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Abstract

Deploying large language models (LLMs) in edge-
cloud environments requires an efficient routing
strategy to balance cost and response quality.
Traditional approaches prioritize either human-
preference data or accuracy metrics from bench-
mark datasets as routing criteria, but these meth-
ods suffer from rigidity and subjectivity. More-
over, existing routing frameworks primarily focus
on accuracy and cost, neglecting response qual-
ity from a human preference perspective. In this
work, we propose the Confidence-Driven LLM
Router, a novel framework that leverages uncer-
tainty estimation to optimize routing decisions.
To comprehensively assess routing performance,
we evaluate both system cost efficiency and re-
sponse quality. In particular, we introduce the
novel use of LLM-as-a-Judge to simulate human
rating preferences, providing the first systematic
assessment of response quality across different
routing strategies. Extensive experiments on MT-
Bench, GSM8K, and MMLU demonstrate that
our approach outperforms state-of-the-art rout-
ing methods, achieving superior response quality
while maintaining cost efficiency.

1. Introduction
The deployment of AI models on edge devices is increas-
ingly following a hybrid approach, where small language
models (SLMs) run on-device (e.g., smartphones and IoT
devices) while larger, more powerful models remain in the
cloud (Apple, 2024). This setup provides a balance between
efficiency and performance, allowing low-latency responses
for simple queries while reserving cloud-based LLMs for
more complex tasks. However, determining when to of-
fload queries to the cloud is a crucial challenge: calling
the cloud unnecessarily increases cost and latency, whereas
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Figure 1. Performance of human preference-based router with vary-
ing training sample sizes. Routing efficiency even becomes worse
as the number of training samples increases, indicating that addi-
tional data does not necessarily improve performance.

over-relying on local SLMs risks suboptimal response qual-
ity. An effective routing strategy is essential to dynamically
balance cost and performance.

Traditional cascading routers, which sequentially query
models until a satisfactory response is obtained (Chen
et al., 2023), are inefficient for edge-cloud settings due
to latency and redundant model calls. Recent predic-
tive routing approaches aim to preemptively select the
best model for a given query, with two leading solutions:
TO-Router (Stripelis et al., 2024), which trains router on
accuracy-based benchmarks and RouteLLM (Ong et al.,
2024), which relies on human preference selection.

While human preference data and benchmark accuracy are
commonly used as performance indicators in router train-
ing, our results reveal two major limitations that hinder data
efficiency and system utilization. First, human judgment
is not always reliable. User ratings are subjective and in-
consistent, often failing to provide an accurate ranking of
model performance. Also, collecting human-preference data
is resource-intensive, requiring manual evaluation of each
sample on a case-by-case basis. These issues are particu-
larly evident in the arena dataset (Chiang et al., 2024), where
the distribution of preference data across models is sparse
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and uneven, complicating router training. Empirically, we
demonstrate that arena data does not follow a scaling law
to validate our argument. As shown in Figure 1, increasing
the dataset size does not necessarily improve routing per-
formance. Instead, adding more data can introduce noise
and inconsistencies, potentially degrading routing accuracy
rather than enhancing it.

Second, accuracy is an incomplete indicator. Using accu-
racy as a performance indicator can miss essential nuances
in model responses. For the same query, two models may
provide correct answers labeled as a “tie” based solely on ac-
curacy. However, one answer may be superior; for example,
Response B is more precise and confident than Response
A, even though both are technically correct. Additionally,
there are cases where neither model provides an entirely
correct answer, yet one response is closer to the desired
output. Because accuracy-based routers rely strictly on bi-
nary correctness labels, they fail to capture these qualitative
differences in response quality. In practice, we observe that
models often either both perform well or both fail on a query.
Consequently, routers trained on accuracy alone struggle to
reliably distinguish between models when one significantly
outperforms the other in non-binary ways.

To address the limitations of state-of-the-art methods, we
propose the Confidence-Driven LLM Router System,
which leverages Semantic Entropy (SE) as an uncertainty
measure to guide routing decisions. Instead of relying on
human preferences or accuracy-based thresholds, our sys-
tem uses semantic entropy to measure model confidence.
This enables the router to offload queries to cloud-based
LLMs when higher certainty is needed, which keeps confi-
dent responses on-device to minimize cost. As the motiva-
tional example shown in Figure 2, by adopting uncertainty
as a routing signal, our approach dynamically optimizes
response quality and computational efficiency, making it
better suited for real-world edge-cloud deployments com-
pared to the state-of-the-art solutions, such as TO-Router
and RouteLLM.

To validate our approach, we conduct comprehensive com-
parisons with state-of-the-art routing methods across di-
verse benchmark datasets, including MT-Bench (Zheng
et al., 2023), GSM8K (Cobbe et al., 2021), and
MMLU (Hendrycks et al., 2020). These evaluations demon-
strate that the proposed Confidence-Driven LLM Router
achieves superior trade-offs between response quality and
cost efficiency. Furthermore, we introduce LLM-as-a-Judge
as an evaluation protocol that simulates human preferences,
offering a more human-centric assessment of response
quality beyond traditional accuracy-based metrics. Our
method consistently outperforms strong baselines such as
RouteLLM and TO-Router, both in system efficiency and
human-aligned response quality.

Figure 2. Routing performance/cost trade-off between strong
model (GPT-4) and weak model (Mixtral-8x7B). All routers shown,
except the random router, use the same kNN-based model archi-
tecture.

2. Related Works
Existing LLM routing methods could be categorized into
two groups based on the type of data used to train the router:
those based on accuracy labels and those based on human
preference data. The first group relies on accuracy-based
supervision, using correctness from benchmark datasets
as routing signals. TO-Router (Stripelis et al., 2024)
adopts a predictive router trained on model accuracy to
select the most capable model per query. RouterDC (Chen
et al., 2024) introduces a dual-contrastive loss to enhance
query-model alignment under the same accuracy labels.
GraphRouter (Feng et al., 2024) models the routing process
as a heterogeneous graph and predicts routing decisions via
edge classification. While these methods differ architec-
turally, they all operate under the same assumption: routing
data is derived from benchmark accuracy. None of them
revisits the supervisory signal used to define routing quality.

The second group uses human preference data. For instance,
RouteLLM (Ong et al., 2024) trains the router on pairwise
comparisons from human annotators, typically collected
from chatbot arenas. While this improves alignment with
user preferences, it introduces subjectivity and noise, and the
scalability of human annotation remains limited. In contrast
to prior works, we introduce a new training signal derived
from model uncertainty, which provides a more informative
and scalable alternative to accuracy or preference-based
supervision.

To the best of our knowledge, Hybrid LLM (Ding et al.) is
the only previous method that explicitly incorporates uncer-
tainty into routing. However, it does not adopt standard un-
certainty estimation techniques (Bakman et al., 2024; Yaldiz
et al., 2024). Instead, it defines uncertainty as the response
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quality gap between a strong and a weak model, making
the signal model pair and prompt dependent, rather than an
intrinsic model-specific confidence measure. In contrast,
our method uses semantic entropy, providing a principled,
model-aware, and query-specific uncertainty score that is
directly usable for scalable, modular router training. Hybrid
LLM also replaces hard routing labels with BART-based
soft scores, which are sensitive to fluency and style rather
than grounded semantic correctness. Our method relies
on clustering and bidirectional entailment, yielding a more
reliable uncertainty signal aligned with semantic fidelity.

3. Method
3.1. Overview

Inspired by prior work (Kuhn et al., 2023; Bakman et al.,
2024), we quantify uncertainty in natural language gen-
eration based on semantic content rather than token-level
variations, using it as a performance indicator for training
the router.

SE (Kuhn et al., 2023) captures uncertainty by clustering
generated outputs with equivalent meanings and computing
entropy over their aggregated probabilities. Unlike tradi-
tional entropy, which treats all token sequences distinctly,
SE accounts for semantic equivalence, ensuring paraphrases
contribute to the same uncertainty estimate. A lower SE
score indicates higher confidence, while a higher score sig-
nals greater uncertainty.

Formally, we define the probability of a meaning cluster c
given an input prompt x as:

p(c|x) =
∑
s,x∈c

p(s|x). (1)

The semantic entropy of x is then computed as:

SE(x) = − 1

|C|

|C|∑
i=1

log p(Ci|x), (2)

where C represents the set of all clusters.

3.2. System Design of the Confidence-Driven LLM
Router

The training and deployment of the Confidence-Driven LLM
Router consist of three key phases:

Phase 1: Router Data Preparation. To create a train-
ing dataset that reflects real deployment scenarios, we se-
lect factual-related datasets, such as Natural QA and Trivia
QA, to probe model confidence and knowledge capabilities.
Additionally, domain-specific instruction datasets can be
incorporated to tailor the router to specialized applications.

Clustering generated outputs is a critical preprocessing step
before computing SE. In this work, we adopt a bidirectional
entailment mechanism following the previous work (Kuhn
et al., 2023). The first generated response initializes a clus-
ter. For each subsequent response, a semantic entailment
classifier, fine-tuned on DeBERTa-large model (He et al.,
2020), evaluates bidirectional entailment between the re-
sponse and the current cluster representative. If both forward
and backward entailments hold, the response is assigned
to the existing cluster; otherwise, a new cluster is formed.
This bidirectional criterion ensures that only semantically
equivalent responses are grouped, allowing the number of
clusters to be dynamically determined based on meaning
variations among generated outputs.

Phase 2: Constructing Preference Data from Semantic
Entropy Scores. In the second phase, we create preference
data by comparing the SE scores across models for each
unique prompt. Although no two SE values are exactly
the same, some prompts yield similar performance between
models, which we denote as a “tie” case. To identify ties, we
treat cases with close uncertainty levels as equivalent, where
neither model is a clear winner. To quantify the relative
difference in uncertainty, we compute the normalized SE
difference between the two models as:

δSE(x) =

∣∣∣∣SEstrong(x)− SEweak(x)

SEstrong(x)

∣∣∣∣ (3)

SEstrong(x) represents the high-cost model, and SEweak(x)
represents the low-cost model. Using this metric, we deter-
mine the preferred model as:

Winner =

{
argmin

M
SE(M,x) if δSE(x) > τ,

Tie otherwise.
(4)

The predefined threshold τ controls sensitivity to uncer-
tainty differences. If δSE(x) exceeds the predefined τ , the
uncertainties are considered sufficiently distinct, and the
model with the lower semantic entropy is designated as the
preferred model. Otherwise, we consider both models equal
in performance for the given prompt.

A higher τ enforces stricter distinctions, aligning the pref-
erence data more closely with traditional accuracy-based
evaluations. Conversely, a lower τ increases sensitivity to
subtle linguistic variations in model responses. By tuning τ ,
we balance robustness with linguistic granularity.

Phase 3: Training the Confidence-Driven Router. Af-
ter generating the SE-based preference data in Phase 2,
we format each training sample as follows: {id, model a,
model b, prompt, response a, response b, winner model
a, winner model b, winner tie}. In the last three columns,
we use binary values (0 or 1) to represent the routing out-
comes. For instance, if model a is the preferred model, then
winner model a is set to 1, while winner model b
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and winner tie are set to 0. The dataset used in this
study is now publicly available on Huggingface 1. Once
the dataset is prepared, we transform the instruction records
into vectorized representations using the pre-trained embed-
ding model, which serves as inputs for training the router
classifiers.

4. Evaluation
4.1. Experimental Methodology

4.1.1. TASKS AND DATASETS

We use GPT-4 as the strong model and Mixtral-8x7B as the
weaker model to ensure consistency and fair comparison
with previous works (Ong et al., 2024). We also provide an
additional experiment that takes GPT-4 and Qwen2-1.5B-
Instruct (Yang et al., 2024) as a model pair to simulate a
realistic edge-cloud deployment scenario.

The Confidence-Driven Router is trained with a combination
of Natural QA (Kwiatkowski et al., 2019; Lee et al., 2019),
Trivia QA (Joshi et al., 2017), PopQA (Mallen et al., 2022),
and MAWPS (Koncel-Kedziorski et al., 2016) datasets to en-
sure a knowledge space. We choose them to reflect the types
of queries that appear in real-world, open-ended generation
settings. We want to use this combination to compare the
human preference data that RouteLLM collected for their
training. We randomly selected 3,610 samples from each
QA dataset and 1,418 samples from the MAWPS dataset, re-
sulting in 12,247 samples, matching the quantity as Chatbot
Arena dataset (Chiang et al., 2024) for RouteLLM training.

To comprehensively evaluate the routing systems, we select
a diverse set of benchmark datasets: the MMLU (Hendrycks
et al., 2020) dataset, consisting of 14,042 questions across 57
subjects; the MT-Bench dataset (Zheng et al., 2023), which
includes 160 open-ended questions assessed using the LLM-
as-a-judge approach; and the GSM8K dataset (Cobbe et al.,
2021), containing over 1,000 grade-school math problems.
These datasets provide a broad evaluation across varied
question types and subject domains. More details related to
the datasets are listed in the Appendix A.1.

4.1.2. ROUTING ARCHITECTURES

We select four different predictive routing methods in our
evaluation. To match the hardware constraints on edge com-
puting, we purposely select the lightweight routing architec-
tures in our experiments. Now, we describe our approach
for learning the win prediction model P (winMstrong | q).
We represent a sample from our dataset D as (q,Mw,Ml),
where Mw and Ml denote the winning and losing models,
respectively.

1The training dataset would be available when the paper is
public.

Similarity-Weighted (SW) Ranking. Same as RouteLLM
(Ong et al., 2024), we adopt a Bradley-Terry (BT) model
(Bradley & Terry, 1952) for this routing task. Given an input
query q, we compute a weight ωi for each query qi in the
training set based on its similarity to q, as follows:

ωi = γ1+S(q,qi), (5)

where γ is a scaling factor which is 10 in our case, and
S(q, qi) represents the similarity between queries q and qi,
defined as:

S(q, qi) =
ϵ · ϵi

∥ϵ∥∥ϵi∥ ·max1≤s≤|D|

(
ϵi·ϵs

∥ϵi∥∥ϵs∥

) , (6)

with ϵ denoting a query embedding. The BT coefficients ξ
are then learned by solving:

argmin
ξ

|D|∑
i=1

ωi · ℓ
(
li,

1

1 + eξwi
−ξli

)
, (7)

where ℓ is the binary cross-entropy loss.

The learned BT coefficients allow us to estimate the win
probability given query q as:

P (winMw
| q) = 1

1 + eξw−ξl
. (8)

This routing model does not require additional training, and
the optimization is performed at inference time.

Matrix Factorization. Inspired by the RouteLLM approach
(Ong et al., 2024; Koren et al., 2009), we leverage matrix
factorization as one of our routing models. The objective
is to uncover a latent scoring function s : M × Q → R
that assesses the quality of the model Mw’s response to a
given query q. Specifically, if model Mw performs better
than Ml on query q, then s(Mw, q) > s(Ml, q). We encode
this preference by modeling the win probability using a
Bradley-Terry (BT) relationship (Bradley & Terry, 1952):

P (winMw
| q) = σ(s(Mw, q)− s(Ml, q)), (9)

where σ is the sigmoid function, and s is a bilinear function
of the model and query embeddings. This approach effec-
tively performs matrix factorization over the score matrix
on the set Q×M.

Multilayer Perceptron (MLP). For the MLP routing, we
utilize a 2-layer multilayer perceptron (MLP) architecture.
The output yk for the MLP-Router is given by:

P (winMw | q) = φ

(
m∑

j=1

w
(2)
jk ReLU

( n∑
i=1

w
(1)
ij ϵi + b

(1)
j

)
+ b

(2)
k

)
(10)

where φ represents the softmax activation function in the
output layer and ϵ denoting a query embedding.
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Table 1. System Performance Comparison of Routing Systems on test datasets with GPT-4 and Mixtral-8x7B as model pair. A low CPT
value indicates a cost-effective routing strategy. Bold highlight the best performance, and underlined denote the second-best.

MT-Bench GSM8K MMLU

Routing Method CPT(50%) CPT(80%) CPT(50%) CPT(80%) CPT(50%) CPT(80%)

Random 51.29 78.55 48.79 80.16 50.04 79.32

TO-Router kNN 59.72 90.39 47.93 79.03 43.73 77.74
MLP 49.15 86.67 51.03 77.77 44.01 77.43

RouteLLM SW 56.08 78.37 46.03 79.58 47.41 74.23
MF 55.59 84.12 49.07 80.09 58.55 83.68

Confidence-Driven
LLM Router

SW 27.31 55.61 48.03 80.41 37.96 73.85
MF 42.94 63.53 41.89 75.34 50.06 78.38
kNN 60.84 81.50 44.08 76.32 42.70 75.28
MLP 35.54 74.92 50.04 79.79 57.07 83.27

k-Nearest Neighbors (kNN). The k-Nearest Neighbors
router represents all training queries qi with an embedding
ϵi. For each test query q, with embedding ϵ, we identify the
closest training query q′ by finding the query in the training
set with the highest cosine similarity to ϵ:

i = argmin
1≤i≤|D|

(
ϵi · ϵ

∥ϵi∥∥ϵ∥

)
. (11)

q′ = qi (12)

After identifying the nearest query q′, the router decides on
the winner model based on the performance of the winner
model associated with q′. This method leverages the simi-
larity between the test query and training queries to select
the most suitable expert dynamically.

4.1.3. BASELINE SELECTION

We select RouteLLM (Ong et al., 2024) and TO-
Router (Stripelis et al., 2024), two state-of-the-art predictive
routing systems. Following their original configurations,
we evaluate TO-Router using kNN and MLP architectures,
while RouteLLM is assessed using SW ranking and MF
models. We also include a random router without any train-
ing as a baseline for comparison.

4.1.4. EVALUATION CRITERIA

We evaluate performance based on two key criteria: system
cost and response quality.

To evaluate system cost, we adopt the Call-Performance
Threshold (CPT) metric from prior work (Ong et al., 2024).
CPT(x%) represents the minimum fraction of queries that
must be routed to the stronger model to achieve an x% im-
provement over the baseline accuracy of the weaker model.
For example, CPT(50%) specifies the proportion of calls re-
quired to the strong model to attain a 50% improvement over
the weak model’s baseline accuracy. A lower CPT value

indicates a more cost-effective routing strategy, achieving
performance gains with fewer calls to the stronger model.

To evaluate response quality, we use LLM-as-a-Judge to
simulate human ratings. We employ an independent LLM
(i.e., GPT-o1) to choose the most preferable responses from
the routed model alongside ground-truth answers. The judge
is instructed to select based on correctness and precision of
reasoning, as the detailed system prompt listed in the Ap-
pendix A.2. We design the score as Score(i) =

(
Si

T

)
× 100,

where Si be the number of times router i is selected, and T
be the total number of queries. Unlike traditional accuracy-
based evaluations using golden labels, this approach simu-
lates human judgment by considering not only the correct-
ness but also the interpretability and coherence of model
outputs, better aligning with human preference selection
rather than relying solely on objective correctness.

4.2. Models and Test Environment

We implemented the experiments using PyTorch (Paszke
et al., 2019), and conducted our experiments on
two NVIDIA A100 GPUs. For GPT-4 model, we
use gpt-4-0613 API. For GPT-o1 model, we use
o1-2024-12-17 API.

4.3. Evaluation on System Costs

We first evaluate the system costs of various routing
strategies on the test datasets, as summarized in Table 1.
The Confidence-Driven LLM Router consistently achieves
strong performance in CPT(50%) and CPT(80%) across
datasets. To provide a clearer comparison, we report the
actual OpenAI API cost (in USD) for each routing system
on the MT-Bench dataset under CPT(80%): Random router
costs $4.06; TO-Router costs $3.88; RouteLLM costs $4.04;
and our proposed method costs lowest with $3.74. We
also provide an additional experiment that takes GPT-4 and
Qwen2-1.5B-Instruct as a model pair. As shown in Table 2,
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Table 2. System Performance Comparison of Routing Systems on
test datasets with GPT-4 and Qwen2-1.5B-Instruct as model pair.

GSM8K

Routing Method CPT(50%) CPT(80%)

Random 48.79 80.16

TO-Router kNN 49.44 79.98
MLP 51.75 80.80

RouteLLM SW 48.74 79.86
MF 51.13 80.09

Confidence-Driven
LLM Router

SW 49.17 79.08
MF 48.57 78.87
kNN 48.82 78.54
MLP 52.52 81.36

Table 3. Response quality comparison of routing systems on the
GSM8K dataset based on LLM-as-a-Judge. Higher LLM-judge
scores reflect better response quality.

TO-Router RouteLLM Confidence Router

CPT(50%) 78.88 79.72 79.95

CPT(80%) 85.97 88.88 89.21

with the new model pairs, our proposed router still outper-
forms other baselines in CPT, which validates our results
and arguments in our paper.

Compared to the proposed Confidence-Driven LLM Router,
TO-Router and RouteLLM show less consistent and often
suboptimal performance across the datasets. While TO-
Router achieves reasonable results on GSM8K, it struggles
to maintain comparable performance on MT-Bench and
MMLU. Similarly, RouteLLM demonstrates competitive
results in isolated metrics but fails to match the overall
effectiveness of the Confidence-Driven LLM Router. These
inconsistencies suggest that traditional routing indicators,
such as accuracy-based metrics or human preference data,
lack the adaptability provided by uncertainty-based routing,
which enables the proposed system to deliver superior end-
to-end performance across varied tasks and domains.

4.4. Evaluation on Response Quality

To better understand the advantage of our proposed method,
we evaluate the response quality of each routing system un-
der the same accuracy with GSM8K dataset. We select the
best routing models under each routing system in Table 1.
As summarized in Table 3, the proposed method achieves
the highest LLM-as-a-Judge rating, indicating that its re-
sponses are the most human-preferable among all baselines.
Our uncertainty-aware training strategy optimizes routing
decisions based on a direct measure of model confidence.

By minimizing uncertainty in routing, our approach ensures
that queries are directed to models that can generate the
most confident and reliable responses, leading to outputs
that better align with human preferences.

5. Conclusion
In this paper, we introduced the Confidence-Driven LLM
Router, a novel framework that leverages uncertainty es-
timation to optimize LLM deployment in edge-cloud en-
vironments. By using semantic entropy as a performance
indicator, our approach addresses the limitations of existing
methods, such as the subjectivity of human preference data
and the rigidity of accuracy-based metrics. Extensive exper-
iments on benchmark datasets demonstrate that our method
outperforms state-of-the-art routing systems, achieving a
better trade-off between response quality and efficiency. Fu-
ture work will explore multi-modal query integration and
further latency reduction in distributed systems.

6. Limitations
We have two major limitations which we aim to address in
future works. First, our evaluation is limited to text-based
queries, and we do not extend our analysis to multi-modal
routing scenarios. In real-world applications, queries may
include image-text pairs or other modalities, especially in
Vision-Language Models (VLMs). Future work should in-
vestigate how uncertainty estimation-based routing gener-
alizes to multi-modal inputs and whether SE remains an
effective performance indicator in VLM settings.

Second, we do not analyze the computational overhead of
different routing architectures. Our study primarily evalu-
ates routing effectiveness, but in practice, the choice of
router architecture can significantly impact system effi-
ciency. Future work should explore the trade-offs between
neural network-based routers and statistical methods, as-
sessing their cost, scalability, and real-time deployment
feasibility in edge-cloud environments.

7. Impact Statement
This paper advances the field of machine learning by in-
troducing a novel uncertainty-aware routing framework for
efficient deployment of LLMs in edge-cloud environments.
By enabling cost-effective and confidence-aware routing,
our approach supports the development of intelligent sys-
tems that can dynamically distribute tasks between local and
remote agents, improving responsiveness, adaptability, and
interpretability in real-world applications such as mobile
assistants, IoT systems, and autonomous platforms. There
are many potential societal consequences of our work, none
which we feel must be specifically highlighted here.
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A. Appendix
A.1. Details about Datasets

To train the RouteLLM router, we randomly sample 12,247 data points from the Chatbot Arena dataset (Chiang et al., 2024).
In contrast, both the Confidence-Driven Router and TO-Router are trained using a combination of Natural QA (Kwiatkowski
et al., 2019; Lee et al., 2019), Trivia QA (Joshi et al., 2017), PopQA (Mallen et al., 2022), and MAWPS (Koncel-Kedziorski
et al., 2016) datasets to ensure a comparable data volume. Specifically, we randomly selected 3,610 samples from each
QA dataset and 1,418 samples from the MAWPS dataset, resulting in 12,247 samples, matching the quantity used for
RouteLLM.

To comprehensively evaluate the routing systems, we select a diverse set of benchmark datasets: the MMLU (Hendrycks
et al., 2020) dataset, consisting of 14,042 questions across 57 subjects; the MT-Bench dataset (Zheng et al., 2023), which
includes 160 open-ended questions assessed using the LLM-as-a-judge approach; and the GSM8K dataset (Cobbe et al.,
2021), containing over 1,000 grade-school math problems. These datasets provide a broad evaluation across varied question
types and subject domains. For all the data listed above, we properly use them under the propose of research by following
their license.

A.2. System Prompt Design for LLM-as-a-Judge

To evaluate response quality, we use LLM-as-a-Judge to simulate human ratings. We employ an independent LLM (i.e.,
GPT-o1) to choose the most preferable responses from the routed model alongside ground-truth answers. The judge is
instructed to select based on correctness and precision of reasoning. We designed and implemented the following system
prompt:

You are an evaluator for math problem solutions. You will receive:
1. A question.
2. A ground truth answer.
3. Three LLM-generated responses.
Your task is to select which response(s) is/are best, based on whether

the answer is correct and the reasoning is precise.
Follow these rules:

* DO NOT provide any explanation or reasoning in your answer-only
state which LLM(s) you judge as having the best response.

* If more than one response is equally best, name each of them.
Question: {}
Ground Truth Answer:{}
LLM 1 Response: {}
LLM 2 Response: {}
LLM 3 Response: {}
Your output must ONLY indicate the selected LLM(s). For example, ’LLM

1’ or ’LLM 1 and LLM 3’.
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