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Abstract

Vision-and-Language Navigation (VLN) aims to develop embodied agents that
navigate based on human instructions. However, current VLN frameworks of-
ten rely on static environments and optimal expert supervision, limiting their
real-world applicability. To address this, we introduce Human-Aware Vision-
and-Language Navigation (HA-VLN), extending traditional VLN by incorporat-
ing dynamic human activities and relaxing key assumptions. We propose the
Human-Aware 3D (HA3D) simulator, which combines dynamic human activities
with the Matterport3D dataset, and the Human-Aware Room-to-Room (HA-R2R)
dataset, extending R2R with human activity descriptions. To tackle HA-VLN
challenges, we present the Expert-Supervised Cross-Modal (VLN-CM) and Non-
Expert-Supervised Decision Transformer (VLN-DT) agents, utilizing cross-modal
fusion and diverse training strategies for effective navigation in dynamic human
environments. A comprehensive evaluation, including metrics considering human
activities, and systematic analysis of HA-VLN’s unique challenges, underscores
the need for further research to enhance HA-VLN agents’ real-world robustness
and adaptability. Ultimately, this work provides benchmarks and insights for future
research on embodied Al and Sim2Real transfer, paving the way for more realistic
and applicable VLN systems in human-populated environments.

1 Introduction

The dream of autonomous robots carrying out assistive tasks, long portrayed in "The Simpsons,"
is becoming a reality through embodied Al, which enables agents to learn by interacting with
their environment [43]. However, effective Sim2Real transfer remains a critical challenge [3, 53].
Vision-and-Language Navigation (VLN) [2, 7, 9, 40] has emerged as a key benchmark for evaluating
Sim2Real transfer [23], showing impressive performance in simulation [9, 21, 38]. Nevertheless,
many VLN frameworks [2, 12, 21, 44, 46, 52] rely on simplifying assumptions, such as static
environments [25, 39, 50], panoramic action spaces, and optimal expert supervision, limiting their
real-world applicability and often leading to an overestimation of Sim2Real capabilities [51].

To bridge this gap, we propose Human-Aware Vision-and-Language Navigation (HA-VLN), extending
traditional VLN by incorporating dynamic human activities and relaxing key assumptions. HA-VLN
advances previous frameworks by (1) adopting a limited 60° field-of-view egocentric action space,
(2) integrating dynamic environments with 3D human motion models encoded using the SMPL
model [31], and (3) learning to navigate considering dynamic environments from suboptimal expert
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Figure 1: HA-VLN Scenario: The agent navigates through environments populated with dynamic human
activities. The task involves optimizing routes while maintaining safe distances from humans to address the
Sim2Real gap. In this scenario, the agent encounters various human activities, such as someone talking on the
phone while pacing in the hallway, someone taking off their shoes in the entryway/foyer, and someone carrying
groceries upstairs. The HA-VLN agent must adapt its path by waiting for humans to move, adjusting its path, or
proceeding through when clear, thereby enhancing real-world applicability.

demonstrations through an adaptive policy (Fig. 6). This setup creates a more realistic and challenging
scenario, enabling agents to navigate in human-populated environments while maintaining safe
distances, narrowing the gap between simulation and real-world scenes.

To support HA-VLN research, we introduce the Human-Aware 3D (HA3D) simulator, a realistic
environment combining dynamic human activities with the Matterport3D dataset [6]. HA3D utilizes
the self-collected Human Activity and Pose Simulation (HAPS) dataset, which includes 145 human
activity descriptions converted into 435 detailed 3D human motion models using the SMPL model
[31] (Sec. 2.1). The simulator provides an interactive annotation tool for placing human models in
29 different indoor areas across 90 building scenes (Fig. 12). Moreover, we introduce the Human-
Aware Room-to-Room (HA-R2R) dataset, an extension of the Room-to-Room (R2R) dataset [2]
incorporating human activity descriptions. HA-R2R includes 21,567 instructions with an expanded
vocabulary and activity coverage compared to R2R (Fig. 3 and Sec. 2.2).

Building upon the HA-VLN task and the HA3D simulator, we propose two multimodal agents to
address the challenges posed by dynamic human environments: the Expert-Supervised Cross-Modal
(VLN-CM) agent and the Non-Expert-Supervised Decision Transformer (VLN-DT) agent. The
innovation of these agents lies in their cross-modal fusion module, which dynamically weights
language and visual information, enhancing their understanding and utilization of different modalities.
VLN-CM learns by imitating expert demonstrations (Sec. 2.2), while VLN-DT demonstrates the
potential to learn solely from random trajectories without expert supervision (Fig. 4, right). We also
design a rich reward function to incentivize agents to navigate effectively (Fig. 5).

To comprehensively evaluate the performance of the HA-VLN task, we design new metrics consider-
ing human activities, and highlight the unique challenges faced by HA-VLN (Sec. 3.2). Evaluating
state-of-the-art VLN agents on the HA-VLN task reveals a significant performance gap compared
to the Oracle, even after retraining, thereby underscoring the complexity of navigating in dynamic
human environments (Sec. 3.3). Moreover, experiments show that VLN-DT, trained solely on random
data, achieves performance comparable to VLN-CM under expert supervision, thus demonstrating
its superior generalization ability (Sec. 3.4). Finally, we validate the agents in the real world using
a quadruped robot, exhibiting perception and avoidance capabilities, while also emphasizing the
necessity of further improving real-world robustness and adaptability (Sec. 3.5).

Our main contributions are as follows: (1) Introducing HA-VLN, a new task that extends VLN by
incorporating dynamic human activities and relaxing assumptions; (2) Offering HA3D, a realistic
simulator, and HA-R2R, an extension of the R2R dataset, to support HA-VLN research and enable
the development of robust navigation agents; (3) Proposing VLN-CM and VLN-DT agents that utilize
expert and non-expert supervised learning to address the challenges of HA-VLN, showcasing the
effectiveness of cross-modal fusion and diverse training strategies; and (4) Designing comprehensive
evaluations for HA-VLN, providing benchmarks and insights for future research.



2 Human-Aware Vision-and-Language Navigation

We introduce Human-Aware Vision-and-Language Navigation (HA-VLN), an extension of tradi-
tional Vision-and-Language Navigation (VLN) that bridges the Sim2Real gap [3, 23, 53] between
simulated and real-world navigation scenarios. As shown in Fig. 1, HA-VLN involves an em-
bodied agent navigating from an initial position to a target location within a dynamic environ-
ment, guided by natural language instructions Z = (wy, ws, ..., wr), where L denotes the total
number of words and w; represents an individual word. At the beginning of each episode, the
agent assesses its initial state sy = <p07 @0, Ao, @80> within a At = 2 seconds observation win-
dow, where pg = (x9, Yo, 2z0) represents the initial 3D position, ¢q the heading, A\, the elevation,
and ©F" the egocentric view within a 60-degree field of view. The agent executes a sequence
of actions Ar = {(ag,a1,...,ar), resulting in states and observations Sy = (sg,S1,...,S7),
where each action a; € A = (Gforward; Qiefts Gright, Gups Gdown, Gsiop) l€ads to a new state s;yq =
(P41, P41, Ae+1, 092, ). The episode concludes with the stop action dgp.

In contrast to traditional VLN tasks [2, 13, 26, 40, 45], HA-VLN addresses the Sim2Real gap [3, 23, 53]
by relaxing three key assumptions, as depicted in Fig. 1:

1. Egocentric Action Space: HA-VLN employs an egocentric action space .4 with a limited
60° field of view O, requiring the agent to make decisions based on human-like visual
perception. The state s; = <pt, Dty Aty @?0> captures the agent’s egocentric perspective at
time ¢, enabling effective navigation in real-world scenarios.

2. Dynamic Environments: HA-VLN introduces dynamic environments based on 3D human
motion models H = (hy, ha, ..., hy), where each frame h; € R89°%3 encodes human
positions and shapes using the Skinned Multi-Person Linear (SMPL) model [31]. The agent
must perceive and respond to these activities in real-time while maintaining a safe distance
dsafe, reflecting real-world navigation challenges.

3. Sub-optimal Expert Supervision: In HA-VLN, agents learn from sub-optimal expert
demonstrations that provide navigation guidance accounting for the dynamic environment.
The agent’s policy Tadapiive (@t |S¢, Z, H) aims to maximize the expected reward E[r(s;11)],
considering human interactions and safe navigation. The reward function r : & — R
assesses the quality of navigation at each state, allowing better handling of imperfect
instructions in real-world tasks.

Building upon these relaxed assumptions, a key feature of HA-VLN is the inclusion of human activities
captured at 16 FPS. When human activities fall within the agent’s field of view ©%°, the agent is
considered to be interacting with humans. HA-VLN introduces the Adaptive Response Strategy, where
the agent detects and responds to human movements, anticipating trajectories and making real-time
path adjustments. Formally, this strategy is defined as:

7Taldaptive(a/t|sta:Zv H) = arg éngip(at|stvz) : ]E[r(stJrl)L (1)

where E[r(s;41)] represents the expected reward considering human interactions and safe navigation.
To support the agent in learning, the HA3D simulator (Sec. 2.1) provides interfaces to access human
posture, position, and trajectories, while HA-VLN employs sub-optimal expert supervision (Sec. 2.2)
to provide weak signals, reflecting real-world scenarios with imperfect demonstration.

2.1 HA3D Simulator: Integrating Dynamic Human Activities

The Human-Aware 3D (HA3D) Simulator generates dynamic environments by integrating natural
human activities from the custom-collected Human Activity and Pose Simulation (HAPS) dataset
with the photorealistic environments of the Matterport3D dataset [6] (see Fig. 2 and Fig. 12).

HAPS Dataset. HAPS addresses the limitations of existing human motion datasets by identifying 29
distinct indoor regions across 90 architectural scenes and generating 145 human activity descriptions.
These descriptions, validated through human surveys and quality control using GPT-4 [5], encompass
realistic actions such as walking, sitting, and using a laptop. The Motion Diffusion Model (MDM)
[17] converts these descriptions into 435 detailed 3D human motion models H using the SMPL model,
with each description transformed into three distinct 120-frame motion sequences'. The dataset also

'H e R#35x120x(104724+6890x3) representing 435 models, 120 frames each, with shape, pose, and mesh vertex parameters. See
Realistic Human Rendering for more details.
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Figure 2: Human-Aware 3D (HA3D) Simulator Annotation Process: HA3D integrates dynamic human
activities from the Human Activity and Pose Simulation (HAPS) dataset into the photorealistic environments of
Matterport3D. The annotation process involves: (1) integrating the HAPS dataset, which includes 145 human
activity descriptions converted into 435 detailed 3D human motion models in 52,200 frames; (2) annotating
human activities within various indoor regions across 90 building scenes using an interactive annotation tool; (3)
rendering realistic human models; and (4) enabling interactive agent-environment interactions.

includes annotations of human-object interactions and the relationship between human activities
and architectural layouts. After manual selection, approximately 422 models were retained. Further
details on the dataset are provided in App. B.1.

Human Activity Annotation. An interactive annotation tool accurately locates humans in different
building regions (see Fig. 12). Users explore buildings, select viewpoints p; = (x;, yi, 2;), set
initial human positions, and choose 3D human motion models H; based on the environment of p;.
To follow real-world scenarios, multiple initial human viewpoints Pryndom = {P1, P2, - - -, Px } are
randomly selected from a subset of all viewpoints in the building. The number of people in each
building is estimated by dividing the building area by the average area per capita in the U.S. (2021,
67m?) [35] and rounding up. In the Matterport3D dataset, these viewpoints are manually annotated
to facilitate the transfer from other VLN tasks to HA-VLN. This setup ensures agents can navigate
environments with dynamic human activities updated at 16 FPS, allowing real-time perception and
response. Detailed statistics of activity annotation are in App. B.2.

Realistic Human Rendering. HA3D employs Pyrender to render dynamic human bodies with
high visual realism. The rendering process aligns camera settings with the agent’s perspective and
integrates dynamic human motion using a 120-frame SMPL mesh sequence H = (hq, ha, ..., h129).
Each frame h; = (B4, 0¢,7:) consists of shape parameters 3; € R, pose parameters 6; € R7?, and
mesh vertices v, € R899%3 calculated based on 3, and 6, through the SMPL model. At each time
step, the 3D mesh h; is dynamically generated, with vertices y; algorithmically determined to form
the human model accurately. These vertices are then used to generate depth maps Dy, distinguishing
human models from other scene elements. HA3D allows real-time adjustments of human body
parameters, enabling the representation of diverse appearances and enhancing interactivity. More
details on the rendering pipeline and examples of rendered human models are in App. B.3.

Agent-Environment Interaction. Compatible with the Matterport3D simulator’s configurations [2],
HA3D provides agents with environmental feedback signals at each time step ¢, including first-person
RGB-D video observation ©9°, navigable viewpoints, and a human "collision" feedback signal
ci. The agent receives its state s; = (py, ¢, Ay, O°), where py = (@4, Y1, 2¢), ¢, and ), denote
position, heading, and elevation, respectively. The agent’s policy Tagapiive (@¢|S¢, Z, H) maximizes
expected reward E[r(s;41)] by considering human interactions for safe navigation. The collision
feedback signal ¢, is triggered when the agent-human distance d, ;, (t) falls below a threshold dnreshold-
Customizable collision detection and feedback parameters enhance agent-environment interaction.
Details on visual feedback, optimization, and extended interaction capabilities are in App. B.4.



Implementation and Performance. Developed using C++/Python, OpenGL, and Pyrender, HA3D
integrates with deep learning frameworks like PyTorch and TensorFlow. It offers flexible configuration
options, achieving up to 300 fps on an NVIDIA RTX 3050 GPU with 640x480 resolution. Running
on Linux, the simulator has a low memory usage of 40MB and supports multi-processing for parallel
execution of simulation tasks. Its modular architecture enables easy extension and customization.
The simulator supports various rendering techniques, enhancing visual realism. It provides high-level
APIs for real-time data streaming and interaction with external controllers. PyQt5-based annotation
tools with an intuitive interface will be made available to researchers. Additional details on the
simulator’s implementation, performance, and extensibility are provided in App. B.5.

2.2 Human-Aware Navigation Agents

We introduce the Human-Aware Room-to-Room (HA-R2R) dataset, extending the Room-to-Room
(R2R) dataset [2] by incorporating human activity descriptions to create a more realistic and dynamic
navigation environment. To address HA-VLN challenges, we propose two agents: the expert-
supervised Cross Modal (VLN-CM) agent and the non-expert-supervised Decision Transformer
(VLN-DT) agent. An Oracle agent provides ground truth supervision for training and benchmarking.

HA-R2R Dataset. HA-R2R extends R2R dataset by incorporating human activity annotations
while preserving its fine-grained navigation properties.The dataset was constructed in two steps:
1) mapping R2R paths to the HA3D simulator, manually annotating human activities at key locations;
and 2) using GPT-4 [1] to generate new instructions by combining original instructions, human
activity descriptions, and relative position information, followed by human validation. The resulting
dataset contains 21,567 human-like instructions with 145 activity types, categorized as start (1,047),
obstacle (3,660), surrounding (14,469), and end (1,041) based on their positions relative to the
agent’s starting point (see App. C.1 for details). Compared to R2R, HA-R2R’s average instruction
length increased from 29 to 69 words, with the vocabulary expanding from 990 to 4,500. Fig. 3A
shows the instruction length distribution by activity count, while Fig. 3B compares HA-R2R and R2R
distributions. Fig. 3C summarizes viewpoints affected by human activities, and Fig. 14 illustrates the
instruction quality by analyzing common word frequencies. More details are provided in App. C.1.
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Figure 3: Dataset Analysis of HA-R2R: (A) Impact of human activities on instruction length, tokenized
using NLTK WordNet, showing the variation in instruction length caused by different types of human activities.
(B) Comparison of instruction length distributions between HA-R2R and the original R2R dataset. HA-R2R
demonstrates a more uniform distribution, facilitating balanced training. (C) Analysis of viewpoints affected by
human activities: "Visible" denotes activities within the agent’s sight, "Isolated" refers to key navigation nodes
impacted by human activities, and "Occupied" indicates the presence of humans at specific viewpoints.

Oracle Agent: Ground Truth Supervision. The Oracle agent serves as the ground truth supervision
source to guide and benchmark the training of expert-supervised and non-expert-supervised agents in
the HA-VLN system. Designed as a teacher, the Oracle provides realistic supervision derived from
the HA-R2R dataset, strictly following language instructions while dynamically avoiding human
activities along navigation paths to ensure maximal expected rewards. Let G = (N, E) be the global
navigation graph, with nodes IV (locations) and edges E' (paths). When human activities affect nodes
n € N within radius r, those nodes form subset Nj,. The Oracle’s policy 7,y re-routes on the
modified graph G’ = (N \ Ny, E’), where E’ only includes edges avoiding Np,, ensuring the Oracle
avoids human-induced disturbances while following navigation instructions optimally. Algorithm
| details the Oracle’s path planning and collision avoidance strategies. During training, at step ¢, a
cross-entropy loss maximizes the likelihood of true target action a; given the previous state-action
sequence (So, ag, 1, a1, - . -, S¢). The target output a} is defined as the Oracle’s next action from the
current location to the goal. Please refer to App. C.2 for more details.
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Figure 4: Model Architectures of Navigation Agents: The architectures of the Vision-Language Navigation
Cross-Modal (VLN-CM) agent (left) and the Vision-Language Navigation Decision Transformer (VLN-DT)
agent (right). Both agents employ a cross-modality fusion module to effectively integrate visual and linguistic
information for predicting navigation actions. VLN-CM utilizes an LSTM-based sequence-to-sequence model
for expert-supervised learning, while VLN-DT leverages an autoregressive transformer model to learn from
random trajectories without expert supervision.

VLN-CM: Multimodal Integration for Supervised Learning. We propose the Vision-Language
Navigation Cross-Modal (VLN-CM) agent, an LSTM-based sequence-to-sequence model [2] aug-
mented with a cross modality fusion module for effective multimodal integration (Fig. 4, left). The
language instruction Z = (wy, ws, - -+ ,wr,), where w; denotes the i-th word, is encoded into BERT
embeddings [11] {e1, ez, - ,er}, which are processed by an LSTM to yield context-aware repre-
sentations {uy,usa, - ,ur}. Simultaneously, visual observations ©; at each timestep ¢ are encoded
using ResNet-152 [19], producing an image feature map {cy, ca, - -, cx }, where N is the number
of visual features. The fusion module integrates the context encoder outputs and image features via
cross-attention, generating a unified representation m; at each timestep ¢. An LSTM-based action de-
coder predicts the next action a; from the action space A = {aforward, @ieft; Qright> Gups down Gstop |
conditioned on m; and the previous action a;. The agent is trained via supervised learning from an
expert Oracle agent using cross-entropy loss:

Lee =Y yila)logp(ar|T,©y), @)
acA

where Lcg is the cross-entropy loss, y:(a) is the ground truth action distribution from the expert
trajectory at timestep ¢, and p(a.|Z, ©;) is the predicted action distribution given instruction Z and
observation ©; at timestep ¢.

VLN-DT: Reinforcement Learning with Decision Transformers. We present the Vision-Language
Navigation Decision Transformer (VLN-DT), an autoregressive transformer [8, 41] with a cross-
modality fusion module for navigation without expert supervision” (Fig. 4, right). VLN-DT learns

from sequence representations 7 = (G’ 1,871,871, -, G‘t, st) to predict the next action a; € A, where

s; is the state at timestep ¢, and G; = Z;T,:t ry 1S the Return to Go. The cross-modality fusion module
computes s; by processing the average pooling vector of the BERT embedding [11] for a language
instruction Z (excluding the [CLS] token) and the image feature map of the current observation ©9°,
extracted using a pre-trained ResNet-152 [19]. The fusion module dynamically weights the language
and visual modalities using an attention mechanism, enhancing s;. The fused representations are then
fed into the causal transformer, which models 7 autoregressively to determine a,;. We train VLN-DT
using 10* random walk trajectories, each with a maximum length of 30 steps, a context window size
of 15 steps, and an initial Return To Go of 5 to guide the agent’s exploration-exploitation balance
[8]. Three reward types are designed to incentivize effective navigation: target reward (based on
distance to the target), distance reward (based on movement towards the target), and human reward
(based on collisions with humans) [2, 26, 40]. Fig. 5 shows the impact of different reward strategies
on navigation performance. The loss function Lcg for training VLN-DT is a supervised learning
objective with cross-entropy loss:

Leg =Y yi(a)logplaise), 3)
acA

2"Without Expert Supervision" means training with random trajectories instead of expert ones.



Table 1: Egocentric vs. Panoramic Action Space Comparison

Validation Seen Validation Unseen
Action Space
NE, TCR), CRJ SR 1 NE, TCR]) CRJ] SR+
Egocentric 7.21 0.69 1.00 0.20 8.09 0.54 0.58 0.16
Panoramic 5.58 0.24 0.80 0.34 7.16 0.25 0.57 0.23
Difference -1.63 -0.45 -0.20 +0.14 -0.93 -0.29 -0.01 +0.07
Percentage  -22.6% -652% -20.0% +70.0% 115%  -537% -17% +43.8%
Table 2: Optimal vs. Sub-Optimal Expert Comparison
Validation Seen Validation Unseen
Expert Type
NE | TCR | CR | SR 1 NE| TCR|] CRJ] SR?T
Optimal 3.61 0.15 0.52 0.53 5.43 0.26 0.69 0.41
Sub-optimal 3.98 0.18 0.63 0.50 5.24 0.24 0.67 0.40
Difference +0.37 +0.03 +0.11 -0.03 -0.19 -0.02 -0.02 -0.01
Percentage +10.2% +20.0% +21.2% -5.7% 35% 17% -29% -24%

where y; (a) is the ground truth action distribution from the random trajectory at timestep ¢, and
p(at|st) is the predicted action distribution given instruction Z and observation ©; at timestep ¢. The
implementation of VLN-DT is summarized in App. C.3.

3 Experiments

We evaluated our Human-Aware Vision-and-Language Navigation (HA-VLN) task, focusing on
human perception and navigation. Experiments included assessing different assumptions (Sec. 3.2),
comparing with state-of-the-art (SOTA) VLN agents (Sec. 3.3)°, analyzing our agents’ perfor-
mance (Sec. 3.4), and validating with real-world quadruped robot tests (Sec. 3.5).

3.1 Evaluation Protocol for HA-VLN Task

We propose a two-fold evaluation protocol for the HA-VLN task, focusing on both human perception
and navigation aspects. The human perception metrics evaluate the agent’s ability to perceive and
respond to human activities, while the navigation-related metrics assess navigation performance. As
human activities near critical nodes* greatly influence navigation, we introduce a strategy to handle
dynamic human activities for more accurate evaluation®. Let A°i be the set of human activities at
critical nodes in navigation instance ¢. The updated human perception metrics are:

>icy (e — A%l iy min (¢; — 4°], 1)
L SL ’

where TCR reflects the overall frequency of the agent colliding with human-occupied areas within a
1-meter radius, CR is the ratio of navigation instances with at least one collision, and /3 denotes the
ratio of instructions affected by human activities. The updated navigation metrics are:

L 7 L ’

where NE is the distance between the agent’s final position and the target location, and SR is
the proportion of navigation instructions successfully completed without collisions and within a
predefined navigation range. Please refer to App. D.1 for more details.

TCR =

, CR= (4)

NE =

3.2 Evaluating HA-VLN Assumptions

We assessed the impact of relaxing traditional assumptions on navigation performance by comparing
HA-VLN and VLN task, relaxing each assumption individually.

Panoramic vs. Egocentric Action Space (Tab. 1): Shifting from a panoramic to an egocentric action
space significantly degrades overall performance, with Success Rate (SR) dropping by 70.0% in seen
environments and by 43.8% in unseen environments. Additionally, there is a marked increase in

3We report performance of SOTA agents in traditional VLN — Room-to-Room(R2R)[2] for comparison.
“Node n; is critical if U(n;) NU(n;41) = 0, where U (n;) is the set of nodes reachable from n;.
SIgnoring activities at critical nodes decreases CR and TCR, while increasing SR.



Table 4: Performance of SOTA VLN Agents on HA-VLN (Retrained)

Validation Seen Validation Unseen
Method
w/o human w/ human Difference w/0 human w/ human Difference
NE| SRt NE| SRt NE SR NE|, SRt NEJ SRt NE SR

Speaker-Follower [12] 6.62 0.35 5.58 0.34 -15.7% -2.9% 336 0.66 7.16 0.23 +113.1% -65.2%
Rec (PREVALENT) [21] 393 0.63 4.95 041 +25.9% -34.9% 2.90 0.72 5.86 0.36 +102.1% -50.0%
Rec (OSCAR) [21] 4.29 0.59 4.67 042 +8.9% -28.8% 311 0.71 5.86 0.38 +88.4% -46.5%
Airbert [16] 4.01 0.62 3.98 0.50 -0.7% -19.4% 2.68 0.75 5.24 0.40 +95.5% -46.7%

Table 6: Comparison of SOTA VLN Agents and Oracle (Ground-truth) on HA-VLN

Method Validation Seen (Diff.) Validation Unseen (Diff.)

NE | TCR | CR | SR 1 NE | TCR | CR| SR 1
Speaker-Follower [12] +4.96 T +40.201 +40.70t —0.57] +46.491 +40.241 40.5917 —0.66 |
Rec(Prevalent) [21] +4.334 +0.171 +0.581 —0.57] +5.191 +40.231 +0.661 —0.53]
Rec(OSCAR) [21] +4.051 +0141 +0.58 1 —0.49] +5.191 40221 +0.65 1+ —0.51 ]
Airbert [16] 43361  +0.14 1 +0.51 1 -0.41 | +4.571  40.231 +0.701  -049 |
Oracle 0.62 0.04 0.175 0.91 0.67 0.008 0.037 0.89

both Navigation Error (NE) and Target Collision Rate (TCR), underscoring the critical importance
of panoramic action spaces for effective and reliable navigation in complex, dynamically human-
populated environments.

Static vs. Dynamic Environment (Tab. 3):
Introducing dynamic human motion into the

¢ ! Table 3: Static vs. Dynamic Environment Comparison
environment reduces SR by 46.7% in seen

environments and by 19.4% in unseen set- . Validation Seen Validation Unseen
. . . Environment Type
tings, presenting a substantial obstacle to NE]  SR? NE|  SR?
reliable and effective navigation while high- Static 2.68 0.75 401 0.62
S - - Dynamic 5.24 0.40 3.98 0.50
lighting the challenges inherent in human-

k £ Difference +2.56 -0.35 -0.03 -0.12
aware task performance. Percentage +955%  -46.7% 07% -19.4%

Optimal vs. Sub-optimal Expert (Tab. 2):

Training with a sub-optimal expert marginally increases NE by 10.2% and reduces SR by 5.7% in
seen environments. Although slightly lower in accuracy, sub-optimal expert guidance introduces
greater realism to the agent’s training, offering navigation experiences more aligned with real-world
variability and thus contributing to improved robustness in human-aware metrics.

Table 7: Comparison of SOTA Agents on Traditional VLN vs. HA-VLN (Zero-shot)

Validation Seen Validation Unseen
Method
w/o human w/ human Difference w/o human w/ human Difference
NE| SRT NE| SR?T NE SR NE| SRT NE| SRt NE SR

Speaker-Follower [12] 6.62 035 7.2 024  +7.6% -31.4% 336 066 496 040 +47.6% -39.4%
Rec (PREVALENT) [21] 393  0.63 693 026 +763% -58.7% 290 072 759 021 +161.7% -70.8%
Rec (OSCAR) [21] 429 059 745 023  +734% -61.0% 3.11 0.71 837 020 +1691% -71.8%
Airbert [16] 4.01 062 627 030 +564% -51.6% 268 075 7.6 025 +167.2% -66.7%

3.3 Evaluation of SOTA VLN Agents on the HA-VLN Task

We evaluated state-of-the-art (SOTA) Vision-

O Table 5: Human Perception on HA-VLN (Retrained)
and-Language Navigation (VLN) agents on the

Human-Aware Vision-an d-Language Naviga- Method Validation Seen Validation Unseen
tion (HA-VLN) task. Each agent was adapted TCR) CRJ TCRI CRJ
for HA-VLN by incorporating panoramic ac-  Speaker-Follower [12] 024 087 025 0.63

: N : : Rec(Prevalent) [21] 0.21 0.75 0.24 0.70
tion spaces and SL}b optimal expert gUIdZ.inCG Rec(OSCAR) [21] ols 07 o 069
to navigate dynamic, human-occupied environ-  Airbert [16] 0.18 0.68 024 0.74

ments. Our evaluations included both retrained
and zero-shot performance assessments, revealing substantial performance degradations in HA-VLN
scenarios compared to traditional VLN tasks and significant gaps from the oracle, underscoring the
increased complexity introduced by human-aware navigation.

Retrained Performance. In retrained HA-VLN settings, even the best-performing agent achieved
a maximum success rate (SR) of only 40% in unseen environments, which is 49% lower than the
oracle’s SR (Tab. 4, Tab. 6). The impact of human occupancy is marked, with SR reductions of up to
65% in unseen settings. Despite retraining, agents remain limited in their human-aware capabilities,
exhibiting high Target Collision Rates (TCR) and Collision Rates (CR). For instance, the Speaker-
Follower model records TCR and CR values of 0.24 and 0.87 in seen environments, which contrast



sharply with the oracle’s significantly lower TCR of 0.04 and CR of 0.175 (Tab. 5, Tab. 6). These
disparities highlight the challenges agents face in adapting to human-centered dynamics.

Zero-shot Performance. The zero-shot performance of SOTA VLN agents in HA-VLN environments
reveals even more pronounced challenges. While leading agents achieve up to 72% SR in traditional
VLN tasks for unseen environments, this drops significantly under HA-VLN constraints (Tab. 7). Even
Airbert, designed to manage complex environmental contexts, struggles in human-occupied settings,
with navigation errors rising by over 167% and SR falling by nearly 67%. These results highlight
the considerable difficulty agents encounter in dynamic, human-centric settings, emphasizing the
necessity for further advancements in training strategies and navigation models to improve robustness
and adaptability in real-world, human-aware navigation tasks.

Table 8: Performance Comparison of Our Proposed Agents on HA-VLN Tasks.

Method Proportion Validation Seen Validation Unseen
NE| TCRJ CR| SRt NE| TCRJ| CRJ SRt
VLN-DT (Ours) 100% 8.51 0.30 0.77 0.21 8.22 0.37 0.58 0.11
0% 7.31 0.38 0.73 0.19 8.22 0.42 0.62 0.12
3% 7.23 0.75 0.87 0.20 8.23 0.82 0.61 0.13
VLN-CM (Ours) 25% 7.85 0.85 0.61 0.16 8.42 0.99 0.52 0.12
50% 8.67 0.98 0.52 0.11 8.74 1.15 0.45 0.09
100% 10.61 1.01 0.62 0.03 10.39 1.14 0.48 0.02

3.4 Evaluation of Agents on HA-VLN Task

In this work, we introduce two agent models: the Vision-Language Navigation Decision Transformer
(VLN-DT), trained on a dataset generated via random walk, and the Vision-Language Navigation
Cross-Modal (VLN-CM), trained under expert supervision. This section compares their performance
and examines the impact of various reward strategies on task execution.

Performance Comparison. Table 8 presents a comparative analysis of our agents on HA-VLN
tasks. VLN-DT, trained with 100% random walk data, demonstrates comparable performance to
the expert-supervised VLN-CM, exhibiting strong generalization capabilities. Notably, VLN-CM’s
performance degrades significantly as the proportion of random walk data increases; with 100%
random data, Success Rate (SR) declines by 83.6% in seen and 81.5% in unseen environments. This
outcome underscores VLN-DT’s robustness and reduced dependency on expert guidance, making it
well-suited for diverse and unpredictable scenarios.

Reward Strategy Analysis. Fig- performance by Strateay (seen) performance by Strategy (Unseen)

ure 5 illustrates the effect of dif- . = — =%
ferent reward strategies on VLN- = — =
DT’s performance. A straight-
forward reward for decreasing : T ]
target distance resulted in inef- , — os
ficient trajectories with an ele-
vated collision rate. Introduc- o
ing a penalty-based distance re- -
ward achieved modest improve- . |
ments in Success Rate (SR) and
Collision Rate (CR). However, — ‘ sateoy
applying additional penalties for . . )
human collisions did not signif- Figure 5: Effects of Reward Strategies on VLN-DT.

icantly enhance performance, underscoring the need for more advanced, human-aware reward
strategies to effectively navigate agents through dynamic, human-populated environments.

This analysis highlights the advantages of VLN-DT’s design in balancing adaptability and efficiency
across various conditions while identifying key areas for future development in reward strategies
tailored for human-aware navigation. Detailed performance metrics can be found in Appendix D.4.

3.5 Evaluation on Real-World Robots

To assess real-world applicability, we deployed our trained agent on a Unitree quadruped robot
equipped with a stereo fisheye camera, ultrasonic distance sensors, and an inertial measurement unit



(IMU) (Fig. 15). The agent operates on an NVIDIA Jetson TX2, processing RGB images to make
action inferences, which are subsequently executed via a Raspberry Pi 4B. Continuous IMU feedback
enables the robot to monitor and adjust its movement for precision.

Experiments were conducted in office environments to evaluate the agent’s navigation performance
both in the absence and presence of humans. In human-free scenarios (Fig. 16), the agent successfully
demonstrated accurate navigation by reliably following prescribed instructions. In human-populated
settings, the agent exhibited human-aware navigation, detecting and actively avoiding individuals
in its path (Fig. 17). However, we also observed cases where the robot’s performance degraded,
resulting in collisions due to sudden, unpredictable changes in human behavior (Fig. 18), which
highlights the inherent challenges of navigating dynamic, human-centric environments.

These experiments underscore the effectiveness of transferring learned policies from simulated
settings to physical robots, while also revealing areas for improvement. Specifically, the findings high-
light the necessity for enhanced robustness and adaptability to better manage real-world complexity.
Additional experimental details and results are provided in App. D.4.

4 Discussion

Applications & Extensions. The HA3D simulator advances the field of human-centered simulation
by accommodating widely-adopted 3D formats, including .obj and .glb, thus streamlining integration
and promoting broader research utility. This adaptability enables researchers to expand character
diversity and customize agents within simulated scenes, fostering the creation of complex, multi-agent
interactive environments. Moreover, the framework’s architecture readily supports the incorporation
of additional dynamic entities, such as animals and autonomous robots, thereby further enhancing the
simulation’s capacity to represent realistic, richly populated scenarios. For implementation details,
please refer to our GitHub repository.

Limitations. While the Human-Aware Vision and Language Navigation (HA-VLN) framework
constitutes a significant step forward in embodied Al navigation, certain limitations persist. The
framework’s current scope captures human presence and basic movement but does not yet model
the breadth of human behavioral patterns and social nuances, which may affect the robustness of
trained agents in real-world applications where human interactions are more complex and varied.
Additionally, the HA3D and HA-R2R datasets are confined to indoor environments, which may
limit the generalizability of trained agents across diverse real-world settings, particularly in outdoor
contexts where navigation dynamics differ substantially.

Future Work. To further enhance the HA-VLN framework, future research should prioritize refining
human behavior modeling to encompass more sophisticated social interactions, nuanced group
dynamics, and contextualized interpersonal behaviors. The inclusion of avatars with heightened
behavioral fidelity would enrich the simulation’s realism, enabling more effective modeling of human-
agent interactions. Extending the simulator to support outdoor environments is also paramount,
as this expansion would allow for the development of agents capable of navigating across a wider
range of real-world scenarios. These improvements, coupled with advanced domain adaptation
techniques and robust strategies for managing environmental uncertainty, are essential to foster the
development of highly adaptable and resilient VLN systems capable of seamless operation within
diverse, human-populated environments.

5 Conclusion

This work presents the Human-Aware Vision and Language Navigation (HA-VLN) framework, which
integrates dynamic human activities while relaxing restrictive assumptions inherent to conventional
VLN systems. Through the development of the Human-Aware 3D (HA3D) simulator and the Human-
Aware Room-to-Room (HA-R2R) dataset, we provide a comprehensive environment for the training
and evaluation of HA-VLN agents. We introduce two agent architectures—the Expert-Supervised
Cross-Modal (VLN-CM) and the Non-Expert-Supervised Decision Transformer (VLN-DT)—each
leveraging cross-modal fusion and diverse training paradigms to support effective navigation in
dynamically populated settings. Extensive evaluation highlights the contributions of this framework
while underscoring the need for continued research to strengthen HA-VLN agents’ robustness and
adaptability for deployment in complex, real-world environments.
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A Related Work

We trace the evolution of the Visual-and-Language Navigation (VLN) task and highlight the key
differences between our proposed Human-Aware VLN (HA-VLN) task and prior work, focusing on
three critical aspects: Egocentric Action Space, Human Interactivity, and Sub-optimal Expert. Tab. 9
provides a detailed comparison of tasks, simulators, and agents based on these aspects.

Evolution of VLN Tasks. VLN originated with tasks like Room-to-Room (R2R) [2, 15, 27] for
indoor navigation, while TOUCHDOWN and MARCO [7, 34] focused on outdoor navigation. Goal-
driven navigation with simple instructions was explored in REVERIE[40] and VNLA[37], and
DialFRED[13] and CVDN[45] introduced navigation through human dialogue. However, since the
Speaker-Follower [12], panoramic action spaces have been predominantly used, deviating from our
first assumption of an Egocentric Action Space, which provides a more realistic and challenging
navigation scenario. More recent tasks, such as Room-for-Room (R4R), RoomXRoom, VNLA,
CVDN, and VLN-CE[22, 26, 27, 37, 45], have started to address dynamic navigation scenarios in
Egocentric Action Space. Nevertheless, they still lack the complexity of real-world human interactions
that HA-VLN specifically targets, which is crucial for developing agents that can navigate effectively
in the presence of humans.

Simulator for VLN Tasks. VLN simulators can be categorized into photorealistic and non-
photorealistic. Non-photorealistic simulators like AI2-THOR[25] and Gibson GANI [50] do not
include human activities, while photorealistic simulators such as House3D [49], Matterport3D [2],
and Habitat [42] offer high visual fidelity but typically lack dynamic human elements. The absence
of human interactivity in these simulators limits their ability to represent real-world navigation
scenarios, which is crucial for our second assumption of Human Interactivity. Some simulators,
like Habitat3.0[39], AI2-THOR[25], and ViZDoom[24], consider human interaction but provide
non-photorealistic scenes, while Google Street View offers a photorealistic outdoor environment
with static humans. In contrast, our HA3D simulator bridges the gap between simulated tasks and
real-world applicability by integrating photorealistic indoor environments enriched with human
activities, enabling the development of agents that can navigate effectively in the presence of dynamic
human elements.

Agent for VLN Tasks. Early VLN models, enhanced by attention mechanisms and reinforcement
learning algorithms [13, 33, 40, 47], paved the way for recent works based on pre-trained visual-
language models like ViLBert [32]. These models, such as VLN-BERT[36], PREVALENTJ 18],
Oscar[29], Lily[30], and ScaleVLN[48], have significantly improved navigation success rates by
expanding the scale of pre-training data. However, most of these agents navigate using a panoramic
action space, unlike [2, 54, 55], which operate in an Egocentric action space. Notably, NaVid[54]
demonstrated the transfer of the agent to real robots. Despite these advancements, most of these agents
are guided by an optimal expert, which conflicts with our third assumption of using a sub-optimal
expert. In real-world scenarios, expert guidance may not always be perfect, and agents need to be
robust to handle such situations. Our agents are specifically designed to operate effectively under less
stringent and more realistic expert supervision, enhancing their ability to perform in true Sim2Real
scenarios and setting them apart from previous approaches.

Table 9: Comparison of Tasks, Simulators, and Agents based on the three key aspects: Egocentric Action Space,
Human Interactivity, and Sub-optimal Expert.

Egocentric H Sub-optimal

Action Space uman Expert Previous Work
- X - EQA [10], IQA [14]
Tasks x x x MARCO [34], DRIF [4], VLN-R2R [2], TOUCHDOWN [7], REVERIE [40], DialFRED [13]
v X X VNLA [37], CVDN [45], VLN-CE [26], Room4Room[22], RoomXRoom[27]
v v v HA-VLN(Our)
Simulators - X - Matterport3D[2], House3D[49], AI2-THOR [25], Gibson GANI [50], Habitat [42]
- v - HA-VLN(Our), Habitat3.0 [39], Google Street, ViZDoom [24]
« « « EnvDrop [44], AuxRN [56], PREVALENT [18], RelGraph [20], HAMT [9]
Agents Rec-VLNBERTI[21], EnvEdit[28], Airbert [16], Lily [30], ScaleVLN [48]
v X X NavGPT [55], NaVid [54], Student Force [2]
v v v HA-VLN Agent
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B Simulator Details

The HA3D simulator’s code structure is inspired by the Matterport3D (MP3D) simulator, which
can be found at https://github.com/peteanderson80/Matterport3DSimulator. To obtain
access to the Matterport Dataset, we sent an email request to matterport3d @ googlegroups.com. The
source code for the HA3D simulator is available in our GitHub repository at https://github.
com/lpercc/HA3D_simulator. As illustrated in Fig. 6, the HA3D simulator provides agents with
three key features that distinguish it from traditional VLN frameworks: an Ergonomic Action Space,
Dynamic Environments, and a Sub-Optimal Expert.

Instruction: ... exit through the
door to your right, make another
right turn and head into ...

A people running L
through the hallway |

Figure 6: Overview of the VLN framework assumptions in the HA3D simulator. The simulator introduces
an Ergonomic Action Space, Dynamic Environments, and a Sub-Optimal Expert to bridge the gap between
simulated and real-world navigation scenarios. The Ergonomic Action Space limits the agent’s field of view to
60 degrees, requiring a more realistic navigation strategy compared to the panoramic view used in traditional
VLN tasks. Dynamic Environments incorporate time-varying elements, such as human activities, challenging
the agent to adapt its navigation strategy to handle video streams that include people. The Sub-Optimal Expert
provides navigation guidance that accounts for human factors and dynamic elements, resulting in a more realistic
and human-like navigation strategy compared to the optimal expert model that always finds the shortest path
without considering these factors. [Best viewed in color]

B.1 HAPS Dataset

The HAPS Dataset encompasses a diverse range of 29 indoor regions, including bathroom, bedroom,
closet, dining room, entryway/foyer/lobby, family room, garage, hallway, library, laundry room/mud-
room, kitchen, living room, meeting room/conference room, lounge, office, porch/terrace/deck/drive-
way, recreation/game room, stairs, toilet, utility room/tool room, TV room, workout/gym/exercise
room, outdoor areas containing grass, plants, bushes, trees, etc., balcony, other room, bar, class-
room, dining booth, and spa/sauna. The dataset features skinned human motion models devoid of
identifiable biometric features or offensive content. Fig. 9 illustrates the skeletons of the dataset’s
human activities, accompanied by their corresponding descriptions, which exhibit diverse forms and
interactions with the environment.

To ensure the quality and relevance of the human activity descriptions, we employed GPT-4 to
generate an extensive set of descriptions for each of the 29 indoor regions. Subsequently, we
conducted a rigorous human survey involving 50 participants from diverse demographics to evaluate
and select the most appropriate descriptions. As depicted in Fig. 7, each participant assessed the
descriptions for a specific indoor region based on three key criteria: 1) High Relevance to the specified
region, 2) Verb-Rich Interaction with the environment, and 3) Conformity to Daily Life patterns.

The survey was conducted in five rounds, with the highest-rated descriptions from previous rounds
being excluded from subsequent evaluations to ensure a comprehensive review process. Upon
analyzing the survey responses, we identified the activity descriptions with the highest selection
frequency for each region, ultimately curating a set of 145 human activity descriptions (Fig. 8).

The resulting HAPS Dataset, available for download at https://drive.google.com/drive/
folders/1aswHATnKNViqw6QenAwdQRTwXQQE5jd37usp=sharing, represents a meticulously
crafted resource for studying and simulating human activities in indoor environments.
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‘bathroom:
/0 Aperson cleaning the bathroom.
O A person lifing weights.
O Someone studying for an exam in the bathroom.
O Achild learning how to wash their hands.
O Someone playing a board game in the bathroom.
O A person reading a novel.
/0 Someone taking a relaxing bath
O Someone hosting a meeting.
O An individual fixing their hair
O An individual painting a canvas.
/0 A person brushing their teeth in front of the miror.
O Achild watching TV in the bathroom.
0 A person cooking dinner.
O Achild building a model train set.
0 An individual practicing piano.
o

\ Select 3 human activities !!! J/

(a) Criterion 1: High relevance be-
tween human activities and their
respective regions

‘garage
O A person standing.
O Someone sitting quietly. |
00 Agroup of friends talking.
O An individual thinking.
/0 A person working on a car.
0 Children watching.
0 Children playing with bikes or scooters
0 A person looking around.
O Someone listening.
O Agroup of friends resting.
O An individual holding an item.
O Agroup of friends working on a DIY project.
0 Children observing.
/0 Someone organizing tools.
0 An individual painting or crafting large items
| o. /

Select 3 human activities !!! J/

(b) Criterion 2: Human activi-
ties contain verb-rich interactions
with the environment

Tiving room: N
O An entity engaging in quantum field manipulation.
| &0 Someone practicing dance moves.
O Subjects partaking in synchronized astral projection.
/0 Children playing video games.
0O Individuals conducting an interdimensional research symposium
O A being executing anti-gravitational yoga.
0 Entities performing a zero-point energy extraction procedure.
0 Afamily decoding extraterrestrial communication signals.
O An individual meditating or doing yoga.
O Aperson a ical energy
O Children calibrating a temporal distortion device.
O An individual fabricating a tachyon particle accelerator.
&0 Agroup engaging in cognitive synchronization experiments.
O Agroup of friends watching a sports game.
0 Afamily having a casual conversation.
o

AN Select 3 human activities !!!

(c) Criterion 3: Human activities
conform to everyday life patterns
and colloquial language

Figure 7: Criteria for filtering suitable human activity descriptions through human surveys. The three key
criteria ensure the relevance, interactivity, and realism of the selected activities, resulting in a curated set of 145
human activity descriptions for the HAPS Dataset. [Zoom in to view]

A person brushing their teeth in front of the mirror.
Someone taking a relaxing bath.

A child leaming how to wash their hands.

An individual fixing their hair.

A person cleaning the bathroom.

Someone reading a book in bed.
A person folding laundry on the bed.

Achild playing with toys on the floor.

Anindividual choosing clothes from the closet
Someone doing a light workout or yoga in the morning.

A person organizing clothes by color.
Someone trying on different outfits.
An individual packing a suitcase.

A person searching for a lost item.
Someone deciding on shoes o wear.

A family enjoying a meal together.

Someone setting the table for dinner.

A couple having a candlelit inner.

An individual working on a puzzle on the dining table.
Children doing homework at the dining table.

A person hanging up coats.
Someone taking off their shoes.

Achild excitedly greeting a pet

An individual checking the mail

Someone putting on sunscreen before leaving.

Afamily playing board games.
Someone napping on the couch.

Children watching a movie with popcorn.

A couple enjoying a casual conversation.
Anindividual practicing a musical instrument.

A person working on a car.

Someone organizing tools.

A group of friends working on a DIY project
An individual painting or crafting large items.
Children playing with bikes or scooters.

Someone hanging pictures or artwork.
A child running through the hallway.

An individual cleaning or vacuuming.

Someone talking on the phone while pacing

A person checking themselves in a hallway mirror.

Students studying in groups.

An individual reading quietly.

Someone browsing through bookshelves.
Alibrarian organizing books.

A group participating in a book club discussion

A person doing laundry.
Someone cleaning muddy shoes.

A child hanging up their coat and backpack.
An individual folding and sorting clothes.
Someone ironing clothes.

A family cooking together.

Someone baking and decorating cakes.

A couple trying out a new recipe.

Children helping with simple kitchen tasks.
An individual meal-prepping for the week.

A group of friends watching a sports game.
Someone practicing dance moves.

A family having a casual conversation.

An individual meditating or doing yoga.
Children playing video games.

Ateam brainstorming ideas.
Someone giving a presentation.

A group participating in a video conference.
Individuals taking notes during a meeting.

A manager discussing plans with their team.

Friends chatting over coffee.
Someone reading a magazine.
A couple enjoying cocktails.

An individual listening to music.
People relaxing and watching TV.

An individual working on a computer.
‘Someone organizing files.

A person making business calls.

An individual brainstorming on a whiteboard.
‘Someone taking a quick break with a snack.

A family having a barbecue.
Someone watering plants.

Children playing with chalk on the driveway.
A couple enjoying the sunset.

An individual doing outdoor yoga.

Friends playing pool or billiards.
Someone setting up a board game.
A group playing video games.
Individuals practicing darts.
Afamily having a karaoke night.

‘Someone carrying groceries upstairs

A child sliding down the banister.

An individual decorating the stairway.

Someone exercising by running up and down.

A person pausing to catch their breath while climbing the stairs.

An individual entering or exiting the room quickly.
Someone doing a quick check i the mirror.

A parent teaching a young child how to use the toilet.
A person changing a baby's diaper (if space allows).
An individual in a rush to use the toilet.

A person organizing tools on a wall rack.
Someone repairing a household item, like a vacuum cleaner.
A homeowner searching for the right tool for a DIY project.
An individual doing some woodworking or crafting.

A child observing and learning about tools from a parent.

Friends watching a movie together, with popcorn and drinks
Afamily having a movie night with kids.

Anindividual enjoying a sports game, cheering loudly.
Someone watching a concert o ive performance on TV.

A couple snuggled up, watching a romantic movie.

A person lifting weights or using gym equipment
Someone doing a yoga or pilates session.

An individual running on a treadmill

A group having a fitness class or personal training session.
Someone stretching or cooling down after a workout

Afamily having a picnic on the grass.
Someone gardening, planting flowers or vegetables.
Children playing hide and seek among the trees.

An individual reading a book under a tree.

A person walking their dog or playing fetch.

A person enjoying a cup of coffee while looking at the view.
Someone watering plants or tending to a small balcony garden.
A couple having a quiet, intimate conversation.

An individual doing some outdoor yoga or stretching.

A person taking photographs of the view.

Someone curiously exploring or looking around the room.
A person using the room for a quiet phone call.

Children playing imaginatively, using the room as a fort or castle.
An individual using the room for meditation or quiet reflection.

A group of friends using the space for an impromptu gathering.

A bartender mixing and serving drinks,
Friends toasting and enjoying cocktails.

Someone tasting different types of beers or wines.

A couple having a date night at the bar.

An individual sitting alone, sipping a drink and relaxing.

A teacher giving a lecture or lesson to students.
Students taking notes, listening, or asking questions.
A group working together on a class project.
Someone giving a presentation in front of the class.
A student staying after class to talk to the teacher.

Afamily enjoying a meal together in a cozy booth.
Friends laughing and sharing stories over dinner.

A couple having a romantic dinner in a secluded booth.
Someone working on a laptop or reading while eating.

A group celebrating a special occasion with food and drinks.

Individuals relaxing in the sauna or steam room.
A person receiving a therapeutic massage or treatment.
Someone meditating or practicing deep breathing.

A group of friends enjoying a spa day together.

Anindividual taking a quiet moment for self-care and relaxation.

Figure 8: The 145 human activity descriptions in the HAPS Dataset, categorized by their respective indoor
regions (highlighted in bold red font). Each region includes 5 carefully selected human activity descriptions that
best represent the diversity and relevance of activities within that space. [Zoom in to view]

B.2 Human Activity Annotation

To facilitate a comprehensive understanding of the HA-VLN task environment, we present a large-
scale embodied agents environment with the following key statistical insights:

Human Distribution by Region. As illustrated in Fig. 10(a), a total of 374 humans are distributed
across the environment, with an average of four humans per building. This distribution ensures a
realistic and dynamic navigation setting, closely mimicking real-world scenarios.

Human Activity Trajectory Lengths. Fig. 10(b&c) showcases the distribution of human activity
trajectory lengths. The total trajectory length spans 1066.81m, with an average of 2.85m per human.
Notably, 49.2% of humans engage in stationary activities (less than 1 meter), 30.5% move short

17



closet:A person doset:Someone closet:An individual closet:A person doset:Someone
organizing clothes trying on different packing a suitcase, searching for a lost deciding on shoes to
by color. outfits. item
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dining table.

%J\ (Jx{ (é Jf)i

{

entryway/foyer/lobby entryway/foyer/labby entryway/foyer/labby entryway/foyer/lobby entryway/foyer/lobby
:A person hanging up Someone taking off A child excitedly :An individual :Someone putting on
coats. their shoes. greeting a pet. checking the mail sunscreen before
leaving.

/}
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playing board games. napping on the watching a movie enjoying a casual individual
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hallway:Someone hallway:A child hallway:An hallway:Someone hallway:A person
hanging pictures or running through the individual cieaning talking on the phone checking themselves
hallway. or vacuuming. while pacing in a hallway mirror.

i

Figure 9: Human skeletons in the HAPS Dataset, showcasing the diversity of human activities across 6 common
indoor regions. Each row represents five different activity descriptions within the same indoor region, with the
corresponding activity description displayed above each human skeleton diagram. The HAPS Dataset captures a
wide range of realistic and interactive human behaviors. [Zoom in to view]

distances (1-5 meters), 18.4% move long distances (5-15 meters), and 1.9% move very long distances
(more than 15 meters). This diverse range of trajectory lengths captures the varied nature of human
activities within indoor environments.

Human Impact on the Environment. The presence of humans significantly influences the navigation
environment, as depicted in Fig. 10(d). Among the 10,567 viewpoints in the environment, 8.16%
are directly affected by human activities, i.e., viewpoints through which humans pass. Furthermore,
46.47% of the viewpoints are indirectly affected, meaning that humans are visible from these locations.
This substantial impact highlights the importance of considering human presence and movement
when developing navigation agents for real-world applications.
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Figure 10: Statistics on human distribution in the HA-VLN environment. (a) Distribution of humans by region,
showcasing the average number of humans per building. (b) Distribution of human activity trajectory lengths,
categorized by stationary, short, long, and very long distances. (c) Percentage breakdown of human activity
trajectory lengths. (d) Impact of human presence on the environment, illustrating the percentage of viewpoints
directly and indirectly affected by human activities. [Zoom in to view]

B.3 Realistic Human Rendering

The rendering process has been meticulously optimized to ensure spatial and visual coherence
between human motion models and the scene. Fig. 11 showcases the realistic rendering of humans in
various indoor environments, demonstrating the simulator’s ability to generate lifelike and visually
diverse scenarios. The following key optimizations contribute to high-quality rendering:

Camera Alignment with Agent’s Perspective. The rendering process aligns the camera settings
with the agent’s perspective, incorporating a 60-degree field of view (FOV), 120 frames per second
(fps), and a resolution of 640x480 pixels. This alignment ensures that the rendered visuals accurately
mirror the agent’s visual acuity and motion fluidity, providing a realistic and immersive experience.

Integration of Human Motion Models. To generate continuous and lifelike movements, the
simulator leverages 120-frame sequences of SMPL mesh data when placing human motion models in
the scene. This approach allows for the sequential output of both RGB and depth frames, effectively
capturing the dynamics of human motion and enhancing the realism of the rendered environment.

Utilization of Depth Maps. The rendering process employs depth maps to distinctly segregate the
foreground (human models) from the background (scene). By doing so, the simulator ensures that the
rendered humans accurately integrate with the environmental context without visual discrepancies,
resulting in a seamless and visually coherent experience. Fig. 13 presents continuous video frames
captured from the HA3D simulator. These optimizations ensure that the HA3D simulator provides
a high level of realism and detail in rendering human activities within indoor environments. By
accurately replicating human movements and interactions, the simulator creates a rich and dynamic
setting for training and evaluating human-aware navigation agents.

These optimizations ensure that the HA3D simulator provides a high level of realism and detail in
rendering human activities within indoor environments. By accurately replicating human movements
and interactions, the simulator creates a rich and dynamic setting for training and evaluating human-
aware navigation agents. By incorporating adjustable video observations, navigable viewpoints, and
collision feedback signals, the HA3D simulator offers a comprehensive and flexible environment
for advancing research in human-aware vision-and-language navigation. These features ensure that
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the agents developed and tested within this simulator are well-prepared for the complexities and
challenges of real-world navigation tasks.

B.4 Agent-Environment Interaction

To ensure the versatility and applicability of the HA3D simulator across a wide range of navigation
tasks, we have designed the agent’s posture and basic actions to align with the configurations of
the well-established Matterport3D simulator. This design choice facilitates a seamless transition for
researchers and practitioners, allowing them to leverage their existing knowledge and methodologies
when utilizing the HA3D simulator. At each time step, agents within the HA3D simulator can receive
several critical environmental feedback signals that enhance their understanding of the dynamic
navigation environment.

Figure 11: Single-frame in the HA3D simulator showcase viewpoints with human presence in each scene(120-
degree FOV), demonstrating the diversity of human activities and environments. Common indoor regions such
as bedrooms, hallways, kitchens, balconies, and bathrooms are displayed. Multiple humans can appear in the
same region, as seen in the third row, sixth column, and the fifth row, fifth and sixth columns. [Zoom in to view]

Set of Navigable Viewpoints. The HA3D simulator provides agents with reachable viewpoints
around them, referred to as navigable viewpoints. This feature enhances the navigation flexibility
and practicality of the simulator, allowing agents to make informed decisions based on their current
position and the available paths. By providing agents with a set of navigable viewpoints, the simulator
empowers them to explore the environment efficiently and effectively, mimicking the decision-making
process of real-world navigational agents.

Human " Collision' Feedback Signal. To promote safe and socially-aware navigation, the HA3D
simulator incorporates a human "collision" feedback signal. Specifically, when the distance between
an agent and a human falls below a predefined threshold (default: 1 meter), the simulator triggers a
feedback signal, indicating that the human has been "crushed" by the agent. This feedback mechanism
serves as a critical safety measure, encouraging agents to maintain a safe distance from humans and
avoid potential collisions. By integrating this feedback signal, the simulator reinforces the importance
of socially-aware navigation and facilitates the development of algorithms that prioritize human safety
in dynamic environments.

B.5 Implementation and Performance

The HA3D Simulator is a powerful and efficient platform designed specifically for simulating human-
aware navigation scenarios. Built using a combination of C++, Python, OpenGL, and Pyrender,
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the simulator seamlessly integrates with popular deep learning frameworks, enabling researchers to
efficiently train and evaluate navigation agents in dynamic, human-populated environments. One of
the key strengths of the HA3D Simulator is its customizable settings, which allow researchers to tailor
the environment to their specific requirements. Users can easily adjust parameters such as image
resolution, field of view, and frame rate, ensuring that the simulator can accommodate a wide range
of research objectives and computational constraints. In terms of performance, the HA3D Simulator
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Figure 12: HA3D simulator interfaces and components, showcasing adjustments to human actions and activities.
The interactive annotation tool enables users to locate humans in different building regions, set initial positions,
and select 3D human motion models. [Zoom in to view]

achieves impressive results, even on modest hardware. When running on an NVIDIA RTX 3050
GPU, the simulator can maintain a frame rate of up to 300 fps at a resolution of 640x480. This level
of performance is comparable to state-of-the-art simulation platforms [49, 39, 42], demonstrating the
simulator’s efficiency and optimization. Resource efficiency is another notable aspect of the HA3D
Simulator. On a Linux operating system, the simulator boasts a memory footprint of only 40MB,
making it accessible to a wide range of computing environments. Additionally, the simulator supports
multi-processing operations, enabling researchers to leverage parallel computing capabilities and
significantly enhance training efficiency.

To further facilitate the annotation process and improve accessibility, we have developed a user-
friendly annotation toolset based on PyQt5 (Fig. 12). These tools feature an intuitive graphical user
interface (GUI) that allows users to efficiently annotate human viewpoint pairs, motion models, and
navigation data. The annotation toolset streamlines the process of creating rich, annotated datasets
for human-aware navigation research.
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Figure 13: Video frames in the HA3D simulator showcasing viewpoints with human presence in each scene
(120-degree FOV), reflecting visual diversity. Common indoor regions such as hallways, offices, dining rooms,
closets, TV rooms, living rooms, and bedrooms are displayed. The simulator is capable of rendering multiple
humans within the same region and field of view, as exemplified in the 9th and 11th rows of the grid, where two
people appear simultaneously. [Zoom in to view]
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C Agent Details

C.1 HA-R2R Dataset

Instruction Generation. To generate new instructions for the HA-R2R dataset, we utilize LangChain
and sqlang to interface with GPT-4, leveraging its powerful language generation capabilities to
create contextually relevant and coherent instructions. Note that we use GPT-4 Turbo in our code;
it refers to the model ID gpt-4-1106-preview in the OpenAl API. Our approach to instruction
generation involves the use of a carefully designed few-shot template prompt. This prompt serves as
a guiding framework for the language model, providing it with the necessary context and structure to
generate instructions that align with the objectives of the HA-R2R dataset.

The few-shot template prompt consists of two key components: a system prompt and a set of few-shot
examples. The system prompt is designed to prime the language model with the overall context and
requirements for generating navigation instructions in the presence of human activities. It outlines
the desired characteristics of the generated instructions, such as their relevance to the navigation
task, incorporation of human activity descriptions, and adherence to a specific format. The few-shot
examples, on the other hand, serve as a sequence of representative instructions that demonstrate the
desired output format and content. These examples are carefully curated to showcase the inclusion
of human activity descriptions, the use of relative position information, and the integration of these
elements with the original navigation instructions from the R2R dataset.

By providing both the system prompt and the few-shot examples, we effectively guide the generation
process towards producing instructions that are consistent with the objectives of the HA-R2R dataset.
List. 1 and List. 2 provide a detailed illustration of our prompt engineering approach, showcasing
the system prompt and the few-shot examples used for sequential instruction generation. Through
this prompt engineering technique, we are able to harness the power of GPT-4 to generate a diverse
set of new instructions that effectively incorporate human activity descriptions and relative position
information, enhancing the realism and complexity of the navigation scenarios in the HA-R2R dataset.

Your role is to function as an #Example 1
instruction gemnerator. You will

receive Route-to-Route (R2R)

navigation instructions and information
about human activities.

Your task is to integrate these R2R

"original instruction":
"Walk between the columns and make a
sharp turn right. Walk down the

instructions with the details of steps and stop on the landing. "
the human activities to create new,

clear instructions that a robot "human description":

can understand for navigation. "The 1th Human Description: Relative

Position:Beginning Location and
Activity: balcony:A couple having a
quiet, intimate conversation."

Please adhere to the following
guidelines when generating
instructions:

- Deliver the instructions in a single "question"

paragraph "What is the new instruction?"
// five rule to generation

- Conclude with a relative position

description, which should

be limited to one or two sentences.

"answer"

"Navigate between the columns and
execute a sharp right turn, taking
special care at the beginning of
your path where a couple might be

Now I give you 5 examples.

// examples in listing 2 engaged in a quiet, intimate
conversation on the balcony.
Original instruction: ... Proceed to walk down the steps and

Human Activity Description:

come to a halt on the landing,
Relative Position Description:

ensuring you do not disturb the
question: What is the instructure? couple’s privacy or space during
\\ generation your movement."

Listing 1: Format of our LLM prompt Listing 2: Few-shot examples in our prompt

Word Frequency Analysis. To assess the quality and practicality of the instructions in the HA-R2R
dataset, we conducted a comprehensive word frequency analysis. Fig. 14 shows the dataset’s potential

23



to support the development and evaluation of robust navigation agents that can effectively interpret
and follow human-like instructions in complex, dynamic environments.

The left chart in Fig. 14 illustrates the frequency of various nouns used in the instructions. The top 5
most frequent nouns are turn, stair, room, hallway, and door. Among these, the noun furn exhibits
the highest frequency, appearing more than 5000 times throughout the dataset. Other nouns in the list
include exit, left, bedroom, right, bathroom, walk, doorway, towards, table, kitchen, area, way, step,
proceed, chair, hall, bed, side, path, and living. The presence of these nouns indicates the rich spatial
and contextual information conveyed in the navigation instructions.

Similarly, the right chart in Fig. 14 presents the frequency distribution of various verbs used in the
instructions. The top 5 most frequent verbs are proceed, make, walk, turn, and leave. Among these,
the verb proceed exhibits the highest frequency, also appearing over 5000 times throughout the
dataset. Other verbs in the list include reach, take, continue, go, enter, begin, exit, stop, pass, keep,
navigate, move, ascend, approach, descend, straight, ensure, be, follow, and locate. The diversity of
these verbs highlights the range of actions and directions provided in the navigation instructions.

The word frequency analysis provides valuable insights into the composition and quality of the
HA-R2R dataset. The prevalence of common navigation instruction words, such as spatial nouns and
action verbs, demonstrates the dataset’s adherence to established conventions in navigation instruction
formulation. This consistency ensures that the instructions are practical, easily understandable, and
aligned with real-world navigation scenarios. Moreover, the balanced distribution of nouns and verbs
across the dataset indicates the presence of rich spatial and temporal information in the instructions.
The nouns provide crucial details about the environment, landmarks, and objects, while the verbs
convey the necessary actions and movements required for successful navigation.

Noun Frequency Verb Frequency

living locate ]

path ] follow 1

side ] be ]

bed ] ensure |

hall ] straight

chair ] descend 1
proceed ] approach 1
step ] ascend I

way ] move ]

area 1 navigate 1

kitchen keep 1
table } pass }
towards ]

stop I

Noun
Verb

doorway 1 exit 1

walk ] begin

bathroom 1 enter 1

right 1 g0 1

bedroom 1 continue 1
left ] take ]
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door ] leave ]
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room 1 walk 1
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Figure 14: Word frequency distribution of all instructions in the HA-R2R dataset, showcasing the prevalence
of common navigation instruction words. The x-axis of both charts represents the frequency range, while the
y-axis lists the words. The bars are colored light blue for nouns (left chart) and light red for verbs (right chart),
providing a clear visual distinction between the two word categories. The balanced distribution of nouns and
verbs highlights the rich spatial and temporal information conveyed in the navigation instructions, ensuring their
quality and practicality. [Zoom in to view]
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C.2 Algorithm to Construct Oracle(Expert) Agent

The Expert agent, also known as the Oracle agent, is handcrafted using a sophisticated path planning
and collision avoidance strategy. The algorithm employed to construct the expert agent is summarized
in algorithm 1. The Oracle agent operates by parsing the provided language instructions Z =
(w1, ws, -+ ,wr) and identifying the current state s; = <pt, Oty At @?0>. It then updates the
navigation graph G = (N, E) by excluding the subset of nodes N}, that are affected by human
activity, resulting in a modified graph G’ = (N \ Ny, E’). This step ensures that the agent avoids
navigating through areas where human activities are present. Using the updated graph G’, the Oracle
agent computes the shortest path to the goal using the A* search algorithm. This algorithm efficiently
explores the navigation graph, considering the cost of each node and the estimated distance to the
goal, to determine the optimal path.

If human activity is detected along the planned path, the Oracle agent employs a two-step approach
for collision avoidance. First, it attempts to make a dynamic adjustment to its trajectory. If a safe
alternative path is available, the agent selects the next state s/, that minimizes the cost function ¢(s2, s)
while avoiding the human-occupied state hs. This dynamic adjustment allows the agent to smoothly
navigate around human activities without significantly deviating from its original path. In cases where
dynamic adjustment is not possible, the Oracle agent resorts to rerouting. If the distance between
the current state s; and the human-occupied state h; is less than the avoidance threshold distance 4,
the agent reroutes to an alternative state s}. This rerouting strategy ensures that the agent maintains
a safe distance from human activities and prevents potential collisions. Throughout the navigation
process, the Oracle agent continuously monitors the distance between its current state s; and any
human-occupied states h;. If the distance falls below the minimum safe distance e, the collision
indicator C(s¢, hy) is set to 1, signifying a potential collision. This information is used to guide the
agent’s decision-making and ensure safe navigation.

Finally, the Oracle agent executes the determined action a; and continues to navigate towards
the goal until it is reached. By iteratively parsing instructions, updating the navigation graph,
computing optimal paths, and employing dynamic adjustments and rerouting strategies, the Oracle
agent effectively navigates through the environment while avoiding human activities and maintaining
a safe distance.

Algorithm 1 Oracle Agent Path Planning and Collision Avoidance Strategies

Require: Language instructions Z = (wy,ws, ..., wr ), current state s; = <pt, Dty At ®?°>, navi-
gation graph G = (N, E), subset of nodes affected by human activity Np, minimum safe distance
¢, avoidance threshold distance &

Ensure: Next action a;
while goal not reached do

Parse Z, identify s;
Update G’ = (N \ Ny, E') {Exclude nodes N}, }
Compute shortest path using A* on G’
if human activity detected then
if dynamic adjustment possible then
s, = argming{c(s1,s) | s # ha} {Dynamic interaction strategy: find new state avoiding
human activity}
else
Reroute to s} if d(s, hy) < 6 {Conservative avoidance strategy: reroute if within avoidance
threshold}
end if
end if
C(st, hy) = 1if d(s¢, hy) < € {Collision avoidance strategy: mark collision if too close}
Execute a;
end while
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C.3 Algorithm to Construct VLN-DT

The pseudocode for the structure and training of VLN-DT, presented in a Python-style format, is
summarized in algorithm 2. Note that we use the pseudocode template from [8]. The VLN-DT
model takes as input the returns-to-go (R), instructions ([), current observations (0), actions (a),
and timesteps (). The key components of the model include the transformer with causal masking,
embedding layers for state, action, and returns-to-go, a learned episode positional embedding, a
cross-modality fusion module, BERT layers for language embedding, a ResNet-152 feature extractor
for visual embedding, and a linear action prediction layer.

The main VLNDecisionTransformer function computes the BERT embedding for instructions and
the CNN feature map for visual observations. These embeddings are then fused using the cross-
modality fusion module to obtain a unified representation. Positional embeddings are computed for
each timestep and added to the token embeddings for state, action, and returns-to-go. The resulting
interleaved tokens are passed through the transformer to obtain hidden states, from which the hidden
states corresponding to action prediction tokens are selected. Finally, the next action is predicted
using the linear action prediction layer.

During the training loop, the VLN-DT model is trained using a cross-entropy loss for discrete actions.
The optimizer is used to update the model parameters based on the computed gradients. In the
evaluation loop, the target return is set (e.g., expert-level return), and the model generates actions
autoregressively. At each timestep, the next action is sampled using the VLN-DT model, and the
environment is stepped forward to obtain a new observation and reward. The returns-to-go are
updated, and new tokens are appended to the sequence while maintaining a context length of K.

C.4 Different Reward Types for VLN-DT

To train the VLN-DT agent effectively, we define three distinct reward types that capture different
aspects of the navigation task and encourage desirable behaviors.

Target Reward. The target reward is defined as follows:
arget 5, if d(s¢, target) < threshold
re o = .

—5, otherwise

This reward type incentivizes the agent to reach the target location within a specified distance
threshold. If the agent stops within a distance threshold from the target, it receives a positive reward
of 5. Otherwise, if the agent fails to reach the target or stops far from it, a negative reward of -5 is
given. This reward encourages the agent to navigate accurately and reach the desired destination.

Distance Reward. The distance reward is defined as follows:

distance _ 1, if d(sq, target) < d(s;_1, target)
¢ —0.1, otherwise

The distance reward aims to encourage the agent to move closer to the target location with each step.
If the agent’s current state s; is closer to the target than its previous state s;_1, it receives a positive
reward of 1. On the other hand, if the agent moves away from the target, a small penalty of -0.1 is
applied. This reward type helps guide the agent towards the target and promotes efficient navigation.

Human Reward. The human reward is defined as follows:

human {0, if no collision with human
human _

—2, if collision occurs

The human reward is designed to penalize the agent for colliding with humans. If the agent navigates
without colliding with any humans, it receives a neutral reward of 0. However, if a collision with a
human occurs, the agent incurs a significant penalty of -2. This reward type encourages the agent to
navigate safely and avoid collisions, promoting socially-aware navigation behaviors.

By incorporating these three reward types, the VLN-DT agent is trained to balance multiple objectives:
reaching the target location accurately, moving closer to the target with each step, and avoiding
collisions with humans. The target reward provides a strong incentive for the agent to reach the
desired destination, while the distance reward encourages efficient navigation by rewarding the agent
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for making progress towards the target. The human reward ensures that the agent learns to navigate
in a socially-aware manner, prioritizing the safety of humans in the environment. During training,
these rewards are combined to form the overall reward signal that guides the learning process of the
VLN-DT agent. By optimizing its behavior based on these rewards, the agent learns to navigate in
the presence of human activities, aligning with the goals of the HA-VLN task.

Algorithm 2 VLN-DT Structure and Training Pseudocode (for discrete actions)

R, a, t: returns-to-go, actions, or timesteps

I, Theta, instructions, current observations
transformer: transformer with causal masking (GPT)
embed_s, embed_a, embed_R: linear embedding layers
embed_t: learned episode positional embedding
modality_fuse: cross modality fusion module
bert_embed: bert layers

cnn: Resnetl152 feature extractor

pred_a: linear action prediction layer

HFHEFEHFEHEHFHHH

# main model

def VLNDecisitionTransformer (R, I, Theta, a, t):
# compute bert embedding and image feature map
e = bert_embed (I)
¢ = cnn(Theta)

# compute unified representation
s = modality_fuse(e, c)

# compute embeddings for tokens in transformer
pos_embedding = embed_t(t) # per-timestep , not per-token
s_embedding = embed_s(s) + pos_embedding

a_embedding = embed_a(a) + pos_embedding

R_embedding = embed_R(R) + pos_embedding

# interleave tokens as (R_1, s_1, a_1, ..., R_K, s_K)
input_embeds = stack(R_embedding, s_embedding, a_embedding)

# use transformer to get hidden states
hidden_states = transformer(input_embeds=input_embeds)

# select hidden states for action prediction tokens
a_hidden = unstack(hidden_states).actions

# predict action
return pred_a(a_hidden)

# training loop

for (R, I, Theta, t) in dataloader: # dims: (batch_size, K, dim)
a_preds = VLNDecisionTransformer (I, Theta, a, t)
loss = ce(a_preds, a) # cross entropy loss for continuous actions
optimizer.zero_grad(); loss.backward(); optimizer.step()

# evaluation loop

target_return = 1 # for instance, expert-level return
R, I, Theta, a, t, done = [target_return], [env.reset()], []1, [1],
False
while not done: # autoregressive generation/sampling
# sample next action
action = VLNDecisionTransformer (R, I, Theta, a, t)[-1]
I, new_Theta, r, done, _ = env.step(action)

# append new tokens to sequence

R =R + [R[-1] - r] # decrement returns-to-go with reward
Theta, a, t = Theta + [new_Thetal], a + [action], t + [len(R)]
R, Theta, a, t = R[-K:], ... # only keep context length of K

27



D Experiment Details

D.1 Evaluation Protocol

In HA-VLN, we construct a fair and comprehensive assessment of the agent’s performance by
incorporating critical nodes in the evaluation metrics. To help better understand the new evaluation
metrics defined in the main text, the original metrics before such an update are as follows:

Total Collision Rate (TCR). The Total Collision Rate measures the overall frequency of the agent
colliding with any obstacles or areas within a specified radius. It is calculated as the average number
of collisions per navigation instruction, taking into account the presence of critical nodes. The

formula for TCR is given by:

Yy
TCR = &i=1"
L

where c; represents the number of collisions within a 1-meter radius in navigation instance ¢, and L
denotes the total number of navigation instances. By considering collisions in the vicinity of critical
nodes, TCR provides a comprehensive assessment of the agent’s ability to navigate safely in the
presence of obstacles and important areas.

Collision Rate (CR). The Collision Rate assesses the proportion of navigation instances that experi-
ence at least one collision, taking into account the impact of critical nodes. It is calculated using the
following formula:

CR = Zle min(c;, 1)
L
where min(c;, 1) ensures that any instance with one or more collisions is counted only once. By
focusing on the occurrence of collisions rather than their frequency, CR provides a complementary
perspective on the agent’s navigation performance, highlighting the proportion of instructions that
encounter collisions in the presence of critical nodes.

Navigation Error (NE). The Navigation Error measures the average distance between the agent’s
final position and the target location across all navigation instances, considering the influence of
critical nodes. It is calculated using the following formula:

Zz‘Lzl di
L

where d; represents the distance error in navigation instance 7. By taking into account the proximity
to critical nodes when calculating the distance error, NE provides a more nuanced evaluation of the
agent’s navigation accuracy, penalizing deviations that occur near important areas.

NE =

Success Rate (SR). The Success Rate calculates the proportion of navigation instructions completed
successfully without any collisions, considering the presence of critical nodes. It is determined using
the following formula:

SR — ZiLZI H(Ci = 0)
L
where I(c; = 0) is an indicator function equal to 1 if there are no collisions in the navigation instance
1 and 0 otherwise. By requiring the absence of collisions for a successful navigation, SR provides a
stringent evaluation of the agent’s ability to complete instructions safely.

The Total Collision Rate (TCR) and Collision Rate (CR) capture different aspects of collision
avoidance, with TCR measuring the overall frequency of collisions and CR focusing on the proportion
of instructions affected by collisions. The Navigation Error (NE) evaluates the agent’s accuracy in
reaching the target location, while the Success Rate (SR) assesses the agent’s ability to complete
instructions without any collisions.

By leveraging these metrics, researchers can gain a holistic understanding of the agent’s performance
in the HA-VLN task, identifying strengths and weaknesses in navigation safety, accuracy, and success.
Compared to the original metrics, our updated comprehensive evaluation framework enables the
development and comparison of agents that can effectively navigate in the presence of critical nodes,
paving the way for more robust and reliable human-aware navigation systems. This approach also
ensures that the evaluation of agents is rigorous and reflects real-world scenarios where navigating in
human-populated environments presents significant challenges.
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Table 10: Impact of Critical Nodes on Agent Navigation Performance on HA-VLN. The table compares the
performance of the Airbert agent excluding the impact of critical nodes (w/o critical nodes) and including the
impact of critical nodes (w/ critical nodes). The results show that ignoring critical nodes can overestimate the
human perception ability of agents.

w/ critical nodes  w/o critical nodes Difference

Env Name TCR CR  TCR CR TCR CR

Validation Seen 0.191 0.644 0.146 0.515 +308% +25.0%
Validation Unseen  0.281 0.764 0.257 0.689 +93% +10.9%

D.2 Evaluating the Impact of Critical Nodes

To assess the impact of critical nodes on agent performance in the HA-VLN task, we trained the
Airbert agent using a panoramic action space and sub-optimal expert supervision. Tab. 10 presents
the human-aware performance difference between including the impact of critical nodes (w/ critical
nodes) and excluding their impact (w/o critical nodes).

The results reveal that including the impact of critical nodes in the HA-VLN task leads to an underes-
timation of the agent’s ability to navigate in realistic environments (Sim2Real ability). Specifically,
when critical nodes are excluded from the evaluation, both the Total Collision Rate (TCR) and
Collision Rate (CR) show considerable improvements of 30.8% and 25.0%, respectively, in the
validation seen environment. This suggests that ignoring the impact of critical nodes can lead to an
overestimation of the agent’s human perception and navigation capabilities.

The observed differences in performance highlight the importance of considering critical nodes when
assessing an agent’s navigational efficacy in the HA-VLN task. Critical nodes represent crucial
points in the navigation environment where the agent’s behavior and decision-making are particularly
important, such as narrow passages, doorways, or areas with high human activity. By including the
impact of critical nodes, we obtain a more realistic and accurate evaluation of the agent’s ability to
navigate safely and efficiently in the presence of human activities.

Furthermore, the results underscore the significance of critical nodes in bridging the gap between
simulated and real-world environments (Sim2Real gap). By incorporating the impact of critical
nodes during training and evaluation, we can develop agents that are better equipped to handle the
challenges and complexities encountered in real-world navigation scenarios.

In light of these findings, we argue that excluding the impact of critical nodes leads to a fairer and
more comprehensive assessment of an agent’s navigational performance on the HA-VLN task. By
focusing on the agent’s behavior and decision-making at critical nodes, we can obtain insights into its
ability to perceive and respond to human activities effectively.

Therefore, in the experiments presented in this work, we exclude the impact of critical navigation
nodes to ensure a rigorous and unbiased evaluation of the agents’ performance on the HA-VLN task.
This approach allows us to accurately assess the agents’ capabilities in navigating dynamic, human-
aware environments and provides a solid foundation for developing robust and reliable navigation
systems that can operate effectively in real-world settings.

D.3 Evaluating the Oracle Performance

To evaluate the performance of the oracle agents in the HA-VLN task, we conducted a comparative
analysis between the sub-optimal expert and the optimal expert. Tab. 11 presents the results of this
evaluation, providing insights into the strengths and limitations of each expert agent.

The optimal expert achieves the highest Success Rate (SR) of 100% in both seen and unseen
environments, demonstrating its ability to navigate effectively and reach the target destination.
However, this high performance comes at the cost of increased Total Collision Rate (TCR) and
Collision Rate (CR). In the validation unseen environment, the optimal expert exhibits a staggering
800% increase in TCR and a 1700% increase in CR compared to the sub-optimal expert. These
substantial increases in collision-related metrics indicate that the optimal expert prioritizes reaching
the goal over avoiding collisions with humans and obstacles.
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Table 11: Impact of Expert Quality on Ground Truth (oracle) in HA-VLN. The table compares the performance
of expert agents. The results indicate that the sub-optimal expert provides weak supervision signals for navigation
by balancing NE, TCR, CR, and SR.

Validation Seen Validation Unseen
Expert Agent
NE | TCR | CR | SR 1 NE | TCR | CR | SR 1
Sub-optimal,,, ./, 0.67 0.04 0.04 0.89 0.62 0.01 0.01 0.91
Optimal,, 0.00 0.14 0.22 1.00 0.00 0.09 0.18 1.00
Difference -0.67 +0.10 +0.18 +0.11 -0.62 +0.08 +0.17 +0.09
Percentage Change -100.0% +250.0% +450.0% +12.4% -100.0% +800.0% +1700.0% +9.9%

On the other hand, the sub-optimal expert provides a more balanced approach to navigation. Although
its SR is slightly lower than the optimal expert by 11.0% in seen environments and 9.9% in unseen
environments, the sub-optimal expert achieves significantly lower TCR and CR. This suggests that the
sub-optimal expert strikes a better balance between navigation efficiency and human-aware metrics,
making it more suitable for real-world applications.

The sub-optimal expert’s performance can be attributed to its ability to navigate while considering
the presence of humans and obstacles in the environment. By prioritizing collision avoidance and
maintaining a safe distance from humans, the sub-optimal expert provides a more practical approach
to navigation in dynamic, human-populated environments. This is particularly important in real-world
scenarios where the safety and comfort of humans are paramount.

Moreover, the sub-optimal expert’s balanced performance across navigation-related and human-aware
metrics makes it an ideal candidate for providing weak supervision signals during the training of
navigation agents. By learning from the sub-optimal expert’s demonstrations, navigation agents
can acquire the necessary skills to navigate efficiently while being mindful of human presence and
potential collisions.

The oracle performance analysis highlights the importance of considering both navigation efficiency
and human-aware metrics when evaluating expert agents and training navigation agents. While the
optimal expert excels in reaching the target destination, its high collision rates limit its practicality in
real-world scenarios. The sub-optimal expert, on the other hand, provides a more balanced approach,
achieving reasonable success rates while minimizing collisions with humans and obstacles. By
incorporating the sub-optimal expert’s demonstrations during training, navigation agents can learn to
navigate effectively and safely in complex, human-populated environments, bridging the gap between
simulation and real-world applications (i.e., Sim2Real Challenges).

D.4 Evaluating on Real-World Robots

Robot Setup. To validate the performance of our navigation agents in real-world scenarios, we
conducted experiments using a Unitree GO1-EDU quadruped robot. Fig. 15 provides a detailed
visual representation of the robot and its key components. The robot is equipped with a stereo fisheye
camera mounted on its head, which captures RGB images with a 180-degree field of view. To align
with the agent’s Ergonomic Action Space setup, we cropped the central 60 degrees of the camera’s
field of view and used it as the agent’s visual input. It is important to note that our approach only
utilizes monocular images from the fisheye camera.

In addition to the camera, the robot is equipped with an ultrasonic distance sensor located beneath
the fisheye camera. This sensor measures the distance between the robot and humans, enabling the
calculation of potential collisions. An Inertial Measurement Unit (IMU) is also integrated into the
robot to capture its position and orientation during navigation.

To deploy our navigation agents, the robot is equipped with an NVIDIA Jetson TX2 Al computing
device. This high-performance computing module handles the computational tasks required by the
agent, such as receiving images and inferring the next action command. The agent’s action commands
are then executed by the Motion Control Unit, which is implemented using a Raspberry Pi 4B. This
unit sets the robot in a high-level motion mode, allowing it to directly execute movement commands
such as "turn left" or "move forward." The minimum movement distance is set to 0.5m, and the
turn angle is set to 45 degrees. Throughout the robot’s movements, the IMU continuously tracks the
motion to ensure that the rotations and forward movements align with the issued commands.
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Figure 15: Real-world robot used in our experiments. The robot is Unitree GO1-EDU, a quadruped robot
equipped with an NVIDIA Jetson TX?2 high-performance computing module for handling computational tasks.
The robot features an Inertial Measurement Unit (IMU) for measuring acceleration and rotational speed, a Stereo
Fisheye Camera for wide-angle perception of its surroundings, and an Ultrasonic Distance Sensor for measuring
the distance between the robot and obstacles.

Visual Results of Demonstration. To showcase the real-world performance of our navigation agents,
we provide visual results of the robot navigating in various office environments. Fig. 16 demonstrates
the robot successfully navigating an office environment without human presence. The figure presents
the instruction given to the robot, the robot’s view captured by the fisheye camera, and a third-person
view of the robot’s navigation.

In Fig. 17, we present an example of the robot navigating in an office environment with human
activity. The robot observes humans in its surroundings, adjusts its path accordingly, circumvents
the humans, and ultimately reaches its designated destination. This showcases the robot’s ability to
perceive and respond to human presence while navigating.

However, it is important to acknowledge that the robot’s performance is not infallible. Fig. 18
illustrates a scenario where the robot collides with a human, even in the same environment. This
collision occurs when the human’s status changes unexpectedly, leading to a mission failure. This
example highlights the challenges and limitations of real-world navigation in dynamic human
environments. To provide a more view of the robot’s navigation capabilities, we have made the
complete robot navigation video available on our project website. This video showcases various
scenarios and provides a deeper understanding of the robot’s performance in real-world settings.
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/[%_] Turn around and walk forward to the hallway, turn left and continue straight to the water dispenser at the %
95— of the hallway, then turn left and stop in front of the first workstation.
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Figure 16: Example of a robot successfully navigating in a real environment without human presence. The
figure presents the instruction given to the robot (top), the robot’s view captured by the fisheye camera (middle),
and a third-person view of the robot’s navigation (bottom). [Zoom in to view]

Turn around and walk forward to the hallway. Be aware that a man is looking at his phone in the hallway.
% Turn left and continue straight to the water dispenser at the end of the hallway, then turn left and stop in front
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Figure 17: Example of a robot successfully navigating in a real environment with human activity. The robot
observes humans, adjusts its path, circumvents them, and reaches its designated destination. [Zoom in to view]

Turn around and walk forward to the hallway. Be aware that a man is looking at his phone in the hallway.

@ Turn left and continue straight to the water dispenser at the end of the hallway, then turn left and stop in fr%
of the first workstation. )
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Figure 18: Example of robot navigation failures in real environments with human presence. The robot collides
with a human when their status changes unexpectedly, leading to a mission failure. [Zoom in to view]
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