

# 000 BRAINFCIR: FUNCTIONAL CONTEXT INFORMED REP- 001 RESENTATION LEARNING FOR INTRACRANIAL NEURAL 002 SIGNALS 003

006 **Anonymous authors**

007 Paper under double-blind review

## 011 ABSTRACT

013 Intracranial neural recordings (e.g., stereo-ElectroEncephaloGraphy (sEEG)) have  
014 offered a unique window to measure neural signals across multiple brain regions  
015 simultaneously. Recent works have focused on developing neurofoundation models  
016 that learn generalizable representations across both subjects and tasks from such  
017 recordings. These models achieve exciting advances, yet overlook the modular  
018 functional organization of the brain, where neurons from multiple adjacent anatomical  
019 regions collectively support specific cognitive functions (e.g., the Wernicke area  
020 for speech perception). A key challenge remains how to effectively incorporate  
021 this functional contextual information into representation learning to improve both  
022 interpretability and decoding performance. To tackle this challenge, we propose  
023 a novel pre-training framework, BrainFCIR, that explicitly integrates functional  
024 context into model design via spatial-context-guided representation learning. We  
025 evaluate BrainFCIR on the publicly available sEEG speech-perception dataset.  
026 Extensive experiments show that BrainFCIR, as a unified representation learning  
027 framework for intracranial sEEG signals, significantly outperforms previous decoding  
028 methods. Overall, our work underscores the significance of functional context  
029 in developing more biologically plausible and high-performing neural decoding  
030 models. Code and checkpoints will be publicly available.

## 031 1 INTRODUCTION

033 Intracranial stereo-ElectroEncephaloGraphy (sEEG) provides a unique window into human brain  
034 function by recording neural activity directly from deep brain structures with high temporal precision.  
035 This methodology enables simultaneous monitoring across distributed brain regions, capturing  
036 dynamic interactions that underlie complex cognitive and behavioral processes. The capacity to  
037 model these high-resolution signals offers significant potential for advancing our understanding  
038 of large-scale functional networks (Wang et al., 2023; Zhang et al., 2023; Mentzelopoulos et al.,  
039 2024; Zheng et al., 2025; Chau et al., 2024), with important implications for developing next-  
040 generation neurotechnologies such as closed-loop brain-computer interfaces. In contrast to non-  
041 invasive approaches like functional Magnetic Resonance Imaging (fMRI) (Caro et al., 2023; Dong  
042 et al., 2024) or ElectroEncephaloGraphy (EEG) (Jiang et al., 2024b; Wang et al., 2024c; Jiang et al.,  
043 2024a), sEEG bypasses the signal attenuation caused by the skull and scalp, providing more direct  
044 measurements of neural dynamics with millisecond-scale resolution. Furthermore, while intracortical  
045 Micro-Electrode Array (MEA) typically samples activity from highly localized neuronal populations,  
046 sEEG offers broader coverage across multiple brain systems, albeit with sparser spatial sampling. This  
047 combination of high temporal resolution and wide spatial coverage presents both unique opportunities  
048 and distinctive computational challenges for modeling the brain’s spatiotemporal organization.

049 The development of foundation models for intracranial sEEG has become an active area of research,  
050 driven by the goal of learning generalizable spatiotemporal representations of neural activity. This  
051 effort mirrors similar advances in modeling other neural data modalities, including intracortical MEA  
052 (Azabou et al., 2023; Ye et al., 2023; 2025), non-invasive EEG (Jiang et al., 2024b; Wang et al., 2024c;  
053 Jiang et al., 2024a), and fMRI (Caro et al., 2023; Dong et al., 2024). Contemporary approaches  
frequently employ large-scale transformer architectures, pre-trained in a self-supervised manner, to  
learn powerful representations from sEEG that demonstrate strong performance on downstream tasks

054 and robust cross-subject generalization (Wang et al., 2023; Zhang et al., 2023; Chau et al., 2024).  
 055 A key question, however, concerns the optimal method for training these models to better capture  
 056 functional connectivity, which is crucial for both neural decoding and functional groups identification.  
 057

058 While prior works (Wang et al., 2023; Zhang et al., 2023; Li et al., 2025) have largely used mask-  
 059 based reconstruction tasks to understand the spatial-temporal organization of sEEG recordings, these  
 060 models may over-rely on the intra-channel temporal patterns, leaving it unclear whether these models  
 061 effectively capture functional context. PopT (Chau et al., 2024) takes the first step in effectively  
 062 modeling inter-channel context during the pre-training stage. However, their approach decouples  
 063 temporal and spatial modeling into two isolated stages (i.e., BrainBERT (Wang et al., 2023) for  
 064 temporal modeling and PopT (Chau et al., 2024) for spatial modeling), preventing effective interaction  
 065 between them – temporal-transformed embeddings cannot be refined leveraging spatial context, which  
 066 ultimately limits the effectiveness of subsequent spatial modeling. As such, developing models that  
 067 enable capturing precise inter-channel interaction (i.e., functional context) and studying the channel  
 068 cluster estimated by such a neurofoundation model remains unexplored.

069 To address these two issues, we propose a functional-context-informed neurofoundation model for  
 070 intracranial sEEG recordings, BrainFCIR, which models spatial-temporal relationships through  
 071 functional context discrimination. To quantify the effect of functional context modeling, we estimate  
 072 functional connectivity via the pre-trained model. And we perform channel clustering to identify  
 073 functional groups, which enhances neural decoding via channel selection and further demonstrates its  
 074 superiority in capturing inter-channel interactions.

075 To validate the effectiveness of our proposed framework, we evaluate BrainFCIR on the widely used  
 076 Brain Treebank dataset (Appendix A). Empirically, BrainFCIR outperforms existing neurofoundation  
 077 models (Zhang et al., 2023; Chau et al., 2024) for sEEG recordings and identifies channel cluster that  
 078 faithfully aligns with those containing target neural activity. Besides, we further evaluate the capability  
 079 of cross-subject functional group identification, demonstrating the great potential of BrainFCIR to  
 080 support functionally grouping sEEG channels from unseen subjects.

081 To sum up, the main contributions of our work comprise:

- 082 **1. Explicit functional-context modeling:** We develop a spatiotemporal transformer model,  
 083 BrainFCIR, for intracranial sEEG recordings and an associated functional context discrimina-  
 084 tion task. During the pre-training stage, we explicitly model functional context to encourage  
 085 learning functional-context-informed representations.
- 086 **2. State-of-the-art (SOTA) performance:** Our model achieves SOTA performance in de-  
 087 coding speech perception from intracranial sEEG signals on the Brain Treebank dataset,  
 088 demonstrating robust effectiveness across diverse decoding tasks.
- 089 **3. Cross-subject functional group identification:** Our model shows the potential to offer an  
 090 off-the-shelf functional group identification toolkit for unseen subjects. When pre-trained  
 091 within the target subject, functional groups identified by our model further enhance decoding.

## 093 2 RELATED WORKS

### 095 2.1 SPATIOTEMPORAL MODELS OF INTRACRANIAL SEEG RECORDINGS

097 Several prior studies have proposed spatiotemporal models for sEEG modeling, employing various  
 098 strategies to incorporate spatial information. While the initial version of Brant introduced by Zhang  
 099 et al. (2023) did not explicitly encode spatial relationships, later iterations (Li et al., 2025) incorporated  
 100 learnable positional embeddings along the spatial axis, albeit without integrating neuroanatomical  
 101 priors. Zheng et al. (2025) adopted a region-level approach, in which all channels within the pre-  
 102 defined brain region were pooled, effectively collapsing spatial variability and eliminating the need  
 103 for fine-grained spatial encoding. In comparison, Mentzelopoulos et al. (2024) and Chau et al.  
 104 (2024) modeled space at the single-channel level by deriving token-wise spatial encodings from  
 105 neuroanatomical coordinates of each channel, thereby incorporating anatomical context.

106 Despite these advances, to the best of our knowledge, most previous sEEG modeling studies (Zhang  
 107 et al., 2023; Li et al., 2025; Zheng et al., 2025) rely on the mask-based reconstruction task to learn  
 108 spatial-temporal relationships of intracranial sEEG recordings, which may over-rely on the intra-

108 channel temporal patterns. PopT (Chau et al., 2024) takes the first step in effectively capturing  
 109 inter-channel context, despite their isolated spatial-temporal modeling strategies preventing effective  
 110 interaction between spatial and temporal modeling.  
 111

## 112 2.2 SELF-SUPERVISED LEARNING IN BCI

113 Recently, the pre-trained temporal-spatial models (i.e., foundation models) have drawn significant  
 114 attention across diverse neural modalities, including EEG (Jiang et al., 2024b; Wang et al., 2024b;c),  
 115 fMRI (Caro et al., 2023; Dong et al., 2024), neural spike (Ye et al., 2023; Zhang et al., 2024), etc.  
 116 Since these neural modalities either have lower spatial resolution compared to sEEG recordings (e.g.,  
 117 EEG, fMRI) or are typically implanted within a specific brain region (e.g., neural spike), they mainly  
 118 leverage masked self-supervised pre-training for spatiotemporal models. However, intracranial sEEG  
 119 recordings are inherently different from those recordings, providing a unique window into human  
 120 brain function by recording neural activity directly from deep brain structures with high temporal &  
 121 spatial resolution. This feature requires sEEG modeling methods to accurately identify channels  
 122 from different functional modules, thereby enhancing our understanding of channel interactions  
 123 within each functional group and improving neural decoding performance. As such, we develop  
 124 a spatiotemporal transformer model paired with a functional context discrimination task, which  
 125 enables the effective capture of inter-channel relationships for downstream decoding. Finally, to  
 126 further quantify the effect of functional context modeling, we identify functional groups based on the  
 127 estimated functional connectivity, further enhancing downstream decoding.  
 128

129

## 130 3 METHOD

131

132 To effectively capture functional context in representation learning, we develop a spatiotemporal  
 133 transformer model and a novel pre-training framework that effectively guides the model to capture  
 134 the functional context, thus enhancing downstream decoding. We first describe our spatial-temporal  
 135 transformer model architecture. We then detail how our self-supervised pre-training procedure guides  
 136 the model to learn functional-context-informed representations. Finally, we discuss our evaluation  
 137 schemes.  
 138

139

### (a) Functional Context Pre-training



140

### (b) Downstream Fine-tuning



141



142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

159 **Figure 1: Overview of BrainFCIR model.** (a). BrainFCIR is pre-trained via functional context  
 160 discrimination. (b). Randomly initialized MLP is stacked on the pre-trained Neural Encoder to  
 161 support downstream fine-tuning. (c). BrainFCIR supports functional connectivity estimation (even  
 162 for new subjects), identifying functional groups to enhance downstream decoding.

162 3.1 MODEL ARCHITECTURE  
163

164 Our model architecture and tokenization scheme are shown in Figure 1 (a). Given a multivariate  
165 time series of intracranial sEEG activity  $X \in \mathbb{R}^{C \times T}$ , where  $C$  denotes the number of recording  
166 channels and  $T$  denotes the total timestamps, we first tokenize channels as univariate signals (i.e.,  
167 agnostic to space), following common practice (Zhang et al., 2023; Chau et al., 2024; Jiang et al.,  
168 2024b). We create temporal patches of each channel that are of length  $L$  (e.g., 250 milliseconds),  
169 yielding  $\mathcal{X}_p = \{\mathbf{x}_{i,j}^p \in \mathbb{R}^L | i = 1, \dots, C; j = 1, \dots, N\}$ , where  $N = \lfloor \frac{T}{L} \rfloor$ , the number of patches is  
170  $|\mathcal{X}_p| = C \times N$ , and  $\mathbf{x}_{i,j}^p \in \mathbb{R}^L$  indicates the  $i$ -th patch of length  $L$  for the  $j$ -th channel.

171 The model architecture of BrainFCIR comprises two parts: (1) Patch Tokenizer; (2) Temporal &  
172 Spatial Transformer. The Patch Tokenizer consists of a stack of convolution blocks. In the first step  
173 of tokenization, each patch  $\mathcal{X}_{i,j}^p$  is passed through the Patch Tokenizer (shared across patches). In  
174 practice this tokenizer can take any form; here we choose a temporal convolution neural network  
175 (CNN) both to account for the input signal’s continuous nature and because of prior domain knowledge  
176 about the importance of oscillatory features in neural activity (Jacobs & Kahana, 2010; Buzsaki &  
177 Draguhn, 2004). In each convolution block, the temporal convolution layer is stacked with group  
178 normalization (Wu & He, 2018), and Gaussian Error Linear Unit (GELU) activation (Hendrycks &  
179 Gimpel, 2016). We denote the patch embeddings from the Patch Tokenizer as

$$180 \mathcal{E}_p = \{\mathbf{e}_{i,j}^p \in \mathbb{R}^d | i = 1, \dots, C; j = 1, \dots, N\}, \quad (1)$$

181 where  $d$  is the dimension of embeddings.  
182

183 In order to enable the model to be aware of the temporal information of patch embeddings, we  
184 utilize the parameter-free temporal embeddings introduced by (Vaswani et al., 2017), i.e.,  $\mathcal{E}_t =$   
185  $\{\mathbf{e}_1^t, \dots, \mathbf{e}_{t_{max}}^t\}$ . Note that  $t_{max}$  is the hyperparameter determining the maximum number of time  
186 patches and  $t_{max} \geq N$ . Given one arbitrary patch embedding  $\mathbf{e}_{i,j}^p$  in Equation 1, we add the  
187 corresponding temporal embedding to it:

$$188 \mathcal{E} = \{\mathbf{e}_{i,j}^p + \mathbf{e}_j^t | i = 1, \dots, C; j = 1, \dots, N\}, \quad (2)$$

189 which forms the input embeddings  $\mathcal{E}$  for the Temporal Transformer. Then, the embeddings will be  
190 directly fed into the Transformer encoder (Vaswani et al., 2017) to get the temporal-transformed  
191 embeddings  $\mathcal{E} = \{\mathbf{e}_{i,j} | i = 1, \dots, C; j = 1, \dots, N\}$ .  
192

193 The functions supported by the same anatomical brain regions in different subjects are roughly  
194 similar (e.g., the superior temporal gyrus (STG) consistently participates in auditory perception),  
195 although fine-grained functional sub-organization may vary between subjects (Buzsáki, 2006). To  
196 incorporate such anatomical priors into our model, we encode standardized anatomical coordinates  
197 (e.g., LPI coordinates, MNI coordinates) using sinusoidal position encoding, generating a set of  
198 spatial embeddings  $\mathcal{E}_s = \{\mathbf{e}_i^s \in \mathbb{R}^{d_s} | i = 1, \dots, C\}$ . These spatial embeddings are then added to the  
199 corresponding temporal-transformed embeddings to form the combined input  $\mathcal{E} = \{\mathbf{e}_{i,j} + \mathbf{e}_i^s | i =$   
200  $1, \dots, C; j = 1, \dots, N\}$ , which is subsequently processed by the Spatial Transformer to produce the  
201 spatial-transformed embeddings  $\mathcal{E}$ .

202 To improve the stability and efficiency of transformer training, we adopt several optimizations  
203 proposed by Dehghani et al. (2023). These include applying layer normalization to queries and  
204 keys before computing dot-product attention, which prevents extreme values in attention logits and  
205 promotes more stable gradient dynamics during learning:

$$206 \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{\text{LN}(Q)\text{LN}(K)^T}{\sqrt{d_{head}}}\right)V, \quad (3)$$

207 where  $d_{head}$  is the dimension of attention head and LN denotes layer normalization (Ba et al., 2016).  
208

210 3.2 REPLACED FUNCTIONAL CONTEXT DISCRIMINATION  
211

212 To encourage the model to effectively capture inter-channel functional context, we train BrainFCIR  
213 using a replaced functional context discrimination task (Figure 1 (a)), which differs from prior work in  
214 two ways. First, we follow JEPA (Assran et al., 2023) to encourage the model to discriminate replaced  
215 functional context in the latent token space instead of the observation space (Zhang et al., 2023;  
Li et al., 2025), which enhances the quality of learned representations. Second, unlike some prior

intracranial sEEG models (Wang et al., 2023; Zheng et al., 2025; Chau et al., 2024), we simultaneously train both the tokenizer and spatial-temporal Transformer to perform replaced functional context discrimination.

During pre-training, for each sEEG sample  $\mathcal{X} \in \mathbb{R}^{C \times T}$ , 10% of channels are randomly selected to have their activity replaced by activity from unrelated time points. To ensure balanced label distribution, we designate only 10% of unreplaced channels as positive samples during pre-training. The modified sample is directly fed into the Patch Tokenizer to get the patch embeddings  $\mathcal{E}_p$ . Then, the patch embedding  $\mathcal{E}_p$  is directly fed into the spatial-temporal Transformer to get the transformed embeddings  $\mathcal{E}$ . While the patch embeddings  $\mathcal{E}_p$  are obtained using our original Patch Tokenizer (left part in Figure 1 (a)), we use a separate Target Patch Tokenizer (right part in Figure 1 (a)) for the target embeddings  $\hat{\mathcal{E}}_p$  to provide self-supervision signals. The Target Patch Tokenizer is updated with an exponential moving average (EMA) of the original Patch Tokenizer weights. To encourage the model to learn functional context, the model is trained to discriminate replaced channels based on the spatial-temporal transformed embeddings  $\mathcal{E} \in \{e_{i,j} | i = 1, \dots, C; j = 1, \dots, N\}$ , the target patch embeddings  $\hat{\mathcal{E}}_p \in \{\hat{e}_{i,j}^p | i = 1, \dots, C; j = 1, \dots, N\}$  and the replaced label  $y \in \{-1, 1\}$ , where  $-1$  indicates unreplaced,  $1$  indicates replaced. The contrastive loss is defined as follows:

$$\mathcal{L}_{contra} = \sum_{i,j} [1 + y \cdot \langle \ell_2(\text{Linear}(e_{i,j})), \ell_2(\hat{e}_{i,j}^p) \rangle], \quad (4)$$

where  $\ell_2$  represents  $\ell_2$  normalization and  $\langle \cdot, \cdot \rangle$  the inner product. Combined with  $\ell_2$ ,  $\langle \cdot, \cdot \rangle$  calculates the cosine similarity between  $e_{i,j}$  and  $\hat{e}_{i,j}^p$ , which takes value within  $[-1, 1]$ -range.  $y$  is used to adjust whether to minimize or maximize such similarity, and the shift item 1 is added to ensure  $\mathcal{L}_{contra} \geq 0$ .

To further demonstrate the effectiveness of our proposed contrastive loss to capture functional context, we also design two alternatives to train the spatial-temporal model, i.e.,  $\mathcal{L}_{diff}$  and  $\mathcal{L}_{mse}$ . The difference loss  $\mathcal{L}_{diff}$  also encourages maximizing the similarity between embeddings of unreplaced channels:

$$\mathcal{L}_{diff} = \sum_{i,j} [\text{BCE}(\text{Linear}(\|e_{i,j} - \hat{e}_{i,j}^p\|_2^2))], \quad (5)$$

where  $\|\cdot\|_2^2$  represents the squared  $\ell_2$  norm value and BCE represents the binary cross entropy loss.

Besides, following the commonly adopted JEPA pre-training framework (Assran et al., 2023; Dong et al., 2024), we randomly select patches to mask. Around 50% of patch embeddings  $\mathcal{E}_p$  are patch-wise chosen and masked. The masked position is termed as  $\mathcal{M}$ . Then, a shared learnable embedding  $e_{[M]} \in \mathbb{R}^d$  is used to replace the original patch embeddings:

$$\mathcal{E}_m^f = \{e_i^m | i = 1, \dots, N\}, \quad e_i^m = m_i \odot e_{[M]} + (1 - m_i) \odot e_i^p, \quad (6)$$

where  $\delta(\cdot)$  is the indicator function and  $m_i = \delta(i \in \mathcal{M})$ . After that, the masked embeddings  $\mathcal{E}_m$  will be fed into the spatial-temporal Transformer. The MSE loss  $\mathcal{L}_{mse}$  is the average mean-squared error between spatial-temporal transformed embeddings  $\mathcal{E}$  and target patch embeddings  $\hat{\mathcal{E}}_p$ :

$$\mathcal{L}_{mse} = \sum_{i,j \in \mathcal{M}} \|e_{i,j} - \hat{e}_{i,j}^p\|_2^2. \quad (7)$$

### 3.3 DOWNSTREAM EVALUATION

We evaluate the validity of our training procedure and the effectiveness of our learned model using several downstream decoding tasks in the Brain Treebank dataset (Wang et al., 2024a). We also quantify whether BrainFCIR effectively models the functional context via channel clustering. First, we validate our pre-trained model’s performance on four speech-perception related downstream tasks used by Wang et al. (2023); Chau et al. (2024): (1) Classification of low/high pitch; (2) Classification of low/high volume; (3) Identification of words that correspond to sentence onsets; (4) Classification of speech vs. non-speech audio. Classification performance is reported as an average across all hold-out test sessions (Appendix A), for 6 fine-tuning seeds each. As baselines, we compare our pre-trained model’s fine-tuned performance against a fine-tuned, randomly-initialized version of itself, as well as two advanced spatial-temporal sEEG models: Population Transformer (PopT) (Chau et al., 2024) and Brant (Zhang et al., 2023). Second, we ablate the loss item used in the replaced functional

270 context discrimination task to explore the effectiveness of our proposed contrastive loss. Third, we  
 271 quantify the effectiveness of functional context modeling via channel clustering, and visualize the  
 272 identified functional groups to strengthen the neuroscientific interpretation. When pre-trained with  
 273 the target subject, the selected channels via channel clustering further enhance downstream decoding;  
 274 when evaluated on new subjects, our model demonstrates the great potential to offer an off-the-shelf  
 275 functional group identification toolkit for unseen subjects. Lastly, towards the goal of building  
 276 intracranial sEEG neurofoundation models, we evaluate our modeling framework’s data scalability,  
 277 overall model interpretability – the results of which are presented in Appendix E&I, respectively.  
 278

## 279 4 EXPERIMENTS

### 281 4.1 DATASET

283 For our experiments, we used the publicly available Brain Treebank dataset (Wang et al., 2024a),  
 284 which consists of intracranial recordings (2048 Hz) from 10 epilepsy patients collected over a  
 285 total of 26 sessions as they watched Hollywood films. Film transcripts that are aligned to neural  
 286 activity are also provided. The intracranial sEEG recordings cover multiple brain regions across both  
 287 hemispheres, including the temporal and frontal lobes, which are known to support auditory and  
 288 language processing. Neural data is provided at a sampling rate of 2048 Hz. We followed a similar  
 289 preprocessing procedure as outlined by Wang et al. (2023; 2024a); Chau et al. (2024).

290 We evaluate our model against previous advanced baselines on four binary classification tasks (e.g.,  
 291 sentence onset detection). Multi-channel sEEG signals are represented as  $\mathcal{X} \in \mathbb{R}^{C \times T}$ , and the paired  
 292 label is  $\mathcal{Y} \in \mathcal{Y}$ , where  $\mathcal{Y}$  represents the label-set. We use ROC-AUC as the evaluation metric.  
 293

### 294 4.2 IMPLEMENTATION DETAILS

296 **Preprocess.** The sEEG signals first undergo bandpass filtering between 0.5 Hz and 200 Hz to  
 297 attenuate low-frequency drift and high-frequency noise. Following this, a 60 Hz notch filter is applied  
 298 to suppress power-line interference. The signals are then resampled to 400 Hz and re-referenced  
 299 (Li et al., 2018) according to the original setting to enhance the spatial resolution of the recordings.  
 300 Finally, z-score normalization is applied independently to each channel to ensure consistent scaling  
 301 across all channels, thereby facilitating stable model training.  
 302

303 **Model Configurations.** Throughout both pre-training and fine-tuning, raw input patches are initially  
 304 tokenized into the patch embedding space with a dimensionality of  $d = 256$ . These embeddings  
 305 are then processed by a sequence of transformer modules: first by a Temporal Transformer and  
 306 subsequently by a Spatial Transformer. Each of these transformer modules is implemented as a 4-layer  
 307 encoder block. The architecture maintains a consistent model dimension of  $d = 256$  across layers,  
 308 while the inner feed-forward network (FFN) dimension is expanded to  $d_{ff} = 1024$ . Each multi-head  
 309 self-attention layer utilizes 8 parallel attention heads to capture diverse contextual relationships. A  
 310 comprehensive breakdown of the model’s hyperparameters and architectural specifics is provided in  
 311 Appendix C.  
 312

313 **Pre-training.** The pre-training model is trained using all recordings across all subjects, excluding  
 314 those reserved for validation and testing in downstream tasks (Appendix A). When using recordings  
 315 from all subjects, the model is trained on 8 GPUs (NVIDIA Tesla V100 32GB using Python 3.11.7  
 316 and PyTorch 2.1.2 + CUDA 12.3) for  $\sim 12$  hours in total.  
 317

318 **Fine-tuning.** We split the task recordings into training, validation, and testing splits with a size  
 319 roughly proportional to 80%, 10%, and 10%. All experiments are conducted on the same machine  
 320 with the same set of random seeds. The train/validation/test splits are the same across different  
 321 models. For each subject, models are trained for  $\sim 20$  minutes. The best models are trained on the  
 322 training set, selected from the validation set according to accuracy, and finally evaluated on the test  
 323 set. For model comparison, we report the average and standard error values (of all subjects) on six  
 324 random seeds to obtain comparable results.  
 325

324 4.3 BRAINFCIR ENHANCES DECODING BY MODELING FUNCTIONAL CONTEXT  
325

326 In Table 1, we report the average classification ROC-AUC over all test sessions and seeds. Our results  
327 demonstrate that our model outperforms all alternative models by effectively capturing the functional  
328 context. In comparison to randomly initialized versions of our model, our pre-training improves  
329 downstream performance. To further quantify our model’s effectiveness in capturing functional  
330 context, we forward sEEG samples from the target subject into the frozen model to estimate the  
331 inter-channel functional connectivity (Appendix C). Based on the sparse inter-channel functional  
332 connectivity, we perform hard clustering ( $k = 10$ ) to extract the functional groups. When evaluating  
333 the BrainFCIR model on the selected functional groups, our model further improves decoding  
334 performance while greatly reducing the inference time, as only  $\sim 20\%$  of channels are kept. Overall,  
335 the results in Table 1 demonstrate that by effectively modeling the functional context, our model can  
336 improve downstream task performance by learning functional-context-informed representations for  
337 multi-regional neural activity.

338 Table 1: Results on the Brain Treebank dataset, with mean ROC-AUC and s.e.m. reported. Asterisks  
339 indicate that the bolded model is significantly better than the second model ( $p < 0.01$ , paired T-test).

| 341 <b>Method</b>        | 342 <b>Pitch</b>      | 343 <b>Volume</b>     | 344 <b>Sentence Onset</b> | 345 <b>Speech/Non-Speech</b> |
|--------------------------|-----------------------|-----------------------|---------------------------|------------------------------|
| 346 Brant                | 347 $0.61 \pm 0.03$   | 348 $0.74 \pm 0.03$   | 349 $0.80 \pm 0.04$       | 350 $0.80 \pm 0.03$          |
| 351 <b>LaBraM</b>        | 352 $0.69 \pm 0.03$   | 353 $0.83 \pm 0.02$   | 354 $0.87 \pm 0.02$       | 355 $0.85 \pm 0.02$          |
| 356 <b>CBraMod</b>       | 357 $0.71 \pm 0.03$   | 358 $0.86 \pm 0.03$   | 359 $0.88 \pm 0.01$       | 360 $0.87 \pm 0.02$          |
| 361 PopT                 | 362 $0.74 \pm 0.03$   | 363 $0.87 \pm 0.03$   | 364 $0.90 \pm 0.01$       | 365 $0.93 \pm 0.02$          |
| 366 BrainFCIR            | 367 $0.77 \pm 0.02$   | 368 $0.89 \pm 0.02$   | 369 $0.94 \pm 0.01$       | 370 $0.96 \pm 0.01$          |
| 371 w/o pre-training     | 372 $0.59 \pm 0.03$   | 373 $0.71 \pm 0.05$   | 374 $0.80 \pm 0.03$       | 375 $0.79 \pm 0.05$          |
| 376 w/ channel-selection | 377 $0.78 \pm 0.02^*$ | 378 $0.91 \pm 0.02^*$ | 379 $0.94 \pm 0.01$       | 380 $0.97 \pm 0.01^*$        |

390 4.4 CONTRASTIVE LOSS DURING PRE-TRAINING ENHANCES DOWNSTREAM PERFORMANCE  
391

392 We investigated how our proposed contrastive loss effectively models the functional context. To  
393 do so, we pre-trained our model using different loss items (including the original contrastive loss  
394  $\mathcal{L}_{contra}$ , the difference loss  $\mathcal{L}_{diff}$ , and the JEPA-style (Assran et al., 2023) MSE loss  $\mathcal{L}_{mse}$ ), which  
395 are detailed in Section 3.2. Then, we evaluated each pre-trained model’s performance on the same  
396 speech perception tasks in Table 1.

397 First, we find that the choice of the pre-training objective has a substantial impact on downstream  
398 performance (Figure 2). Specifically, models trained with  $\mathcal{L}_{contra}$  achieve the highest decoding  
399 accuracy, demonstrating the importance of explicitly modeling similarity relationships across neural  
400 states for capturing functional context. Second,  $\mathcal{L}_{diff}$  underperforms relative to  $\mathcal{L}_{contra}$ , likely due  
401 to its sole reliance on differentiating samples without explicitly encouraging similarity among positive  
402 pairs, which appears critical for learning functionally meaningful representations. Third,  $\mathcal{L}_{mse}$ , which  
403 relies on a traditional reconstruction-based objective, yields the lowest performance. This suggests  
404 that an over-reliance on intra-channel temporal dynamics—without explicit inter-channel relational  
405 modeling—fails to capture the functional context necessary for robust speech perception decoding.

406 To statistically validate these observations, we performed paired T-tests for pairwise comparisons.  
407 The analysis revealed a significant main effect of the loss type. Post-hoc tests confirmed that  $\mathcal{L}_{contra}$   
408 significantly outperformed both  $\mathcal{L}_{diff}$  ( $p < 0.01$ ) and  $\mathcal{L}_{mse}$  ( $p < 0.001$ ), while  $\mathcal{L}_{diff}$  also surpassed  
409  $\mathcal{L}_{mse}$  ( $p < 0.001$ ). In summary, our results indicate that contrastive learning objectives – particularly  
410 those that balance similarity encouragement and dissimilarity constraints—are most effective for  
411 modeling functional context in neural signals, underscoring the importance of relational inductive  
412 biases in self-supervised pre-training for neural decoding.

413 4.5 BRAINFCIR CAN IDENTIFY FUNCTIONAL MODULES THROUGH CHANNEL CLUSTER  
414

415 We further validated the neurobiological plausibility and generalization capability of BrainFCIR by  
416 visualizing its estimated functional connectivity (Figure 3) and examining how functional group  
417 selection generalizes across varying pre-training cohort sizes (Figure 4). We projected the inferred



Figure 2: **Ablations on Functional Context Loss.** We pre-train BrainFCIR with different losses to encourage learning functional-context-informed representations. [We report ROC-AUC for each task across 6 random seeds.](#)

inter-channel functional connections onto cortical surface maps alongside the resulting functional clusters, enabling anatomical interpretation of the learned representations. Additionally, we systematically varied the number of subjects included in pre-training—with and without the target subject—to assess how cohort composition affects the quality of functionally-informed channel selection for downstream decoding.

First, we observed that the functional connectivity patterns estimated by BrainFCIR yield clusters that align well with known neuroanatomical regions (Figure 3), suggesting that the model captures biologically meaningful neural groupings. Second, when the pre-training dataset included only the target subject, channel selection based on the resulting model achieved the highest decoding accuracy, reflecting optimal adaptation to subject-specific functional organization. Third, introducing additional subjects initially reduced performance, likely due to interference from inter-subject variability; however, as more subjects were added, decoding accuracy gradually recovered and approached the single-subject baseline, indicating that the model learns to distill shared functional principles across individuals. Fourth, in the more challenging zero-shot setting where the target subject was excluded from pre-training, decoding performance improved steadily with larger pre-training cohorts, yet

432 consistently lagged behind the subject-included condition—highlighting a persistent gap attributable  
 433 to individual-specific functional specializations.

434 These results demonstrate that while BrainFCIR captures generalizable functional topology, fully  
 435 leveraging subject-specific functional specializations still requires target-subject data. Nevertheless,  
 436 the model’s ability to approach subject-specific performance with increasing cross-subject data  
 437 underscores its potential for scalable neural decoding applications.



451 **Figure 3: Results for Functional Module Identification.** (a). The visualization of functional clusters  
 452 identified by our method ( $k = 10$ ). (b). The functional connectivity estimated by our method.



463 **Figure 4: Ablations on Channel Selection.** We pre-train BrainFCIR while varying the number of  
 464 subjects (either w/ or w/o the target subject). The averaged ROC-AUC across subjects is reported.

## 467 5 DISCUSSION

468 Our work demonstrates that explicitly modeling functional context through spatial-context-guided rep-  
 469 resentation learning significantly advances intracranial sEEG decoding. BrainFCIR not only achieves  
 470 state-of-the-art performance but also produces functionally coherent channel clusters that align with  
 471 neuroanatomy. The contrastive objective proves essential for capturing inter-channel relationships,  
 472 outperforming reconstruction-based losses. Furthermore, while subject-specific pre-training yields  
 473 optimal decoding, our model effectively generalizes functional topology across subjects, with per-  
 474 formance scaling steadily with cohort size. These findings highlight that incorporating functional  
 475 context is critical for building biologically plausible and high-performing neural decoders. Future  
 476 work will explore dynamic functional networks and extend the framework to other cognitive domains.

## 478 6 CONCLUSION

481 This paper proposes BrainFCIR, a novel neurofoundation model for intracranial sEEG that explicitly  
 482 incorporates functional context into representation learning via spatial-context-guided pre-training.  
 483 Comprehensive experiments demonstrate that BrainFCIR not only achieves state-of-the-art perfor-  
 484 mance in speech perception decoding on the Brain Treebank dataset, but also identifies functionally  
 485 coherent channel clusters that align with known neuroanatomy. In addition, the model shows promis-  
 ing generalization in cross-subject functional group identification, with performance scaling robustly

486 as pre-training cohort size increases. Overall, our framework— informed by principles of brain  
487 network organization—provides a biologically interpretable and high-performing approach for neural  
488 decoding, moving toward more clinically applicable and transparent brain-computer interfaces.  
489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 THE USAGE OF LLMs  
541

542 Our writing process was assisted by DeepSeek-R1 (Guo et al., 2025), which was used to polish  
543 textual clarity. Brief paragraphs were provided to the model, and its output was critically evaluated  
544 before relevant revisions were adopted for the final version.

545  
546 REPRODUCIBILITY STATEMENT  
547

548 Code to train models and reproduce the results will be publicly available. To facilitate review, an  
549 anonymous repository link will be provided during rebuttal stage, which is only visible to reviewers.

550  
551 REFERENCES  
552

553 Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat,  
554 Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding  
555 predictive architecture. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*  
556 *Pattern Recognition*, pp. 15619–15629, 2023.

557 Mehdi Azabou, Vinam Arora, Venkataramana Ganesh, Ximeng Mao, Santosh Nachimuthu, Michael  
558 Mendelson, Blake Richards, Matthew Perich, Guillaume Lajoie, and Eva Dyer. A unified, scalable  
559 framework for neural population decoding. *Advances in Neural Information Processing Systems*,  
560 36:44937–44956, 2023.

561 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. *arXiv preprint*  
562 *arXiv:1607.06450*, 2016.

563  
564 György Buzsáki. *Rhythms of the Brain*. Oxford university press, 2006.

565  
566 Gyorgy Buzsaki and Andreas Draguhn. Neuronal oscillations in cortical networks. *science*, 304  
567 (5679):1926–1929, 2004.

568 Josue Ortega Caro, Antonio H de O Fonseca, Christopher Averill, Syed A Rizvi, Matteo Rosati,  
569 James L Cross, Prateek Mittal, Emanuele Zappala, Daniel Levine, Rahul M Dhodapkar, et al.  
570 Brainlm: A foundation model for brain activity recordings. *bioRxiv*, pp. 2023–09, 2023.

571  
572 Geeling Chau, Christopher Wang, Sabera Talukder, Vighnesh Subramaniam, Saraswati Soedarmadji,  
573 Yisong Yue, Boris Katz, and Andrei Barbu. Population transformer: Learning population-level  
574 representations of neural activity. *ArXiv*, pp. arXiv–2406, 2024.

575 Xupeng Chen, Ran Wang, Amirhossein Khalilian-Gourtani, Leyao Yu, Patricia Dugan, Daniel  
576 Friedman, Werner Doyle, Orrin Devinsky, Yao Wang, and Adeen Flinker. A neural speech  
577 decoding framework leveraging deep learning and speech synthesis. *Nature Machine Intelligence*,  
578 6(4):467–480, 2024.

579  
580 Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,  
581 Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling  
582 vision transformers to 22 billion parameters. In *International conference on machine learning*, pp.  
583 7480–7512. PMLR, 2023.

584  
585 Rahul S Desikan, Florent Ségonne, Bruce Fischl, Brian T Quinn, Bradford C Dickerson, Deborah  
586 Blacker, Randy L Buckner, Anders M Dale, R Paul Maguire, Bradley T Hyman, et al. An automated  
587 labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of  
588 interest. *Neuroimage*, 31(3):968–980, 2006.

589  
590 Iain DeWitt and Josef P Rauschecker. Wernicke’s area revisited: parallel streams and word processing.  
591 *Brain and language*, 127(2):181–191, 2013.

592  
593 Zijian Dong, Ruilin Li, Yilei Wu, Thuan Tinh Nguyen, Joanna Chong, Fang Ji, Nathanael Tong,  
594 Christopher Chen, and Juan Helen Zhou. Brain-jepa: Brain dynamics foundation model with  
595 gradient positioning and spatiotemporal masking. *Advances in Neural Information Processing*  
596 *Systems*, 37:86048–86073, 2024.

594     Angela D Friederici. The brain basis of language processing: from structure to function. *Physiological*  
 595     *reviews*, 91(4):1357–1392, 2011.  
 596

597     Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu  
 598     Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-r1 incentivizes reasoning in llms through reinforce-  
 599     ment learning. *Nature*, 645(8081):633–638, 2025.

600     Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). *arXiv preprint*  
 601     *arXiv:1606.08415*, 2016.  
 602

603     Joshua Jacobs and Michael J Kahana. Direct brain recordings fuel advances in cognitive electrophysi-  
 604     ology. *Trends in cognitive sciences*, 14(4):162–171, 2010.  
 605

606     Wei-Bang Jiang, Yansen Wang, Bao-Liang Lu, and Dongsheng Li. Neurolm: A universal multi-  
 607     task foundation model for bridging the gap between language and eeg signals. *arXiv preprint*  
 608     *arXiv:2409.00101*, 2024a.

609     Wei-Bang Jiang, Li-Ming Zhao, and Bao-Liang Lu. Large brain model for learning generic represen-  
 610     tations with tremendous eeg data in bci. *arXiv preprint arXiv:2405.18765*, 2024b.  
 611

612     Guangye Li, Shize Jiang, Sivylla E Paraskevopoulou, Meng Wang, Yang Xu, Zehan Wu, Liang Chen,  
 613     Dingguo Zhang, and Gerwin Schalk. Optimal referencing for stereo-electroencephalographic  
 614     (seeg) recordings. *NeuroImage*, 183:327–335, 2018.

615     Jiahe Li, Xin Chen, Fanqi Shen, Junru Chen, Yuxin Liu, Daoze Zhang, Zhizhang Yuan, Fang Zhao,  
 616     Meng Li, and Yang Yang. Deep learning-powered electrical brain signals analysis: Advancing  
 617     neurological diagnostics. *arXiv preprint arXiv:2502.17213*, 2025.  
 618

619     Georgios Mentzelopoulos, Evangelos Chatzipantazis, Ashwin Ramayya, Michelle Hedlund, Vivek  
 620     Buch, Kostas Daniilidis, Konrad Kording, and Flavia Vitale. Neural decoding from stereotactic eeg:  
 621     accounting for electrode variability across subjects. *Advances in Neural Information Processing*  
 622     *Systems*, 37:108600–108624, 2024.

623     Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.  
 624     *Advances in neural information processing systems*, 14, 2001.  
 625

626     Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier  
 627     Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:  
 628     Machine learning in python. *the Journal of machine Learning research*, 12:2825–2830, 2011.  
 629

630     Constantijn L Van der Burght, Tomás Goucha, Angela D Friederici, Jens Kreitewolf, and Gesa  
 631     Hartwigsen. Intonation guides sentence processing in the left inferior frontal gyrus. *Cortex*, 117:  
 632     122–134, 2019.

633     Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz  
 634     Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing*  
 635     *systems*, 30, 2017.  
 636

637     Christopher Wang, Vighnesh Subramaniam, Adam Uri Yaari, Gabriel Kreiman, Boris Katz, Ignacio  
 638     Cases, and Andrei Barbu. Brainbert: Self-supervised representation learning for intracranial  
 639     recordings. *arXiv preprint arXiv:2302.14367*, 2023.

640     Christopher Wang, Adam Uri Yaari, Aaditya K Singh, Vighnesh Subramaniam, Dana Rosenfarb,  
 641     Jan DeWitt, Pranav Misra, Joseph R Madsen, Scellig Stone, Gabriel Kreiman, et al. Brain  
 642     treebank: Large-scale intracranial recordings from naturalistic language stimuli. In *The Thirty-  
 643     eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track*,  
 644     2024a.  
 645

646     Guangyu Wang, Wenchao Liu, Yuhong He, Cong Xu, Lin Ma, and Haifeng Li. Eegpt: Pretrained  
 647     transformer for universal and reliable representation of eeg signals. *Advances in Neural Information*  
 648     *Processing Systems*, 37:39249–39280, 2024b.

648 Jiquan Wang, Sha Zhao, Zhiling Luo, Yangxuan Zhou, Haiteng Jiang, Shijian Li, Tao Li, and  
649 Gang Pan. Cbramod: A criss-cross brain foundation model for eeg decoding. *arXiv preprint*  
650 *arXiv:2412.07236*, 2024c.

651

652 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:  
653 Temporal 2d-variation modeling for general time series analysis. In *The eleventh international*  
654 *conference on learning representations*, 2022.

655 Yuxin Wu and Kaiming He. Group normalization. In *Proceedings of the European conference on*  
656 *computer vision (ECCV)*, pp. 3–19, 2018.

657

658 Joel Ye, Jennifer Collinger, Leila Wehbe, and Robert Gaunt. Neural data transformer 2: multi-context  
659 pretraining for neural spiking activity. *Advances in Neural Information Processing Systems*, 36:  
660 80352–80374, 2023.

661

662 Joel Ye, Fabio Rizzoglio, Adam Smoulder, Hongwei Mao, Xuan Ma, Patrick Marino, Raeed Chowd-  
663 hury, Dalton Moore, Gary Blumenthal, William Hockeimer, et al. A generalist intracortical motor  
664 decoder. *bioRxiv*, 2025.

665

666 Daoze Zhang, Zhizhang Yuan, Yang Yang, Junru Chen, Jingjing Wang, and Yafeng Li. Brant:  
667 Foundation model for intracranial neural signal. *Advances in Neural Information Processing*  
668 *Systems*, 36:26304–26321, 2023.

669

670 Yizi Zhang, Yanchen Wang, Donato Jiménez-Benetó, Zixuan Wang, Mehdi Azabou, Blake Richards,  
671 Renee Tung, Olivier Winter, Eva Dyer, Liam Paninski, et al. Towards a “universal translator” for  
672 neural dynamics at single-cell, single-spike resolution. *Advances in Neural Information Processing*  
673 *Systems*, 37:80495–80521, 2024.

674

675 Hui Zheng, Haiteng Wang, Weibang Jiang, Zhongtao Chen, Li He, Peiyang Lin, Penghu Wei,  
676 Guoguang Zhao, and Yunzhe Liu. Du-in: Discrete units-guided mask modeling for decoding  
677 speech from intracranial neural signals. *Advances in Neural Information Processing Systems*, 37:  
678 79996–80033, 2025.

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

## 702 A TASK DETAILS

704 Brain Treebank (Wang et al., 2024a) dataset is a publicly available dataset of 10 epilepsy patients  
 705 while they were watching movies from a set of 21 animated/action Hollywood movies. Each subject  
 706 watched one or more movies while their brain activity was recorded (measured by sEEG). There is a  
 707 total of 26 sessions across all subjects, each being  $\sim 2$  hours long on average.

### 709 A.1 PRE-TRAINING DETAILS

711 We detail the pre-training configurations of BrainFCIR (Figure 1 (a)). From the 26 available sessions,  
 712 16 were used for training, 2 were held out as downstream validation, and the remaining 7 were held  
 713 out for downstream testing, as specified in Table 2. We prepare the pre-training data by segmenting  
 714 neural recordings for each session into non-overlapping intervals of 4 seconds, resulting in a total of  
 715 27,698 pre-training segments – corresponding to  $\sim 30$  hours.

716 Table 2: The session splits for pre-training in Brain Treebank.

| 718 <b>Subject</b> | 719 <b>Session</b> | 720 <b>Duration (hours)</b> | 721 <b>Split</b> |
|--------------------|--------------------|-----------------------------|------------------|
| 722 Subject 1      | Session 1          | 1.91                        | Train            |
|                    | Session 2          | 2.90                        | Test             |
|                    | Session 3          | 2.07                        | Train            |
| 724 Subject 2      | Session 1          | 2.60                        | Train            |
|                    | Session 2          | 2.42                        | Train            |
|                    | Session 3          | 2.66                        | Train            |
|                    | Session 4          | 3.00                        | Train            |
|                    | Session 5          | 3.73                        | Train            |
|                    | Session 6          | 1.85                        | Valid            |
|                    | Session 7          | 3.52                        | Test             |
| 730 Subject 3      | Session 1          | 1.90                        | Test             |
|                    | Session 2          | 2.94                        | Train            |
|                    | Session 3          | 4.06                        | Train            |
| 734 Subject 4      | Session 1          | 1.87                        | Test             |
|                    | Session 2          | 1.75                        | Train            |
|                    | Session 3          | 1.31                        | Valid            |
| 736 Subject 5      | Session 1          | 1.54                        | Train            |
| 738 Subject 6      | Session 1          | 0.81                        | Train            |
|                    | Session 2          | 1.32                        | Train            |
|                    | Session 3          | 1.60                        | Test             |
| 741 Subject 7      | Session 1          | 1.67                        | Test             |
|                    | Session 2          | 1.77                        | Train            |
| 743 Subject 8      | Session 1          | 1.41                        | Train            |
| 744 Subject 9      | Session 1          | 1.00                        | Train            |
| 746 Subject 10     | Session 1          | 1.57                        | Test             |
|                    | Session 2          | 2.33                        | Train            |

### 749 A.2 FINE-TUNING DETAILS

751 We adopted the same task specification and analysis window in PopT (Chau et al., 2024), yielding  
 752 5-second neural activity per trial. We report the number of training, validation, and test trials for each  
 753 downstream task in Table 3. The number of positive and negative labels is balanced.

754 **Pitch.** The pitch of a given word is extracted using Librosa’s `pitch` function over a Mel-  
 755 spectrogram (sampling rate 48,000 Hz, FFT window length of 2048, hop length of 512, and 128 mel

756 filters). For this task, for a given session, the positive examples consist of words in the top quartile of  
 757 pitch, and the negative examples are the words in the bottom quartile.  
 758

759 **Volume.** The volume of a given word is computed as the average intensity of root-mean-square  
 760 (RMS) (`rms` function, frame and hop lengths 2048 and 512, respectively). For this task, for a given  
 761 session, the positive examples are the words in the top quartile of volume, and the negative examples  
 762 are the words in the bottom quartile.  
 763

764 **Sent. Onset (Sentence Onset).** The negative examples are intervals of activity from 1s periods  
 765 during which no speech occurs in the movie. The positive examples are intervals of brain activity that  
 766 correspond with hearing the first word of a sentence.  
 767

768 **Word Onset (Speech vs. Non-speech).** The negative examples are intervals of activity from 1s  
 769 periods during which no speech occurs in the movie. The positive examples are intervals of brain  
 770 activity that correspond with dialogue being spoken in the stimulus movie.  
 771

772 For each task, we follow the evaluation protocol in PopT (Chau et al., 2024), using the specified  
 773 movie for downstream classification. Since these tasks are binary classification (CLS) tasks, we  
 774 flatten embeddings and add a linear head after either pre-trained or randomly initialized models.  
 775 Training employs binary cross-entropy (BCE) loss, with results quantified using ROC-AUC scores.  
 776

777 Table 3: The trial splits for fine-tuning in Brain Treebank.  
 778

| 779 <b>Subject</b> | 780 <b>Pitch</b> |           |          | 781 <b>Volume</b> |           |          | 782 <b>Sent. Onset</b> |           |          | 783 <b>Word Onset</b> |           |          |
|--------------------|------------------|-----------|----------|-------------------|-----------|----------|------------------------|-----------|----------|-----------------------|-----------|----------|
|                    | 784 Train        | 785 Valid | 786 Test | 787 Train         | 788 Valid | 789 Test | 790 Train              | 791 Valid | 792 Test | 793 Train             | 794 Valid | 795 Test |
| 796 Subject 1      | 797 4076         | 798 510   | 799 510  | 800 4076          | 801 510   | 802 510  | 803 2358               | 804 318   | 805 318  | 806 10130             | 807 1267  | 808 1267 |
| 809 Subject 2      | 810 2560         | 811 320   | 812 320  | 813 2560          | 814 320   | 815 320  | 816 1710               | 817 214   | 818 214  | 819 10236             | 820 1280  | 821 1280 |
| 822 Subject 3      | 823 4038         | 824 505   | 825 505  | 826 4038          | 827 505   | 828 505  | 829 3282               | 830 411   | 831 411  | 832 4128              | 833 517   | 834 517  |
| 836 Subject 4      | 837 996          | 838 125   | 839 125  | 840 996           | 841 125   | 842 125  | 843 866                | 844 109   | 845 109  | 846 3984              | 847 498   | 848 498  |
| 852 Subject 6      | 853 2536         | 854 317   | 855 317  | 856 2536          | 857 317   | 858 317  | 859 1694               | 860 212   | 861 212  | 862 5092              | 863 637   | 864 637  |
| 868 Subject 7      | 869 2932         | 870 367   | 871 367  | 872 2932          | 873 367   | 874 367  | 875 2068               | 876 259   | 877 259  | 878 4680              | 879 586   | 880 586  |
| 886 Subject 10     | 887 3328         | 888 417   | 889 417  | 890 3328          | 891 417   | 892 417  | 893 2664               | 894 333   | 895 333  | 896 3786              | 897 474   | 898 474  |

---

## 810    B BASELINE DETAILS 811

812    In experiments, we compare our model to the existing advanced neurofoundation models (Zhang  
813    et al., 2023; Chau et al., 2024) on intracranial sEEG signals. The details of these baseline models are  
814    given here:

815

- 816    • **Brant** (Zhang et al., 2023): A self-supervised model for sEEG recordings that can capture  
817    both long-term temporal dependency and spatial correlation from neural signals. Brant is  
818    primarily designed for medical use, serving as an sEEG foundation model. Although Brant  
819    mainly evaluates its performance on the low-level modeling tasks (Wu et al., 2022) (e.g.,  
820    neural signal forecasting, imputation, etc.), Brant achieves SOTA performance on some  
821    high-level modeling tasks (e.g., seizure detection). As a foundation model in the sEEG  
822    pre-training field, this model is suitable to serve as a baseline for comparison.
- 823    • **PopT** (Chau et al., 2024): A self-supervised model for sEEG that learns population-level  
824    codes for arbitrary ensembles of neural recordings at scale. PopT stacks on top of pre-trained  
825    temporal embeddings (Wang et al., 2023) and enhances downstream decoding by enabling  
826    the learned aggregation of multiple spatially sparse channels. PopT serves as an sEEG  
827    foundation model, achieving SOTA performance on Brain Treebank (Wang et al., 2024a).  
828    As a foundation model in the sEEG pre-training field, this model is suitable to serve as a  
829    baseline for comparison.

830    The detailed implementations of these baseline models are given here:

831

- 832    • For the Brant method (Zhang et al., 2023), the hyperparameters are optimized based on  
833    the Brant-Tiny model for better performance. We changed the length of the patch segment  
834    from 6 seconds to 1 second. Additionally, we replace the linear embedding layer with a  
835    convolutional embedding layer, which is used in LaBraM (Jiang et al., 2024b). The numbers  
836    of convolution filters are  $\{96, 96, 96\}$ ; the sizes of convolution kernels are  $\{9, 9, 3\}$ ; the  
837    numbers of convolution strides are  $\{5, 5, 1\}$ .
- 838    • For the PopT method (Chau et al., 2024), the hyperparameters are the same as the original  
839    implementation of the PopT model. The data samples are resampled to the specified  
840    sampling rate (i.e., 2048 Hz).

841    When evaluating the decoding performance of these baseline models, we follow the same experiment  
842    setup as our model; see Appendix C for more details.

843    For the self-supervised methods, the pre-training setup follows the original setup of each model:

844

- 845    • For the Brant model, we also use all sEEG recordings from all subjects within the Brain  
846    Treebank dataset to pre-train it. While the total pre-training dataset is smaller than the  
847    one used in the original paper, the number of subjects (i.e., the number of sEEG location  
848    configurations) is greater than in the original paper. The data samples are 4 seconds.
- 849    • For the PopT model, we include neural recordings from all available subjects within the  
850    Brain Treebank dataset for pre-training. The data samples are 4 seconds.

864 **C MODEL DETAILS**  
865866 The BrainFCIR model (Table 4) is a novel neurofoundation model for intracranial sEEG recordings,  
867 as shown in Figure 1 (a). The architecture of BrainFCIR contains two parts: (1) Patch Tokenizer, (2)  
868 Temporal & Spatial Transformer, and (3) Channel Cluster Module. During the pre-training stage,  
869 one additional "Token Predictor" (i.e., linear projection) is added after the "Spatial Transformer" for  
870 functional context discrimination.  
871872 **Functional Context Discrimination.** Since sEEG channels capture local and depth information  
873 from different brain regions, their recordings inherently capture unique neural information with  
874 minimal overlap. This makes the functional context discrimination task better suited for learning  
875 inter-channel relationships compared to mask-based reconstruction approaches (Zhang et al., 2023;  
876 Jiang et al., 2024b). To ensure balanced label distribution, we designate only 10% of unreplaced  
877 channels as positive samples during pre-training.  
878879 **Channel Cluster Module.** After pre-training with the spatial context task, we calculate the chan-  
880 nel connectivity  $\mathcal{P} \in \mathbb{R}^{C \times C}$  following Algorithm 1. Then, spectral cluster (Ng et al., 2001) is  
881 applied to group channels into functional clusters, using scikit-learn’s (Pedregosa et al., 2011)  
882 `cluster.SpectralClustering` with default function arguments.  
883884 **Algorithm 1** The calculation of channel connectivity  $\mathcal{P} \in \mathbb{R}^{C \times C}$ .  
885886 **Require:**  $\{\mathcal{X}_i \in \mathbb{R}^{C \times T} | i = 1, \dots, N_{\text{samples}}\}$   $\triangleright N_{\text{samples}}$  is the number of samples.  
887  $\mathcal{P} \leftarrow \mathbf{0}_{C \times C}$   $\triangleright \mathcal{P} \in \mathbb{R}^{C \times C}$  is initialized as 0s.  
888 **while**  $i \leq N_{\text{samples}}$  **do**  
889      $\hat{\mathcal{P}} \leftarrow \text{model}(\mathcal{X}_i)$   $\triangleright \hat{\mathcal{P}} \in \mathbb{R}^{N_{\text{layer}} \times N_{\text{head}} \times C \times C}$  is spatial attention scores.  
890      $\hat{\mathcal{P}} \leftarrow \text{mean}(\hat{\mathcal{P}}, \text{axes} = [0, 1])$   $\triangleright \hat{\mathcal{P}} \in \mathbb{R}^{C \times C}$  is averaged across [layer,head]-dimensions.  
891      $\mathcal{P} \leftarrow \mathcal{P} + \hat{\mathcal{P}} / N_{\text{samples}}$   
892 **end while**  
893894 **D MODEL EFFICIENCY**  
895896 Table 5 shows the FLOPs (with `thop` package) and per-trial inference time across all methods.  
897 Our model achieves superior efficiency with the smallest parameter count (3.32M) and lower com-  
898 putational footprint (19.13 GFLOPs), enabling faster inference (23.73 ms) compared to existing  
899 approaches. With functional channel selection, computational cost drops significantly to 2.42 GFLOPs  
900 while maintaining—or even improving—decoding performance, further reducing inference time to  
901 16.37 ms. These results demonstrate that our method offers a highly efficient and practical solution  
902 for decoding speech perception from intracranial sEEG recordings. All experiments were conducted  
903 on a single NVIDIA V100 GPU.  
904905 **E DATA SCALING**  
906907 To evaluate data efficiency, we assessed downstream classification performance (Table 6) of BrainF-  
908 CIR when pretrained on progressively larger fractions of the available data (5% to 75%). Performance  
909 demonstrated a clear scaling trend with increased pretraining data. Data subsets were constructed  
910 through incremental session-wise addition until the target percentage was met. This process was  
911 repeated across 6 random seeds to ensure robustness. For smaller data fractions, we adjusted the  
912 number of pretraining epochs to maintain a consistent total number of parameter updates.  
913914 **F ABLATIONS ON CHANNEL SELECTION**  
915916 The spatial-attention weights are not equivalent to traditional signal-level functional connectivity (FC)  
917 measures (e.g., coherence). The averaged spatial-attention weights can be viewed as an alternative to

918  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
950  
951  
952  
953  
954  
955  
956  
Table 4: The hyperparameters for BrainFCIR training.

| Module               | Name                    | Value       |
|----------------------|-------------------------|-------------|
| Patch Tokenizer      | # of Input Channels     | {1,64,64}   |
|                      | # of Output Channels    | {64,64,64}  |
|                      | Kernel Size             | {9,9,3}     |
|                      | Stride                  | {5,5,2}     |
|                      | Padding                 | {4,4,1}     |
| Temporal Transformer | Flatten Window          | 2           |
|                      | # of Transformer Layers | 4           |
|                      | Hidden Size             | 128         |
|                      | MLP Size                | 512         |
|                      | MLP Dropout Ratio       | {0.2,0.}    |
| Spatial Transformer  | # of Attention Heads    | 8           |
|                      | Attention Head Size     | 64          |
|                      | Attention Dropout Ratio | 0.2         |
|                      | # of Transformer Layers | 4           |
|                      | Hidden Size             | 128         |
| Token Predictor      | MLP Size                | 512         |
|                      | MLP Dropout Ratio       | {0.2,0.}    |
|                      | # of Attention Heads    | 8           |
|                      | Attention Head Size     | 64          |
|                      | Attention Dropout Ratio | 0.2         |
| Linear Projection    | 128 → 128               |             |
| Optimizer            | Batch Size              | 64          |
|                      | Maximum Learning Rate   | 3e-4        |
|                      | Minimum Learning Rate   | 5e-6        |
|                      | Learning Rate Scheduler | Cosine      |
|                      | Optimizer Type          | AdamW       |
|                      | Adam $\beta$            | (0.9, 0.99) |
|                      | Weight Decay            | 0.05        |
|                      | Total Epochs            | 100         |
|                      | Warm-up Epochs          | 10          |
|                      | EMA momentum schedule   | linear      |
| w/ channel-selection | EMA start momentum      | 0.996       |
|                      | EMA final momentum      | 1           |

955  
956  
Table 5: Model Efficiency Analysis on Brain Treebank dataset.

| Methods              | Model Size | GFLOPs          | Time (ms)  |
|----------------------|------------|-----------------|------------|
| Brant                | 500M       | 116.2700±6.6485 | 54.11±5.21 |
| PopT                 | 20M        | 27.9417±1.7639  | 26.39±3.16 |
| BrainFCIR            | 3.32M      | 19.1308±1.0945  | 23.73±2.92 |
| w/ channel-selection | -          | 2.4153±0.1719   | 16.37±2.19 |

966  
967  
968  
969  
970  
analyze connectivity. To further illustrate the advantages of our spatial-attention-based estimation of  
functional connectivity, we additionally perform clustering on the coherence-based FC, ranking each  
cluster using a downstream task. Since channel selection based on BrainFCIR estimation only uses  
channels contained in the first cluster, we also report the decoding performance on the first cluster to  
evaluate whether the coherence-based FC clustering can accurately identify functional boundaries.

971  
Since coherence primarily estimates channel connectivity based on low-order correlations between  
channels, it is more susceptible to the influence of channel anatomical proximity. Compared to our

972 Table 6: BrainFCIR’s downstream performance scales as a function of pre-training data size.  
973

| Data Percentage | Pitch     | Volume    | Sentence Onset | Speech/Non-Speech |
|-----------------|-----------|-----------|----------------|-------------------|
| 100%            | 0.77±0.02 | 0.89±0.02 | 0.94±0.01      | 0.96±0.01         |
| 75%             | 0.76±0.02 | 0.87±0.02 | 0.93±0.01      | 0.95±0.01         |
| 50%             | 0.75±0.02 | 0.88±0.02 | 0.93±0.02      | 0.95±0.01         |
| 25%             | 0.71±0.03 | 0.83±0.04 | 0.88±0.04      | 0.90±0.03         |
| 10%             | 0.68±0.04 | 0.80±0.03 | 0.85±0.05      | 0.87±0.03         |
| 5%              | 0.64±0.04 | 0.75±0.04 | 0.83±0.04      | 0.83±0.05         |

982 Table 7: BrainFCIR’s downstream performance varies across different connectivity estimation for  
983 channel selection.  
984

| Connectivity Type | Pitch            | Volume           | Sentence Onset   | Speech/Non-Speech |
|-------------------|------------------|------------------|------------------|-------------------|
| -                 | 0.77±0.02        | 0.89±0.02        | 0.94±0.01        | 0.96±0.01         |
| BrainFCIR         | <b>0.78±0.02</b> | <b>0.91±0.02</b> | <b>0.94±0.01</b> | <b>0.97±0.01</b>  |
| Corherence        | 0.75±0.02        | 0.88±0.02        | 0.90±0.01        | 0.92±0.01         |

991  
992  
993 method (Table 7), it struggles to effectively estimate the precise boundaries of functional modules,  
994 resulting in lower performance.995 Besides, we further execute ablations on the number of clusters (Table 8). Fewer clusters (e.g., 5)  
996 reduce the spatial resolution of functional groups and may include irrelevant channels. More clusters  
997 maintain performance but require more group-level evaluation and combination.998 Table 8: BrainFCIR’s downstream performance maintains when varying number of clusters for  
999 channel selection.  
1000

| # of clusters     | 5         | 8         | 10        | 15        | 20        |
|-------------------|-----------|-----------|-----------|-----------|-----------|
| Pitch             | 0.77±0.02 | 0.78±0.02 | 0.78±0.02 | 0.78±0.02 | 0.78±0.02 |
| Volume            | 0.90±0.02 | 0.90±0.02 | 0.91±0.02 | 0.91±0.02 | 0.91±0.02 |
| Sentence Onset    | 0.94±0.01 | 0.94±0.01 | 0.94±0.01 | 0.94±0.01 | 0.94±0.01 |
| Speech/Non-Speech | 0.96±0.01 | 0.97±0.01 | 0.97±0.01 | 0.97±0.01 | 0.97±0.01 |

1008  
1009  
1010 G CROSS-SUBJECT TRANSFER  
10111012 To evaluate the generalizability of our pretrained weights, we performed a leave-one-out (LOO)  
1013 cross-validation. A model was pretrained on all but one subject, then fine-tuned and evaluated on  
1014 the held-out subject. Results indicate that excluding a subject from pretraining does not significantly  
1015 impact downstream performance (Table 9), demonstrating the robustness and potential utility of our  
1016 approach for new, unseen data.1017  
1018 H ADDITIONAL RESULTS  
10191020 Since Brain Treebank dataset was collected while subjects watched movies, we extracted the audio  
1021 portion of the movies to evaluate speech synthesis tasks (Chen et al., 2024). The evaluation results of  
1022 different baselines are shown in Table 10. Our model still outperforms all baselines, demonstrating  
1023 that the explicit modeling of functional connections helps in decoding cognitive tasks such as speech  
1024 perception. We reported the Pearson Correlation Coefficient between the predicted mel-spectrogram  
1025 and the ground truth.

1026

Table 9: BrainFCIR’s downstream performance in leave-one-out (LOO) setting.

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

| Setting | Pitch     | Volume    | Sentence Onset | Speech/Non-Speech |
|---------|-----------|-----------|----------------|-------------------|
| -       | 0.77±0.02 | 0.89±0.02 | 0.94±0.01      | 0.96±0.01         |
| LOO     | 0.74±0.03 | 0.87±0.02 | 0.93±0.02      | 0.94±0.01         |

Table 10: BrainFCIR’s downstream performance on speech synthesis task.

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

## I MODEL INTERPRETABILITY

To visualize electrode coverage across brain regions (Figure 5), we mapped intracranial electrode locations to anatomical regions using the Desikan-Killiany atlas (Desikan et al., 2006). For each subject, electrode coordinates were registered to the fsaverage surface template and assigned to corresponding cortical parcellations. ROI activation intensities were computed by normalizing electrode counts per region across subjects and experimental conditions. The resulting intensity maps were projected onto inflated cortical surfaces using Nilearn’s surface plotting functions. Brain visualizations display both hemispheres in lateral view with a color-coded intensity scale (red colormap) representing normalized electrode density, providing clear spatial representation of recording coverage across cortical areas for each experimental task.

We performed channel clustering analysis across four distinct auditory-linguistic tasks: (1) Pitch; (2) Volume; (3) Sentence Onset; (4) Speech/Non-Speech. Based on final classification performance, we selected specific cluster groups and analyzed the spatial distribution of channels within these clusters. The clustering results revealed two distinct patterns. Pitch and volume classification tasks demonstrated consistent clustering patterns, while sentence onset detection and speech/non-speech classification tasks showed similar groupings to each other but differed from the pitch/volume conditions. For pitch and volume classification tasks, selected channels were predominantly distributed in bilateral auditory regions, specifically the superior temporal gyrus and transverse temporal gyrus. Secondary distributions were observed in Wernicke’s area and the middle frontal gyrus, suggesting engagement of both primary auditory processing and higher-order linguistic regions.

In contrast, sentence onset detection and speech/non-speech classification tasks showed channels primarily concentrated in the same bilateral auditory areas (superior temporal gyrus and transverse temporal gyrus), with comparable representation in Wernicke’s area. However, a striking difference emerged in the middle frontal gyrus, where virtually no channels were selected for these tasks, distinguishing them from the pitch/volume conditions. This differential pattern suggests distinct neural mechanisms underlying continuous acoustic feature processing versus discrete linguistic event detection, which is consistent with the results of previous neuroscience research (DeWitt & Rauschecker, 2013; Friederici, 2011; Van der Burght et al., 2019).

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

**(a) Pitch & Volume**

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

**(b) Sentence Onset & Speech/Non-Speech**

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133



Figure 5: Visualization of the alignment between selected groups and language-related regions.

1134  
1135

1136

1137

## J SUBJECT-WISE CHANNEL CLUSTER

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

**subj-01**Cluster  
10  
9  
8  
7  
6  
5  
4  
3  
2  
1**subj-02**Cluster  
10  
9  
8  
7  
6  
5  
4  
3  
2  
1**subj-03**Cluster  
10  
9  
8  
7  
6  
5  
4  
3  
2  
1**subj-04**Cluster  
10  
9  
8  
7  
6  
5  
4  
3  
2  
1

Figure 6: Channel clusters from subjects (01-04).

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

**subj-06**

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

**subj-07**

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

**subj-10**

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Figure 7: Channel clusters from subjects (05,06,10).