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Figure 1: We present X-NeMo, a diffusion-based portrait animation framework that integrates
expressive 1D latent motion descriptors with identity-disentangled motion control through cross-
attention mechanisms (left). Our method enables meticulous transfer of expressive head poses and
detailed facial expressions while maintaining identity consistency, even across subjects with distinct
appearances, styles and facial structures (right).

ABSTRACT

We propose X-NeMo, a novel zero-shot diffusion-based portrait animation
pipeline that animates a static portrait using facial movements from a driving video
of a different individual. Our work first identifies the root causes of the key issues
in prior approaches, such as identity leakage and difficulty in capturing subtle and
extreme expressions. To address these challenges, we introduce a fully end-to-end
training framework that distills a 1D identity-agnostic latent motion descriptor
from driving image, effectively controlling motion through cross-attention dur-
ing image generation. Our implicit motion descriptor captures expressive facial
motion in fine detail, learned end-to-end from a diverse video dataset without re-
liance on pretrained motion detectors. We further enhance expressiveness and
disentangle motion latents from identity cues by supervising their learning with a
dual GAN decoder, alongside spatial and color augmentations. By embedding the
driving motion into a 1D latent vector and controlling motion via cross-attention
rather than additive spatial guidance, our design eliminates the transmission of
spatial-aligned structural clues from the driving condition to the diffusion back-
bone, substantially mitigating identity leakage. Extensive experiments demon-
strate that X-NeMo surpasses state-of-the-art baselines, producing highly expres-
sive animations with superior identity resemblance. Our code and models will be
available for research.
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1 INTRODUCTION

We investigate the task of portrait animation, where a static portrait is animated using head move-
ments and facial expressions derived from a driving video of a different subject. This task has
garnered growing interest owing to its versatile applications in video conferencing, visual effects
and digital agents. Building on prior research, we aim to advent the field of zero-shot portrait reen-
actment by synthesizing highly expressive animations while maintaining identity resemblance to the
reference portraits with minimal loss.

Commencing with the pioneering works Siarohin et al. (2019b;a), portrait animation has primarily
involved extracting motion features from a driving video followed with a generative process, such as
GANs Goodfellow et al. (2014); Karras et al. (2019; 2020) or diffusion models Ho et al. (2020); Song
et al. (2020a;b); Rombach et al. (2022), conditioned on the reference appearance and derived motion
features. Recent advancements in diffusion models have achieved unprecedented diversity and qual-
ity in image generation, prompting us to utilize their generative capabilities Saharia et al. (2022);
AI (2022) for portrait animation. Recent approaches have tackled portrait animation as a controlled
image-to-video diffusion task, where the reference appearance is cross-queried through mutual self-
attention Cao et al. (2023) whereas the driving motion signal is integrated into the denoising pro-
cess using frameworks like ControlNet Zhang et al. (2023b) or lighter-weight PoseGuider Hu et al.
(2023). The driving motion is represented either through explicit semantic signals such as facial
landmarks Ma et al. (2024); Wei et al. (2024); Chang et al. (2024), dense pose Xu et al. (2024d)
and facial template renderings Chen et al. (2024a), or through implicit motion features learnt from
synthetic cross-identity image pairs with aligned expression but different identities Xie et al. (2024);
Yang et al. (2024a). Despite significant progress in realism and dynamics, these diffusion-based
methods still struggle to capture extreme or subtle expressions and often suffer from identity drift-
ing, particularly when the reference and driving identities differ substantially.

We identify two main factors contributing to the challenges in expressiveness and identity resem-
blance in prior network designs. First, explicit motion descriptors like facial landmarks or blend-
shapes, are often too coarse to capture extreme or subtle facial motions and rely heavily on the ro-
bustness and accuracy of external motion detectors. Although these descriptors do not contain RGB
appearance, they encode the facial structure of the driving identity, leading to undesirable identity
leakage in cross-identity animations. Recent approaches Xie et al. (2024); Yang et al. (2024a) have
attempted to derive implicit motion signals directly from synthetic cross-identity training image pairs
generated using an off-the-shelf portrait animator (e.g., Wang et al. (2021)). Despite substantial im-
provements in expressiveness and stability, these methods remain constrained by the capacity of pre-
trained portrait animators which struggle with complex expressions (e.g., tongue protrusion, cheek
puffing). Additionally, sharing aligned facial structures in training pairs inadvertently pass identity
information onto the learnt implicit motion features. Second, prior diffusion-based approaches often
guide motion control using spatially-aligned 2D conditions via ControlNet or PoseGuider. While ef-
fective for self-driven motion, this approach encourages the diffusion backbone to take a shortcut to
mimic the 2D layout rather than fully leveraging semantic mappings between reference and driving
images, leading to identity leakage during expression transfer across different subjects.

In this work, we propose X-NeMo, a novel portrait animation framework that enables end-to-end
self-supervised learning of a compact 1D latent motion descriptor, facilitating effective motion con-
trol in diffusion models via cross attentions. Specifically, we introduce a motion encoder to extract
a 1-D identity-agnostic motion latent from the original driving image, and modulate this control-
ling motion descriptor into the diffusion backbone via cross-attentions. By training end-to-end with
the image generator, our encoder fully leverages the motion diversity and richness embedded in
our training video collections, without reliance on off-the-shelf motion detectors. We restrict the
dimensionality of the latent embedding, functioning as a low-pass filter Burkov et al. (2020), and
format it as a 1D global motion descriptor that excludes 2D structural cues from the driving image.
Furthermore, by using cross motion attentions rather than spatial additive guidance, we ensure that
the backbone remains agnostic to the identity structural signals from the motion control branch.
This structure-agnostic motion control enables various augmentations like color jittering and spatial
transformations, promoting the self-supervised disentanglement of identity and motion. In addition
to the diffusion loss, we incorporate a dual GAN-based decoder head and refine the learning of our
motion latent space with image-level losses that capture subtle and detailed expressions. Our design
effectively mitigates the aforementioned shortcut learning, and compels the network to interpret
fine-grained motion semantics during both motion encoding and image generation stages.
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Trained on a collective of public video datasets Zhang et al. (2021); Xie et al. (2022); Kirschstein
et al. (2023), our method excels at faithfully capturing both extreme and nuanced facial motions and
transferring them across subjects even with distinct identity attributes. We extensively evaluate our
model across our challenging benchmarks and X-NeMo outperforms state-of-the-art portrait anima-
tion baselines both quantitatively and qualitatively. Additionally, our expressive latent motion de-
scriptor serves as a unified identity-agnostic embedding, facilitating motion interpolation and video
outpainting applications beyond portrait animation. We summarize our contributions as follows,

• A novel diffusion-based portrait animation pipeline, trained fully end-to-end, achieving state-of-
the-art performance in terms of motion accuracy, expressiveness and identity disentanglement.

• A structure-agnostic motion control scheme that learns a 1-D identity-disentangled latent motion
descriptor and modulates control into image generation via cross-attentions, effectively addressing
the long-standing issues of identity entanglement and motion expressiveness loss.

• A set of carefully designed strategies during both training (e.g., dual head latent supervision,
augmentations and reference feature masking) and inference that substantially enhance the model
performance, as supported by extensive ablation studies.

• Demonstration of captivating zero-shot portrait animations and generations.

2 RELATED WORKS

GAN-based Portrait Animation. Video-driven face reenactment seeks to accurately transfer fa-
cial expressions and head movements from a driving video to a target image. Common approaches
have primarily leveraged Generative Adversarial Networks (GANs) Goodfellow et al. (2014); Kar-
ras et al. (2019; 2020) to model and capture the intricate motion dynamics between source and
target identities. Broadly, these methods can be categorized into two classes: The first class is based
on explicit motion representations Siarohin et al. (2019a;b); Ren et al. (2021); Wang et al. (2021);
Mallya et al. (2022); Yin et al. (2022); Gao et al. (2023); Doukas et al. (2021); Guo et al. (2024a);
Zhao & Zhang (2022), such as 3D face model parameters, landmarks, or latent keypoints, which use
structured information to disentangle appearance and motion, but struggle with large pose changes
or dynamic expressions. The second category involves latent motion representations Burkov et al.
(2020); Liang et al. (2022); Zhou et al. (2021); Pang et al. (2023); Wang et al. (2022; 2023); Droby-
shev et al. (2022; 2024); Xu et al. (2024c), embedding motion information in a latent space, offering
improved expressiveness but relying on complex loss functions and hyperparameters to achieve
identity-motion disentanglement. While more effective at transferring subtle expressions, such
methods are still limited by the capability of GAN-based generators in handling extreme expres-
sions and out-of-domain portrait styles. Our work follows this disentangled representation learning
approach, but instead we use a Diffusion Model as the generator, which offers significantly improved
generation capabilities with diverse and complex portrait styles.

Diffusion-based Portrait Animation. Diffusion models Ho et al. (2020); Song et al. (2020a;b)
have demonstrated strong generative capabilities, with Latent Diffusion Models (LDMs) Rombach
et al. (2022) further advancing its efficiency by operating in a lower-dimensional latent space. Re-
cent works Liu et al. (2024); Xu et al. (2024a); Han et al. (2023); Varanka et al. (2024); Paskaleva
et al. (2024) have explored adapting pre-trained LDMs AI (2022) for conditional portrait generation,
by mapping reference images and driving signals into the text embeddings (e.g., using CLIP Khan-
delwal et al. (2022)) and injecting them into cross-attention layers. While effective for coarse-
level facial expression editing, these methods still struggle with appearance and motion consis-
tency in portrait video animation. Hu et al. (2023); Xu et al. (2024d); Chang et al. (2024) designed
for human body animation have shown that the combination of a dual U-Net with mutual self-
attention Cao et al. (2023) and temporal module Guo et al. (2024b) is able to maintain motion
smoothness with consistent appearance. This framework has been extended to portrait animation in
several works Tian et al. (2024); Xie et al. (2024); Wei et al. (2024); Xu et al. (2024b); Yang et al.
(2024a); Wang et al. (2024); Ma et al. (2024); Chen et al. (2024b), often using ControlNet Zhang
et al. (2023b) or PoseGuider Hu et al. (2023) for motion control. During training, they rely on
explicit representations like facial keypoints Ma et al. (2024); Wei et al. (2024), facial mesh render-
ings Chen et al. (2024a), or synthetic cross-identity portraits Xie et al. (2024); Yang et al. (2024a). In
contrast, our method learns a latent motion representation end-to-end with our diffusion backbone,
and incorporates motion control with cross-attentions, effectively preventing identity leakage.
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Figure 2: Overview of X-NeMo. We leverage a pretrained diffusion model D as the rendering
backbone and incorporate a reference network module R for appearance conditioning, along with
temporal modules for cross-frame consistency. For motion control, we train a latent motion em-
bedding fmot encoded from the driving image ID after applying spatial and color augmentations.
Alongside the relative translation and scaling frts of the face bounding box from reference IR and
driving image ID, we integrate the latent motion conditions into the diffusion backbone using newly
inserted cross-attention layers. Besides the original diffusion loss Lldm, we supervise the learning
of our latent motion embedding with a jointly trained GAN decoder head using image-level losses
Lgan. During inference, we derive the latent motion codes directly from each driving frame, allow-
ing us to synthesize expressive and precise animations while strictly maintain identity resemblance
to the reference image.

3 METHOD

Given a single portrait as the reference image IR, our objective is to generate a head animation
sequence {IR−>Di} of length l, conditioned on a driving video IDi , where i = 1, . . . , l denotes the
frame index. The generated frames {IR−>Di} aim to preserve the identity features and background
content depicted in IR while accurately replicating the head pose and facial expressions featured in
each corresponding driving frame IDi

. While portrait animation algorithms are generally trained as
a frame reconstruction task over video datasets, the IR and ID may feature distinct identities during
inference, enabling cross-identity motion transfer.

For our task, we harness the generative capabilities of pre-trained Latent Diffusion Models AI (2022)
for image generation. Although our method shares some network modules with prior diffusion-
based approaches (Section 3.1), it innovates on motion control by addressing the root causes behind
the loss of expressiveness and identity resemblance. We introduce our fully end-to-end learning
framework that achieves fine-grained, identity-agnostic motion control through cross-attention to a
co-learned implicit motion descriptor (Section 3.2). To assist the self-supervised learning of motion
and identity disentanglement, we present a set of carefully designed training strategies (Section 3.3).
Figure 2 provides an overview of our training and inference pipeline.

3.1 PRELIMINARIES

Latent Diffusion Model. Facilitated by a pretrained auto-encoder, latent diffusion models Rom-
bach et al. (2022) are a class of diffusion models Ho et al. (2020); Song et al. (2020a;b) that synthe-
size desired samples in the image latent space, starting from Gaussian noise zT ∼ N(0, 1) and re-
fining through T denoising steps. During training, latent representations of images are progressively
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corrupted by Gaussian noise ϵ, following the Denoising Diffusion Probabilistic Model (DDPM)
framework Ho et al. (2020). A UNet-based denoising backbone network D containing intervened
layers of convolutions and self-/cross-attentions, is trained to learn the reverse denoising process.

Portrait Animation. Recently a line of work Tian et al. (2024); Xie et al. (2024); Wei et al. (2024);
Xu et al. (2024b); Yang et al. (2024a); Wang et al. (2024); Ma et al. (2024); Chen et al. (2024b)
have explored leveraging the generative power of pretrained LDM, such as Stable Diffusion AI
(2022), for portrait animation. While exhibiting slight algorithmic variations, these methods gener-
ally employ similar components to transfer driving motions onto the reference image. Specifically,
a reference network R Cao et al. (2023), sharing the same architecture with the UNet D, extracts
reference features of identity appearance and background which are then cross-queried by the UNet
self-attention blocks. Motion control is achieved through an additional module, often formatted in
ControlNet Zhang et al. (2023b) or lighter-weight PoseGuider Hu et al. (2023), translating driving
conditions into 2D spatially-aligned offsets additive to the UNet features. To maintain consistency
across animated frames, temporal modules Guo et al. (2023), which incorporates cross-frame atten-
tions, are intervened with the spatial transformer blocks.

While effective to some extent, prior methods often fall short in expressiveness and suffer from
identity leakage in the generated animations. First, expressiveness is limited by the coarse granu-
larity of the driving motion conditions, such as facial landmarks or synthetic training images Xie
et al. (2024), which fail to capture complex and subtle expressions like frowning or puckering. Sec-
ond, while prior approaches mostly address appearance leakage, they overlook the leakage of 2D
facial structure and spatial layout embedded in the driving conditions, whether through landmarks or
synthesized images. ControlNet-like mechanisms transform these motion conditions into spatially-
aligned offsets within the UNet’s intermediate features. This reliance on spatial alignment causes the
UNet to bypass the need to interpret semantic correspondences between the reference and driving
faces, resulting in undesirable identity drift during cross-identity animation at inference.

3.2 PIPELINE WITH IDENTITY-DISENTANGLED IMPLICIT MOTION CONTROL

As shown in Figure 2, we follow the existing UNet-based latent diffusion framework AI (2022),
integrating both the reference network and temporal modules. However, our key innovation lies in
a novel motion control module, designed to tackle challenges in motion expressiveness and identity
consistency, particularly during cross-identity reenactments. A core design principle of our approach
is to distill motion directly from the original driving images, while ensuring the image generation
backbone operates independently of any appearance or structural clues from the motion control path.

Latent Motion Descriptor. For motion extraction, we employ an image encoder Emot, to learn an
implicit latent representation, fmot, that captures facial motions across varying levels of granularity.
Similar to the approaches in Wang et al. (2022; 2023), we formulate the motion latent representation
fmot as a low-dimensional 1-D global descriptor. The motion encoder Emot consists of intervened
layers of convolution-based feature extraction and self-attention, followed by MLP layers, which
encode the motion into a 1D latent vector, thereby eliminating spatial positional information (i.e.,
image structure) along the encoding process. Following the information bottleneck principle Tishby
et al. (2000), we employ a larger network capacity (i.e., the reference net R) and higher feature
dimensions (i.e., multi-scale feature maps) for appearance modeling, while using a smaller network
capacity (Emot) and lower feature dimension ( fmot) for motion encoding. This design, function-
ing as a low-pass bottleneck filter, encourages the emergence of disentangled representations that
effectively capture key semantics of facial motion without entangling with appearance information.
Furthermore, unlike previous methods that rely on pretrained motion extractor as the driving condi-
tions (e.g., facial landmarks), our latent motion representation is continuously optimized during the
end-to-end training process. As a result, this allows our model to progressively learn and refine the
motion distribution as the diffusion model is trained on more diverse and expressive video data like
NerSemble Kirschstein et al. (2023). With that, our approach enhances the expressiveness of the
generated animations, as the model adapts to more complex and nuanced facial motions.

Cross-Attention Control. To exert motion control on UNet using our latent motion descriptor, one
possible approach would be to use a ControlNet-like module to guide the denoising process after
transforming the 1D latent code fmot into a 2D spatially-aligned control map via a StyleGAN-like
decoder. However, this would contradict our design goal for identity disentanglement.(Figure 3(a))
Since fmot is intentionally free of 2D structural information, transforming it into a spatial control
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w/o cross-attn OursReference Driving w/o augmentation OursReference Driving
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Figure 3: Qualitative ablation study on factors affecting identity consistency. (a) Replacing our mo-
tion cross-attentions with a control module using spatially additive guidance leads to severe leakage
of the driving identity’s facial structure. (b) Training without our color and spatial augmentations
results in noticeable appearance leakage and identity drift.

map demands additional input regarding the reference identity’s structure, thereby violating our
principle that the motion control path should remain agnostic to identity-specific features. Instead
the UNet should resort to the reference net for relevant identity-related information.

Instead, we adopt a cross-attention conditioning mechanism, which has proven effective across var-
ious control modalities Rombach et al. (2022); Tian et al. (2024); Ruiz et al. (2023). This allows
direct injection of the latent motion embedding into the UNet without adding spatial bias. Specifi-
cally, we insert motion-attention layers performing cross attention with the latent motion code fmot

after each spatial transformer blocks in the backbone. This cross-attention scheme integrates the 1D
motion embedding globally into the generation process, encouraging the UNet to interpret the mo-
tion condition and establish semantic correspondences between the reference and driving identity.

3.3 TRAINING STRATEGIES

For training, we randomly sample two distinct frames from a video as the reference IR and driving
ID image, respectively. The model is then trained to denoise the latent map of the target image ID
at timestep t, with the diffusion loss defined as follows,

Lldm = Ezt,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, cref , fmot)∥22

]
, (1)

where ϵθ denotes the trainable parameters in the backbone D, and fmot, cref represent the driving
motion and reference features, respectively, extracted by Emot and R. The training process is
structured into three stages. The first stage is the image pretraining stage, where the backbone UNet
and reference net are taken into training. The second stage involves jointly optimizing the motion
encoder Emot and the newly integrated motion-attention layers, forming an end-to-end encoder-
generator structure. Lastly, we train the temporal modules to ensure cross-frame coherence.

However, straightforward self-supervised training of the entire framework does not inherently dis-
entangle identity from facial motion. The UNet may inadvertently reconstruct the target image by
borrowing appearance features from the driving image or encoding identity information into the la-
tent motion descriptor fmot. Additionally, when IR and ID share similar expressions, the model
may distill motion signals from the reference image , hindering independent control over facial mo-
tion and identity, particularly in cross-identity reenactments. To address these issues, we propose
several training strategies to fully leverage the potential of our network design in Section 3.2.

Color/Spatial Augmentation. To suppress identity information leakage from the motion control
branch, we reduce the appearance and structural consistency between the driving and target images
using both color and spatial augmentations. Specifically, we apply color jittering, random scaling
within 30%, and piecewise affine transformations, to the driving image ID, altering the facial ap-
pearance and shape while preserving motion semantics. We also perform face-centered cropping
to enhance spatial disparity between the driving and target, promoting the motion encoder Emot to
focus on the facial movements and capture nuanced expressions. As shown in Figure 3(b), these
augmentations effectively guide the motion encoder Emot towards learning identity-agnostic mo-
tion representation. To account for the disrupted head translation due to face-centered cropping, we
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w/o RFMw/o GAN head OursDriving Reference Driving

(a) (b)

OursReference

Figure 4: Qualitative ablation study on factors influencing motion expressiveness.(a) Without the
dual GAN head, training solely with the diffusion loss hinders the motion encoder’s ability to learn
detailed and local motion patterns. (b) Our reference feature masking (RFM) strategy facilitates the
transfer of fine-level facial expressions, such as the wrinkles at the nasal region.

construct a triplet frts = (∆x/sr,∆y/sr, sd/sr), where (∆x,∆y) denotes the 2D relative distance
between the face centers in the IR and ID, and sd/sr reflects the change in bounding box scale. This
triplet is processed through fully connected layers and fused with latent motion embedding fmot.

Owing to our design of motion control via latent motion embedding and cross-attentions, we sub-
stantially improves facial motion disentanglement from identity structure through spatial augmen-
tations. In contrast, applying these augmentations with a ControlNet-like mechanism, which relies
heavily on aligned spatial control signals, would degrade both robustness and accuracy.

Dual-Head Latent Supervision. In our early experiments, we observe that our end-to-end motion
control training, while effective in capturing coarse facial motions, converges slowly and struggles
to depict subtle and fine-grained motions like frowning and puckering (see Figure 4(a)). The la-
tent motion embedding, acting as a low-pass filter, tends to model low-frequency movements first.
Additionally, the diffusion loss used during training assigns equal weight to every “pixel” in the
latent noise, leading the model to prioritize a smooth motion space over capturing local, detailed ex-
pressions. To address this, we introduce a dual GAN-based head to guide the learning of the latent
motion embedding, enhancing the model’s attention to fine-grained facial expressions.

Following Burkov et al. (2020); Wang et al. (2022; 2023), we employ a convolutional feature extrac-
tor network to encode the reference image into an appearance latent embedding fapp. Together with
our motion latent code fmot, these embeddings modulate a StyleGAN generator Karras et al. (2020)
(i.e., the GAN-head decoder) to generate an RGB image, co-trained with our diffusion-based motion
control. Its training losses, collectively denoted as Lgan, are formulated in image space, including
a weighted L1 reconstruction loss, adversarial loss, feature matching loss Burkov et al. (2020), and
VGG perceptual losses Simonyan & Zisserman (2014); Cao et al. (2018). Focused on structural
variations more than pixel-wise differences, these image-level losses guide the latent space learning
with detailed and local motion modes. Furthermore, since the GAN head contains much fewer train-
able parameters than the diffusion backbone, it converges faster, boostrapping the motion encoder
and aiding the learning of motion attention layers under a well-distributed motion latent embedding.

Reference Feature Masking. In line with our strategies for identity disentanglement in the motion
control branch, we also aim to mitigate motion leakage from the appearance reference network.
When IR and ID exhibit similar expressions, even just partially, the backbone network is likely to
utilize the high-dimensional multi-scale appearance features as a “shortcut” for motion reference,
bypassing the intended reliance on our compact 1D latent motion descriptor. While such motion
leakage does not impede training data fitting during self-driven training, it hampers the learning of
effective and expressive motion control (Figure 4(b)).

Inspired by Masked Image Modeling He et al. (2022), we introduce reference feature masking to
mitigate motion leakage in appearance features. Specifically, we apply 30% uniform random mask-
ing to the appearance feature maps from the reference net R. The masked feature maps are flattened
and used as reference keys and values for the self-attention layers within the UNet backbone. This
balances the strength between appearance and motion signals, ensuring that subtle driving expres-
sions are effectively transferred without being overshadowed by the reference expressions.
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Reference Driving PD-FGC LivePortrait FYE AniPortrait X-Portrait Ours

Figure 5: Qualitative comparisons. Among all the methods, X-NeMo achieves the most accurate
transfer of intricate expressions and emotional subtleties while demonstrating the highest identity
resemblance, regardless of the characteristic differences between the reference and driving identities.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

We train our model on a combination of talking head datasets (HDTF Zhang et al. (2021), VFHQ Xie
et al. (2022)) and facial expression dataset (NerSemble Kirschstein et al. (2023)), uniformly pro-
cessed at 25 fps and cropped to a 512 × 512 resolution. The training is conducted on 8 Nvidia
A100 GPUs using the AdamW optimizer Yao et al. (2021) with a learning rate of 1e − 5. We use
a batch size of 64 for appearance and motion control training, and a batch size of 16 for the tempo-
ral module using 24-frame video sequences. During inference, we implement the prompt traveling
technique Tseng et al. (2022) to enhance temporal smoothness in long video generation.

For evaluation, we compile a benchmark of 100 in-the-wild reference portraits DeviantArt (2024);
Midjourney (2024); Pexels (2024), representing a broad spectrum of facial structures, appearances
and styles. Additionally we collect 100 test videos from DFEW Jiang et al. (2020) featuring emo-
tionally expressive clips, alongside 200 licensed videos showcasing a diverse range of emotions,
head poses, and facial expressions. Please also refer to our supplementary video for more results.

4.2 EVALUATIONS AND COMPARISONS

In our evaluation, we compare our method against state-of-the-art video-driven portrait animation
baselines, including X-Portrait Xie et al. (2024), AniPortrait Wei et al. (2024), Follow-your-Emoji
(FYE) Ma et al. (2024), and Echomimic Chen et al. (2024b). We also assess recent non-diffusion-
based methods, including PD-FGC Wang et al. (2023) that employs latent motion representation, and
LivePortrait Guo et al. (2024a) which uses implicit neural landmarks. EmoPortraits Drobyshev et al.
(2024), a GAN-based expressive portrait animation method, is excluded from our comparisons due
to the lack of inference code. For fair comparisons, we finetune AniPortrait, X-Portrait, and PD-FGC
using our dataset, while utilizing the released pretrained models for the remaining methods, given
the unavailability of their training code. We assess performance in both self and cross reenactments,
with all metrics computed at a resolution of 256×256 (the resolution at which PD-FGC was trained).

Self Reenactment. For each test video, we utilize the first frame as the reference image, generating
the entire sequence with subsequent frames acting as both the driving image and the ground truth
target. We evaluate the performance by computing the L1, structural (SSIM), and perceptual (LPIPS)
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Table 1: Quantitative comparison. Our method achieves superior numerical results than all the
baselines in both self-driven and cross-driven reenactments.

Method Self-Reenactment Cross-Reenactment
L1↓ SSIM↑ LPIPS↓ ID-SIM↑ AED/APD↓ EMO-SIM↑

PD-FGC 0.085 0.728 0.291 0.604 0.045/3.95 0.49
LivePortrait 0.074 0.770 0.236 0.702 0.055/6.61 0.48
X-Portrait 0.063 0.793 0.209 0.695 0.041/4.07 0.52
FYE 0.075 0.741 0.249 0.725 0.062/4.49 0.41
AniPortrait 0.057 0.812 0.198 0.713 0.043/4.14 0.46
Ours 0.055 0.826 0.168 0.787 0.039/3.42 0.65

image losses to assess both image quality and motion accuracy. Our method, X-NeMo, consistently
outperforms all baseline methods, as shown in our numerical comparisons (Table 1).

Cross Reenactment. Our method empowers the creation of captivating and expressive anima-
tions across diverse portraits even driven by in-the-wild videos with distinct identity features (Fig-
ure 1, 3, 4, 5). Our qualitative comparisons (Figure 5) demonstrate that X-NeMo surpasses all the
baselines by a significant margin in identity similarity, expression accuracy and perceptual quality.
GAN-based baselines suffer from blurriness and distortions under large head motions and when ap-
plied to out-of-domain portraits. For both exaggerated (e.g., cheek puffing, sticking out the tongue)
and subtle facial expressions (e.g., biting the lip), all other methods struggle to faithfully capture and
transfer these facial motion details. Additionally, our method excels in preserving identity resem-
blance, regardless of the structural difference between the reference and driving faces, while severe
identity drift occurs in other diffusion-based baselines relying on spatially aligned control signals.

For quantitative assessment, given the absence of image ground truth, we employ three metrics to
evaluate identity similarity, expression/head pose accuracy, and emotion consistency respectively.
Specifically, we utilize the ArcFace score Deng et al. (2019) to measure the cosine similarity of
identity features (ID-SIM). Motion accuracy is calculated as the average L1 difference between
extracted facial blendshapes (AED) and head poses (APD) of the driving and generated images
using MediaPipe Lugaresi et al. (2019). However, since blendshapes provide only a coarse motion
estimation, we further employ a pretrained emotion encoder, EmoNet Toisoul et al. (2021), to assess
emotion accuracy. Specifically, we calculate the mean value of concordance correlation coefficients
and Pearson correlation coefficients for both valence and arousal to measure the emotion similarity
(EMO-SIM). The emotion score reflect model’s performance in fine-grained expression control, as
emotion recognition is highly sensitive to micro-expressions. Our method numerically surpasses all
competitors, demonstrating the superior capabilities afforded by our novel motion control design
(Table 1).

Applications. Our latent motion descriptor acts as a unified representation for both motion
comprehension and generation, supporting tasks beyond portrait animation, including (emotion-
conditioned) portrait video outpainting and latent motion interpolation. With our expressive,
identity-agnostic motion embedding, we are able to generate long-range expressive videos while
consistently preserving the identity across diverse portraits. For more details and visual results,
please refer to our supplemental paper (Section. D) and accompanying video.

4.3 ABLATION STUDIES

Table 2: Quantitative ablation.
Method ID-SIM↑ AED/APD↓ EMO-SIM↑
w/o GAN head 0.789 0.045/4.64 0.43
w/o e2e 0.782 0.040/3.49 0.52
w/o RFM 0.791 0.039/3.41 0.62
w/o augmentation 0.724 0.042/3.63 0.50
w/o cross-attn 0.697 0.040/3.55 0.48
Ours 0.787 0.039/3.42 0.65

We ablate individual design
choices by removing them
from our full training pipeline.
We validate the function of
dual-head supervision in motion
expressiveness by removing the
GAN decoder from co-training
(“w/o GAN head”). Even with
extended training, the motion
encoder Emot struggles with detailed motions in the absence of image-level loss guidance ( Fig-
ure 4(a)), as reflected by a substantial reduction in both expression and emotion metrics (Table 2).
We further validate the importance of end-to-end training by pretraining Emot with GAN losses and
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then freezing it while training the rest of the model sorely with the diffusion loss (“w/o e2e”). Both
Table 2 and the supplemental video demonstrate that end-to-end training elicits stronger motion
representation from the encoder, leveraging the diffusion model’s superior generative capacity over
the standalone GAN decoder. Additionally, we assess the role of reference feature masking (“w/o
RFM”) in enhancing motion accuracy. Without it, the network shows a stronger bias to the reference
expressions at certain local regions(Figure 4(b)), yeilding a lower emotion score (Table 2).

We assess the efficacy of augmentation and cross-attention control in motion-identity disentangle-
ment. When training without augmentations (“w/o augmentation”), the generations often exhibit
noticeable identity leakage from the driving subject in both appearance and face structure (Fig-
ure 3(b)), as confirmed by the drop in identity similarity score (Table 2). We also compare our
method to a baseline where the motion latent is transformed into a 2D control map via an upsam-
pling decoder and applied to the UNet using a ControlNet (“w/o cross-attn”). While effective for
coarse motion control, its reliance on spatially-aligned additive controls lead to reduced identity re-
semblance (Figure 4(a)), underscoring the necessity of our structure-agnostic motion control design.

Original CFG OursReference Driving

Figure 6: Ablation on different CFG configurations.

We leverage classifier-free guidance
(CFG) Ho & Salimans (2022) to steer
the inference towards more expressive
motion transfer. While straightforward
for the conditional generation, we find the
optimal practice by using fully masked
appearance features and the motion latent
fref mot extracted from reference image
IR as the negative prompts. As illustrated
in Figure 6, this CFG configuration
enables the network to better distinguish
between conditional appearance and
motion features, facilitating more accurate and semantic motion transfer. Our CFG is formulated as

ϵ̃θ(zt, cref , fmot) = (1 + w)ϵθ(zt, cref , fmot)− wϵθ(zt, ∅, fref mot), (2)

where w = 3.5 is the CFG scale and ϵ̃θ is the final composed noise estimate.

5 DISCUSSION AND CONCLUSION

We present X-NeMo, a novel diffusion-based portrait animation framework that effectively disen-
tangles motion and identity, achieving substantial improvements in generating expressive, identity-
preserved animations from diverse portraits. At its core, we introduce an end-to-end learning frame-
work that integrates latent motion representations with structure-agnostic motion control through
cross-attentions, enhanced by carefully-designed training and inference strategies. We demonstrate
high-quality animation results on a wide range of portraits and expressive driving videos, validating
the efficacy of our approach. We believe our method offers valuable insights into the field and opens
avenues for numerous downstream tasks. Code and model will be available for research.

Driving X-NeMo Driving X-NeMo

Figure 7: Failure cases.

Limitations and Future Work. Our
method is trained solely on real human
talking and expression videos. Con-
sequently, out-of-domain portraits with
non-human appearances, such as 3D car-
toon characters, may exhibit artifacts like
blurred eyes. Additionally, it might strug-
gle with exaggerated expressions absent from the training data (see Figure 7). However, our scalable
end-to-end framework, free from reliance on pre-trained motion detectors, enables generalization to
various styles and motions with more training data. Our motion control represents a general scheme,
with which we aim to integrate into video diffusion backbones Yang et al. (2024b); Zheng et al.
(2024) in the future, for smoother and more dynamic results.

Ethics Statement. Our work aims to improve portrait animation from a technical perspective and
is not intended for malicious use. However, we recognize the potential for misuse like generating
fake videos. Therefore, synthesized images and videos should clearly indicate their artificial nature.
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A TRAINING AND INFERENCE DETAILS

GAN Head Training Losses. Following Burkov et al. (2020), we train our dual GAN decoder
in a self-supervised manner to reconstruct ID using a combination of losses. Specifically, a L1

reconstruction loss is employed to minimize pixel-wise L1 distance:

Lrecon = ∥ID − IR→D∥1 (3)

Additionally, two perceptual losses, LV GG and LV GGFace, are applied based on L1 matching of
ConvNet activations from a VGG-19 model Simonyan & Zisserman (2014) pretrained for ImageNet
classification and a VGGFace model Cao et al. (2018) trained for face recognition:

Lvgg =

N∑
i=1

∥VGGi(ID)−VGGi(IR→D)∥1, (4)

Lvggf =

N∑
I=1

∥VGGface
i(ID)−VGGface

i(IR→D)∥1, (5)

where N denotes the number of feature layers in each respective pre-trained VGG model. An adver-
sarial generative loss Ladv is applied using a co-trained discriminator D, while a feature matching
loss Lfm is calculated as the L1 distance between discriminator feature maps at different layers:

Lfm =

N∑
i=1

∥Di(ID)−Di(IR→D)∥1 (6)

The overall learning objective for the GAN head is then formulated as:

Lgan = Ladv + λrLrecon + λvggLvgg + λvggfLvggf + λfmLfm (7)

where λr=1.0, λvgg=3e-2, λvggf=6e-3 and λfm=10.0.

Inference Performance. During inference, we use 25 DDIM steps Song et al. (2020a) with a
classifier-free guidance (CFG) scale of 3.5. For generating a 1-second video at 25 frames per second,
the process takes approximately 20 seconds and requires 24 GB of memory.

Encoder Architecture. Emot takes the classical feature alignment network Bulat & Tzimiropou-
los (2017) as the backbone, with an additional attention layer added at both its input and output to
enhance feature extraction capabilities. Finally, it outputs a 1D vector through two MLP layers. The
appearance encoder for extracting fapp is implemented as a ResNet50.

B MORE ABLATIONS

We provide additional visual ablations on some network and training hyperparameters.

Motion Latent Embedding Size. We evaluate the dimensionality of our motion latent embedding
by comparing 128, 512, and 1024-dimensional latent codes for fmot. In typical driving scenarios,
all three configurations perform similarly in replicating facial expressions with minimal differences.
However, as shown in Figure 8, reducing the embedding size to 128 diminishes the ability to capture
subtle, intricate expressions, while increasing it to 1024 provides negligible improvements. Thus,
we select the 512-dimensional embedding as it balances compactness with motion expressiveness.
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Reference Driving latent size = 128 latent size = 512 latent size = 1024

Figure 8: We ablate the effect of different sizes of latent motion embedding in capturing fine-grained
intricate expressions.

Reference Driving w/o RFM 30% RFM 75% RFM 95% RFM

Figure 9: Qualitative comparison of different ratios of reference feature masking indicates that 30%
achieves the most accurate capture of driving facial motions.

Reference Feature Masking Ratio. We assess the effectiveness of our reference feature masking
strategy across different masking ratios, ranging from 0%, 30%, 75%, to 95%. As shown in Figure 9,
this strategy enhances the transfer of detailed facial expressions; however, excessively high masking
ratios impede the model’s ability to capture fine motion details and maintain identity consistency.
This is likely because when the reference image’s appearance is too heavily obscured during training,
the motion encoder compensates by encoding appearance information, reducing the capacity of the
motion embedding for expressing dynamic movements. In practice, we found that masking ratios
between 20% and 50% achieve optimal results, with 30% used in our implementation.

C MORE RESULTS

Please refer to our supplemental video for more expressive demo cases.

D APPLICATIONS

Our latent motion embedding, trained end-to-end with the diffusion backbone, offers a compact,
identity-agnostic, yet expressive representation for a diverse range of facial motions. Beyond the
primary portrait animation task, we showcase its broader applications as a unified motion repre-
sentation, enabling seamless motion interpolation, video outpainting and conditioned generation.
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Figure 10: Latent motion interpolation. We derive latent motion codes from a few driving keyframes
(top) and apply onto diverse portraits with linearly interpolated motion embeddings (bottom).

Latent Motion Interpolation. Owing to our smooth and identity-agnostic latent motion space, we
are able to extract keyframe expressions from different videos, linearly interpolate the latent embed-
dings and apply them across diverse portraits, as showcased in Figure. 10. This interpolation yields
smooth and natural expression transitions, maintaining motion coherence across different portraits
and appearance consistency with the reference images. These results underscore the robustness and
identity disentanglement of our motion latent embedding.

Portrait Video Outpainting and Generation. By leveraging our motion latent embedding as a
unified representation for motion comprehension and generation, we showcase its application in
video outpainting. Specifically, we adopt the approach from T2M-GPT Zhang et al. (2023a) to to-
kenize temporal latent motions by training a Vector-Quantized VAE model Esser et al. (2021) with
a learnable codebook (4096 entries of 8-dimension code) that downsamples the temporal dimen-
sion by a factor of 4. This allows us to represent T frames of motion with T/4 discrete motion
tokens, where T is the training sequence length (we use T = 128), facilitating the use of GPT-like
frameworks for long-sequence motion generation. In Figure. 12, we train a GPT2-small network
that extends preceding motions derived from a driving video with extrapolated motions. The results
show natural and expressive generated sequences, thanks to the strong representation power of our
latent motion embedding. Moreover, as more facial video datasets containing multimodal annota-
tions (e.g., text and audio) become available, our method can seamlessly extend to multimodal facial
video generation within a unified framework. As an example, we illustrate emotion-conditioned por-
trait video generation in Figure 11, trained with MEAD dataset Wang et al. (2020).

Reference

28th frame

Emotion Condition: “Angry”

91th frame42th frame

… …

… …

Emotion Condition: “Happy”

… …

… …

Figure 11: Emotion-conditioned portrait video generation.
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Figure 12: Portrait video outpainting. Starting from a sequence of driving motion, our model is
capable of extrapolating into a long video sequence with consistent identity attributes.
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Reference Driving Driving OursOurs

Figure 13: Our method demonstrates strong generalization capabilities, effectively handling out-of-
domain exaggerated facial motions (top two rows) and non-human appearances (bottom six rows).
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