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Abstract

For downstream applications of vision-language
pre-trained models, there has been significant in-
terest in constructing effective prompts. Existing
works on prompt engineering, which either require
laborious manual designs or optimize the prompt
tuning as a point estimation problem, may fail to
describe diverse characteristics of categories and
limit their applications. We introduce a Bayesian
probabilistic resolution to prompt tuning, where
the label-specific stochastic prompts are generated
hierarchically by first sampling a latent vector from
an underlying distribution and then employing a
lightweight generative model. Importantly, we se-
mantically regularize the tuning process by mini-
mizing the statistical distance between the visual
patches and linguistic prompts, which pushes the
stochastic label representations to faithfully cap-
ture diverse visual concepts, instead of overfitting
the training categories. We evaluate the effective-
ness of our approach on four tasks: few-shot image
recognition, base-to-new generalization, dataset
transfer learning, and domain shifts. Extensive re-
sults over 15 datasets show promising transferabil-
ity and generalization performance of our proposed
model, both quantitatively and qualitatively.

1 INTRODUCTION

Large-scale vision-language pre-trained models (VLPs)
have recently demonstrated impressive achievements on
various computer vision tasks [Wang et al., 2021, Jia et al.,
2021, Cho et al., 2021, Radford et al., 2021, Li et al., 2022].
Pre-trained on web-scale image-text association pairs, such
VLPs have the ability to carry the semantic knowledge on
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which visual concepts correspond to which textual sequence
and vice versa, and this has been proven beneficial for visual
understanding [Radford et al., 2021, Mei et al., 2022, Du
et al., 2022]. This has motivated the rapid rise of prompt tun-
ing that hopes to fine-tune VLPs by formalizing the down-
stream tasks as language modeling problems and optimizing
only the text inputs (prompts) [Radford et al., 2021, Zhou
et al., 2022a,b], such as “X X X X {class}.”, where “X” and
“{class}” denotes the prefix tokens and real class names,
respectively. In contrast to supervised learning with discrete
labels from a closed set of categories, prompt tuning re-
ceives knowledge from pre-trained language models and
supports open-set visual concepts, often producing better
performance, especially on few/zero-shot tasks [Zhou et al.,
2022a, Gu et al., 2022].

To specify the optimal prefix tokens “X” that provide rich
context for pre-trained language models, prompt tuning
methods often optimize them as learnable embedding vec-
tors with a task-specific loss. For example, CoOp [Zhou
et al., 2022b] employs the cross entropy loss to learn 16
prefix tokens that are shared across all categories and finds
that such data-driven paradigms achieve significant improve-
ment over hand-crafted prompts. However, recent studies
report that the overfitting issue occurs in the training process
and often leads to poor generalizability and transferability
[Zhu et al., 2022, Ma et al., 2022, Lu et al., 2022]. To this
end, various techniques are introduced under different as-
sumptions, including conventional anti-overfitting tricks,
instance-specific prompt generation, and gradient flow [Gao
et al., 2021, Zhou et al., 2022a, Ma et al., 2022, Zhu et al.,
2022]. Another concern stems from deterministic prompt
learning, where the prompts are learned as the point estima-
tion, and only a single sentence is searched to represent a
given class. Intuitively, one class can be characterized by
multiple intrinsic attributes (See Fig 1 for example). Thus,
it is critical to learn multiple prompts that focus on dif-
ferent concepts. Motivated by this, several previous works
attempt to learn multiple prompt [Chen et al., 2022] or in-
troduce distributed prompt embeddings [Derakhshani et al.,
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Figure 1: The motivation of the proposed model. Multiple prompts
are generated from the label-specific distributions.

2022, Lu et al., 2022, Wang et al., 2023], showing a large
improving gap over the baseline method. However, those
models either require pre-defined prompts or focus on the
sample-dependent prompt generation, failing to discover
label-specific prompts efficiently.

To address the above shortcomings, we in this paper pro-
pose Bayesian prompt tuning, where label-specific stochas-
tic prompts are generated hierarchically under the Bayesian
framework. As illustrated in Fig 1, one of the core ideas
is to generate multiple prompts for the given categories,
with each of the learned prompt capturing various visual
attributes, resulting in diverse and generalizable prompt
discovery. Specifically, we first introduce uncertainty in
the latent embedding space and model each category as a
variational distribution [Kingma and Welling, 2014]. Com-
pared to previous point estimation methods, this approach
enables us to infer a posterior distribution that contains
meta-information about the corresponding category, offering
advantages in modeling uncertainty and highly structured
data [Fan et al., 2020]. To complete the prompt sentence, a
sequence generation module is employed to generate the pre-
fix sequence according to the meta-vector sampled from the
underlying distribution. Note that various language models
can be chosen as the generator, e.g., the LSTM [Hochre-
iter and Schmidhuber, 1997] and transformers [Al-Rfou
et al., 2019]. Although the generator itself is a deterministic
mapping, the output prompts can be viewed as an implicit
distribution in the embedding space due to its stochastic in-
puts. This property allows our proposed model to naturally
handle diverse visual concepts, resulting in robust prompt
tuning.

Furthermore, to tackle the issue of overfitting in prompt
tuning, we propose a novel semantic regularization ap-
proach that leverages the conditional transport (CT) frame-
work [Zheng and Zhou, 2021] to establish a relationship
between visual patches and textual prompts. Specifically,
we use the modality-specific outputs of CLIP to construct
a visual patch set as well as a textual prompt set for each
target image. The former is obtained by collecting the image
patch embeddings and the latter is constructed from all label
embeddings. Due to the shared common embedding space
of CLIP, these two sets can be regarded as two discrete
distributions over the same semantic space. They represent
similar meanings about the target image, while from differ-
ent modalities. Therefore, prompt tuning can be viewed as
the process of learning the distribution of textual prompts

to be as close to the distribution of visual patches as pos-
sible. Fortunately, the recent developments in CT provide
us with an efficient tool to quantify the difference between
two discrete distributions [Tanwisuth et al., 2021, Wang
et al., 2022, Tanwisuth et al., 2023]. Importantly, the dis-
tance function in CT specifies the similarities between the
prompt embeddings and visual patches in the embedding
space, which makes it possible to regularize the learning
of prompts with visual guidance. As a result, the aligned
prompts are encouraged to capture the true label-specific
visual concepts, rather than over-fitting to the training set.

The main contributions of this paper are summarized as
follows:

• We propose Bayesian prompt tuning that generates
label-specific stochastic prompts hierarchically, models
each label as a distribution over the embedding space
and successfully handles diverse visual concepts.

• To avoid over-fitting to the training set, we introduce
the CT distance as a regularization that guides the
learning of prompts with visual knowledge by aligning
the patches and prompt embeddings semantically.

• We formulate the proposed model as a variational infer-
ence problem, and a combined loss function is derived
to optimize all parameters efficiently. Extensive experi-
ments show that our models outperform the baselines.

2 THE PROPOSED METHOD

An overview of our proposed Patch-prompt aligned
Bayesian prompt tuning (PBPrompt) is shown in Fig 2.
Below, we first briefly review CoOp, which is the basic con-
cept used in this paper. Then, we introduce the details of our
model, which aims to improve the diversity and generaliz-
ability of CoOp.

2.1 REVIEWS OF COOP

Context Optimization (CoOp) [Zhou et al., 2022b] is built on
CLIP-like VLPs and is a pioneering method for continuous
prompt tuning. A VLP often consists of an image encoder
f and a text encoder g, each taking modality-specific se-
quence as inputs and outputs d-dimensional vectors in the
shared embedding space. Prompt tuning methods usually
design a template to construct the category descriptions
and then view the outputs of g as the class weight for the
classification task. To address the limitation of handcrafted
templates and facilitate the learning of optimal prompts for
adapting VPLs to downstream tasks, CoOp models each
prompt token as a continuous vector that can be learned
from data. E.g., the prompt for c-th class can be denoted as:
tc = [v1,v2, ...,vb, ec], where ec is the label embedding of
class c, v = {vi ∈ Rd}bi=1 are b learnable context vectors.
Given a set of category descriptions {tc}Cc=1 and an image
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Figure 2: Overview of the proposed PBPrompt. PBPrompt generates the stochastic prompts by first sampling a label-specific vector rc

and then employing a single-layer self-attention generator. CT distance is performed between the textual prompts and image patches to
regularize the prompts with the visual knowledge.

x ∈ R(3×H×W ), CoOp models the image label p(y|x) as a
categorical distribution according to the similarity between
the image and label features with:

p(y = c|x) = exp(sim(f(x), g(tc))/τ)∑C
c′ exp(sim(f(x), g(tc′)/τ)

, (1)

where sim(·, ·) means the similarity function, e.g., the cosine
similarity, and τ is the temperature parameter. Then one can
optimize the prefix embeddings v by back-propagating the
following loss through the frozen VLPs with a few training
samples Dtr = {(xi, yi)}Ntr

i=1:

L(v) = Exi,yi
[−logp(yi |xi;v)]. (2)

After tuning, tc can be used to define the target classifier for
open-set image classification.

2.2 PATCH-PROMPT ALIGNED BAYESIAN
PROMPT TUNING

The core idea behind the proposed PBPrompt is to learn
distributed label-specific prompts under the Bayesian frame-
work, as well as align the image patches and textual prompts
by minimizing the CT distance. Below, we introduce the
details of PBPrompt, which consists of stochastic prompt
generation, patch-prompt alignment, and the training algo-
rithm.

Stochastic Prompts Generation (SPG) Generally, it is
less sound to represent one class with a deterministic point,
which may fail to cover diverse visual concepts, e.g., the
object type, size, color, and so on. This issue becomes par-
ticularly acute in cases involving distribution shifts. For

instance, a model may see an image of a dog playing on the
green ground during training but fail to make a correct pre-
diction of another image of a dog on the beach. To this end,
one of the goals of PBPrompt is to introduce uncertainty
into prompt generation. For a target label, we assume there
are various prompts that can achieve similar performance.
These prompts originate from the same target class but de-
pict its representative attributes from different perspectives,
resulting in robust representation. An intuitive approach is
to model the prompts as a distribution p(r). Unfortunately,
directly learning such a distribution over a sequence of b
vectors feature dimension d is not simple [Brown et al.,
2020, Lu et al., 2022], especially under the few-shot setting.
To this end, we move the uncertainty forward to its inputs
and develop a hierarchical generative module to produce the
stochastic prompts:

tc = [ϕ(vc | rc), ec], rc ∼ p(rc), (3)

where p(rc) denotes the label-specific distribution that
handles the conceptual diversity of class c. ϕ(vc | rc) de-
notes the deterministic generative model that takes the sam-
pled rc as input and outputs the prefix token sequence
vc = {vc,l ∈ Rd}bl=1. Like previous works [Zhou et al.,
2022b,a], the final prompt input tc is obtained by adding the
label embedding ec at the end of prefix tokens. Different
from previous models that view tc as the learnable embed-
ding vectors, we generate tc via a hierarchical path, where a
stochastic vector rc is first sampled from the label-specific
distribution and the prefix sequence vc is then generated
according to rc. Although the generative model ϕ is a deter-
ministic network, tc can be viewed as an implicit distribu-
tion over rc. In this way, multiple prompts can be generated
by sampling various rc.



Note that ϕ(vc | rc) can be implemented with various lan-
guage models Greff et al. [2017], Devlin et al. [2019], and
we find a single-layer self-attention network works well in
most cases [Vaswani et al., 2017], empirically:

sc = [rc + PE1,w1 + PE2, ...,wb + PEb+1],

[r̂c,vc,1, ...,vc,b] = ϕ(vc|rc) := Self-Attn(sc),
(4)

where w = [w1, ...,wb] is the initialized prefix embeddings,
and PE is the learnable position embedding matrix that cap-
tures the sequential relations of prefix tokens. The Self-Attn
decoder takes sc as inputs, where the sampled rc in Eq. 3
is viewed as a special label token presented at the begin-
ning of the initialized prefix sequence. It then outputs the
class-specific prefix sequence vc = [r̂c,vc,1, ...,vc,b]. This
process allows the output tokens to encompass both contex-
tual information and class-specific guidance, resulting in the
generation of meaningful prompts.

Regularization Between Textual Prompts and Visual
Patches Notably, the core motivation behind SPG is to
learn diverse prompts that cover multiple visual concepts.
However, directly optimizing SPG with the classification
loss may suffer from the mode-collapse problem, where
the sampled rc tends to be close to each other, leading to
single-mode prompt tuning. E.g., the learned prompt pat-
tern overfits the training set while failing to provide the true
context. To address this issue, we introduce the regulariza-
tion between the prompt outputs and image patches. This
regularization encourages the sampled prompts to be close
to a variety of patch embeddings, preventing them from
overfitting to the training mode.

Recall that a VLP describes target labels from both the
image and text domains. The former divides an image x into
M patches u = {um|Mm=1} ∈ Rd×M , which provides the
local visual features. We view the output embeddings of the
textual encoder as the class-specific features, which provide
the linguistic description for classes. Mathematically, given
x and its prediction probability p = p(y|x), we formulate
those two sets as discrete distributions:

P =

M∑
m=1

1

M
δum , Q =

C∑
c=1

pcδgc (5)

where δ is the Dirac delta function, gc = g(tc) is the textual
outputs of label c. Eq. 5 represents x as a mixture of patch
embeddings P and a mixture of prompt embeddings Q, both
sharing the same semantics but originating from different
domains. Naturally, we aim to regularize the learning of
Q by aligning it to P . A common choice is to minimize
the optimal transport (OT) between P and Q [Cuturi, 2013,
Chen et al., 2022]. However, the calculating of OT struggles
in two-stage iterations: first solving for the transport plan
and then updating the network, leading to unstable training.
Fortunately, the recently developed conditional transport
(CT) [Zheng and Zhou, 2021] offers an efficient tool to

align two distributions over different supports [Wang et al.,
2022, Tanwisuth et al., 2021]. The CT distance between
the textual prompts and visual patches is defined from two
directions:

LCT (P,Q) = Lu→g + Lg→u, (6)

where Lu→g denotes the transport distance from patch em-
beddings to prompts, while Lg→u denotes the transport dis-
tance in the reverse direction. The transport distance from
patch embeddings to prompts can be calculated as:

Lu→g =
1

M

M∑
m=1

C∑
c=1

C(um, gc)π(gc|um), (7)

where C(um, gc) is the cost function that measures the point-
wise transport cost from m-th patch to c-th prompt embed-
ding, e.g., C(um, gc) = 1− cosine(um, gc). π(gc|um) =

pcexp(uT
mgc)∑C

c′=1
pc′ exp(uT

mgc′ )
is the transport plan. The core idea of

Eq. 7 is to assign M patches to their expected prompts. This
can be viewed as a clustering process that learns a semantic
center for each class-specific prompt. Unfortunately, only
with Lu→g , many less-related patches within an image may
be assigned to the target prompt. This may push the stochas-
tic prompt to an average point, leading to mode collapse. To
address this issue, CT introduces Lg→u from an opposite
direction:

Lg→u =

C∑
c=1

pc

M∑
m=1

C(gc,um)ϕ(um|gc), (8)

where π(um|gc) = exp(gT
c um)∑M

m′=1
exp(gT

c um′ )
. Unlike Lu→g which

has the patch-clustering effect, Lg→u aims to push the ex-
pected prompt towards patches that semantically close to
it, creating a prompt-covering effect. The CT distance in
Eq. 6 provides us with a novel regularization, enabling the
learning of stochastic prompts with vision knowledge from
bi-directions. The patch-to-prompt transportation explores
meaningful prompt outputs, and the prompt-to-patch trans-
portation improves the uncertainty of the prompt outputs.

2.3 TRAINING WITH COMBINED ELBO

Given the VLPs and labeled images Dtr, we would like to
distill the pre-trained knowledge and learn the posterior of
the label-specific representation p(rc|Dtr) as well as the de-
terministic generative model ϕ(vc|rc). Unfortunately, the
exact posterior for rc is intractable and needs to be approx-
imated. To this end, we define the variational distribution
q(rc|c) and employ the variational inference to optimize the
proposed method by minimizing the following combined
Evidence Lower BOund (ELBO) [Kingma and Welling,
2014]:

L = −Etc=[π(vc|rc),ec],rc∼q(rc|c)logp(y|x, tc)
−DKL[q(rc|c)||p(rc)] + ηLCT (P,Q),

(9)



where we follow previous practices [Gordon et al., 2019,
Derakhshani et al., 2022] and define the variational distri-
bution q as a Gaussian distribution conditioned on the label
embedding ec: q(rc|c) = N (µ(ec),Σ(ec)), with µ and
Σ parameterized by two fully-connected layers. The first
term in Eq. 9 is the expected log-likelihood defined at Eq.1,
the second term is the KL-divergence that encourages the
variational posterior to approach to its prior, and the last
term is the CT distance that aligns the class-specific prompt
with image patches. η denotes the trade-off hyperparameter
that controls the regularization weights. Unlike most pre-
vious works that solely learn prompts from task-specific
loss [Zhou et al., 2022b, Lu et al., 2022], we optimize the
proposed PBPrompt with combined ELBO that introduces
the CT distance as a regularization, guiding the label em-
beddings to focus on meaningful visual concepts rather than
over-fitting to the base sets. We summarize the training
algorithm at the Algorithm 1 in Appendix.

Contextual Prior p(rc) Instead of treating the prior as a
fixed distribution independent of the label c, here we define
the label-specific priors to further explore label semantics
via the label embeddings, e.g., p(rc) = N (ec, I). Thus
compared to the fixed prior, the proposed label-specific prior
introduces additional label semantics and achieves better
prior guidance.

3 RELATED WORK
The technique of prompt tuning, originating from the nat-
ural language processing (NLP) domain and aims at best
utilizing pre-trained language models [Brown et al., 2020,
Shin et al., 2020, Liu et al., 2023], has gained increasing
research attention in VLPs due to its impressive results [Ge
et al., 2022, Sun et al., 2022, Feng et al., 2022]. For exam-
ple, CLIP [Radford et al., 2021] manually designs templates
based on human knowledge and shows great potential in
few/zero-shot tasks. Context Optimization (CoOp) [Zhou
et al., 2022b] first introduces the continuous prompt into
VLPs and views the prompt tokens as a set of learnable vec-
tors that can be optimized by minimizing the cross entropy
loss. Instead of learning static prompts, Conditional CoOp
(CoCoOp) [Zhou et al., 2022a] learns an input-specific
prompt by incorporating image features via a lightweight
network and shows better generalization on unseen cate-
gories. The most related work to ours is distributed prompt
tuning, which focuses on stochastic prompt tuning. For in-
stance, Prompt Distribution leArning (ProDA) [Lu et al.,
2022] first designs multiple handcrafted templates and then
employs a Gaussian distribution to model the latent repre-
sentation. Variational prompt tuning (VPT) of [Derakhshani
et al., 2022] constructs prompt tokens by directly adding
Gaussian samples into prompt vectors. SyntHesIzed Prompt
(SHIP) of [Wang et al., 2023] samples a image-dependent
prompt by training a VAE with the image features. Prompt
learning with optimal transport (PLOT) [Chen et al., 2022]

applies optimal transport theory to learn multiple local
prompts. While all above methods—ProDA, VPT, and SHIP,
PLOT, and ours—involve learning stochastic prompts, they
are fundamentally distinct. We model each target label as a
Gaussian distribution and then generate stochastic prompts
based on label-specific samples, resulting in better label
representations.

4 EXPERIMENTS

We follow the exact experimental setup of previous
works [Zhou et al., 2022b,a] and validate the performance of
PBPrompt against the recent state-of-the-art prompt learning
models on widely-used benchmarks under various settings,
including few-shot learning, base-to-new generalization,
cross-dataset transferability, and domain generalization.

4.1 EXPERIMENTAL SETUP

Datasets. For the first two tasks, we rely on 11 clas-
sification datasets, i.e., ImageNet [Deng et al., 2009]
and Caltech101 [Fei-Fei et al., 2004] for generic object
classification, OxfordPets [Parkhi et al., 2012], Stanford-
Cars [Krause et al., 2013], Flowers102 [Nilsback and Zisser-
man, 2008], Food101 [Bossard et al., 2014] and FGVCAir-
craft [Maji et al., 2013] for fine-grained image recognition,
EuroSAT [Helber et al., 2019] for satellite image classifi-
cation, UCF101 [Soomro et al., 2012] for action classifica-
tion, DTD [Cimpoi et al., 2014] for texture classification,
and SUN397 [Xiao et al., 2010] for scene recognition. For
the domain generalization task, we use ImageNet as the
source domain dataset and evaluate performance on Im-
ageNetV2 [Recht et al., 2019], ImageNet-Sketch [Wang
et al., 2019], ImageNet-A [Hendrycks et al., 2021b], and
ImageNet-R [Hendrycks et al., 2021a]. The details of each
dataset are provided at Table C. 1.

Baselines. We compare our proposed approach with follow-
ing state-of-the-art (SoTa) models: zero-shot CLIP [Radford
et al., 2021] with the fixed handcrafted prompt "A photo
of a {class}.", CoOp [Zhou et al., 2022b], CoCoOp [Zhou
et al., 2022a], PLOT [Chen et al., 2022], and stochastic
prompt tuning methods, including ProDA [Lu et al., 2022],
VPT [Derakhshani et al., 2022] and SHIP [Wang et al.,
2023].

Implementation Details. Similar to previous works [Zhou
et al., 2022b,a], PBPrompt adopts the vision and language
encoders as a ViT-B/16 [Dosovitskiy et al., 2020] and trans-
former [Vaswani et al., 2017] respectively. We consistently
perform prompt tuning with 16 shots and fix the prompt
length as 4 for the four primary image classification tasks
across all datasets. We set the trade-off hyperparameter η
as 0.01 and run each experiment with 10 epochs on base-
to-new generalization. The label embedding ec is obtained



Figure 3: The few-shot learning results on 11 datasets. We compare our PBPrompt with CoOp, CoCoOp and PLOT. Overall, our proposed
model outperforms the baselines in most cases. More numerical results can be found at Table C. 5 and Table C. 6.

by averaging the CLIP embedding of the class names, and
we initialize the learnable prompt embedding vectors from
N (0, 0.02). For the self-attention network in (4), we em-
ploy 8 heads for deeper interactions between prompt tokens.
We summarize the training details in the appendix. The re-
sults for CoOp and CoCoOp are adopted The results for
CoOp and CoCoOp are adopted from the published papers,
except for the few-shot learning experiments. For these ex-
periments, we re-ran them using the same settings, with a
maximum epoch set to 200 for 16/8 shots, 100 for 4/2 shots,
and 50 for 1 shot across all datasets. For a fair comparison,
we re-run PLOT with ViT-B/16 on all the experiments in the
settings above. All results are reported as the mean value
over three seeds.

4.2 EXPERIMENT RESULTS

Few-shot Learning evaluates a model’s capability to han-
dle limited labeled data and samples. The complete results
are summarized in Fig 3, where we find that 1) our method
consistently outperforms the baseline models across vari-
ous scenarios, and 2) PBPrompt outperforms other methods
when trained with 1, 2, and 4 shots, showcasing a substantial
performance margin on DTD, EuroSAT, Flowers102, and
FOOD101 datasets. Furthermore, as the number of training
samples increases, the performance gap between models
diminishes, particularly evident in the case of training with

8/16 shots. This emphasizes the exceptional performance of
our model in few-shot learning tasks. Notably, PBPrompt
surpasses CoOp with average accuracy increases of 3.14%,
2.32%, 6.33%, 1.24%, and 0.32% at 1, 2, 4, 8, and 16 shots,
respectively.

Base-to-New Generalization assesses model’s general-
izability in a zero-shot setting. We report the Base-to-New
results at Fig 4 (The detailed accuracy on base and new set
can be found at Table C. 8). Note that the H score is calcu-
lated as H = (2× Base × New)/(Base + New), which is a
trade-off metric between the base and new sets. We find that
PBPrompt surpasses other stochastic baselines in terms of
H score across all datasets. This demonstrates the efficiency
of the introduced label-specific SPG. Besides, due to the
CT regularization, our approach successfully mitigates the
overfitting issue, showing robust ability to balance the Base
and New performance.

Cross-Dataset Transfer Learning measures the trans-
fer performance from different sources, where we train our
model on ImageNet (source dataset) and then test it on 10
distinct target datasets. As shown at Table 1, PBPrompt has
improvements on 9 out of 10 target domains compared to
CoCoOp, This demonstrates that the proposed PBPrompt
has the potential to transfer from a single dataset. More-
over, we also find that PBPrompt exhibits large gaps on
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CoOp 71.51 93.70 89.14 65.41 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.81
CoCoOp 71.02 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21 65.74
PBPrompt 71.71 94.87 90.62 66.00 72.44 86.34 24.82 67.69 45.62 47.13 68.83 66.40

∆ +0.69 +0.44 +0.48 +0.68 +0.56 +0.28 +2.90 +0.33 −0.11 +1.76 +0.62 +0.66

Table 1: Cross-dataset transfer learning accuracy results of various baselines on source and target datasets. ∆: The improvements of the
proposed model compared to CoCoOp.

Figure 4: Performance comparison on base-to-new generalization
evaluated by harmonic mean. More results can be found at Table
C. 8 and C. 9.

Source Target

Method Learnable ImageNet ImageNetV2 ImageNet-Sketch ImageNet-A ImageNet-R

CLIP % 66.73 60.83 46.15 47.77 73.96
CoOp ! 71.51 64.20 47.99 49.71 75.21
CoCoOp ! 71.02 64.07 48.75 50.63 76.18
PBPrompt ! 71.71 64.53 49.32 51.64 76.71

Table 2: Cross-domain generalization accuracy results of various
baselines.

fine-grained datasets (FGCVAircraft, OxfordPets, and Flow-
ers102), suggesting the capacity to handle the discriminative
features of each category.

Domain Generalization concerns about the robustness
of the distribution shift, where we assess the proposed mod-
els on ImageNetV2, ImageNet-Sketch, ImageNet-A, and
ImageNet-R after training it on the source dataset (Ima-
geNet). We report the results at Table 2 and find that
PBPrompt achieves the highest accuracy on all target do-
mains compared to other baselines. This indicates that the
learnable stochastic prompts are less sensitive to distribution
shifts and can generalize well across domains.

4.3 FURTHER ANALYSIS

Robustness and Synergistic Effect In our previous exper-
iments, we utilized the ViT-B/16 backbone. However, in this
study, we also employ the RN50 backbone to assess the ro-
bustness of our model across different backbones. The few-
shot learning accuracy results are presented in Table 3. As

Backbones ViT-B/16 RN50
Dataset 1 shot 2 shots 4 shots 1 shot 2 shots 4 shots

Caltech101

CoOp 93.19 92.97 94.50 87.51 87.84 89.52
PLOT 87.90 89.53 91.87 89.83 90.67 90.80

B-Prompt 93.57 94.10 94.75 90.10 89.70 90.56
P-Prompt 93.34 93.95 94.60 88.54 89.45 90.70
PBPrompt 93.92 94.40 94.83 90.21 90.86 90.92

DTD

CoOp 50.03 53.93 59.23 43.62 45.35 53.94
PLOT 52.20 56.03 58.37 46.55 51.24 56.03

B-Prompt 51.87 55.85 59.53 46.00 51.67 56.17
P-Prompt 50.95 55.10 59.02 46.95 48.35 55.89
PBPrompt 52.03 56.20 59.63 47.21 52.08 56.97

FOOD101

CoOp 82.70 82.77 83.63 74.25 72.61 74.49
PLOT 69.33 72.73 75.17 77.74 77.70 77.21

B-Prompt 84.97 86.03 86.21 77.02 76.45 77.58
P-Prompt 85.00 83.67 84.39 76.20 75.39 76.45
PBPrompt 85.55 86.25 86.30 77.35 77.83 78.09

SUN397

CoOp 67.32 67.67 70.14 60.12 59.60 63.24
PLOT 55.17 59.40 62.73 62.47 61.71 65.09

B-Prompt 67.98 69.00 70.20 62.42 63.03 64.83
P-Prompt 67.45 68.25 70.10 62.10 61.54 64.12
PBPrompt 68.10 69.35 70.21 62.51 63.45 64.77

Table 3: Ablation studies of backbones on few-shot learning.

demonstrated in the results, PBPrompt provides more con-
sistent results than the prior state-of-the-art methods on both
backbones, especially with the ViT-B/16 backbone, where
PLOT suffers a significant performance drop in comparison.
Additionally, we have compared two variants of PBPrompt,
namely B-Prompt and P-Prompt, in few-shot learning and
base-to-new tasks. B-Prompt contains only the SPG mod-
ule, while P-Prompt only utilizes the conditional transport
framework, both based on CoOp. We report the accuracy
scores at Table 3 and Table 4 respectively. We observe
that both variants exhibit significant improvements com-
pared to CoOp, especially B-Prompt, which outperforms
the previous methods in most of the test cases. Furthermore,
PBPrompt achieves the highest performance on the major-
ity of test cases among all methods by incorporating both
variations, demonstrating the powerful synergistic effect of
our approach.

The effect of Monte Carlo sampling and η Generally,
increasing the number of samples in Monte Carlo sampling
leads to stable results, but an appropriate number can intro-
duce a moderate level of uncertainty, ultimately enhancing
the model’s generalization and representation capabilities.

Meanwhile, the hyperparameter η, which balances the reg-
ularization weights, plays a crucial role in establishing the
connection between the stochastically generated prompts



Figure 5: Monte Carlo sampling numbers Figure 6: Regularization coefficient η

Dataset CoCoOp ProDA VPT SHIP B-Prompt P-Prompt PBPrompt

Caltech101
Base 97.96 98.27 95.47 97.55 97.35 97.95 97.98
New 93.81 93.23 93.80 95.20 95.00 93.12 95.54
H 95.84 95.68 94.62 96.36 96.16 95.47 96.74

Flowers102
Base 94.87 97.70 92.97 94.02 95.21 97.35 95.47
New 71.75 68.68 75.90 74.40 72.35 69.57 73.60
H 81.87 80.66 74.40 83.06 82.22 81.15 83.12

DTD
Base 77.01 80.67 57.67 74.88 77.20 79.97 78.03
New 56.00 56.48 58.70 56.88 57.00 47.67 57.81
H 64.85 66.44 58.18 64.65 65.58 59.73 66.42

EuroSAT
Base 87.49 83.90 67.97 88.62 87.21 92.46 89.53
New 60.04 66.00 71.63 66.87 72.33 62.58 72.87
H 71.21 73.88 69.75 76.22 79.08 74.64 80.35

Table 4: Base-to-New generalization results of various baselines.
B-Prompt: Bayesian prompt tuning. P-Prompt: Patch-Prompt CT
alignment. More resutls can be found at Table C. 8.

and various visual concepts. We ablate these two hyperpa-
rameters on few-shot learning with 1/2/4 shots at Fig 5 and
Fig 6. In Fig 5, we use µ to represent the simple adoption
of the mean of multiple prompt embedding, and we observe
that employing fewer samples leads to increased uncertainty
and a significant drop in performance. This indicates that a
higher number of samples is essential for achieving more re-
liable results. Fig 6 demonstrates that the presence of large
coefficients can detrimentally impact results by overempha-
sizing image relationships, thus potentially overshadowing
CLIP’s alignment properties. We set the sampling number
as 20 and η = 0.01 by default.

Further ablation study Due to space constraints, details
of other interesting ablation study can be found in the Ap-
pendix and now they are briefly introduced as follows. First,
we explore the impact of the two terms, patch-to-prompt and
prompt-to-path, in proposed CT regularization. We find that
neither of these two terms can be omitted and we attempt
to choose different coefficients as discussed in Sec. C.3.
Then, on Base-to-New generalization, the trade-off between
performance on base and new classes is ineviTable Thus we
ablate the number of training epochs on various datasets.
We find that our method is very tolerant to changes in the
harmonic mean and more details can be found in Sec. C.
13. Empirically, we validate that the stochastic generated
module is the crucial factor affected the performance of
our proposed method rather than additional parameters in
inference network. We also compared the results under the
OT framework to demonstrate the effectiveness of our ap-

Figure 7: Visualization of the learned prompts.

proach as shown in Sec. C.10. Besides, we also evaluate
the computation cost compared with other baseline methods
in sec. C.11.

Visualization Excitingly, we have discovered that trans-
port plans π in Eq. 7 serve as a potent tool for achieving
visualization, allowing us to demonstrate how stochastic-
generated prompts for a specific class concentrate on the
visual concepts of the corresponding images. We provide
visualization examples in Fig 7 to illustrate this. Besides,
as shown in Fig D2, we also attempt to explain the learned
prompt from text domain via a multimodal model. More
analysis and visualization can be found at Sec. D.

5 CONCLUSION

In this paper, we propose Patch-Prompts aligned Bayesian
prompt tuning (PBPrompt) for pre-trained vision-language
models. PBPrompt is a Bayesian prompt tuning method that
generates label-specific stochastic prompts hierarchically
under the variational inference framework comprising a



stochastic sampling network and a deterministic generative
model. Moreover, we also introduce a CT regularization that
aligns the textual prompts with the image patches under the
conditional transport framework. PBPrompt is optimized
by the derived combined ELBO via the stochastic gradient
algorithm. Extensive experiments over 15 datasets at various
tasks are conducted to evaluate the efficiency of our models.
We hope PBPrompt will provide a simple tool for prompt
tuning and inspire future work.

Acknowledgements

This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant U21B2006; in part
by Shaanxi Youth Innovation Team Project; in part by the
Fundamental Research Funds for the Central Universities
QTZX24003 and QTZX22160; in part by the 111 Project
under Grant B18039;

References

Rami Al-Rfou, Dokook Choe, Noah Constant, Mandy Guo,
and Llion Jones. Character-level language modeling with
deeper self-attention. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 33, pages 3159–
3166, 2019.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.
Food-101–mining discriminative components with ran-
dom forests. In Computer Vision–ECCV 2014: 13th Eu-
ropean Conference, Zurich, Switzerland, September 6-12,
2014, Proceedings, Part VI 13, pages 446–461. Springer,
2014.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

Guangyi Chen, Weiran Yao, Xiangchen Song, Xinyue Li,
Yongming Rao, and Kun Zhang. Prompt learning with
optimal transport for vision-language models. arXiv
preprint arXiv:2210.01253, 2022.

Jaemin Cho, Jie Lei, Hao Tan, and Mohit Bansal. Uni-
fying vision-and-language tasks via text generation. In
International Conference on Machine Learning, pages
1931–1942. PMLR, 2021.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy
Mohamed, and Andrea Vedaldi. Describing textures in the
wild. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3606–3613, 2014.

Marco Cuturi. Sinkhorn distances: Lightspeed computation
of optimal transport. Advances in neural information
processing systems, 26, 2013.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

Mohammad Mahdi Derakhshani, Enrique Sanchez, Adrian
Bulat, Victor Guilherme Turrisi da Costa, Cees GM
Snoek, Georgios Tzimiropoulos, and Brais Mar-
tinez. Variational prompt tuning improves general-
ization of vision-language models. arXiv preprint
arXiv:2210.02390, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of
the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2019, Minneapolis,
MN, USA, June 2-7, 2019, Volume 1 (Long and Short
Papers), pages 4171–4186, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Yu Du, Fangyun Wei, Zihe Zhang, Miaojing Shi, Yue Gao,
and Guoqi Li. Learning to prompt for open-vocabulary
object detection with vision-language model. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 14084–14093, 2022.

Xinjie Fan, Shujian Zhang, Bo Chen, and Mingyuan Zhou.
Bayesian attention modules. Advances in Neural Infor-
mation Processing Systems, 33:16362–16376, 2020.

Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning genera-
tive visual models from few training examples: An incre-
mental bayesian approach tested on 101 object categories.
In 2004 conference on computer vision and pattern recog-
nition workshop, pages 178–178. IEEE, 2004.

Chengjian Feng, Yujie Zhong, Zequn Jie, Xiangxiang Chu,
Haibing Ren, Xiaolin Wei, Weidi Xie, and Lin Ma.
Promptdet: Towards open-vocabulary detection using un-
curated images. In European Conference on Computer
Vision, pages 701–717. Springer, 2022.

Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao
Fang, Yongfeng Zhang, Hongsheng Li, and Yu Qiao.
Clip-adapter: Better vision-language models with feature
adapters. arXiv preprint arXiv:2110.04544, 2021.

Chunjiang Ge, Rui Huang, Mixue Xie, Zihang Lai, Shiji
Song, Shuang Li, and Gao Huang. Domain adaptation
via prompt learning. arXiv preprint arXiv:2202.06687,
2022.



Jonathan Gordon, John Bronskill, Matthias Bauer, Sebastian
Nowozin, and Richard Turner. Meta-learning probabilis-
tic inference for prediction. In International Conference
on Learning Representations, 2019.

Klaus Greff, Rupesh Kumar Srivastava, Jan Koutník, Bas R.
Steunebrink, and Jürgen Schmidhuber. LSTM: A search
space odyssey. IEEE Trans. Neural Networks Learn. Syst.,
28(10):2222–2232, 2017.

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang. PPT:
pre-trained prompt tuning for few-shot learning. In Pro-
ceedings of the 60th Annual Meeting of the Association
for Computational Linguistics, ACL 2022, pages 8410–
8423, 2022.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and
Damian Borth. Eurosat: A novel dataset and deep learn-
ing benchmark for land use and land cover classification.
IEEE Journal of Selected Topics in Applied Earth Obser-
vations and Remote Sensing, 12(7):2217–2226, 2019.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Ka-
davath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler
Zhu, Samyak Parajuli, Mike Guo, et al. The many faces
of robustness: A critical analysis of out-of-distribution
generalization. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 8340–8349,
2021a.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Stein-
hardt, and Dawn Song. Natural adversarial examples. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 15262–15271,
2021b.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh,
Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and
Tom Duerig. Scaling up visual and vision-language rep-
resentation learning with noisy text supervision. In Inter-
national Conference on Machine Learning, pages 4904–
4916. PMLR, 2021.

Diederik P. Kingma and Max Welling. Auto-encoding vari-
ational bayes. In 2nd International Conference on Learn-
ing Representations, ICLR 2014, 2014.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization.
In Proceedings of the IEEE international conference on
computer vision workshops, pages 554–561, 2013.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi.
Blip: Bootstrapping language-image pre-training for uni-
fied vision-language understanding and generation. arXiv
preprint arXiv:2201.12086, 2022.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hi-
roaki Hayashi, and Graham Neubig. Pre-train, prompt,
and predict: A systematic survey of prompting methods
in natural language processing. ACM Computing Surveys,
55(9):1–35, 2023.

Yuning Lu, Jianzhuang Liu, Yonggang Zhang, Yajing Liu,
and Xinmei Tian. Prompt distribution learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 5206–5215, 2022.

Chengcheng Ma, Yang Liu, Jiankang Deng, LingXi Xie,
Weiming Dong, and Changsheng Xu. Understanding
and mitigating overfitting in prompt tuning for vision-
language models. arXiv preprint arXiv:2211.02219,
2022.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew
Blaschko, and Andrea Vedaldi. Fine-grained visual clas-
sification of aircraft. arXiv preprint arXiv:1306.5151,
2013.

Tao Mei, Jason J Corso, Gunhee Kim, Jiebo Luo, Chunhua
Shen, and Hanwang Zhang. Guest editorial introduction
to the special section on video and language. IEEE Trans-
actions on Circuits and Systems for Video Technology, 32
(1):1–4, 2022.

Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes.
In 2008 Sixth Indian Conference on Computer Vision,
Graphics & Image Processing, pages 722–729. IEEE,
2008.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and
CV Jawahar. Cats and dogs. In 2012 IEEE conference
on computer vision and pattern recognition, pages 3498–
3505. IEEE, 2012.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning transferable visual models from natural lan-
guage supervision. In International Conference on Ma-
chine Learning, pages 8748–8763. PMLR, 2021.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and
Vaishaal Shankar. Do imagenet classifiers generalize
to imagenet? In International Conference on Machine
Learning, pages 5389–5400. PMLR, 2019.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric
Wallace, and Sameer Singh. Autoprompt: Eliciting knowl-
edge from language models with automatically gener-
ated prompts. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing,
EMNLP 2020, Online, November 16-20, 2020, 2020.



Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
Ucf101: A dataset of 101 human actions classes from
videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

Ximeng Sun, Ping Hu, and Kate Saenko. Dualcoop: Fast
adaptation to multi-label recognition with limited annota-
tions. arXiv preprint arXiv:2206.09541, 2022.

Korawat Tanwisuth, Xinjie Fan, Huangjie Zheng, Shujian
Zhang, Hao Zhang, Bo Chen, and Mingyuan Zhou. A
prototype-oriented framework for unsupervised domain
adaptation. Advances in Neural Information Processing
Systems, 34:17194–17208, 2021.

Korawat Tanwisuth, Shujian Zhang, Huangjie Zheng,
Pengcheng He, and Mingyuan Zhou. POUF: Prompt-
oriented unsupervised fine-tuning for large pre-trained
models. In ICML 2023: International Conference on
Machine Learning, July 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and
Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

Dongsheng Wang, Dandan Guo, He Zhao, Huangjie Zheng,
Korawat Tanwisuth, Bo Chen, and Mingyuan Zhou. Rep-
resenting mixtures of word embeddings with mixtures of
topic embeddings. In The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022, 2022.

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P
Xing. Learning robust global representations by penaliz-
ing local predictive power. Advances in Neural Informa-
tion Processing Systems, 32, 2019.

Zhengbo Wang, Jian Liang, Ran He, Nan Xu, Zilei Wang,
and Tieniu Tan. Improving zero-shot generalization for
clip with synthesized prompts. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 3032–3042, 2023.

Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yulia
Tsvetkov, and Yuan Cao. Simvlm: Simple visual language
model pretraining with weak supervision. arXiv preprint
arXiv:2108.10904, 2021.

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva,
and Antonio Torralba. Sun database: Large-scale scene
recognition from abbey to zoo. In 2010 IEEE computer
society conference on computer vision and pattern recog-
nition, pages 3485–3492. IEEE, 2010.

Huangjie Zheng and Mingyuan Zhou. Exploiting chain rule
and bayes’ theorem to compare probability distributions.
Advances in Neural Information Processing Systems, 34:
14993–15006, 2021.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei
Liu. Conditional prompt learning for vision-language
models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 16816–
16825, 2022a.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei
Liu. Learning to prompt for vision-language models.
International Journal of Computer Vision, 130(9):2337–
2348, 2022b.

Beier Zhu, Yulei Niu, Yucheng Han, Yue Wu, and Hanwang
Zhang. Prompt-aligned gradient for prompt tuning. arXiv
preprint arXiv:2205.14865, 2022.



A DISCUSSIONS

The main purpose of the introduced Bayesian prompt generation and Patch-Prompt CT alignments.

One of the main contributions of the proposed model is the stochastic prompt generation, which introduces uncertainty into
the prompt embeddings. E.g., for each category, we can generate different prompts that capture diverse visual concepts,
resulting in better class-specific representations. Unfortunately, due to the mode-collapse problem that usually appears in
most Bayesian generative models, we find that only optimizing the stochastic module by the classification loss could lead
to suboptimal results. Motivated by previous PLOT [Chen et al., 2022], we here employ the CT regularization to align
the generated prompts and the image patches. Intuitively, we view images are two discrete distributions over the prompt
and patch embeddings. They share similar semantics but with different domains. Ideally, those two distributions should
have close semantic distance. By minimizing the CT distance, the learned prompt embeddings tend to capture the true
label-specific visual concepts, improving the quality of the learned prompts. That is, the CT regularization improves the
performance of the method by aligning the textual prompt domain and the visual patch domain, which is usually ignored by
previous works.

The improvement is marginal when compared to CoCoOp in some cases.

We highlight the superiority of the proposed model below. First, the paper provides a novel Baeysian prompt-generation
strategy for the prompt-tuning community. This enables the learned prompt to capture diverse visual concepts and gives
the following studies a new stochastic view rather than only focusing on deterministic paradigms. Second, consistent
improvement in most cases. We here want to note that it is a nontrivial contribution that achieves consistent improvement
over 4 tasks on 15 datasets. For the marginal improvement on several datasets, we note that previous models (e.g., CoCoOp)
have achieved high results, and thus the improvements are slight. We find that the proposed PBPrompt usually has a
significant improvement on 1/2/4 shots, which clearly highlights the performance of our method with fewer training
samples(see Table C. 5 and Table C. 6 for detailed results). Besides, our method balances the seen and unseen sets well
according to Table 4. E.g., PBPrompt achieves 0.9%-9.14 % improvements compared to CoCoOp in terms of H score.
Third, the interpretability of the proposed model. The visualization in Fig ??(a) shows the interpretability of the learned
prompts, while CoCoOp only reports the numerical results.

Differences between SHIP.

Both SHIP and PBPrompt introduce the uncertainty into the prompt generation process. However, the latent variable z (r in
PBPrompt) models different levels of uncertainty and comes from different assumption. SHIP introduces the stochastic
prompts into each image, and infers a sample-dependent posterior:

q(zi) = N (µ(xi),Σ(xi)), (10)

where xi denotes the feature of i-th image. While PBPrompt views each category has a underlying distribution and infers a
label-specific posterior:

q(zc) = N (µ(ec),Σ(ec)), (11)

where ec denote the embedding of c-th category.

Prior on p(z). SHIP simply adopts the standard Gaussian as the prior of z, e.g., p(z) = N (0, I), while PBPrompt utilizes
the contextual prior to capture label-specific features: p(zc) = N (ec, I). This difference enables PBPrompt to access
additional label semantics, achieving better prior guidance.

Training pipelines. SHIP introduces an additional feature reconstruction loss to pre-train the VAE, and then finetunes the
prompt via the task-specific loss. Our PBPrompt naturally interages the stochastic prompts into the CLIP framework and
directly optimize the prompt via the combined ELBO.

B METHOD DETAILS

Given the labeled training dataset D = (xj , yj)
Ntr

j=1, our proposed PBPrompt aims to learn stochastic prompts for each class.
Note that, all parameters in PBPrompt are optimized by minimizing the combined ELBO end-to-end. We summarize the
training algorithm at Algorithm 1.



Algorithm 1 Training algorithm for our proposed PBPrompt.
Output: The trained PBPrompt, which can generate the stochastic label-specific prompts for downstream tasks.
Input: Training set D = (xj , yj)

Ntr
j=1, a VLP, class names, and hyperparameter η.

Initialize: The prefix token embeddings, the parameters in inference network q(rc|c) and the generative model ϕ(vc|rc).
for iter = 1,2,3,... do

Sample a batch of B image-label pairs and get the image feature and patch embeddings by feeding the image into the image encoder
f(x).
# Learning of PBPrompt
Generate C stochastic prompts hierarchically with Eq.(2) for all classes.
Get the label embeddings by feeding the prompts into the text encoder g(t).
Compute the CT distance between patches and the class-specific prompts with Eq.(5).
Compute the combined ELBO L with Eq.(8) and update all learnable parameters by minimizing the L with the stochastic gradient
descent algorithm.

end for

C EXPERIMENT DETAILS

C.1 DATA STATISTICS

Our experiments are conducted on 15 widely-used vision datasets. E.g., ImageNet Deng et al. [2009] and Caltech101 Fei-
Fei et al. [2004] for generic object classification, OxfordPets Parkhi et al. [2012], StanfordCars Krause et al. [2013],
Flowers102 Nilsback and Zisserman [2008], Food101 Bossard et al. [2014] and FGVCAircraft Maji et al. [2013] for
fine-grained image recognition, EuroSAT Helber et al. [2019] for satellite image classification, UCF101 Soomro et al. [2012]
for action classification, DTD Cimpoi et al. [2014] for texture classification, and SUN397 Xiao et al. [2010] for scene
recognition. For the domain generalization task, we use ImageNet as the source domain dataset and evaluate performance
on ImageNetV2 Recht et al. [2019], ImageNet-Sketch Wang et al. [2019], ImageNet-A Hendrycks et al. [2021b], and
ImageNet-R Hendrycks et al. [2021a]. We summarize the data statistics at Table C. 1

Table C. 1: Statistics of the datasets.

Dataset Classes Train Val Test

ImageNet 1000 1.28M N/A 50,000
Caltech101 100 4,128 1,649 2,465
OxfordPets 37 2,944 736 3,669

StanfordCars 196 6,509 1,635 8,041
Flowers102 102 4,093 1,633 2,463

Food101 101 50,500 20,200 30,300
FDVCAircraft 100 3,334 3,333 3,333

SUN397 397 15,880 3,970 19,850
DTD 47 2,820 1,128 1,692

EuroSAT 10 13,500 5,400 8,100
UCF101 101 7,639 1,808 3,783

ImageNetV2 1000 N/A N/A 10,000
ImageNet-Sketch 1000 N/A N/A 50,889

ImageNet-A 200 N/A N/A 7,500
ImageNet-R 200 N/A N/A 30,000

C.2 HYPERPARAMETER SETTING

We set the training hyper-parameters as well as the training pipeline to be the same as Zhou et al. Zhou et al. [2022a] in
terms of definitions of few-shot tasks while using ViT-B/16 in the manuscript. For the RN50 backbone, we replace the
ViT-B/16 with RN50 and set the number of shots as 4 to maintain consistency with the other works using RN50. We list
those settings at Table C. 2.



Table C. 2: All results in the main paper were generated using shared hyperparameters when employing the ViT-B/16
backbone.

Hyperparameters Values

Batch Size 1
Input Size 224× 224
Input Interpolation "Bicubic"
Input Pixel Mean [0.48145466, 0.4578275, 0.40821073]
Input Pixel STD [0.26862954, 0.26130258, 0.27577711]
Transforms ["random resized crop", "random filp", "normalize"]
Optimizer SGD
Learning Rate 2e-3
LR Scheduler "cosine"
Warmup Epoch 1
Warmup Type "constant"
Warmup LR 1e-5
Backbone ViT-B/16
Prompt Length 4
Prompt Initialization ""
Precision "fp16"
Number of shots 16

C.3 IMPACT OF THE PATCH-TO-PROMPT AND PROMPT-TO-PATCH TRANSPORT

In the previous experiments, we view the patch-to-prompt and prompt-to-patch transport in Eq. 6 equally. To discuss the
impact of those two terms, we rewrite Eq. 6 as:

LCT (P,Q) = λLu→g + (1− λ)Lg→u, (12)

where λ controls the weight of the patch-to-prompt term. We report the few-shot results with various λ at Fig C. 3. We find
that 1) regardless of considering the Lu→g or the Lg→u, the final experimental results were not satisfactory. 2) Promising
results could be obtained by carefully choosing λ. Thus we set this hyperparameter as 0.5 for ease of parameter tuning.

Dataset 0.0 0.2 0.4 0.5 0.6 0.8 1.0

DTD

1-shot 51.36 51.54 51.77 52.03 51.83 51.95 51.37
2-shots 54.43 55.67 56.20 56.34 55.85 55.20 55.67
4-shots 58.16 58.75 59.66 59.63 59.53 59.42 58.87

EuroSAT

1-shot 60.78 61.21 61.93 60.92 61.02 61.61 61.20
2-shots 68.12 68.76 68.34 68.77 68.05 67.43 67.98
4-shots 70.63 71.01 71.1 72.84 72.71 72.14 71.96

Caltech101

1-shot 93.21 93.90 93.94 93.92 93.93 93.32 93.4
2-shots 93.98 94.20 94.41 94.40 94.45 94.39 94.23
4-shots 94.78 94.85 94.83 94.83 94.83 94.80 94.51

StanfordCars

1-shot 66.21 66.54 67.10 67.30 66.70 66.98 66.49
2-shots 69.52 70.14 70.48 70.20 70.36 70.44 70.23
4-shots 72.94 73.57 73.42 73.60 73.61 73.84 73.60

Table C. 3: Ablation studies of Base-to-New generalization on Bayesian prompt tuning (B-Prompt) and Patch-Prompt CT alignment
(P-Prompt).

C.4 ADDITIONAL COMPARISON TO PRODA

We compared PBPrompt to PLOT in the manuscript, and extensive results show the superiority of the proposed Bayesian
framework. Note that ProDA [Lu et al., 2022] also comes from stochastic prompt tuning. We summarize the difference



below. First, ProDA focuses on the output embeddings of prompts and employs a Gaussian distribution to model the latent
representation by pre-defining K label-specific templates. However, ours is a novel Bayesian prompt generation method
based on input embeddings, aiming to generate the label-specific stochastic prompts in a data-driven framework, rather than
based on handcraft prompts. Second, we introduce the CT regularization to align the textual prompt domain and the visual
patch domain and develop a novel combined loss to optimize the proposed model end-to-end. While the ProDA employs an
EM algorithm to train the parameters. Last, the learned transport plan provides us with an interpretable tool to visualize the
learned prompts, while the ProDA fails to give such an interpretable.

Empirically, we report the Base-to-New comparisons (H score) at Table C. 4. Because of the unreleased code of ProDA,
we could only compare with results adopted from previous work [Derakhshani et al., 2022] under the same setting on the
Base-to-New task. From Table C. 4, we find that our proposed method outperforms ProDA on 9/11 datasets and has the best
result on average accuracy.

Table C. 4: H score of CoCoOp, ProDA, and PBPrompt on Base-to-New task.
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CoCoOp 73.10 95.84 96.43 72.01 81.71 90.99 27.74 78.27 64.85 71.21 77.64 75.83
ProDA 72.72 95.68 96.62 72.91 80.66 89.43 35.46 77.79 66.44 73.88 78.04 76.65
PBPrompt 73.76 96.66 96.92 73.02 83.12 91.22 34.64 78.35 66.41 80.34 79.51 77.86

C.5 FEW-SHOT LEARNING DETAILS

In this section, we provide the complete results on few-shot learning task using ViT-B/16 and RN50 respectively. As a result
of introducing additional learnable parameters into our model, we trained for more epochs that the maximum epoch is set to
400 for 16/8 shots, 200 for 4/2 shots, and 100 for 1 shot for all datasets. Table C. 5 shows more detailed accuracy consistent
with Fig 3 in the manuscript. Besides, we ablate the backbone using RN50 with CoOp Zhou et al. [2022a], PLOT Chen
et al. [2022], and our PBPrompt, and report the results in Table C. 6. We find that our PBPrompt also has comparable
performance with other baselines, especially on 1/2/4 shots. These results, as shown in the two tables, highlight the stable
performance across different backbones, demonstrating the strong robustness of our model.



Table C. 5: The few-shot learning results of various methods on 11 datasets using ViT-B/16. We report the average value
over three different seeds.

Dataset Methods 1 shot 2 shots 4 shots 8 shots 16 shots

ImageNet

CoOp 68.10 69.25 69.53 70.40 71.51
CoCoOp 68.40 69.13 69.30 70.45 71.60

PLOT 67.40 68.80 69.90 70.15 71.37
PBPrompt 69.55 69.90 70.50 71.62 71.86

Caltech101

CoOp 93.13 92.97 94.50 94.73 95.50
CoCoOp 92.27 93.47 94.27 94.73 95.21

PLOT 87.90 89.53 91.87 92.90 93.80
PBPrompt 93.92 94.40 94.83 95.13 95.37

DTD

CoOp 50.03 53.93 59.23 64.37 68.40
CoCoOp 50.80 54.10 58.37 63.07 67.67

PLOT 52.20 56.03 58.37 65.57 70.17
PBPrompt 52.03 56.20 59.63 64.17 68.50

EuroSAT

CoOp 51.80 66.33 65.87 74.77 83.07
CoCoOp 51.93 64.17 67.20 75.07 82.87

PLOT 59.77 69.03 73.50 80.03 83.47
PBPrompt 60.92 68.77 72.84 80.14 84.21

FGVCAircraft

CoOp 26.20 27.90 30.03 36.00 39.73
CoCoOp 16.83 26.47 29.27 36.17 38.60

PLOT 20.20 21.87 23.90 27.13 30.57
PBPrompt 27.41 29.03 31.89 36.10 39.54

Flowers102

CoOp 73.00 81.90 86.50 94.13 96.20
CoCoOp 76.80 86.40 91.80 93.98 96.30

PLOT 70.50 80.57 88.70 93.77 95.70
PBPrompt 75.43 83.37 88.90 94.00 96.32

FOOD101

CoOp 82.70 82.77 83.63 84.00 85.33
CoCoOp 83.35 82.85 82.75 84.20 85.46

PLOT 69.33 72.73 75.17 76.70 77.87
PBPrompt 85.55 86.25 86.30 87.00 87.10

OxfordPets

CoOp 90.27 89.93 92.20 92.47 92.47
CoCoOp 90.20 88.87 91.77 91.73 92.10

PLOT 82.93 85.40 85.97 87.40 88.10
PBPrompt 91.20 91.73 92.63 93.00 93.40

StanfordCars

CoOp 67.03 70.13 73.27 76.90 79.13
CoCoOp 67.13 68.83 72.03 76.10 77.45

PLOT 45.97 51.43 53.97 59.62 64.51
PBPrompt 67.30 70.20 73.60 77.23 79.47

SUN397

CoOp 67.32 67.67 70.14 72.37 74.57
CoCoOp 65.60 66.13 69.85 70.35 73.13

PLOT 55.17 59.40 62.73 65.80 67.00
PBPrompt 68.10 69.35 70.21 72.20 74.15

UCF101

CoOp 70.07 73.30 77.87 80.10 82.40
CoCoOp 70.80 73.50 76.15 79.23 82.30

PLOT 49.63 53.20 60.80 67.23 70.50
PBPrompt 71.45 74.90 77.60 79.77 80.93

Average

CoOp 67.24 70.55 70.02 76.36 78.92
CoCoOp 66.74 70.36 72.98 75.92 78.43

PLOT 60.09 64.36 67.69 71.48 73.91
PBPrompt 69.35 72.19 74.45 77.31 79.17



Table C. 6: The few-shot learning results of various methods on 11 datasets using RN50. We report the average value over
three different seeds.

Dataset Methods 1 shot 2 shots 4 shots 8 shots 16 shots

Caltech101
CoOp 87.51 ± 1.02 87.84 ± 1.10 89.52 ± 0.80 90.28 ± 0.42 91.99 ± 0.31
PLOT 89.83 ± 0.33 90.67 ± 0.21 90.80 ± 0.20 91.54 ± 0.33 92.24 ± 0.38

PBPrompt 90.21 ± 0.45 90.86 ± 0.24 90.92 ± 0.10 91.37 ± 0.21 92.03 ± 0.17

DTD
CoOp 43.62 ± 1.96 45.35 ± 0.31 53.94 ± 1.37 59.69 ± 0.13 62.51 ± 0.25
PLOT 46.55 ± 2.62 51.24 ± 1.95 56.03 ± 0.43 61.70 ± 0.35 65.60 ± 0.82

PBPrompt 47.21 ± 1.22 52.08 ± 0.78 56.97 ± 0.55 61.84 ± 0.21 65.58 ± 0.33

EuroSAT
CoOp 52.12 ± 5.46 59.00 ± 3.48 68.61 ± 3.54 77.08 ± 2.42 83.69 ± 0.47
PLOT 54.05 ± 5.95 64.21 ± 1.90 72.36 ± 2.29 78.15 ± 2.65 82.23 ± 0.91

PBPrompt 57.34 ± 3.12 64.67 ± 1.21 73.10 ± 1.34 78.39 ± 1.72 82.20 ± 0.32

FGVCAircraft
CoOp 8.59 ± 5.79 16.52 ± 2.38 20.63 ± 2.46 26.63 ± 0.86 31.43 ± 0.96
PLOT 17.90 ± 0.09 18.94 ± 0.44 22.36 ± 0.42 26.17 ± 0.29 31.49 ± 0.89

PBPrompt 17.49 ± 1.24 18.72 ± 0.45 22.55 ± 0.44 26.71 ± 0.31 31.44 ± 0.64

Flowers102
CoOp 67.98 ± 1.98 77.58 ± 1.46 86.10 ± 1.05 91.27 ± 0.83 94.49 ± 0.40
PLOT 71.72 ± 0.97 81.19 ± 0.79 87.82 ± 0.20 92.43 ± 0.25 94.76 ± 0.34

PBPrompt 70.84 ± 1.23 81.35 ± 0.87 87.57 ± 0.34 92.44 ± 0.31 94.60 ± 0.24

FOOD101
CoOp 74.25 ± 1.52 72.61 ± 1.33 73.49 ± 2.03 71.58 ± 0.79 74.48 ± 0.15
PLOT 77.74 ± 0.47 77.70 ± 0.02 77.21 ± 0.43 75.31 ± 0.30 77.09 ± 0.18

PBPrompt 77.35 ± 0.33 77.93 ± 0.12 78.09 ± 0.21 77.79 ± 0.20 77.75 ± 0.12

ImageNet
CoOp 56.99 ± 1.03 56.40 ± 0.87 58.48 ± 0.47 60.39 ± 0.57 61.91 ± 0.17
PLOT 59.54 ± 0.16 60.64 ± 0.06 61.49 ± 0.23 61.92 ± 0.09 63.01 ± 0.13

PBPrompt 60.54 ± 0.12 60.72 ± 0.09 61.68 ± 0.13 62.00 ± 0.09 62.95 ± 0.11

OxfordPets
CoOp 85.99 ± 0.28 82.22 ± 2.15 86.65 ± 0.97 85.36 ± 1.00 87.02 ± 0.89
PLOT 87.49 ± 0.16 86.64 ± 0.06 88.63 ± 0.23 87.39 ± 0.09 87.21 ± 0.13

PBPrompt 87.75 ± 0.25 86.32 ± 0.75 89.08 ± 0.23 88.34 ± 0.14 88.45 ± 0.21

StanfordCars
CoOp 55.81 ± 1.67 58.41 ± 0.43 62.74 ± 0.16 67.64 ± 0.06 73.60 ± 0.19
PLOT 56.60 ± 0.36 57.52 ± 0.71 63.41 ± 0.29 67.03 ± 0.50 72.80 ± 0.75

PBPrompt 57.14 ± 0.21 57.76 ± 0.34 63.53 ± 0.20 67.64 ± 0.12 73.75 ± 0.34

SUN397
CoOp 60.12 ± 0.82 59.60 ± 0.76 63.24 ± 0.63 65.77 ± 0.02 68.36 ± 0.66
PLOT 62.47 ± 0.43 61.71 ± 0.65 65.09 ± 0.43 67.48 ± 0.04 69.96 ± 0.24

PBPrompt 62.51 ± 0.49 63.45 ± 0.66 64.77 ± 0.51 67.35 ± 0.08 69.93 ± 0.17

UCF101
CoOp 62.13 ± 1.14 64.05 ± 0.99 67.79 ± 0.71 72.71 ± 0.50 76.90 ± 0.50
PLOT 64.53 ± 0.70 66.83 ± 0.43 69.60 ± 0.67 74.45 ± 0.50 77.26 ± 0.64

PBPrompt 64.29 ± 0.84 66.88 ± 0.32 69.95 ± 0.55 74.86 ± 0.47 77.35 ± 0.52

Average
CoOp 59.56 ± 2.06 61.51 ± 1.39 66.47 ± 1.29 69.85 ± 0.69 73.31 ± 0.42
PLOT 62.58 ± 1.13 65.21 ± 0.72 68.62 ± 0.52 71.23 ± 0.51 73.97 ± 0.54

PBPrompt 62.97 ± 0.86 65.52 ± 0.52 68.93 ± 0.42 71.70 ± 0.35 74.18 ± 0.29

Besides, for a fair comparison, we re-run ProGrad Zhu et al. [2022] with ViT-B/16 and set the prompt length as 4 on 1/2/4
shot as shown at Table C. 7. Compared to ProGrad which only optimizes the prompt whose gradient is aligned to the CLIP
knowledge, our approach aims to squeeze CLIP knowledge by finding the stochastic prompts for each class, showing greater
potential in capturing diverse visual attributes and improving generalizability.

C.6 BASE-TO-NEW GENERALIZATION DETAILS

In this section, we report the complete results on base-to-new generalization using ViT-B/16 and RN50 respectively. Table
C. 8 shows more detailed accuracy consistent with Fig 4 in the manuscript. Besides, we also provide comprehensive results



Table C. 7: Comparison with ProGrad on the few-shot learning using ViT-B/16. We report the average value over three
different seeds.

Dataset Methods 1 shot 2 shots 4 shots

Caltech101
CoOp 93.13 92.97 94.50

ProGrad 93.67 94.33 94.60
PBPrompt 93.92 94.40 94.83

DTD
CoOp 50.03 53.94 59.23

ProGrad 51.12 52.30 56.00
PBPrompt 52.03 56.20 59.63

EuroSAT
CoOp 51.80 66.33 65.87

ProGrad 56.65 60.65 68.70
PBPrompt 60.92 68.77 72.84

FOOD101
CoOp 82.70 82.77 86.50

ProGrad 85.55 85.75 86.17
PBPrompt 85.55 86.25 86.30

SUN397
CoOp 67.32 67.67 70.14

ProGrad 67.92 68.95 70.17
PBPrompt 68.10 69.35 70.21

UCF101
CoOp 70.07 73.30 77.87

ProGrad 72.65 73.60 77.40
PBPrompt 71.45 74.90 77.60

using RN50 with CoOp Zhou et al. [2022b], CoPLOT Chen et al. [2022], and our PBPrompt (shown in Table C. 9).

Table C. 9: The base-to-new generalization accuracy results of various baselines on 11 datasets using RN50. We report
the average value over three different seeds, and the results are performed on a 16-shot base set and then evaluated on the
held-out new class. The best results are highlighted. H: the harmonic mean.

Average ImageNet Caltech 101 Oxford Pets
Base New H Base New H Base New H Base New H

CoCoOp 75.7 64.6 69.71 68.3 63.1 65.60 95.0 90.0 92.43 92.3 94.6 92.44
CoPLOT 75.9 67.6 71.51 68.2 63.1 65.55 95.4 90.9 93.09 92.1 95.9 93.96
PBPrompt 75.3 69.4 72.23 68.2 63.3 65.66 94.5 92.3 93.39 92.4 95.9 94.12

Stanford Cars Flowers 102 Food 101 FGVC Aircraft
Base New H Base New H Base New H Base New H

CoCoOp 61.8 65.3 63.50 91.2 67.5 77.58 85.0 86.0 85.50 25.5 25.7 25.60
CoPLOT 63.2 66.5 64.80 89.6 69.2 78.09 85.0 85.2 85.10 25.6 26.6 26.09
PBPrompt 64.6 65.5 65.05 89.8 71.0 79.30 84.6 86.5 85.54 23.2 27.8 25.29

SUN 397 DTD EuroSAT UCF 101
Base New H Base New H Base New H Base New H

CoCoOp 75.1 73.6 74.34 73.1 50.0 59.38 88.9 33.5 48.66 76.5 61.6 68.25
CoPLOT 75.2 73.2 74.17 72.6 51.4 60.19 91.0 55.3 68.79 77.4 66.2 71.36
PBPrompt 75.1 73.7 74.40 70.3 56.2 62.46 89.7 66.2 76.18 76.1 67.1 71.32

C.7 DOMAIN GENERALIZATION DETAILS

In this section, we report the results of comparison between our method PBPrompt and PLOT on domain generalization
using RN50. As shown in Table C. 11, our method has significant improvement on 3 out of 4 datasets using RN50 backbone.
Besides, we add the comparison between our proposed method and VPT, SHIP on the domain generalization using ViT-B/16.

C.8 CROSS-DATASET TRANSFER LEARNING DETAILS

In this section, we report the results of comparison between our method PBPrompt and other CoOp-based methods on
cross-dataset transfer learning using ViT-B/16. As shown in Table C. 12, compared with these CoOp-based methods, the
proposed method has significant improvement on 7 out of 11 datasets and only shows a slight drop on the others.



Table C. 8: The base-to-new generalization accuracy results of various baselines on 11 datasets using ViT-B/16. We report
the average value over three different seeds, and the results are performed on a 16-shot base set and then evaluated on the
held-out new class. The best and the runner-up results are highlighted and underlined. H: the harmonic mean.

Average ImageNet Caltech 101 Oxford Pets
Base New H Base New H Base New H Base New H

CLIP 69.34 74.22 71.69 72.34 68.14 70.18 96.84 94.00 95.39 91.17 97.26 94.11
CoOp 82.66 63.22 71.65 76.14 67.88 71.77 98.00 89.81 93.72 93.67 95.29 94.47
CoCoOp 80.47 71.69 75.83 75.98 70.43 73.10 97.96 93.81 95.84 95.20 97.69 96.43
CoPLOT 77.20 60.38 67.76 75.97 69.23 72.44 96.53 82.86 89.17 93.45 79.76 86.06
CoOp+VPT 71.98 74.76 73.34 74.73 70.60 72.60 95.47 93.80 94.62 90.77 97.83 96.61
CoOp+SHIP 80.03 73.69 76.73 75.87 69.95 72.79 97.55 95.20 96.36 92.19 93.85 93.01
PBPrompt 81.36 74.65 77.86 76.90 70.87 73.76 97.98 95.37 96.66 95.83 98.03 96.92

Stanford Cars Flowers 102 Food 101 FGVC Aircraft
Base New H Base New H Base New H Base New H

CLIP 63.37 74.89 68.65 72.08 77.80 74.83 90.10 91.22 90.66 27.19 36.29 31.09
CoOp 78.12 60.40 68.13 97.60 59.67 74.06 88.33 82.26 85.19 40.44 22.30 28.75
CoCoOp 70.49 73.59 72.01 94.87 71.75 81.71 90.70 91.29 90.99 33.41 23.71 27.74
CoPLOT 61.41 42.69 50.37 95.26 56.03 70.56 88.45 85.28 86.84 29.63 16.17 20.92
CoOp+VPT 65.27 75.97 70.21 72.97 75.90 74.40 90.37 91.67 91.01 29.57 33.80 31.54
CoOp+SHIP 68.57 73.90 71.14 94.02 74.40 83.06 90.54 91.03 90.87 34.27 32.33 33.28
PBPrompt 72.93 73.12 73.02 95.47 73.60 83.12 90.87 91.57 91.22 35.47 33.84 34.64

SUN 397 DTD EuroSAT UCF 101
Base New H Base New H Base New H Base New H

CLIP 69.36 75.35 72.23 53.24 59.90 56.37 56.48 64.05 60.02 70.53 77.50 73.85
CoOp 80.60 65.89 72.51 79.44 41.18 54.24 92.19 54.74 68.69 84.69 56.05 67.45
CoCoOp 79.74 76.86 78.27 77.01 56.00 64.85 87.49 60.04 71.21 82.33 73.45 77.64
CoPLOT 78.56 72.34 75.32 69.87 53.63 60.68 87.39 64.63 74.30 72.71 41.51 52.84
CoOp+VPT 73.77 77.90 75.77 57.67 58.70 58.18 67.97 71.63 69.75 73.23 74.63 73.92
CoOp+SHIP 79.54 75.27 77.35 74.88 56.88 64.65 88.63 66.87 76.22 81.08 76.85 78.91
PBPrompt 79.30 77.43 78.35 78.03 57.81 66.41 89.53 72.87 80.34 82.66 76.59 79.51

Table C. 10: Cross-domain generalization accuracy results of various baselines using RN50.∆: The improvements of the proposed
model compared to PLOT.

Source Target

Method Learnable ImageNet ImageNetV2 ImageNet-Sketch ImageNet-A ImageNet-R

CoOp ! 61.91 54.26 32.47 21.78 54.21
PLOT ! 63.01 55.11 33.00 21.86 55.61
PBPrompt ! 62.95 54.77 34.10 24.85 59.89
∆ - −0.06 −0.34 +1.10 +2.99 +4.28

C.9 TRADE-OFF ON BASE-TO-NEW GENERALIZATION

The number of training epochs causes the trade-off between performance on base and on new classes. Specifically, more
training epochs lead better accuracy on base classes and lower it on new classes. Therefore, we training ImageNet, Caltech101,
DTD, EuroSAT and Flowers102 for 50 more epochs on base-to-new task. As shown in Table C. 13, increasing the number
of epochs in the training process can enhance performance on base classes while causing a slight decline on new classes.
However, the changes in the harmonic mean are only marginally affected. For example, with more training epochs on
Flowers102, our proposed method raises the performance on base classes by +1.21 and lower it on new classes by −2.44.
This change slightly affects the harmonic mean, reducing it by 1.37% which is still 0.33% better than CoCoOp.

C.10 MORE ABLATION STUDY DETAILS

In this section, we validate that the stochastic generated module is the crucial factor affected the performance of our proposed
method instead of additional parameters in inference network. Empirically, we also compare the results with our purposed
method under Optimal Transport (OT) framework to test the efficiency of the adopted CT module. We build two models



Table C. 11: Cross-domain generalization accuracy results of various baselines using Vit-B/16.∆: The improvements of the proposed
model compared to PLOT.

Source Target

Method Learnable ImageNet ImageNetV2 ImageNet-Sketch ImageNet-A ImageNet-R

CoOp ! 71.51 64.20 47.99 49.71 75.21
CoOp + VPT ! 69.73 63.17 48.87 50.95 76.24
CoOp + SHIP ! 70.12 63.23 48.65 50.77 77.40
CoCoOp ! 71.02 64.07 48.75 50.63 76.18
CoCoOp + VPT ! 70.70 64.23 49.20 51.33 77.00
CoCoOp + SHIP ! 70.81 64.34 49.25 51.28 76.50
PBPrompt ! 71.71 64.53 49.32 51.64 76.71
∆ - +0.90 +0.19 +0.07 +0.36 +0.21

Table C. 12: Cross-dataset transfer learning accuracy results of CoOp-based method on source and target datasets using ViT-B/16. ∆:
The improvements of the proposed model compared to SHIP.
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ProGrad 71.50 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21 65.74
CoOp + VPT 69.73 93.67 89.27 65.50 70.20 86.27 22.13 66.57 46.93 47.43 67.21 65.51
CoOp + SHIP - 94.04 90.38 65.55 69.67 86.40 21.90 66.26 45.69 48.17 68.52 65.69
PBPrompt 71.71 94.87 90.62 66.00 72.44 86.34 24.82 67.69 45.62 47.13 68.83 66.40
∆ - +0.83 +0.24 +0.45 +2.77 −0.06 +2.92 +1.43 −0.07 −1.04 +0.31 +0.71

Table C. 13: Base-to-new generalization accuracy results of our purposed method PBPrompt with more 50 training epochs on ImageNet,
Caltech101, DTD, EuroSAT and Flowers102 using ViT-B/16. (·) denoted the difference from the original results in Table C. 8. ∆: The
improvements of harmonic mean compared to CoCoOp (without additional training epochs).

ImageNet Caltech101 Flowers102 DTD EuroSAT

Base 76.97 (+0.07) 98.01 (+0.03) 96.68 (+1.21) 80.44 (+2.41) 91.86 (+2,32)
New 70.12 (-0.75) 94.43 (-0.94) 71.16 (-2.44) 52.15 (-5.66) 68.08 (-4.79)
H 73.36 (-0.40) 96.19 (-0.47) 81.98 (-1.14) 63.28 (-1.57) 78.20 (-2.14)
∆ +0.26 +0.35 +0.27 −1.57 +6.99

denoted by PBPromptw/o-S and PBPromptOT respectively for comparison. PBPromptw/o-S denotes the model removing the
stochastic prompt generation process and only preserving the inference network. PBPromptOT denotes the model replace the
CT framework with OT framework. Then, we conduct the ablation study on the few-shot task (1/2/4 shots) with ImageNet,
Caltech101, Flowers102, DTD and EuroSAT.

C.11 COMPUTATION COST EVALUATION

In this section, we summarize the comparison of the parameters and inference speed of the baseline methods CoOp Zhou
et al. [2022b], CoCoOp Zhou et al. [2022a], PLOT Chen et al. [2022] with 4 prompts and our PBPrompt with 10 samples.
We report the number of learnable parameters and the number of images processed by the model in 1 second during inference
on the Food101 Bossard et al. [2014] dataset. As shown in Table C. 15, despite the introduction of additional learnable
parameters in our model, we were able to achieve comparable inference speed.



Table C. 14: The results of ablation study on five datasets using ViT-B/16. We report the average value over three different
seeds. The best results are highlighted.

Dataset Methods 1 shot 2 shots 4 shots

ImageNet

CoOp 68.10 69.25 69.53
PBPromptw/o-S 68.27 69.30 69.92
PBPromptOT 69.03 69.79 70.23
PBPrompt 69.55 69.90 70.50

Caltech101

CoOp 93.13 92.97 94.50
PBPromptw/o-S 92.86 93.91 94.51
PBPromptOT 93.39 93.76 94.62
PBPrompt 93.92 94.40 94.83

Flowers102

CoOp 73.00 81.90 86.56
PBPromptw/o-S 73.56 82.04 87.00
PBPromptOT 74.16 82.66 87.92
PBPrompt 75.43 83.37 88.90

DTD

CoOp 50.03 53.93 59.23
PBPromptw/o-S 50.65 54.55 59.40
PBPromptOT 51.95 55.66 59.50
PBPrompt 52.03 56.20 59.63

EuroSAT

CoOp 51.80 66.33 65,87
PBPromptw/o-S 52.15 66.97 68.19
PBPromptOT 61.10 67.21 71.77
PBPrompt 60.92 68.77 72.84

Table C. 15: The parameters and inference time comparison.

Settings CoOp CoCoOp PLOT(N=4) PBPrompt

# Params 2048 35360 8192 1577984
Inference Speed(images/s) 645 37 583 541

D VISUALIZATION DETAILS

D.1 ANALYSIS FOR VISUALIZATION

Figure D1: Visualization of the learned prompts unrelated to the corresponding class.



Prompt #1 Prompt #2 Prompt #3

Top-1
The crocodile stands on the edge of 
a body of water, which has links to 
the landmass that it is standing on.

Its skin is rough and 
scaly, with a dark brown 
color.

The alligator has its 
mouth open and its 
teeth visible.

Top-2 The background is a body of water.
The crocodile’s body is 
long and slender, with a 
broad, flat tail.

The crocodile’s body is 
long and slender, with a 
broad, flat tail.

Prompt #1 Prompt #2 Prompt #3

Top-1

The elephant’s body is 
large and muscular, with a 
thick trunk and large ears.

Its skin is rough and The 
elephant has large tusks and 
appears to be looking at 
something in the distance.

The trees in the background 
are tall and leafy, with 
branches reaching up towards 
the sky.

Top-2

The elephant is standing on 
its hind legs, with its front 
legs on the ground.

The elephant’s body is large 
and muscular, with a thick 
trunk and large ears.

The elephant’s skin appears 
to be brown and rough, with 
a few patches of dirt on its 
body.

Figure D2: Prompt-caption retrieval results.

To exhibit how stochastic-generated prompts for a certain class focus on the visual concepts of the images related to
the corresponding class, we have provided some visualization examples at Fig 7 in the manuscript via employing the
transport plans π to match the relations between various textual prompts and visual patches. In the first two rows, we present
two images belonging to the "Abyssinian" and "Keeshond" respectively in OxfordPets. Obviously, from the heatmaps,
the prompts generated from the corresponding class prefer to focus on their ears, nose, eyes, and other body parts with
category-specific characteristics. In the third row, we select an image belonging to the "Hibiscus" in OxfordFlowers and
the stochastic-generated prompts pay more attention to its stems, stamens, and petals. Simultaneously, we take an image
belonging to the "Bentley Continental Supersports Conv. Convertible 2012" in StanfordCars in the fourth row, and the
corresponding prompts concentrate on the car’s body, wheels, and roof.

For the prompts generated for classes unrelated to the image, we also provided some examples to demonstrate the content
they focused on. As shown in Fig D1, most heatmaps concentrate on the environment of the object, while others pay
attention to certain areas of the object but lack a significant correlation with the object category attributes.

To explain the learned prompt from the text domain, one of the direct ways is to visualize the most semantically close words
of the generated prompts. Unfortunately, previous works find that the most of retrieved words failed to explain the prompts
[Zhou et al., 2022b]. To this end, we here adopt Mini-GPT4 to generate diverse captions and report the top-2 captions of
each learned prompt according to their cosine similarity (calculated by their CLIP features) at Fig D2. From the results, we
find that 1) The learned prompts indeed capture diverse label-specific concepts; 2) The retrieved captions of each prompt
share close semantics, which demonstrates the coherence of the learned prompts.
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