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Abstract

Recent advancements in Large Vision Language
Models (LVLMs) have significantly improved per-
formance in Visual Question Answering (VQA)
tasks through multimodal Retrieval-Augmented
Generation (RAG). However, existing methods
still face challenges, such as the scarcity of knowl-
edge containing reasoning examples and erratic
responses from retrieved knowledge. To address
these issues, in this study, we propose a multi-
modal RAG framework, termed RCTS, which
enhances LVLMs by constructing a Reasoning
Context-enriched knowledge base and a Tree
Search re-ranking method. Specifically, we in-
troduce a self-consistent evaluation mechanism to
enrich the knowledge base with intrinsic reason-
ing patterns. We further propose a Monte Carlo
Tree Search with Heuristic Rewards (MCTS-HR)
to prioritize the most relevant examples. This
ensures that LVLMs can leverage high-quality
contextual reasoning for better and more consis-
tent responses. Extensive experiments demon-
strate that our framework achieves state-of-the-art
performance across multiple VQA datasets, sig-
nificantly outperforming both In-Context Learn-
ing (ICL) and Vanilla-RAG methods. It highlights
the effectiveness of our knowledge base and re-
ranking method in improving LVLM:s.
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Figure 1. Comparison of various methods built on different LVLMs
across multiple reasoning datasets. Our proposed RCTS frame-
work demonstrates substantial performance gains over conven-

tional Zero-Shot and Vanilla-RAG (Lin et al., 2024b) methods.

Recently, large vision language models (LVLMs) (Achiam
et al., 2023; Bai et al., 2023; Chen et al., 2024) exhibit
remarkable efficacy across diverse visual question answer-
ing (VQA) tasks, being capable of processing multiple im-
ages concurrently and, furthermore demonstrating the ability
for in-context learning (ICL) (Alayrac et al., 2022; Wang
et al., 2024b). These capabilities facilitate the application
of multimodal retrieval-augmented generation (RAG) (Gao
et al., 2023), a training-free approach that involves aug-
menting the input prompt by retrieving relevant multimodal
corpus from an external knowledge base through seman-
tic similarity calculation. This approach demonstrates that
introducing external knowledge effectively reduces the prob-
ability that LVLMs generate incorrect content.

Existing LVLMs (Achiam et al., 2023; Bai et al., 2023; Chen
et al., 2024) are prone to hallucination issues (Huang et al.,
2023), which manifest in two primary forms: generating
factual inconsistent with real-world facts (e.g., misstating
historical events or political news), and producing erratic re-
sponses misaligned with user instructions or questions (e.g.,
failing to answer user queries). To mitigate factual incon-
sistencies, existing multimodal RAG methods (Chen et al.,
2022; Caffagni et al., 2024; Yan & Xie, 2024) leverage exter-
nal knowledge (e.g., Wikipedia or Web Search) to transform
LVLMs’ responses from unknown (lacking factual ground-
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ing) to known (factually supported). However, addressing
instruction misalignment poses a distinct challenge. An
intuitive approach is to enhance user prompts by prepending
few-shot example pairs through in-context learning (Alayrac
et al., 2022). While effective, manual curation of such ex-
amples limits scalability.

For issue instruction misalignment, a compelling question
arises as to whether multimodal RAG can be integrated into
in-context learning, transitioning LVLMSs’ responses from
merely known to better understood (know-how reasoning)
by prepending it with retrieved examples. Specifically, it
can achieve more reliable responses by retrieving and rea-
soning over similar examples through in-context learning.
However, several possible challenges hinder the practical
application of multimodal RAG for addressing this question:
1) The retrieved sample question-answer pairs are formatted
in a rigid, formulaic manner (e.g., ‘The answer is A’ for
multiple-choice questions), which limits the LVLMs to cap-
ture underlying logical patterns. This inspires us to build a
more comprehensive knowledge base with reasoning con-
texts. ii) Retrieved examples may not consistently result
in positive outcomes, due to the inherent limitations of in-
context learning and the diversity of users’ queries, which
deserves more discussion. Hence, the focus here centers on
instruction misalignment with two main aspects: Firstly, the
construction of the knowledge base with reasoning contexts
to optimally enhance generation and facilitate in-context
learning. Secondly, the strategic re-ranking of retrieved
examples to prioritize more suitable samples, thereby pro-
moting efficient and accurate response generation.

In this study, we propose a multimodal RAG framework
with Reasoning Context and Tree Search, named RCTS,
aiming at constructing a comprehensive knowledge base
with reasoning contexts and optimizing the order of con-
textual examples to improve the question answering per-
formance of LVLMs. For our knowledge base component,
we introduce an automated reasoning contexts generation
method for question-answer pairs, which helps LVLMs ac-
quire intrinsic reasoning patterns. For the proposed mul-
timodal RAG framework, our method begins with hybrid
retrieval for an initial sampling from the knowledge base.
Subsequently, we employ a re-ranking mechanism to or-
ganize the retrieved samples, enhancing the efficacy of in-
context learning. The re-ranked Top-K samples with the
generated reasoning contexts are then concatenated with the
user’s question to facilitate optimal answer generation by
LVLMs. Regarding the re-ranking process, we propose a
tree search approach with heuristic rewards to re-order the
retrieved samples. This ensures the identification and priori-
tization of the most beneficial contextual examples for the
final generation phase, thereby enhancing the overall answer
quality. Besides, the reasoning contexts we generated before
also allows for a quantitative assessment of the potential

benefits offered by the retrieved samples, reinforcing the
efficacy of our tree search method.

To validate the effectiveness of our proposed method, we
conduct extensive experiments across multiple reasoning
VQA datasets, including ScienceQA (Lu et al., 2022),
MMMU (Yue et al., 2024), and MathV (Wang et al., 2024a).
Our method also excels in non-reasoning VQA datasets
such as VizWiz (Gurari et al., 2018) and VSR-MC (Liu
et al., 2023). As depicted in Fig. 1, across various sizes
and types of LVLMs, our proposed approach significantly
outperforms the zero-shot baseline. Besides, compared to
the strategy of randomly selecting examples as context, i.e.,
ICL, our method yields an average of 3% improvement,
demonstrating that our framework elevates LVLMs from
mere known to better understood. Additionally, compared to
Vanilla-RAG, our method surpasses performance by more
than 3% on all models (4.2% on Qwen2-VL (7B), 3.9%
on InternVL-2 (8B)), indicating that the knowledge base
with reasoning contexts and the tree search with answer
heuristic rewards effectively re-rank examples that enhance
answer accuracy. Qualitative analysis further corroborates
the efficacy of our method.

Our contributions are summarized as follows:

¢ We introduce a multimodal RAG framework, termed
RCTS, to enhance LVLMs by constructing a compre-
hensive knowledge base with reasoning contexts and
re-ranking for highly relevant contexts.

* We develop an automatically constructed reasoning
context mechanism grounded in VQA pairs to con-
struct the knowledge base with reasoning contexts,
and further propose a tree search strategy with answer
heuristic rewards for re-ranking retrieved samples.

* Experiments show that our method achieves significant
performance improvements on multiple VQA datasets,
demonstrating the effectiveness of the reasoning con-
text and the proposed re-ranking mechanism.

2. Related Work

Large Visual Language Models. Large Visual Language
Models (LVLMs) have emerged as a significant research
focus, leveraging the capabilities of powerful Large Lan-
guage Models (LLMs) (Touvron et al., 2023; Jiang et al.,
2023; Yang et al., 2024; Abdin et al., 2024) to tackle
vision-language tasks. These versatile LVLMs demonstrate
exceptional performance, particularly in visual question-
answering (VQA) tasks (Team et al., 2023; Achiam et al.,
2023; Bai et al., 2023; Liu et al., 2024), pointing toward
a promising avenue for achieving artificial general intelli-
gence. Nevertheless, these models face challenges with
knowledge-based VQA due to issues such as hallucina-
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Figure 2. Overview of the proposed framework. RCTS adopts a novel multimodal retrieval-augmented generation framework specifically
for visual question answering tasks. Aiming at enhancing the capabilities of the large vision-language models, our method consists of
three components. (1) We construct a knowledge base with reasoning contexts by a self-consistent evaluation mechanism. (2) To support
the multimodal knowledge base, we employ a hybrid embedding strategy for relevant samples retrieval. (3) Given the uncertainty of the
retrieved samples, we propose an improved Monte Carlo Tree Search algorithm with heuristic rewards for sample re-ranking.

tions—where responses are generated from nonexistent con-
tent—and inherent biases (Li et al., 2023). Additionally,
the lack of efficient knowledge retrieval mechanisms im-
pedes their ability to integrate external knowledge bases
for reasoning (Caffagni et al., 2024). In this study, we in-
vestigate strategies for constructing comprehensive external
knowledge bases to augment the capabilities of LVLMs.

Multimodal In-context Learning. Multimodal in-context
learning exemplifies a paradigm in which model weights re-
main unchanged, and improves output quality by adjusting
the model’s input (Dong et al., 2022; Alayrac et al., 2022;
Han et al., 2023). A typical in-context learning prompt
comprises two elements: demonstrations and new queries.
Demonstrations involve multiple VQA pairs, each compris-
ing a complete question accompanied by visual information
and its corresponding answer. In contrast, new queries
consist of questions posed to the model. Leveraging the
emergent capabilities of LVLMs, these models can refer-
ence demonstrations to some extent to address new ques-
tions (Zhao et al., 2023; Zhang et al., 2024b). With the
benefit of not requiring fine-tuning model parameters, in-
context learning has emerged as a favored paradigm for
applying LVLMs. In this study, we construct the reasoning
context as an integral part of the context based on VQA
pairs, to enrich the reasoning knowledge of the context.

Multimodal Retrieval-augmented Generation. While
RAG is well-established in LLMs, its application within
LVLMs remains relatively underexplored. Systems such as
KAT (Gui et al., 2021), REVIVE (Lin et al., 2022), and RE-
VEAL (Hu et al., 2023) show promise in addressing queries
involving common-sense reasoning, yet they struggle with
more complex, knowledge-intensive tasks like Encyclopedic
VQA (E-VQA) (Mensink et al., 2023) and Infoseek (Chen
et al., 2023). These limitations are largely due to their con-
strained ability to fetch and integrate precise information

from expansive encyclopedic knowledge bases. RATP (Pou-
plin et al., 2024) leverages MCTS and RAG to enhance the
self-reflection and self-critique capabilities across numerous
private healthcare documents. EchoSight (Yan & Xie, 2024)
attempts to address these challenges through a two-stage
process, combining visual-only retrieval and multimodal
reranking, thereby enhancing the alignment between re-
trieved textual knowledge and visual content. However, this
method risks losing the association and intrinsic knowledge
of visual text due to the conversion of visual information
into text. In contrast, our approach considers multimodal in-
formation in both the retrieval and reranking stages, thereby
preserving the integrity of the knowledge base information
more effectively.

3. Methodology

Humans always learn by examples. This cognitive process
can be conceptualized as exploring isomorphic structures
across diverse examples, thereby improving the extraction
of heuristic insights (Van Gog & Rummel, 2010). Drawing
inspiration from this cognitive paradigm, we hypothesize
that LVLMs can similarly benefit from contextually relevant
examples for in-context learning.

3.1. Problem Statement

Existing multimodal retrieval-augmented generation (RAG)
techniques (Yan & Xie, 2024; Li et al., 2024) primarily
address open-domain questions that LVLMs fail to answer
without an external knowledge base. In contrast, we focus
on scenarios where user queries fall within the scope of
LVLMSs’ capabilities, albeit with potential inaccuracies. As
shown in Fig. 2, LVLMs can take advantage of relevant
examples retrieved from the knowledge base to obtain more
precise and reliable responses.
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Knowledge Base. We define the knowledge base consisting
of M visual question-answer pairs, denoted as Dgp =
{x;}M . Bach z; encompasses an image I;, a question ();,
its corresponding reference answer A;, and an associated
reasoning context C; (See Sec. 3.2). Formally, this can be

expressed as z; := (I;, Q;, 4;, C;).

Goal. Our framework leverages the user’s query (1, Q)
to retrieve K pertinent question-answer pairs X,.; =
(z1, 22, ...,xx) from the existing knowledge base D .
Subsequently, the framework generates predicted answer g
using large vision-language model G:

gNg([Iu;Qu;Xret])a Xret gDKB (1)

The goal is to develop a multimodal RAG framework that
effectively integrates retrieved information with in-context
learning to make the predicted answer y align closely with
the ground-truth response. It is worth noting that our frame-
work 1is training-free and can be adaptively extended to
multiple domains by simply expanding the knowledge base.

3.2. Reasoning Context with Self-Consistent Evaluation

Existing knowledge bases usually include visual question-
answer pairs without detailed reasoning procedures, which
makes it difficult to provide valuable context for responses
even if relevant examples are retrieved. To alleviate this
issue, drawing from Auto-CoT (Zhang et al., 2022), we
propose a method capable of automatically generating rea-
soning contexts for visual question-answer pairs to enhance
contextual information during generation. We leverage a
self-consistency mechanism of LVLMs to generate candi-
date reasoning contexts and utilize mutual answer prediction
for reasoning context verification.

Specifically, as in Fig. 3 (a), given a question-answer pair
(Qkp, Agp) from the knowledge base, N, candidate rea-
soning contexts are generated first by LVLMs, denoted as
{C;} e, In Fig. 3 (b), N, predicted answers are generated
by combining the question Qy; with each {C;}X<,. These
predicted answers are evaluated with the ground truth an-
swer Ay, to obtain a set of prediction scores { Scorei}f-vzcl.
Finally, the candidate reasoning context with the highest
score is selected as the associated reasoning context.

3.3. Knowledge Retrieval with Hybrid Embeddings

As shown in Fig. 2, considering that both the knowledge
base and user queries contain multimodal information, we
employ hybrid-modal retrieval approaches rather than rely-
ing solely on a single modality. Following (Lin et al., 2023;
2024b), given user’s query consisting of an image I, and a
question @,,, we first use a text encoder 7, and an image
encoder F; with linear function to obtain their embeddings
with the same dimension d. The formulation is as follows:

Er, = F1(Qu) € R'7 "%

u

2
E;, = Fi(I,) € Rluxd,

where I7, and l;, denote the total number of tokens of
question @, and image I, respectively.

To enable hybrid-modal retrieval, all token-level em-
beddings are concatenated for retrieval, i.e., E, =
[Er,,Er,] € RUrutlu)xd  Similarly, to maintain con-
sistency with user queries, we utilize the same text ques-
tions and images, excluding answers from the knowledge
base for the retrieval process. The knowledge base hybrid
embeddings are defined as:

Exs = {Ei}}1, = {[Ex,,EL]}}L,. 3)
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Figure 4. Tllustration of our Monte Carlo Tree Search with Heuristic Rewards (MCTS-HR). To address the user’s query, we initially
retrieve Top-V samples as candidate actions, which are subsequently selected through our MCTS-HR for sample re-ranking. Additionally,
we propose a heuristic reward strategy that incorporates two key components, a self-consistency heuristic reward, and a mutual heuristic

reward, to optimize the reward function within the MCTS framework.

Finally, we compute the relevance score r between user
queries embeddings E,, and each knowledge base embed-
dings Exp; as follows:

r(By, By) = ) max BBy, “)

where [, = I, + [, and [; represent the number of to-
kens in hybrid embeddings, respectively. Therefore, the
final relevance scores r(Ey, Exp) = {[r(Eu, Ei)]},.
The Top-N pertinent question-answer pairs X,c;—n =
(21,22, ...,x ) are chosen by relevance scores r.

3.4. Re-ranking by Tree Search with Heuristic Rewards

This stage aims to re-rank the retrieved samples for selecting
the most pertinent samples as the context prompt, facilitat-
ing efficient and accurate answer generation. Specifically,
we adopt the Monte Carlo Tree Search (MCTS) methodol-
ogy (Browne et al., 2012), a technique primarily employed
in designing game-playing bots, to enhance the sample se-
lection and re-ranking processes. Since MCTS can effec-
tively balance exploring diverse samples and exploiting high-
quality ones through simulated trajectories, solving combi-
natorial optimization in context selection, we formulate the
task as a sequential decision-making problem and propose
a Monte Carlo Tree Search with Heuristic Reward (MCTS-
HR) strategy, as shown in Fig. 4. A detailed workflow of
our proposed MCTS-HR is provided in Appendix A.

Formally, we initialize a root node with a zero-shot response
derived from the user’s query. Then, existing nodes are
ranked and selected for expansion using a greedy sampling
strategy based on visit times N (a) and node values Q(a).
During node expansion, action is sampled from an action
space constructed from the retrieval samples X,..;. When
the maximum depth is reached, the algorithm performs a
simulation by concatenating actions and the user query to

form a K -shot prompt, generating a response for evaluation.
This response is then assessed with a reward function R, and
the reward value () is backpropagated to update the tree’s
value information. Following the standard MCTS procedure,
the upper confidence bound for trees (UCT) values of all
nodes are then updated to guide further exploration. The
algorithm iterates through these stages, re-ranking retrieved
samples and refining responses until a termination condition,
such as a maximum number of rollouts (referring to the
number of simulations) or an early stopping strategy, is met.
Below, we introduce the key elements of our algorithm.

Actions Construction and Selection. Unlike most MCTS-
based methods (Zhang et al., 2024a; Qi et al., 2024) in
LLMs that rely on human-defined prompts as actions to
construct the tree, our approach employs question-answer
pairs retrieved from the external knowledge base as candi-
date actions A. Formally, we employ hybrid embeddings to
retrieve the N most relevant question-answer pairs, where
N > K, and constitute the full action space:

A = {[x1, s1], [x2, $2], .-, [TN, SN}, 5)

where x; = (I;, Q;, Ai, C;), s; denotes the normalized sim-
ilarity score between the retrieved pair z; and user’s query.

During the node expansion stage, let C C A be the set
of actions that have already been selected (i.e., actions in
the parent node). The remaining valid actions available for
sampling are A,q;;¢ = A\ C. Then, MCTS takes an action
a; ~ P(a;) from the action space A, ;4 using similarity-
based probability distribution:

P(a;) - ©)

) = <
ijaj €Avaria 57

where the selected action a; serves as the re-ranked example
x;, and this process continues iteratively until it reaches
its maximum depth K, thereby completing a branch of the
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MCTS. Finally, the sequence of K actions extracted from
the current branch is concatenated with the user’s query
to form a K-shot prompt, thereby completing a branch
simulation and obtaining the response for this branch.

Self-Consistency and Mutual Heuristic Rewards. An-
other critical component of MCTS is the reward function
‘R, which evaluates the value of each action and directs the
tree expansion. Unlike the traditional MCTS-based LLM
methods (Qi et al., 2024; Zhang et al., 2024a), which di-
rectly uses a language model as reward function R to score
the node response, we propose a self-consistency heuristic
reward strategy to get the self-reward value Qg alongside a
mutual heuristic reward strategy to get the mutual-reward
value Qs based on the in-context consistency.

For self-consistency heuristic reward strategy, assuming
that the predicted K -shot response g; at branch i is denoted
as §; = (A;, C;). The user questions (I, Q),,) and the pre-

diction C; are concatenated to generate multiple answers
{A™N: | In theory, these answers A" should be consis-
tent with the originally predicted answers A;. According to
the above heuristic rules, the self-reward value ()s ; can be
expressed as follows:

2

1 &

Qs = 37 2R (A A), )

1

where Al(-n) ~ @G ([Iu; Qu; C’i], n), G represents the large
vision language model, G(-, n) denotes the random seed in
answer generation. Reward function R is calculated through

the rule-based evaluator.

For mutual heuristic reward strategy, we posit that if the
answer to a question is correct, it will positively contribute
to other questions, and vice versa. Therefore, we greedily
pick N,,, samples {(I,,, Q,,)} ™ from the actions space A
to serve as subsequent mutual heuristic samples. For branch
1, we utilize the user’s question and the predicted response
y; as contextual prompts, with the selected N,,, samples’
questions as the reference question and its corresponding
answer as the ground truth answer Aft(”). The predicted

answer fll(.”) for the reference question should be consistent
with the ground truth answer. Thus, the mutual-reward value
() m,; can be represented as:

1 o 1(n n
QM,i:]\[m;R<AE )’Aft( ))7 )

where Agn) ~ G ([Iy; Qu; Ui; In; Qn]). And the final re-
ward value @Q; for each branch ¢ consists of self-reward
value ()5 ; and mutual-reward value @7 ; with a weighted
summation as:

Qi=a-Qs;i+(1—a) Quy, )

Table 1. Statistics of multiple VQA datasets divided into evaluation
set and knowledge base.

Evaluation Set Knowledge Base
Name Size Name Size
ScienceQA 4241 ScienceQA . inval 16967
MMMU-Dev 150 MMMU-Val 900
Mathvtestmini 304 Matthest 2736
VizWizya 4319 VizWizain 20523
VSR-MCieqt 1181 VSR-MCirinyal 4440

* No identical samples in evaluation set and knowledge base.

where « is a weighting parameter that controls the impor-
tance of the self-reward and mutual-reward values. More
details in Section 4.4.

Reward Backpropagation. After obtaining the reward
value (), we then propagate this reward value to its parent
and ancestor nodes. Formally, if the reward value of any ele-
ment in the child node set Children(p) changes, the reward
value of the parent node Q(p) is updated to:

/ 1 (Q(p) - N(p) +Q(c) :
@)= 2 ( N(p)+1 * i Children(p) Q(Z)> ’
(10)
where N (p) denotes visit times of the parent node p. Q(c)
represents the reward value of the changed child node c.
MaX;echildren(p) @ (7) represents the highest quality value

among all child nodes of parent node p.

This formula takes into account not only the reliability of the
answers of all child nodes in the parent node p, but also the
reward value of the answer of the most outstanding child.

4. Experiments
4.1. Datasets

In our experimental benchmark, we carry out comprehensive
experiments with three common reasoning VQA datasets
in extensive domains, including ScienceQA (Lu et al.,
2022), MMMU (Yue et al., 2024) and MathV (Wang et al.,
2024a). Additionally, we compare methods on simpler, non-
reasoning VQA datasets using VizWiz (Gurari et al., 2018)
and VSR-MC (Liu et al., 2023). Following the original
splits of these VQA datasets, we construct the knowledge
base with the training set and build the evaluation set with
the testing set, respectively. Tab. 1 presents the size statistics
of the knowledge base and the evaluation set. Please refer
to Appendix B for details and examples of the datasets.

4.2. Implementation Details

The proposed framework is applicable to mainstream
LVLMs, thus we evaluate our method on various
LVLMs across different scales and types, such as
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Table 2. Comparison results using various LVLMs across different sizes and types on the ScienceQA, MMMU, and MathV datasets.

Large Vision Language Models

Datasets Knowledge Base Methods QwenZ-VL (2B) Qwen2-VL (7B) InternVL-2 (3B)
Zero-Shot 67.18 80.33 93.00
ICL (random retrieval) 70.10 81.63 93.14
ScienceQA, ScienceQA,iva  Vanilla-RAG (top retrieval) 71.94 86.68 92.78
RCTS (ours) 78.99 91.44 94.20
Zero-Shot 44.00 51.33 48.00
ICL (random retrieval) 41.33 47.33 47.33
MMMU-Dev MMMU-Val Vanilla-RAG (top retrieval) 42.67 50.00 46.67
RCTS (ours) 44.00 53.33 51.33
Zero-Shot 18.75 22.04 21.71
ICL (random retrieval) 17.76 23.35 21.05
MathV egimini MathV g Vanilla-RAG (top retrieval) 20.39 24.67 18.42
RCTS (ours) 22.04 28.95 24.01
(a) Rew‘am influence‘on different d‘atasets. (b) Rollout influence on different datasets
Table 3. Comparison results on VizWiz and VSR-MC datasets. e 10 Self-Reward 7 002 94 9.9 922
Datasets Knowledge Base Methods Qwen2-VL (7B) 80 - per e uﬁ”ﬁéﬁﬁiﬁjﬁ [ 80y
Zero-Shot 66.49 %60 01— geo o1 535535 0]
e xge N ICL 69.01 ] ]
VizWizva - VizWiziain Vanilla-RAG 69.89 g HEE i I T
P
RCTS (ours) 71.50 20 - T e ScienceQhAen |
200 BEIRIDE —=— MMMU-Dev
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Table 4. Ablation study of key components in our method, where
Rea. Con. represents Reasoning Context.

Module ScienceQA MMMU Math-V
MCTS Rea. Con. |
P X 86.68 5000  24.67
X v 88.33 5060 2697
/ X 88.92 4933 25.65
v v 91.44 5333 2895

Qwen2-VL (2B/7B) (Wang et al., 2024c), and InternVL-
2 (8B) (Chen et al., 2024). Both models support multi-image
input, enabling prompt concatenation with multi-image con-
text. For efficiency, LVLMs with over 7B parameters are im-
plemented in 4-bit quantization by AWQ (Lin et al., 2024a)
on a single 4090 24GB GPU. Besides, we utilize the frozen
BERT-base model and the ViT-L followed by a 2-layer MLP
both adapted from PreFLMR (Lin et al., 2024b) as our text
and vision encoders, respectively. For the setting of multi-
ple rounds of LVLMs generation, we set N, = N, = 10,
Ng = N,,, = 5. For the setting of our MCTS-HR, we adopt
the same number of few-shot samples with K = 3, i.e., a
maximum tree depth of 3. The number of initial retrieval
examples is set to N = 20 as the action space of MCTS-HR.
The maximum width of the tree is set to 3 for more action
exploration. We set the default rollouts with P = 10, and
the reward weight with default o = 0.2. Section 4.4 details

Figure 5. (a) Ablation of reward strategy on different datasets. (b)
Ablation of rollouts on different datasets.

more discussion about these parameters.

4.3. Main Results

Tab. 2 demonstrates the comparison results with represen-
tative methods using various LVLMs on reasoning VQA
datasets, including ScienceQA, MMMU, and MathV. As
in Tab. 2, Vanilla-RAG (top retrieval) (Lin et al., 2024b)
has achieved a performance improvement compared to
both Zero-Shot and In-Context Learning (ICL) (Han et al.,
2023) with random retrieval examples on most datasets,
suggesting that semantic-aware example selection is cru-
cial for LVLMSs’ reasoning. In particular, our proposed
RCTS demonstrates substantial gains across all benchmarks.
Notably, for Qwen2-VL (2B), RCTS achieves 78.99% on
ScienceQA, surpassing both Zero-Shot by +11.81% and
Vanilla-RAG by +7.05%. The improvements are even more
pronounced in the mathematical reasoning dataset, RCTS
elevates Qwen2-VL (7B) from 24.67% (Vanilla-RAG) to
28.95%, establishing new state-of-the-art results.

Additionally, we evaluate non-reasoning VQA datasets with
VizWiz and VSR-MC. Given that responses in these datasets
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Figure 6. Comparison between our RCTS and the Vanilla-RAG (Lin et al., 2024b). Wherein the top examples are retrieved from the
knowledge base, the below examples are re-ranked by our MCTS-HR.

Table 5. Ablation study of the importance weight o of rewards.

a | ScienceQA MMMU Math-V
0.0 90.99 50.67 26.64
0.2 91.44 53.33 28.95
0.5 90.71 54.00 27.67
0.8 90.17 54.00 25.32
1.0 86.72 48.67 25.98

typically consist of a single word or a brief sentence, we only
introduce the knowledge base without reasoning context. As
presented in Tab. 3, our approach demonstrates consistent
effectiveness with +1.61% and +3.05% enhancements on
VizWiz and VSR-MC respectively compared to Vanilla-
RAG, confirming its versatility and robustness.

4.4. Ablation Study

Key Components. To validate the effectiveness of key com-
ponents in our RCTS, we separately eliminate the reasoning
context and MCTS-HR evaluating on various VQA datasets.
As shown in Tab. 4, using MCTS-HR or Reasoning Con-
text alone always has a positive effect, such as MCTS on
ScienceQA (+2.24%) and Reasoning Context on MathV
(+2.3%) in Qwen2-VL (7B). The same model applies to the
following. Our full method with both MCTS and reasoning
context achieves better performance across all datasets, sug-
gesting that the designed two mechanisms complement and
enhance each other. Besides, the wide variety of questions
covered by the MMMU results in limited performance im-
provement (+3.33%), attributable to an insufficient number
of analogous samples within the knowledge base.

Rewards in MCTS. Fig. 5 (a) shows performance com-
parisons using self-reward alone, mutual-reward alone, and

Table 6. The accuracy (%) of the reasoning context on different
knowledge bases.

BaseVLM

ScienceQA MMMU  MathV

Qwen2-VL (2B) 90.56 98.60 85.78
Qwen2-VL (7B) 100.0 99.89 96.67
InternVL-2 (8B) 97.37 96.00 92.84

hybrid-reward on three datasets. Obviously, using hybrid-
rewards performs best on all three datasets, validating our
design intent. Besides, as shown in Tab. 5, we perform a
sensitivity analysis on the importance weight o of hybrid
rewards and the default value for o was set to 0.2.

Different Rollouts. The number of rollouts is an important
factor in RCTS performance. Fig. 5 (b) shows the perfor-
mance on the three datasets with different rollouts. It can
be seen that as the number of rollouts increases, the perfor-
mance on the three datasets shows a consistent trend. We
finally set the rollouts with PP = 10 to balance the computa-
tional overhead and performance.

4.5. Discussion

Reliability of Reasoning Context. Tab. 6 demonstrates the
reliability and accuracy of the reasoning context generated
by our self-consistency evaluation strategy. Specifically, we
evaluate the accuracy of the ground-truth answer with the
predicted answer, which is generated by splicing the ques-
tion and the reasoning context into a prompt that yields the
corresponding answer. As illustrated in Tab. 6, the gener-
ated reasoning context provides precise and comprehensive
responses for simpler datasets like ScienceQA. For more
complex questions, our strategy still yields a substantial
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proportion of correct reasoning context. These results un-
derscore the effectiveness of our proposed method.

Qualitative Analysis. To further illustrate our RCTS su-
periority over the baseline method in terms of in-context
learning, we present a qualitative analysis comparing our
method and Vanilla-RAG in Fig. 6. Although the Vanilla-
RAG method (Lin et al., 2024b) combined with reasoning
context samples can answer the reasoning information, the
retrieved samples are ill-fitting, resulting in an incorrect
response. In contrast, our RCTS offers more reliable reason-
ing contexts by re-ranking the retrieved samples and scoring
all the re-ranked context sequences through our heuristic
reward mechanism, providing a more reliable answer. Ap-
pendix D provides more complete re-ranking processes.

5. Conclusion

In this work, we introduce a multimodal RAG framework,
termed RCTS, that focuses on constructing a comprehen-
sive knowledge base with reasoning contexts and re-ranking
high-quality context. The goal is to enhance the VQA abil-
ity of LVLMs by incorporating more relevant reasoning
contexts, so that these models go from roughly knowing
to better understanding the intrinsic knowledge of the con-
text. Specifically, we introduce a self-consistent evaluation
mechanism for generating reasoning contexts to enrich the
knowledge base. In addition, MCTS-HR is proposed to
re-rank the retrieved samples. Experiments on various VQA
datasets show that our method is superior to in-context learn-
ing and vanilla multimodal RAG methods.

Limitations. Although RCTS brings significant perfor-
mance improvements, it still depends on whether the pres-
ence of helpful samples is within the knowledge base. Be-
sides, our method inevitably takes more computational over-
head; the trade-off between performance improvement and
model overhead is still worth discussing.

Impact Statement

The proposed multimodal RAG framework, RCTS, signif-
icantly advances the capabilities of LVLMs in VQA by
integrating a comprehensive knowledge base, reasoning
contexts, and heuristic-based tree search. This innovation is
pivotal for applications requiring complex multimodal VQA,
such as autonomous systems, educational technologies, and
Al-driven decision support systems. The framework’s abil-
ity to automatically generate reasoning contexts and opti-
mize sample selection through advanced Monte Carlo Tree
Search (MCTS) ensures that Al systems can better handle
intricate real-world scenarios, fostering trust and usability
in Al technologies. Furthermore, the demonstrated improve-
ments across diverse datasets, highlight the framework’s
versatility and potential to revolutionize fields reliant on

multimodal Al, such as healthcare, education, and urban
planning. As Al continues to permeate daily life, RCTS
represents a critical step toward creating more transparent,
interpretable, and cognitively aligned Al systems, ultimately
enhancing their societal impact and adoption.
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A. Monte Carlo Tree Search with Heuristic Rewards (MCTS-HR)
We detail the complete workflow of MCTS below.

Tree Initialization: A root node is initialized using a native user’s query without any retrieved samples, generating a
zero-shot response for the early stopping strategy.

* Node Expansion: The algorithm employs a value Q(a) and the visits times N (a) to rank all nodes that have not been
fully expanded. The node a with the highest value is selected for further exploration using a greedy sampling strategy.

Action Selection: During node expansion, the MCTS employs an action sampling function F 4 to sample from the
action space A, which serves as the expansion node. The action space is constructed using N samples retrieved from
the knowledge base.

¢ Branch Simulation: When the maximum depth is reached, the algorithm performs a simulation, often termed
“rollouts”. This involves concatenating all the actions along the branch with the user query to form a K'-shot prompt,
which is then used to generate the response for the branch.

* Reward Evaluation: The K -shot response is evaluated using a reward function R to obtain a reward value (). This
process incorporates self-reward feedback and answers heuristic feedback constraints, via in-context consistency to
ensure reliability and fairness in scoring.

Backpropagation: The reward value @) of the K -shot response is propagated backward to its parent node and other
related nodes to update the tree’s value information. If the ) value of any child node changes, the parent node’s ) is
also updated accordingly.

¢ UCT Update: After updating the @) values of all nodes, a collection C of candidate nodes is first identified for further
expansion and selection, then use the Upper Confidence Bound for Trees (UCT) update formula to update the UCT
values of all nodes for the next stage of exploration following (Silver et al., 2016; Zhang et al., 2024a). Formally, for a
node a that have not been fully explored, the UCT,, is defined as:

UCT, = Q(a) + c\/lnN(?(tZ;riae)) 1 (11

where ()(a) is the reward value of node a, N(-) is the total visit times of given nodes, c is a constant to balancing
exploitation and exploration, € is a small constant for avoid devided-by-zero.

The algorithm iterates through these stages until a termination condition 7" is met, including maximum rollout constraints or
reaching the early stopping strategy, continuously re-ranking the retrieved samples and improve the quality of answers, and
exploring new possibilities. The termination function criteria 7' can derive from several conditions:

« Early Stopping: Termination occurs when the answers of the root node and the leaf nodes, based on greedy retrieval
and initial branching, are consistent.

* Expansion Constraints: The search terminates once the number of rollouts reaches a predetermined limit or all
possible combinations of re-ranking samples have been traversed.

B. Dataset Details
B.1. ScienceQA

Science Question Answering (ScienceQA) (Lu et al., 2022) is a benchmark comprising 21,208 multimodal multiple-choice
questions drawn from elementary and high school science curricula. As shown in Fig. 7, this dataset is enriched with
detailed annotations, including correct answers, corresponding lectures, and comprehensive explanations. The questions
span a diverse array of topics across three primary subjects: natural science, social science, and language science. The task
involves selecting the correct answer from the provided multiple-choice options.

In our experiments, we adhere to the original dataset split, utilizing the training and validation sets, which consist of 16,967
examples, as our knowledge base. The test set, containing 4,241 examples, is employed for evaluation purposes.

12
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Figure 7. Illustrative examples from the ScienceQA dataset (Lu et al., 2022).

B.2. MMMU

The Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark (MMMU) (Yue et al., 2024) is a
novel benchmark that comprises 11,550 carefully selected multimodal questions. These questions are divided into 150 for
development, 900 for validation, and 10,500 for testing. This dataset is drawn from college exams, quizzes, and textbooks
spanning six common disciplines: Art & Design, Business, Science, Health & Medicine, Humanities & Social Science,
and Tech & Engineering. This dataset focuses on advanced perception and reasoning with domain-specific knowledge,
challenging models to perform tasks similar to those faced by experts. Besides, as illustrated in Fig. 8, the questions cover a
diverse array of topics across 30 subjects and 183 subfields, including 30 highly heterogeneous image types such as charts,
diagrams, maps, tables, music sheets, and chemical structures. The task mainly involves selecting the correct answer from
the provided multiple-choice options.

Due to the invisibility of the true samples in the test set and the broad domain coverage of the dataset, which results in low
similarity between different samples, we utilize the validation set consisting of 900 samples to construct the knowledge base
and the development set with 150 examples for evaluation in our experiments.

Question

|assume accounts have normal balances, solve for the one missing account balance:
[Dividends. Equipment was recently purchased, so there is neither depreciation
lexpense nor accumulated depreciation. <image>

image

Accounts payable
Accounts receivable

Common stock

Dividends ?

Equipment 29,000

Prepaid insurance 9,444
nd

Notes payable
Retained earnings
Insurance expense
Service revenue

Supplies 9,700
Salaries expense

[Choices
$194815 | | $182:815 || $12,000 | $9,000
lAnswer

612,000

Question

IMaxwell Software, Inc., has the following mutually exclusive projects. Suppose the
|company uses the NPV rule to rank these two projects.<image> Which project should

lbe chosen if the appropriate discount rate s 15 percent?

Image

Year  ProjectA  Project B

0 —$20,000 —$24,000
1 13,200 14,100
2 8300 9,800
3 3200 7,600

(Choices
ProjectA | | Project B

|Answer

Project B

Question

[True or False: The name of <image> is ‘This is not a Pipe’ by René Magritte

image

[Choices
True | | False

lAnswer

False

&

Leci nest pas une e,

No enough evidence

Question

|(<image>) The medium of The Harbaville Triptych is:

image

[Choices

carved ivory | | fresco secco | | marble | | mosaic

lAnswer

lcarved ivory

Figure 8. Illustrative examples from the MMMU dataset (Yue et al., 2024).

B.3. MathV

MATH-Vision (Math-V) (Qi et al., 2024) is a benchmark designed to evaluate the multimodal mathematical reasoning
capabilities of foundation models across a wide range of mathematical tasks with visual contexts. It comprises a total of
3040 multimodal math questions, covering 16 subjects, including Algebra, Analytic Geometry, Arithmetic, Combinatorial
Geometry, Combinatorics, Counting, Descriptive Geometry, Graph Theory, Logic, Metric Geometry, Solid Geometry,
Statistics, Topology, and Transformation Geometry. As depicted in Fig. 9, this dataset spans five levels of difficulty. The
task involves selecting the correct answer from the provided multiple-choice options and outputting the calculated answer
straightforwardly.

In our experiments, to ensure the reliability of the knowledge base, we employ a deduplicated test set as the knowledge base,
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which contains 2736 samples. The test-mini set which contains 304 samples, is employed for evaluation purposes.

|Question Question |Question |Question

In a rectangle JKLM the angle bisector in J intersects the diagonal KM in N. The [There are 5 boxes and each box contains some cards labeled K, M, H, P, T, as shown | [Numbers were written on the petals of two flowers, with a number on each petal. One | (Twenty cubical blocks are arranged as shown. First, 10 are arranged in a triangular

ldistance of N to LM is 1 and the distance of N to KL s 8. How long is LM? Ibelow. Peter wants to remove cards out of each box so that at the end each box Jof the petals is hidden. The sum of the numbers written on the back flower is twice the | [pattern; then a layer of 6, arranged in a triangular patten, is centered on the $10S;
|contained only one card, and different boxes contained cards with different letters. lsum of the numbers written on the front flower. What is the number written on the fthen a layer of 3, aranged in a triangular pattern, is centered on the 6; and finally one
[Which card remains in the first box? hidden petal? lblock is centered on top of the third layer. The blocks in the bottom layer are numbered|

11 through 10 in some order. Each block in layers 2,3 and 4 is assigned the number

mage Jwhich s the sum of the numbers assigned to the three blocks on which it rests. Find

Image Image e smallest possible number which could be assigned to the top block.
J K image
—
- b 4 K
N - o ;s § T M T K K T M
T 8 O M P
M L
[Choices ﬂ Ld
(Choices
/3 /3 /z V2
8+2v2 [ 11-v2 [10][8+8V3| n+ 2 Itis impossible todothis | | T [ M| H|[P
|[Answer [Answer
{Answer [Answer
H 14
B+2v2 30

Figure 9. Illustrative examples from the MathV dataset (Qi et al., 2024).

B.4. VizWiz

VizWiz (Gurari et al., 2018) is a Visual Question Answering (VQA) dataset designed to assist individuals with visual
impairments in better understand visual information in their daily lives. This dataset comprises visual questions from blind
individuals seeking answers to everyday visual inquiries. It includes a total of 20,523 training samples and 4,319 validation
samples. The task in VizWiz involves determining “True” or “False” based on the provided questions and generating a
concise phrase to answer each question directly. In our experiments, we utilize the training set as the knowledge base and
the validation set for evaluation purposes.

Question Question Question Question
[The cat s on top of the horse [The bicycle is far away from the bus. The catis __the horse. [The bicycle is ___ the bus.
Image Image Image Image

Choices [Choices IChoices [Choices
True False True False behind on top of below connected to down from part of facing beside at faw away from past on on
|Answer |Answer /Answer |Answer
[True [True lon top of lfaw away from
(a) Visual Spatial Reasoning (VSR) (b) Visual Spatial Reasoning with Multiple-Choice(VSR-MC)

Figure 10. Illustrative examples from the Visual Spatial Reasoning dataset (VSR) (Liu et al., 2023) and Visual Spatial Reasoning with
Multiple-Choice dataset (VSR-MC).

B.5. VSR-MC

Visual Spatial Reasoning (VSR) (Liu et al., 2023) serves as a benchmark that encompasses over 10k natural image-caption
pairs, featuring 66 types of spatial relations in English, such as “under”, “in front of”’, and “facing”. The primary objective
of the VSR task is to assess whether the captions accurately reflect the spatial relations depicted in the images by answering

True or False, while obstacle the in-context learning.

For this issue, as illustrated in Fig. 10 (b), we developed a visual spatial reasoning dataset with a multiple-choice format
(VSR-MCO). Specifically, for each sample instance, we masked the initially correct spatial relationship and then randomly
selected five relations from the remaining 65 spatial relations to serve as candidate options, alongside the true spatial relation
that functions as the question. The original correct spatial relation is designated as the standard answer.

In our experiments, we applied this pipeline to the training and validation sets of the VSR dataset, comprising 4,440
samples, to construct a comprehensive knowledge base. Similarly, we processed the test set to derive 1,181 test samples for
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performance evaluation. This data processing strategy ensures the rigor and comparability of the experimental results.

C. Prompts in Experiment
C.1. Reasoning Context
This section provide the detailed prompt for Section 3.2.

Get Reasoning Context:

SYSTEM: You are a helpful assistant tasked with providing a detailed and structured thought process based on the answer. The thought process should be logically sound, step-by-step, and
clearly lead to the final answer.

{Question}

** Answer:**

{Answer}

*#*System Prompt:**

Please describe your thought process in a step-by-step, structured manner, ensuring that each step logically leads to the final answer. Let’s think step by step.

USER: **User Question:** }

Get Predicted Answer by Reasoning Context:

(SYSTEM: You are a helpful assistant. )

USER: **User Question:**
{Question }

**THOUGHT PROCESS:**
{Thought Process }

C.2. Answer Prediction

This section provides the detailed prompt for our experiments. Our prompts for different datasets are primarily adapted from
VLMEvalKit (Duan et al., 2024), with necessary modifications to ensure compatibility across the specific tasks and datasets
under investigation.

Zero-Shot & Few-Shot (ScienceQA)

SYSTEM: You are a helpful assistant. When given a question and an image, please analyze the content and provide your answer in the specified format below:
“‘ The answer is X. BECAUSE: [Your detailed reasoning] *“*

- X must be one of the options.

- [Your detailed reasoning] should clearly explain the rationale behind your choice.

**Important:** Adhere strictly to the above format without deviations.

(USER: {Question} )
(ASSISTANT: {Answer} )
(USER: {Question} )

Few-shot-with-reasoning-context (ScienceQA)

SYSTEM: You are a helpful assistant responding to the question according to the context. When given a question and an image, please analyze the content and provide your answer in the
specified format below:

**THOUGHT PROCESS:**

[Your thought process for arriving at the answer].

*#*FINAL ANSWER:**

The answer is X.

BECAUSE: [Your detailed reasoning].

- [Your thought process for arriving at the answer] should provide a step-by-step process that led to your chosen answer.
- X must be one of the options: A, B, C, D, E.

- [Your detailed reasoning] should clearly explain the rationale behind your choice.

**Important:** Adhere strictly to the above format without deviations.
A

(USER: {Question } )

(ASSISTANT: {Answer} )

15
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(USER: {Question} )

Zero-Shot & Few-Shot (MMMU)

(SYSTEM: You are a helpful assistant. )
USER: {Question }
Answer with the option letter from the given choices in the following format: *The answer is X.” (without quotes) where X must be one of options.

(ASSISTANT: { Answer} )
USER: {Question }
Answer with the option letter from the given choices in the following format: 'The answer is X. (without quotes) where X must be one of options.

Few-shot-with-reasoning-context (MMMU)

(SYSTEM: You are a helpful assistant. )

USER: {Question }
Answer with the option letter from the given choices in the following format: 'The answer is X. BECAUSE: xxx’ (without quotes) where X must be one of options. Think step by step before
answering.

(ASSISTANT: { Answer} )

USER: {Question }
Answer with the option letter from the given choices in the following format: *The answer is X. BECAUSE: xxx’ (without quotes) where X must be one of options. . Think step by step before
answering.

Zero-Shot & Few-Shot (MathV)

(SYSTEM: You are a helpful assistant. )

USER: {Question }
Answer the preceding multiple choice question. The format of your response should follow this format: *The answer is //boxed{X} or //boxed{ YOUR_.ANSWER}." (without quotes), where
X’ must be one of the options or "YOUR-ANSWER’ is your conclusion.

(ASSISTANT: { Answer} )

USER: {Question }
Answer the preceding multiple choice question. The format of your response should follow this format: *The answer is //boxed{X} or //boxed{ YOUR.ANSWER}." (without quotes), where
X’ must be one of the options or *'YOUR_ANSWER’ is your conclusion.

Few-shot-with-reasoning-context (MathV)

(SYS’I'EM: You are a helpful assistant. )

USER: {Question }
Answer the preceding multiple choice question. The format of your response should follow this format: *The answer is //boxed{X} or //boxed{ YOUR-ANSWER}. BECAUSE: xxx’ (without
quotes), where "X’ must be one of the options or “'YOUR_ANSWER’ is your conclusion. Think step by step before answering.

(ASSISTANT: {Answer} )

USER: {Question }
Answer the preceding multiple choice question. The format of your response should follow this format: *The answer is /boxed{X} or //boxed{ YOUR-ANSWER}. BECAUSE: xxx’ (without
quotes), where *X’ must be one of the options or "YOUR_ANSWER’ is your conclusion. Think step by step before answering.
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D. Case Example of RCTS

In this section, we primarily illustrate the re-ranking process of our proposed Monte Carlo Tree Search with Hybrid
Re-ranking (MCTS-HR) framework. As illustrated in the experimental analysis, we present comparative visualizations
spanning mathematical reasoning (Fig. 11 and Fig. 12), chart interpretation tasks (Fig. 14 and Fig. 13), and natural scene
image comprehension (Fig. 15 and Fig. 16).

Besides, Fig. 15 and Fig. 16 exemplify two distinctive scenarios. Fig. 15 represents an ideal case where near-identical
reference sample exist in the knowledge base, enabling the Vanilla-RAG to directly retrieve the matching sample and
consequently ensure all candidate branches yield correct answers. Conversely, Fig. 16 demonstrates a challenging scenario
where no semantically similar samples are available in the knowledge base, resulting in erroneous outputs across all candidate
branches due to excessive dissimilarity between existing references and the query instance. This scenario highlights the
critical dependency of retrieval performance on the knowledge base’s coverage and semantic granularity.

T~

Figure 11. Illustration of the MCTS re-ranking process on math question.
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Figure 12. Illustration of the MCTS re-ranking process on math question.
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Figure 13. Tlustration of the MCTS re-ranking process on table question.
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Figure 14. Tlustration of the MCTS re-ranking process on chart question.
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Figure 15. Tlustration of the special case of the MCTS re-ranking process on natural question.
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Figure 16. Tlustration of failure case of the MCTS re-ranking process on art question.
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