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Abstract
Current robotic planning methods often rely on
predicting multi-frame images with full pixel de-
tails. While this fine-grained approach can serve
as a generic world model, it introduces two sig-
nificant challenges for downstream policy learn-
ing: substantial computational costs that hinder
real-time deployment, and accumulated inaccu-
racies that can mislead action extraction. Plan-
ning with coarse-grained subgoals partially alle-
viates efficiency issues. However, their forward
planning schemes can still result in off-task pre-
dictions due to accumulation errors, leading to
misalignment with long-term goals. This raises
a critical question: Can robotic planning be both
efficient and accurate enough for real-time con-
trol in long-horizon, multi-stage tasks? To ad-
dress this, we propose a Latent Space Backward
Planning scheme (LBP), which begins by ground-
ing the task into final latent goals, followed by re-
cursively predicting intermediate subgoals closer
to the current state. The grounded final goal en-
ables backward subgoal planning to always re-
main aware of task completion, facilitating on-
task prediction along the entire planning hori-
zon. The subgoal-conditioned policy incorpo-
rates a learnable token to summarize the sub-
goal sequences and determines how each sub-
goal guides action extraction. Through exten-
sive simulation and real-robot long-horizon ex-
periments, we show that LBP outperforms ex-
isting fine-grained and forward planning meth-
ods, achieving SOTA performance. Project Page:
https://lbp-authors.github.io
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1. Introduction
Accurately predicting future states is crucial for many
robotic planning methods in solving long-horizon, multi-
stage tasks, where models must anticipate outcomes over
extended temporal sequences. However, this requires bal-
ancing two conflicting objectives: (1) capturing sufficiently
rich and accurate future information for task completion,
and (2) maintaining computational efficiency for real-time
decision making. Current methods often struggle with this
trade-off. Those that prioritize long-term capability typ-
ically predict multi-step future states to provide detailed
guidance, but are prone to high computational costs and
rapid error accumulation. In contrast, efficiency-oriented
methods often sacrifice the semantic richness needed to han-
dle complex, long-horizon tasks. This creates a fundamen-
tal trilemma—balancing efficiency, accuracy and sufficient
future guidance—that remains unresolved and presents a
significant challenge in real-world robotic planning.

To model future outcomes, one category of existing robotic
planning methods (Du et al., 2023; Ajay et al., 2024; Hu
et al., 2024) resorts to predicting an episode of future video
as policy guidance. However, predicting consecutive frames
can propagate inaccuracies that compound over time, result-
ing in significant deviations from the intended final goal or
physically inconsistent frames that confuse the downstream
policies. Furthermore, modeling entire future videos re-
quires high computational costs and puts a heavy burden on
real-time inference. Obviously, predicting every detail in the
future is often unnecessary for task execution, and the fine-
grained predictions hinder both computational efficiency
and task-oriented consistency.

The second category of robotic planning methods focuses on
predicting future subgoals (Nair & Finn, 2020; Huang et al.,
2024). These coarse-grained subgoals improve planning ef-
ficiency and reduce computational burden. However, it still
adheres to the forward planning paradigm, often leading to
plans that are less aligned with distant goals, which in turn
cause off-task behavior (Kang & Kuo, 2025). To address
this, recent methods have introduced reachability or optimal-
ity checks (Eysenbach et al., 2019; Nasiriany et al., 2019;
Fang et al., 2022; Huang et al., 2024) to correct deviations
and improve on-task accuracy. However, these post-hoc
adjustments also add lots of complexities and do not really
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address the fundamental challenges.

The two aforementioned categories of methods both have
some pros and cons. The video planning methods provide
rich future guidance but suffer from heavy training demands
and inefficient inference. The subgoal planning methods
enjoy efficient planning but trade off long-horizon task
progress guidance. Apart from failing to strike a desirable
balance across different considerations, all previous efforts
fall short in maintaining on-task prediction accuracy. How
can we address the above limitations and enable robots to
plan efficiently and effectively through long-horizon tasks?

In this paper, we propose a Backward Planning approach in
Latent space (LBP) for language-guided robotic control as
in Figure 1. LBP first trains a latent goal predictor that maps
the current state and language description to a distant final
goal, grounding the task objective in latent image space to
enforce task progression. Second, LBP recursively predicts
intermediate subgoals that are closer to the current state,
ensuring that each subgoal remains aligned with the task
progression and completion. These two steps mirror how
humans plan in complex tasks: we begin by envisioning the
desired outcome based on the task objective, and then break
it down into smaller, gradually manageable subgoals that are
closer to the present stage. The subgoal sequences in LBP
track the path to the goal with less redundancy, providing
denser guidance in near terms while preserving task progres-
sion information over the entire planning horizon. Lastly,
LBP incorporates a subgoal fusion technique that enables
the subgoal-conditioned policy to adaptively determine how
to best utilize subgoals at varying distances. Collectively,
LBP effectively addresses the triplet of challenges of off-
task planning, insufficient guidance, and high computational
costs inherent in previous methods.

LBP provides a lightweight planning framework for robotic
policy learning with on-task subgoal generation guarantee.
It combines the strengths of latent planning (Wang et al.,
2023; Wen et al., 2024) and coarse-grained subgoal plan-
ning (Wang et al., 2025; Black et al., 2024), drastically
reducing computational costs and enabling real-time deploy-
ment. Unlike previous methods that struggle with subgoal
horizon selection, LBP provides an informative subgoal
sequence spanning the entire planning horizon toward the
final goal. This offers flexibility that allows the downstream
policy to leverage subgoal signals at varying distances. The
backward planning approach further enhances on-task ac-
curacy by ensuring that the predicted subgoal sequence
remains aligned with the overall task progression and the
ultimate objective. Through extensive evaluations in both
simulation and real-robot experiments, we demonstrate that
LBP significantly outperforms existing methods, especially
excelling on long-horizon, multi-stage tasks.
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Figure 1. Illustration of latent space backward planning.

2. Related Works
Video Planning. A significant body of research has ex-
plored video generation as planners for visuomotor con-
trol (Pertsch et al., 2020; Du et al., 2023; Ajay et al., 2024;
Hu et al., 2024; Wu et al., 2024; Bharadhwaj et al., 2024).
Approaches such as UniPi (Du et al., 2023) and HiP (Ajay
et al., 2024) generate actions using inverse dynamics models
from predicted consecutive frames, while Seer (Tian et al.,
2025) and GR-1 (Wu et al., 2024) jointly predict actions
and subsequent image frames. Although some methods op-
erate in latent space (Nair et al., 2020; Hu et al., 2024; Li
et al., 2024), this line of work faces significant challenges,
including high computational demands and limited real-time
capabilities, primarily due to the need to generate every con-
secutive frame of the future. Most of these methods operate
in a forward autoregressive manner (Wu et al., 2024; Tian
et al., 2025), which are prone to rapid error accumulation
over time, significantly complicating policy learning. In
summary, these approaches attempt to plan with excessive
detail that is often unnecessary to visuomotor control, result-
ing in computational inefficiency, compounded prediction
errors, and challenges in effective action extraction.

Coarse-grained Planning. Coarse-grained planning ap-
proaches focus on predicting intermediate subgoals (Nair
& Finn, 2020; Wang et al., 2023; Black et al., 2024; Wang
et al., 2025), improving computational efficiency by avoid-
ing the need to predict every frame of details. Goal-
conditioned supervised (GCSL) (Ghosh et al., 2021; Em-
mons et al., 2022; Wang et al., 2025) and reinforcement
learning (GCRL) (Chane-Sane et al., 2021; Xu et al., 2022;
Park et al., 2024), have demonstrated that planning with
intermediate goals can alleviate downstream policy learning
burdens while enhancing long-horizon capabilities in sim-
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ulation benchmark tasks. However, this paradigm faces
unresolved challenges, particularly in subgoal selection,
such as 1) determining appropriate prediction horizons, and
2) balancing the number of subgoals for effective policy
guidance (Levy et al., 2019; Nachum et al., 2019). Dis-
tant subgoals provide limited actionable information, while
nearby subgoals may misalign with final task objectives.
Similarly, excessive subgoals increase model complexity,
whereas sparse subgoals fail to capture task progression
semantics. Existing methods lack principled treatment to
balance planning efficiency and long-term reliability. Fur-
thermore, the forward planning paradigm inherently suffers
from error accumulation over time, leading to off-task be-
havior (Kang & Kuo, 2025). Recent attempts to mitigate
this through post-hoc corrections, such as reachability or
optimality checks (Eysenbach et al., 2019; Nasiriany et al.,
2019; Fang et al., 2022; Huang et al., 2024), which add extra
complexity without addressing the fundamental limitations
of forward planning.

Summary. Both fine-grained (video) and coarse-grained
(subgoal) planning approaches fail to resolve the fundamen-
tal trilemma of robotic planning: achieving computational
efficiency, maintaining long-horizon consistency, and en-
suring prediction accuracy. These limitations highlight the
need for a novel approach that appropriately balances these
objectives in long-horizon, multi-stage visuomotor tasks.
Inspired by the “coarse-to-fine” paradigm in natural lan-
guage processing (Wei et al., 2022), computer vision (Tian
et al., 2024), and decision making (Wang et al., 2025), we
propose a backward planning framework that predicts sub-
goals in reverse temporal order—from coarse to fine hori-
zons—starting from the final goal. At every control step,
this approach generates a subgoal sequence that spans the
entire task horizon, providing sufficient actionable guidance
efficiently while minimizing error accumulation by ensuring
consistent task alignment.

3. Preliminaries
We consider the problem of learning a visuomotor policy
conditioned on different contexts c that reflect task objec-
tive or completeness. These contexts c can include goal
images Ig ∈ G ⊂ I, language descriptions l ∈ L, in-
termediate subgoals wi ∈ W ⊂ I, and etc. Each video
segment is defined as τi = {(It, at)}Hi with Hi frames,
where It ∈ I represents the image observation and at ∈ A
denotes the action at time step t. Given a dataset of video
segments D = {τ1, τ2, . . . , τN} and a distribution over con-
texts f(c|τ), a conditioned policy πθ(a|I, c) is trained to
generate control signals in a closed-loop manner, achieving
the desired behaviors aligned with the task description or
future goals. The policy learning objective can be given as:

max
θ

∑
τ∈D

∑
1≤t≤H

Ec∼f(c|τ)[log πθ(at|It, c)] (1)

We use the expectation over all contexts because some
video segments are annotated with multiple types of task-
relevant information, which can be utilized as guidance
during policy learning. For instance, f(l|τ) represents
the distribution of language descriptions, f(Ig, l|τ) =
f(Ig|It, l)f(l|τ) models the joint distribution of goal im-
ages and language descriptions, and f(w, Ig, l|τ) = f(w =
It+k|It, Ig, l)f(Ig|It, l)f(l|τ) captures the distribution of
k-step future subgoals, goal images, and language descrip-
tions. Each context provides a different level of guidance:
language serves as a basic task identifier, goal images indi-
cate task completeness, and subgoals reflect task progression
toward completion. By exploring different combinations of
these contexts, we can adapt the level of guidance to meet
varying demands for granularity in policy learning.

4. Latent Backward Planning
Overview. We propose latent space backward planning
(LBP), an efficient and robust planning framework for long-
horizon visuomotor tasks, built upon the idea of backward
subgoal prediction. We observe that existing long-horizon
planning with predicted subgoals struggles with (1) plan-
ning inefficiency and (2) off-task prediction. Generating
high-dimensional subgoal images poses significant chal-
lenges of computation loads, while modeling every future
frame sequentially further deteriorates temporal efficiency,
collectively hindering real-time real-world planning.

Thus, one of our key insights is planning in latent space with
coarse-grained subgoals, enhancing planning efficiency in
both spatial and temporal dimensions. While latent subgoal
planning has been explored in existing works (Veerapaneni
et al., 2020), they typically adopt forward planning that
often fail to align subgoals with ultimate task objectives.
Without accounting for task completion, subgoals can easily
deviate from desired task progression, causing downstream
policies to suffer from compounding errors snowballing
along the planning process. Existing approaches have to
introduce additional subgoal quality checks on reachability
or optimality to combat the error accumulation (Nair & Finn,
2020; Eysenbach et al., 2019; Nasiriany et al., 2019; Fang
et al., 2022; Huang et al., 2024), at the cost of adding un-
necessary complexity and trading off efficiency, but without
fundamentally resolving the underlying off-task issues.

Another key insight of ours is that we can learn a final goal
predictor that grounds the ultimate task objective (i.e. lan-
guage description) into latent image space (Section 4.1).
Latent image space encapsulates much richer task progres-
sion information than language space, enabling backward
planned subgoal sequences grounded on the predicted final
goal to ensure on-task consistency (Section 4.2). The sub-
goal sequences can effectively capture task progression and
provide flexibility for downstream policy learning to lever-
age envisioned subgoals at varying distances. To facilitate
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efficient policy training, we introduce a subgoal fusion tech-
nique that non-trivially compresses subgoal information and
adaptively determines how to best utilize subgoals across
different distances (Section 4.3).

4.1. Grounding Task Objective as Latent Goals

Previous research suggests that visual instructions can com-
plement language descriptions, significantly enhancing guid-
ance performance in conditioned visuomotor policy learn-
ing (Radford et al., 2021; Shah et al., 2023; Li et al., 2024;
Zheng et al., 2024; Li et al., 2025). This synergy proves
to be crucial in long-horizon, multi-stage tasks, where lan-
guage descriptions often reduce to task identifiers due to
their limited semantic information. In contrast, latent vi-
sual representations provide richer information about task
progression, with latent visual goals offering precise specifi-
cations of the desired final scenario. However, while latent
visual goals can be easily obtained through hindsight la-
beling during training, their test-time specification presents
challenges (Lynch & Sermanet, 2021): it inherently de-
pends on the current scenario configurations—for example,
in the task “place the brown cup in front of the white cup”,
the precise goal state variably depends on the initialized
relative spatial locations of the two cups. Crucially, this
relationship is not fixed: if the position of the white cup
changes at test time, the semantic meaning of “in front of”
must be re-evaluated, requiring corresponding adjustments
to the target visual goal. To address this, we learn a goal
prediction model fg that estimates the latent visual goal zg
from the current observation It and language instruction l.
Given a dataset of video segments Dz = {τi}N , with latent
visual state zt in τi = {(zt, at)}Hi and language feature
ϕl encoded by some pre-trained language-grounded visual
encoder (zt, ϕl) = Φ(It, l), we optimize:

max
fg

∑
τ∈Dz

∑
1≤t≤H

Ep(zg,ϕl|τ) log fg(zg|zt, ϕl) (2)

where p(zg, l|τ) represents the conditional context distri-
bution (p(c|τ)) of latent goals and language instructions
derived from trajectory τ . This approach enables dynamic
goal specification while ensuring the planning process oper-
ates within the semantically rich latent visual space.

4.2. Predicting Subgoals with a Backward Scheme

While the final visual goal specifies the condition of task
completion, it provides limited guidance about task pro-
gression—the sequence of states required to achieve the
ultimate objectives. To better capture long-horizon task
progression, we predict intermediate subgoals. However,
subgoal selection presents a fundamental dilemma (Park
et al., 2024; Levy et al., 2019): balancing the sufficiency of
subgoals for task progression against the accuracy of their
prediction. Sparse subgoal predictions fail to adequately
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Figure 2. Overall framework architecture of LBP.

reflect task progression, while long subgoal sequences are
prone to compounding prediction errors that lead to off-task
behaviors deviating from the intended task goals. To address
this, we begin by predicting the first subgoal w1 from the
current state zt, final goal zg , and language instruction ϕl in
latent space, with the optimization objective:

max
f1
w

∑
τ∈Dz

∑
1≤t≤H

Ep(w1,zg,ϕl|τ) log f
1
w(w1|zt, zg, ϕl) (3)

To ensure sufficient long-term information, we set the first
subgoal relatively close to the final goal, which maintains
better alignment with task objectives yet provides less im-
mediate guidance for policy learning. To bridge this gap,
we recursively predict intermediate subgoals closer to the
current state. Specifically, each subsequent subgoal wi is
predicted from the previous subgoal wi−1, current state zt,
and instruction ϕl, forming a backward chain from coarse
to fine temporal resolutions. The optimization objective for
predicting subgoal wi is given by:

max
fi
w

∑
τ∈Dz

∑
1≤t≤H

Ep(wi,wi−1,ϕl|τ) log f
i
w(wi|zt, wi−1, ϕl)

(4)

For convenience, let Γ(wi) denote the corresponding time
step of subgoal wi in the trajectory. We can thus define a
recursive planning coefficient λ = Γ(wi)−t

Γ(wi−1)−t , (w0 = zg),
to govern the recursive subgoal generation for i = 1, 2, · · · ,
which represents the ratio of the temporal distance between
the predicted subgoal and the current state zt relative to the
distance between the previous-level subgoal wi−1 and the
current state zt.

By inspecting Eq. (3) and (4), we can observe that it is
possible to use a single unified model fw for all different
levels of subgoal predictors f i

w, as they all share the same
structure. This unified model is expected to predict the
intermediate subgoal zλ := z⌈(1−λ)t+λk⌉ between any start
latent state zt and final latent state zk, where 1 ≤ t < k.
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The objective is given by:

max
fw

∑
τ∈Dz

∑
1≤t<H

E p(zH ,ϕl|τ),
p({z

λi}ni=1|τ)

[
n∑

i=1

log fw(zλi |zt, zλi−1 , ϕl)

]

+
∑
τ∈Dz

∑
1≤t<H

E p(zH ,ϕl|τ),
p({z

λi}ni=1|τ)

[
n∑

i=1

log fw(zλi |zt, ẑλi−1 , ϕl)

]
(5)

where zλi := z⌈(1−λi)t+λiH⌉ ⊂ τ, i ∈ [1, · · · , n] denotes
the ground truth subgoal and ẑλi denotes its predicted coun-
terpart by fw. The first term in Eq. (5) fits subgoal prediction
with the ground truths zλi in τ , capturing the actual task
progression. The second term optimizes the subgoal predic-
tor fw given its own previous predictions ẑλi−1 as inputs,
ensuring the consistency of the recursive prediction of fw at
test-time. This recursive mechanism will suffer much less
compounding error as the λ-recursion effectively reduces
the planning steps, and the training of fw incorporates su-
pervision of groundtruths in every recursion level.

As illustrated in Figure 1, this backward planning scheme
generates asymmetric coarse-to-fine grained latent subgoal
sequences spanning the entire task horizon, offering three
key advantages over conventional methods: (1) compre-
hensive task progression information in subgoal sequences,
providing rich and flexible guidance for policy learning;
(2) improved prediction consistency with task objectives
in a backward manner, reducing error accumulation com-
pared to forward planning; and (3) computational efficiency
by adopting recursion, avoiding the need for fine-grained
frame-by-frame prediction.

4.3. Learning Context Conditioned Policy

The generated subgoal sequence provides rich contextual
information for policy learning. Given the complete context
set c = {wn, . . . , w1, zg, ϕl} ∈ R(n+2)×Nz derived from
dataset Dz , we optimize the conditioned policy through:

max
π

∑
τ∈Dz

∑
1≤t≤H

Ec∼p(c|τ) log πθ(at|zt, c) (6)

However, even in latent space, the aggregated context di-
mensions can burden policy learning. Moreover, the pol-
icy should adaptively leverage (sub)goal information rather
than treating all predictions equally, as different task exe-
cution stages require varied focus between short-term and
long-term guidance. For instance, tasks requiring large
movements intuitively benefit more from distant subgoals to
prevent actions that hinder future progress, while precision-
oriented tasks require stronger emphasis on nearby subgoals.

To address these challenges, we introduce a goal-fusion
module with a Perceiver-style cross-attention (Jaegle et al.,
2021) that performs both correlation discovery and dimen-
sionality reduction. Specifically, the contexts c are queried
by a trainable latent vector of size Dz: z ∈ R1×Nz , which

outputs the context embeddings zc. This design compresses
all contextual tokens c into a lower-dimensional token zc
while enabling the adaptive extraction of the most relevant
context information. This enables dynamic balancing of
short- and long-term guidance throughout task execution,
maximally leveraging the flexibility of predictions at vary-
ing distances and granularities.

4.4. Practical Algorithm

In the training phase, we learn a final goal predictor fg with
Eq. (2), a unified subgoal predictor fw with Eq. (5), and
a conditioned policy π with Eq. (6). At each step t at test
time, LBP processes the current observation It and language
instruction l into latent state zt and language feature ϕl, and
then generates latent (sub)goal plans {wn, . . . , w2, w1, zg}
by fg and fw. Then we use the contexts c including pre-
dicted goal plans and language features ϕl to condition the
policy π(at|It, c) for action extraction.

The detailed architecture of our model is present in Fig-
ure 2. We implement the goal predictor fg and the subgoal
predictor fw using two-layer MLPs and employ a cross-
attention block for the goal-fusion module. Compared to
recent planning-based methods that rely on complex pixel-
level generative models, LBP demonstrates significant effi-
ciency. For the low-level policy, we use a shared ResNet-
34 (He et al., 2016) as the backbone to extract visual features
from different camera views, where the language embed-
dings are injected via FiLM conditioning layers (Perez et al.,
2018a). The current visual features encoded by ResNet are
then integrated with the contexts to generate actions. The
policy is optimized with diffusion loss to model complex
distributions (Chi et al., 2023), with the denoising step fixed
at 25. More details are provided in Appendix A.

5. Experiments
5.1. Experimental Setup

Using previously validated evaluation recipes for embod-
ied AI (Black et al., 2024; Kim et al., 2024; Tian et al.,
2025; Zheng et al., 2025), we assess the performance of
the proposed LBP. Specifically, we assess LBP on both the
LIBERO-LONG simulation benchmark and a real-robot
environment with long-horizon, multi-stage tasks. For all
methods involving subgoal prediction, the planning process
is solely applied to the third-person view in the LIBERO-
LONG experiments and the top view in the real-world ex-
periments. Unless otherwise stated, we adopt a three-step
planning scheme (predicting a final goal and two interme-
diate subgoals) of LBP and set the planning coefficient
λ = 0.5. Ablation studies on key framework designs and
different choices of λ are provided in Section 5.3.

LIBERO-LONG experiments. LIBERO-LONG (Liu
et al., 2024) consists of 10 distinct long-horizon robotic
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Table 1. LIBERO-LONG results. For each task, we present the average performance of top-3 checkpoints. The metric “Avg. Success”
measures the average success rate across 10 tasks. LBP outperforms baselines with higher Avg. Success and better results on most tasks.
The best results are bolded. LIBERO-LONG tasks include: (1) put soup and sauce in basket; (2) put box and butter in basket; (3) turn on
stove and put pot; (4) put bowl in drawer and close it; (5) put mugs on left and right plates; (6) pick book and place it in back; (7) put mug
on plate and put pudding to right; (8) put soup and box in basket; (9) put both pots on stove; (10) put mug in microwave and close it.

Method
Task ID 1 2 3 4 5 6 7 8 9 10 Avg. Suc ↑

MTACT 0.00 50.0 75.0 85.0 20.0 75.0 0.00 30.0 10.0 65.0 41.0
MVP 78.3 90.0 80.0 88.3 46.6 63.3 45.0 83.3 60.0 46.6 68.2
MPI 86.6 86.6 96.6 95.0 83.3 83.3 56.6 66.6 40.0 78.3 77.3

OpenVLA 45.0 95.0 65.0 45.0 40.0 80.0 60.0 35.0 20.0 55.0 54.0
Seer 88.3 90.0 91.6 81.6 85.0 65.0 86.6 80.0 51.6 66.6 78.6

SuSIE† 83.3 63.3 96.6 100.0 83.3 83.3 83.3 39.9 53.3 76.6 76.3
LBPSigLIP 86.6 100.0 93.3 100.0 63.3 73.3 86.6 80.0 73.3 93.3 85.0

LBPDecisionNCE 90.0 100.0 100.0 100.0 76.6 86.6 90.0 86.6 60.0 96.6 88.6

† Since the original SuSIE only supports single-view input, we incorporate a wrist view to reproduce it for fair comparison.

manipulation tasks that require diverse skills such as pick-
ing up objects, turning on a stove, and closing a microwave.
These tasks involve multi-stage decision-making and span a
variety of scenarios, making them particularly challenging.
All models are trained on 50 unique expert demonstrations
for each task. More details of LIBERO-LONG benchmark
are provided in Appendix B.

Real-world experiments. To investigate the effectiveness
of LBP in real world, we specifically design four long-
horizon tasks: Stack 3 cups, Move cups, Stack 4 cups and
Shift cups. Each task is decomposed into multiple sequential
stages, as illustrated in Figure 3, requiring the robot to per-
form fundamental pick-and-place operations. These tasks
establish a critical dependency where progress in subsequent
stages is contingent on successful execution of preceding
ones. We assess task performance using a stage-based scor-
ing system with discrete values {0, 25, 50, 75, 100} for
each stage, where each score corresponds to the completion
progress of the current stage. A stage is assigned 100 only
upon successful completion of the entire stage. All exper-
imental evaluations are conducted with a 6 DoF AIRBOT
robotic arm, together with three different views provided
by Logitech C922PRO cameras. The overall environmen-
tal setups and task illustrations are shown in Figure 3. All
models are trained using 200 expert demonstrations for the
task Move cups and Shift cups, and a total of 200 expert
demonstrations for Stack 3 cups and Stack 4 cups. More
details of experimental setups can refer to Appendix C.

Baselines. For the LIBERO-LONG benchmark, we im-
plement the multi-task policy MTACT (Zhao et al., 2023),
the general image-based pre-trained policy MVP (Xiao
et al., 2022), the interaction-oriented representation learn-
ing method MPI (Zeng et al., 2024), large-scale pretrained

vision-language-action policy OpenVLA (Kim et al., 2024),
an image-editing based subgoal planner SuSIE (Black et al.,
2024), and the end-to-end predictive inverse dynamics
model Seer (Tian et al., 2025). For real-world experiments,
we compare LBP with SuSIE, one of the most competitive
methods against LBP in the LIBERO-LONG benchmark.
Also, we deploy vanilla Language Conditioned Behavior
Cloning (LCBC) and Goal-and-Language Conditioned Be-
havior Cloning (GLCBC) for comprehensive comparison.

Metrics for long-horizon multi-stage tasks. Following
Seer (Tian et al., 2025), we evaluate model performance on
the LIBERO-LONG benchmark by averaging the results of
the top three checkpoints, each evaluated over 10 rollouts
per task. For real-world experiments, we evaluate the last
three checkpoints, with each checkpoint being tested across
10 rollouts per task to provide an average score at each stage,
offering a thorough evaluation of long-horizon capabilities.
Since each task consists of multiple stages, we design a fine-
grained scoring system to evaluate performance at the stage
level. Specifically, a score of 25 is awarded when the robot
shows clear intent to approach the correct target object. If
the target is successfully picked up, the score increases to
50. Carrying the object toward the correct destination yields
75 points, and placing it successfully at the desired location
results in a full score of 100. For multi-stage tasks, we
enforce a strict rule: the robot can proceed to the next stage
only if the current stage achieves a full 100 points. This rule
makes our real-robot experiments a rigorous benchmark for
evaluating long-horizon capability.

5.2. Main Results

Simulation Experiment Results. Table 1 presents the
quantitative comparison on the LIBERO-LONG benchmark.
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(2) Stack 
cups

Stage I Stage II

Stage I Stage II Stage III

(1) Move 
cups

(3) Shift 
cups

Top view

Wrist view

Front view

6 DoF 
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Figure 3. Left: the entire desktop environment setups of real-world experiments contains a 6 DoF AIRBOT arm and three Logitech
C922PRO cameras with different views; Right: (1) Move cups: move both brown cups in front of the white ones; (2) Stack cups: stack all
paper cups together; (3) Shift cups: shift all the paper cups to another plate, in a clockwise direction.
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Figure 4. Real-world main results. We evaluate LCBC, GLCBC, SuSIE and LBP in aforementioned 4 tasks. The metric ”Avg. Score”
measures the average score for each stage. We observe that while LBP slightly outperforms other strong baselines at the early stages, LBP
wins by a fairly large margin at the final stages of all tasks. This shows LBP significantly excels in handling long-horizon tasks.

LBP outperforms all baselines, achieving higher success
rates across the majority of tasks. Specifically, LBP at-
tains an average success rate of 85.0% in SigLIP (Zhai
et al., 2023) latent space and 88.6% in DecisionNCE (Li
et al., 2024) latent space, demonstrating its flexibility in
leveraging different latent representations. Compared to
SuSIE and Seer, which rely on heavy generative models
for high-level planning, LBP demonstrates that lightweight
MLPs can achieve comparable or even better performance
in long-horizon tasks. This improvement stems from the
backward planning paradigm adopted in LBP, which main-
tains long-horizon consistency by recursively generating
subgoals that preserve alignment with the final objective,
ultimately enhancing both overall performance and compu-
tational efficiency on long-horizon multi-stage tasks.

Real-world experiment results. In Figure 4, we present
the quantitative comparison on the real-world AIRBOT
tasks. LBP consistently achieves the best performance at
each stage in long-horizon tasks. Notably, in the early stages,
the performance gap between different methods is relatively
small. However, as the task progresses, other methods strug-
gle due to insufficient and inconsistent guidance, leading to
failures in later stages, whereas LBP maintains strong per-

formance throughout. The results also show that GLCBC
sometimes initially outperforms LCBC by incorporating
additional visual goal features but suffers a sharp decline
in later stages. This drop is likely due to misalignment
between the given final goals and current states, which mis-
guides the policy in long-horizon tasks, highlighting the
importance of dynamically predicting the final latent goal in
LBP. Additionally, we observe that SuSIE often generates
hallucinated and incorrect subgoal images that confuse the
low-level policy. While this issue may be less pronounced
in relatively deterministic simulation environments, it sig-
nificantly impacts performance in real-world settings with
inherently complex disturbances and stochasticity. In con-
trast, LBP enables easy prediction and efficient planning in
latent space with its backward philosophy.

Comparison to the forward paradigm. To evaluate the
effectiveness of the backward planning paradigm, we com-
pare it with the conventional forward planning, with both
using the same hyperparameter configurations to ensure a
fair comparison. Specifically, the forward planner predicts
the subgoal 10 steps ahead at each iteration, autoregressively
generating the entire subgoal sequence. We randomly sam-
ple 3,000 data points representing the current state from

7
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Figure 5. Mean Squared Errors (MSE) between predicted subgoals and corresponding ground truths under forward and backward
paradigm.

Table 2. Ablations on different hyperparameter choices of LBP on
LIBERO-LONG.

λ (Sub)Goals Avg. Suc ↑
- - 77.3
- zg 83.3

0.5 zg, w1 85.6
0.5 zg, w1, w2 88.6
0.5 zg, w1, w2, w3 83.0
0.75 zg, w1 84.6
0.75 zg, w1, w2 85.0
0.75 zg, w1, w2, w3 84.0

our real-robot datasets and compute the mean squared error
(MSE) between the predicted subgoals and their correspond-
ing ground truths. The results are visualized in Figure 5,
with normalized task progress shown on the x-axis.

We observe that the compounding errors of forward plan-
ning increase rapidly across all tasks. In particular, for
the most challenging task, Shift Cups, the prediction error
becomes unacceptably large when predicting distant sub-
goals. This issue is further exacerbated in approaches that
attempt to predict continuous future image frames, where
compounding errors can be even more severe. In contrast,
our backward planning method maintains consistently low
error across the entire planning horizon. These results high-
light the advantages of our approach, which enables both
efficient and accurate subgoal prediction.

5.3. Ablation Studies

In this section, we conduct ablation studies to evaluate the
impact of different design choices of LBP on long-horizon
performance. All models adopt DecisionNCE latent space
and are tested on LIBERO-LONG.

Ablation on key hyperparameters. We perform an ab-
lation study on two key hyperparameters: planning steps
and the recursive planning coefficient λ in Table 2. We
test different numbers of planning steps, where more steps

Table 3. Ablations on key design components of LBP on LIBERO-
LONG.

Variant Avg. Suc ↑
Effectiveness of

the planner
w/o planner 77.3

ours 88.6
The strategy

of goal-fusion
average pooling 79.0

ours 88.6

correspond to predicting more subgoals. Additionally, we
vary the planning coefficient λ, which controls the temporal
sparsity of the subgoal sequence—larger values result in
more densely packed subgoals, closer to the final goal. The
main findings are: (1) Without grounding the task objective
in the latent visual goal zg , the approach reduces to LCBC,
achieving an average success rate of 77.3%. When zg is
provided as additional context, the variant shows a signifi-
cant improvement of 6.0%, demonstrating the effectiveness
of leveraging the visual goal. (2) Adding subgoals w as
additional contexts leads to an obvious performance im-
provement since it provides downstream policy with more
about the future, but it is unnecessary to predict a large
number of subgoals to achieve optimal results. This reflects
the efficiency of our approach—unlike many planning meth-
ods that rely on generating numerous continuous waypoints,
our method achieves high performance with fewer subgoals.
This advantage likely arises from the backward planning
philosophy of LBP, where subgoals are predicted recursively
in reverse from the final goal, providing efficient yet relevant
planning information closely aligned with task progression.
(3) We test λ with 0.5 and 0.75, observing that LBP is robust
and relatively insensitive to this hyperparameter choice.

Ablation on key architectural components. We ablate
the impact of the LBP planner and goal-fusion strategy, with
results presented in Table 3. Removing the planner and re-
lying solely on the low-level policy reduces the model to
LCBC, resulting in a 11.3% performance drop, underscor-
ing the necessity of subgoals predicted by LBP. Besides,
replacing our goal-fusion strategy with simple average pool-
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ing causes a 9.6% decline in performance, showing that
naively compressing subgoals across different horizons un-
dermines the low-level policy. This highlights the role of our
goal-fusion strategy in adaptively leveraging subgoals at dif-
ferent distances in a way that effectively enhances planning
performance.

6. Conclusion and Future Direction
We present LBP, a novel and efficient robotic planning
framework that features backward planning in the latent
space to break the critical trilemma among planning effi-
ciency, long-horizon temporal consistency, and prediction
accuracy. By leveraging visual latent space for planning,
LBP achieves computational efficiency while maintaining
sufficient information to capture task progression. More-
over, by adopting the recursive “coarse-to-fine” backward
prediction paradigm, LBP fundamentally mitigates the com-
pounding prediction errors inherent in traditional forward
planning approaches, particularly addressing the challenges
of off-task prediction in long-horizon scenarios. Exten-
sive evaluations across diverse simulated and real-world
environments, including complex long-horizon and multi-
stage robotic tasks, consistently demonstrate LBP’s supe-
rior performance and robustness. One promising research
direction is the integration of advanced subgoal selection
mechanisms, such as key-frame detection methods, to en-
hance the identification of informative subgoals. Another is
the incorporation of more sophisticated robotic encoders to
construct better-structured latent spaces for more efficient
and accurate planning.
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A. Implementation Details
LBP (Ours). For high-level planner, we implement the goal predictor fg and the subgoal predictor fw using two-layer
MLPs and employ two cross-attention blocks to realize the goal-fusion attention model. We employ DecisionNCE (Li et al.,
2024) and SigLIP (Zhai et al., 2023) as frozen encoders to project language instructions and images to latent space.

For the low-level policy, we use a shared ResNet-34 (He et al., 2016) as the backbone to extract visual features from all
camera view images, where the language embeddings are injected via FiLM conditioning layers (Perez et al., 2018b). The
visual features, goal-fused feature, and current proprioception are then concatenated and fed into a residual MLP (Hansen-
Estruch et al., 2023) to generate actions. The policy is optimized with diffusion loss to model complex distributions (Chi
et al., 2023), with the denoising step fixed at 25. We employ action chunking with a fixed length of 6 and utilize an
exponential weighting scheme to ensemble overlapping action sequences, following (Zhao et al., 2023).

For training the high-level planner, we use a batch size of 64 and train for 100k steps with the AdamW optimizer. For the
low-level policy on LIBERO-LONG, we set the batch size to 64 and train for 200k steps. In the case of the low-level policy
for real-world robot experiments, we increase the batch size to 128 and train for 400k steps.

SuSIE (Black et al., 2024). The high-level image-editing diffusion model is trained on video data using four A6000 GPUs.
We utilize the official codebase with minimal modifications, altering only the datasets. For simulation experiments, we
fine-tune the released SuSIE checkpoint on the LIBERO dataset. In the real-robot experiments, we fine-tune the checkpoint
exclusively with collected data on Airbot. Regarding the low-level policy, we adopt the same model architecture with
the policy model of LBP, while adopting a channel-wise concatenation of subgoal images and current images as inputs.
Additionally, language instructions are removed to maintain consistency with the downstream training in SuSIE.

LCBC. We implement it by directly removing our high-level planner from the architecture of LBP. The language is
projected to the latent space by CLIP (Radford et al., 2021), and images are projected by a ResNet-34 (He et al., 2016), then
the semantic features are captured by a FiLM (Perez et al., 2018b) module. The low-level policy takes in these semantics,
together with current proprioception, and then outputs a predicted diffusion noise.

GLCBC. The only difference between GLCBC and LCBC is the part before entering the FiLM module: we choose a
predefined image as the final goal and then project it to a latent space with DecisionNCE image encoder (Li et al., 2024).
We concatenate the language embeddings with the final goal image embeddings, then incorporate them as inputs into the
FiLM module.

Others. For LIBERO-LONG benchmark, since our experimental settings and evaluation metrics are the same with Seer,
we obtain the scores of MTACT, MVP, MPI, OpenVLA and Seer from the original paper (Tian et al., 2025).

B. LIBERO-LONG Benchmark Details
We follow (Kim et al., 2024) to re-render the images at a resolution of 256×256. The detailed language instructions and
average demonstration lengths for each task of LIBERO-LONG is shown in Table 4.

C. Real-Robot Experiment Details
We collect 200 expert demonstrations each for tasks Move cups, Stack 3 cups, Stack 4 cups and Shift cups. To enhance the
robustness of model trained on this dataset, we manually add some augmentation techniques (Table 5), including Distractor
augmentation, Target augmentation, Background augmentation and View augmentation. Examples from the side view can
be seen at Table 6. View augmentation always exsits because the side view camera is not a fixed-position view. Distractor
augmentation means placing various unrelated distractor objects on the table. Target augmentation refers to replacing
the target objects with different ones of this type, i.e., replacing paper cups with cups of different materials. Background
augmentation is placing tablecloths with various colors above the clean white table.

D. Additional Results
Numerical results. Except for the visualized results of real-robot experiments in Figure 4, we also present the numerical
results of each stage for each task in Table 7-10.
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Table 4. Language instructions and average lengths of LIBERO-LONG.

Task
ID

Task
name

Language
instruction

Average demonstration
length (frames)

1 put soup and
sauce in basket

put both the alphabet soup
and the tomato sauce in the basket 294

2 put box and
butter in basket

put both the cream cheese
box and the butter in the basket 260

3 turn on stove
and put pot

turn on the stove and
put the moka pot on it 266

4 put bowl in
drawer and close it

put the black bowl in the bottom
drawer of the cabinet and close it 249

5 put mugs on
left and right plates

put the white mug on the
left plate and put the yellow

and white mug on the right plate
258

6 pick book and
place it in back

pick up the book and place it in
the back compartment of the caddy 189

7 put mug on plate and
put pudding to right

put the white mug on
the plate and put the chocolate
pudding to the right of the plate

255

8 put soup and
box in basket

put both the alphabet soup and
the cream cheese box in the basket 270

9 put both
pots on stove

put both moka
pots on the stove 416

10 put mug in
microwave and close it

put the yellow and white
mug in the microwave and close it 305

Table 5. Dataset settings of real robot experiments.
Task
name

Language
instruction

w/ distractor
augmentation?

w/ view
augmentation?

w/ target
augmentation?

w/ background
augmentation?

Move cups
first put the right brown cup in front

of the right white cup then put the left
brown cup in front of the left white cup

✓ ✓

Stack 3/4 cups stack the paper cups ✓ ✓

Shift cups move each cup to a new
position in a clockwise direction ✓ ✓ ✓ ✓

Generalization experiment. We test LBP on the longest real-world task (Shift Cups) with different backgrounds and
distractor objects, where we find that LBP maintains robust performance in these complex scenarios, still outperforming the
strongest baseline LCBC in base setting. The numerical results are present in Table 11.

Comparison to the parallel planning paradigm. To evaluate the effectiveness of the backward planning paradigm, we
further compare it with the parallel planning paradigm (Janner et al., 2022; Ajay et al., 2023), with both using the same
hyperparameter configurations with LBP to ensure a fair comparison. Specifically, the parallel planner predicts all subgoals
simultaneously in a single batch at each execution step. We randomly sample 3,000 data points representing the current
state from our real-robot datasets and compute the mean squared error (MSE) between the predicted subgoals and their
corresponding ground truths. The results are visualized in Figure 6, with normalized task progress shown on the x-axis.

We observe that although parallel planning avoids error accumulation by predicting all subgoals simultaneously, it suffers
from consistently inaccurate predictions across the entire planning horizon. This limitation can be attributed to the difficulty
of the training objective, which requires simultaneous supervision of all subgoals. Such an approach demands greater
model capacity and incurs significantly higher computational costs. In contrast, our backward planning method maintains
consistently low prediction error across the entire planning horizon. These results highlight the advantages of our approach,
which enables both efficient and accurate subgoal prediction.
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Table 6. Demonstrations of augmentation techniques.

Augmentation metrics Examples

Distractor augmentation

Target augmentation

Background augmentation

Table 7. Numerical results of task: Stack 3 cups.

Method Stage I Stage II Avg. Score ↑

LCBC 94.1 63.3 78.7

GLCBC 95.0 74.1 84.6

SuSIE 83.3 37.5 60.4

LBP 94.1 75.0 84.6

Table 8. Numerical results of task: Move cups.

Method Stage I Stage II Avg. Score ↑

LCBC 84.1 36.6 60.4

GLCBC 85.8 40.0 62.9

SuSIE 71.6 20.8 46.2

LBP 90.0 65.8 77.9

Table 9. Numerical results of task: Stack 4 cups.

Method Stage I Stage II Stage III Avg. Score ↑

LCBC 90.8 62.5 11.6 55.0

GLCBC 82.5 48.3 5.8 45.5

SuSIE 75.0 37.5 15.0 42.5

LBP 96.6 77.5 43.3 72.5
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Figure 6. Mean Squared Errors (MSE) between predicted subgoals and corresponding ground truths in parallel, forward and backward
planning.

Table 10. Numerical results of task: Shift cups.

Method Stage I Stage II Stage III Stage IV Stage V Avg. Score ↑

LCBC 85.0 55.0 48.3 20.8 0.0 41.8

GLCBC 89.1 75.8 15.8 0.0 0.0 36.1

SuSIE 78.3 10.0 0.0 0.0 0.0 17.7

LBP 97.5 87.5 74.1 50.0 26.6 67.1

Table 11. Numerical results of generalization experiment on Shift cups.

Method Stage I Stage II Stage III Stage IV Stage V Avg. Score ↑

LCBC (Base setting) 85.0 55.0 48.3 20.8 0.0 41.8

LBP (Distracting objects) 87.5 75.8 48.3 35.0 9.0 51.1

LBP (Different backgrounds) 91.6 84.1 55.8 37.5 13.3 56.4

LBP (Base setting) 97.5 87.5 74.1 50.0 26.6 67.1
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