66.0 62.7 63.4 50.3 55.5
FeedSign, β = 3.0 82.9 52.3 66.0 62.7 63.4 50.1 55.6
ZO-FedSGD, β = 4.0 82.2 53.0 64.2 62.7 65.3 50.1 55.5
FeedSign, β = 4.0 83.0 52.7 67.8 62.7 65.3 52.3 55.5
ZO-FedSGD, β = 5.0 82.1 52.7 58.9 62.6 65.3 51.0 55.5
FeedSign, β = 5.0 82.9 52.7 66.0 65.3 65.3 50.0 55.5

———————– iid STEP=60000 ———————–
ZO-FedSGD 82.3 50.9 69.6 59.0 51.9 50.7 54.4
FeedSign 84.2 54.5 67.8 60.2 49.0 53.4 56.0

———————– non-iid STEP=60000 ———————–
ZO-FedSGD, β = 1.0 70.7 47.2 64.2 40.6 36.5 50.3 44.6
FeedSign, β = 1.0 73.0 47.2 66.0 40.8 36.5 50.0 44.5
ZO-FedSGD, β = 2.0 81.1 52.7 64.2 63.0 63.4 50.1 55.5
FeedSign, β = 2.0 82.5 52.7 62.5 62.6 62.5 50.1 55.5
ZO-FedSGD, β = 3.0 81.5 53.0 66.0 62.8 63.4 50.6 55.5
FeedSign, β = 3.0 82.9 52.7 66.0 63.0 61.5 50.4 55.2
ZO-FedSGD, β = 4.0 83.2 52.3 66.0 62.8 63.4 49.5 55.5
FeedSign, β = 4.0 83.3 51.9 62.5 62.6 59.6 51.4 55.6
ZO-FedSGD, β = 5.0 81.7 52.7 62.5 62.4 63.4 50.4 55.5
FeedSign, β = 5.0 83.4 51.9 62.5 62.1 59.6 50.6 55.7
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