
Extended Abstract: Contextualize Me –
The Case for Context in Reinforcement Learning

Carolin Benjamins ∗

Institute for Artificial Intelligence
Leibniz University Hannover

c.benjamins@ai.uni-hannover.de

Theresa Eimer ∗

Institute for Artificial Intelligence
Leibniz University Hannover

t.eimer@ai.uni-hannover.de

Frederik Schubert
Institute for Information Processing

Leibniz University Hannover
schubert@tnt.uni-hannover.de

Aditya Mohan
Institute for Artificial Intelligence

Leibniz University Hannover
a.mohan@ai.uni-hannover.de

Sebastian Döhler
Institute for Information Processing

Leibniz University Hannover
doehler@tnt.uni-hannover.de

André Biedenkapp
Department of Computer Science

Albert-Ludwigs University Freiburg
biedenka@cs.uni-freiburg.de

Bodo Rosenhahn
Institute for Information Processing

Leibniz University Hannover
rosenhahn@tnt.uni-hannover.de

Frank Hutter
Department of Computer Science

Albert-Ludwigs University Freiburg
fh@cs.uni-freiburg.de

Marius Lindauer
Institute for Artificial Intelligence

Leibniz University Hannover
m.lindauer@ai.uni-hannover.de

This is an Extended Abstract of a Paper accepted for publication at TMLR.

1 Motivation

Figure 1: The CARL benchmarks

While Reinforcement Learning (RL) has shown
successes in a variety of domains, includ-
ing game playing [23, 5], robot manipulation
[15, 19] and nuclear fusion [8], modern RL
algorithms are not designed with generaliza-
tion in mind, making them brittle when faced
with even slight variations of their environ-
ment [28, 18, 16]. To address this limitation,
recent research has increasingly focused on
the generalization capabilities of RL agents.
Ideally, general agents should be capable of
zero-shot transfer to previously unseen envi-
ronments and robust to changes in the prob-
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lem setting while interacting with an environ-
ment [20, 12, 7, 29, 10, 27, 1, 24, 2, 13]. Steps in this direction have been taken by proposing
new problem settings where agents can test their transfer performance, e.g. the Arcade Learning
Environment’s flavors [17] or benchmarks utilizing Procedural Content Generation (PCG) to increase
task variation, e.g. ProcGen [7], NetHack [14] or Alchemy [26].

While these extended problem settings in RL have expanded the possibilities for benchmarking agents
in diverse environments, the degree of task variation is often either unknown or cannot be controlled
precisely. We believe that generalization in RL is held back by these factors, stemming in part from a
lack of problem formalization [13]. In order to facilitate generalization in RL, contextual RL (cRL)
proposes to explicitly take environment characteristics, the so-called context [11], into account. This
inclusion enables precise design of train and test distributions with respect to this context. Thus,
cRL allows us to reason about the generalization capabilities of RL agents and to quantify their
generalization performance. Overall, cRL provides a framework for both theoretical analysis and
practical improvements.

In order to empirically study cRL, we introduce our benchmark library CARL, short for Context-
Adaptive Reinforcement Learning. CARL collects well-established environments from the RL commu-
nity and extends them with the notion of context. We use our benchmark library to empirically show
how different context variations can drastically increase the difficulty of training RL agents, even
in simple environments. We further verify the intuition that allowing RL agents access to context
information is beneficial for generalization tasks in theory and practice.

2 Providing Benchmarks for cRL Research

Our benchmark library CARL extends common RL benchmarks with context information. This enables
researchers to use well-known problem settings, but also define meaningful train and test distributions.
In our release of CARL benchmarks, we include and contextually extend classic control and box2d
environments from OpenAI Gym [6], Google Brax’ walkers [9], a selection from the DeepMind
Control Suite [25], an RNA folding environment [21] as well as Super Mario levels [4, 22], see
Figure 1.

We provide discrete as well as continuous environments with vector-based as well as image-based
observation spaces. The difficulty of the environments ranges from relatively simple in classic
control tasks to very hard in Mario or RNA. The context information for most of these benchmarks is
comprised of physical properties like friction or mass, making it intelligible to humans as well as
relevant in practical tasks. Overall, CARL focuses on popular environments and will grow over time,
increasing the diversity of benchmarks. Already now, CARL provides a vast benchmark collection for
generalization and provides a platform for reproducible research.

3 The Value of Context in Practice
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Figure 2: Train (lineplot) and test performance (histogram) of agents with visible and hidden context on
CARLDmcWalker with different viscosity values and 5 seeds. Shown is the mean performance with a 95%
confidence interval and testing across 200 test contexts (metrics are computed using stratified resampled
bootstrapping [3]). Here, concatenating context to the state seems beneficial.
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We demonstrate that varying context increases the difficulty of the task, already for simple environ-
ment settings. Varying the physical properties of classic control tasks like Pendulum or CartPole
results in diverse environment dynamics that agents trained on single contexts fail to generalize
to. Even when we train the agent on context variations, this general agent does not match the
performance of specialized agents (trained on one context each). For example, on CartPole the
general agent reaches the solution threshold on 40% fewer contexts than separate general agents.
We investigate if this effect can be mitigated by providing context information to the agent in a
naive manner by concatenating the context to the state (visible). Agents without access to context
information are denoted by hidden. We see that agents with context information concatenated to
the state tend to learn faster and reach higher final performances across most environments in our
experiments (see Figure 2 for an example). When evaluating these agents on different variations of
interpolation and extrapolation settings, we see that the test behavior changes remarkably when the
agent is context-aware, focusing on the training distribution and thus becoming more predictable.

4 Concluding Remarks

Towards our goal of creating general and robust agents, we need to factor in possible changes in the
environment. We propose modeling these changes with the framework of contextual Reinforcement
Learning (cRL) in order to better reason about what demands cRL introduces to the agents and the
learning process, specifically regarding the suboptimal nature of conventional RL policies in cRL.
With CARL, we provide a benchmark library that contextualizes popular benchmarks and is designed
to study generalization in cRL. It allows us to empirically demonstrate that contextual changes disturb
learning even in simple settings and that the final performance and the difficulty correlate with the
magnitude of the variation. We also verify that context-oblivious policies are not able to fully solve
even simple contextual environments. Furthermore, our results suggest that exposing the context to
agents even in a naive manner impacts the generalization behavior, in some cases improving training
and test performance compared to context-oblivious agents. We expect this to be a first step towards
better solution mechanisms for contextual RL problems and therefore one step closer to general and
robust RL agents.
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