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ABSTRACT
The Graph Neural Networks (GNNs) model is a powerful tool for

integrating node information with graph topology to learn rep-

resentations and make predictions. However, the complex graph

structure of GNNs has led to a lack of clear explainability in the

decision-making process. Recently, there has been a growing in-

terest in seeking instance-level explanations of the GNNs model,

which aims to uncover the decision-making process of the GNNs

model and provide insights into how it arrives at its final output.

Previous works have focused on finding a set of weights (masks) for

edges/nodes/node features to determine their importance. These

works have adopted a regularization term and a hyperparameter

𝐾 to control the explanation size during the training process and

keep only the top-𝐾 weights as the explanation set. However, the

true size of the explanation is typically unknown to users, making

it difficult to provide reasonable values for the regularization term

and 𝐾 . In this work, we propose a novel framework AMExplainer

which leverages the concept of adversarial networks to achieve a

dual optimization objective in the target function. This approach

ensures both accurate prediction of the mask and sparsity of the

explanation set. In addition, we devise a novel scaling function to

automatically sense and amplify the weights of the informative

part of the graph, which filters out insignificant edges/nodes/node

features for expediting the convergence of the solution during train-

ing. Our extensive experiments show that AMExplainer yields a

more compelling explanation by generating a sparse set of masks

while simultaneously maintaining fidelity.
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1 INTRODUCTION
Graph Neural Networks (GNNs) have shown superior performance

in handling irregular data compared to traditional neural networks.

This is particularly evident in domains such as social networks

[36] and chemical molecules [22]. By leveraging both node features

and structural information, GNNs can effectively learn graph rep-

resentations, which in turn can be utilized in various tasks such as

node classification [14, 34, 9, 38], link prediction [44], and graph

classification [5]. However, similar to other neural networks [15,

10, 17], the lack of explainability hinders the use of GNNs, espe-

cially in domains that value transparency, fairness, and safety. To

address this limitation, it is necessary to provide explanations for

the predictions made by GNNs. This requires identifying the most

informative parts of the original graph. However, due to the com-

plex aggregation of node features and graph topology, classical

explanation methods [16, 19, 8, 4, 31] are not suitable for GNNs,

making it challenging to understand the reasoning behind GNN

predictions. Figure 1 (a) illustrates an example of Graph Neural

Networks (GNNs) explainability applied to node classification. In

this example, the purpose of the GNNs model is to determine the

class to which node 𝑣 belongs, without revealing to the user the

basis on which the GNNs model made this prediction. (In this case,

the binary classification of a node is determined by whether the

node is part of a subgraph resembling a house shape, as indicated by

the dot dashed lines in Figure 1 (a).) The goal of the GNNs explainer,

on the other hand, is to elucidate why the GNNs model made this

prediction. In other words, if the GNNs model predicts that node 𝑣

belongs to a subgraph resembling a house shape, the purpose of the

GNNs explainer is to identify and label this house-shaped subgraph

in the graph.

GNNExplainer, the first explainability method for GNNs [39],

uses soft masks on edges or node features to determine their impor-

tance. These masks, treated as trainable parameters, are combined

with the original graph through element-wise multiplications. The

training process involves maximizing the mutual information be-

tween the prediction made by the original graph and the explana-

tion. To prevent the trivial solution where all masks have a value

of 1 (because the entire graph is a valid but trivial explanation), a

regularization factor is used to suppress the sum of all mask values.

Once the mask values converge, the top 𝐾 edges/node features

with the highest mask values are selected as the explanation set.

Other works [20, 35, 26] have adopted similar ideas to generate

a sparse explanation set. However, suppressing mask values
using a regularization factor during the training process may
not be reasonable since the true size of the explanation set
is unknown. Additionally, over-reliance on a manually set
hyperparameter𝐾 based on prior knowledge also diminishes
the practicality of this model.

In this paper, our focus is on finding post-hoc instance-level

explanations for GNN predictions by identifying a small set of the
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Figure 1: (a) Example graph for node classification GNNs: to determine whether node 𝑣 is in a house subgraph. A trained GNNs
model aims to tell users the answer yes or no, while a GNNs explainer targets to find such a house subgraph to explain why
the GNNs model makes this decision. (b) AMExplainer identifies an explanation edge set (solid lines) whose complement set
consists of uninformative edges (dotted lines in the gray area). (c) By employing a scaling function, AMExplainer further
discovers and removes additional uninformative edges to obtain a sparser explanation set.

most informative edges. We aim to address the aforementioned

existing issues in this area of research, and our work is based on

two key observations: (1) We note that the masked graph can be

used as an input to approximate the original graph’s prediction.

Thus, the value of𝑚𝑎𝑠𝑘 ∈ [0, 1] is a measure of the extent to which

the selected edges/nodes/node features contribute to the prediction.

(2) We observe that the mask complement, with a value of 1−𝑚𝑎𝑠𝑘 ,
is a measure of the extent to which the selected edges/nodes/node

features contribute to the ambiguity of the prediction, or false pre-

diction. Therefore, we expect the input with mask complement

have no predictive ability on any class. Building upon these ob-

servations, we propose a novel framework called AMExplainer

(Adversarial Mask Explainer) that trains an adversarially inspired

network between the mask containing correct information and the

mask complement containing incorrect/redundant information to

generate an explanation with high sparsity instead of directly sup-

pressing the size of the explanation set. Furthermore, we introduce

a novel scaling function that effectively detects and enhances the

mask weights of informative elements within the graph. This func-

tion serves to filter out irrelevant edges, nodes, and node features,

thereby accelerating the convergence of the training process to-

wards a solution. For instance, in Figure 1 (b), AMExplainer approx-

imates an uninformative uniform distribution for the classification

of node 𝑣 by making the complement set of the explanation edge

set (indicated by solid lines, while the complement set is marked

by dotted lines) approach this uniform distribution. It identifies

a subset of edges (highlighted by the gray area and dotted lines)

that do not contribute any information to the classification of 𝑣 . To

find more uninformative edges and make the explanation edge set

sparser, AMExplainer employs a scaling function during training.

This function speeds up the convergence of mask weights for un-

informative edges, making the final explanation edge set closer to

the ground truth, as shown in Figure 1 (c).

The contributions of this work are summarized as below:

• We have studied the problem of finding instance-level ex-

planations for GNNs. We have observed that the mask com-

plement is a measure of the extent to which the selected

edges/nodes/node features contribute to the ambiguity of

the prediction or false prediction.

• We have proposed a novel framework AMExplainer which

leverages the concept of adversarial networks to achieve

a dual optimization objective in the target function. This

method ensures accurate predictions when using the identi-

fied explanation set as input for GNNs, while maintaining

the sparsity, which enables a clearer understanding of how

the explanation set contributes to GNNs’ predictions.

• We have devised a novel scaling function to automatically

sense and amplify the weights of the informative part of the

graph, which filters out insignificant edges/nodes/node fea-

tures for expediting the convergence of the solution during

training.

• We have conducted extensive experiments on benchmark

datasets to demonstrate that, while ensuring the sparsity

of the explanation set remains comparable to the state-of-

the-art, the explanation sets generated by AMExplainer sig-

nificantly enhance prediction effectiveness by reducing the

fidelity by 79.93% − 94.22% in both node classification and

graph classification tasks.

The remainder of this paper is structured as follows. Section

2 provides a literature review of the relevant works. Section 3

introduces the preliminaries and our methodology. Section 4 shows

the results of the experimental study. Finally, Section 5 gives our

conclusion.

2 RELATEDWORKS
Graph Neural Networks: GNNs have gained widespread popu-

larity in recent years due to their capacity to learn representations

from graph data, which can be applied to diverse downstream tasks,

including node classification [14, 34, 9, 38], link prediction [44],

and graph classification [5]. Some GNNs [14, 33, 3] are based on

graph spectral theory and aim to apply convolutional operations

to graphs. The majority of GNNs [34, 6, 1, 37] employ a similar

2023-10-12 09:22. Page 2 of 1–9.
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message-passing framework, where the node representation is up-

dated by iteratively aggregating neighbor information. The differ-

ences among them lie in how to compute messages between nodes,

how nodes update themselves with the received messages from

neighbors, and so on. The effectiveness of GNNs in diverse down-

stream tasks can be attributed to their capacity to use both node

information and graph topology simultaneously. However, this also

presents a challenge in elucidating their internal workings, which

is the main target of this work.

Perturbation-BasedGNNsExplanationMethods: Perturbation-
Based GNNs Explanation Methods aim to maximize the mutual

information between explanation and prediction by generating

masks for edges, nodes, or node features. Our work falls into this

category. GNNExplainer is the first method of this kind, generating

input-dependent explanation for GNNs. Graphmask [26] and PGEx-

plainer [20] are subsequently proposed, with PGExplainer learning

edge masks by training a neural network to predict edge impor-

tance, the reparameterization trick [21, 12] is adopted. Graphmask

follows a similar framework but finds edge masks for each GNN

layer. Zorro [7] identifies crucial nodes and node features using a

greedy algorithm, while SubgraphX [42] employs Monte Carlo Tree

Search [29, 13] to identify subgraph-level explanation. These meth-

ods incorporate a regularization term to limit the explanation size,

but in our work, we explore finding a sparse explanation without

relying on prior-knowledge-based regularization terms.

Gradient/Features-Based, Decomposition, and Surrogate
GNNs Explanation Methods: Gradient/features-based methods

such as [2, 24] utilize gradient or feature values to identify impor-

tant nodes, edges, or node features, which are inspired by image

explanation [43]. However, these methods ignore the structural in-

formation used by GNNs training, which makes them not proficient

in finding topological explanations. Decomposition methods [27,

28] distribute the prediction score from the last layer to the input

space, ignorance of activation functions limits the application of

them. Two typical representative methods of surrogate methods are

GraphLime [11] and PGMExplainer [35]. GraphLime extends the

LIME framework [25] by training a nonlinear model in the N-hop

neighborhood, while PGMExplainer builds a probabilistic graphical

model to indicate node dependencies. Both approaches incorporate

a regularization term to limit the size of the explanation like the

aforementioned perturbation-based methods, which is the main

obstacle we need to overcome in our work.

Other works: The work [32] focuses on both the explanation

and complementary subgraphs. It requires the explanation sub-

graph to be sufficient for producing the same prediction as using

the entire graph, and considers the complementary subgraph as a

necessary condition, i.e., removing it leads to different predictions.

We propose that the complementary subgraph contains no informa-

tion about the original prediction, implying a uniform distribution

as output if used as input. The work [30] and our work employ a

similar idea of the uniform distribution, with their primary focus

being the discovery of causal effects among features. This idea has

inspired us to utilize an adversarial framework in conjunction with

a scaling function to obtain a sparser explanation subgraph. There

is also a line of research developed from the information bottleneck

principle [41, 40, 23]. The intuition is that the explanation subgraph

should contain enough information about the prediction, but also

Table 1: Notations

Notation Meaning

𝐺 (𝑉 , 𝐸) graph 𝐺 with vertex set 𝑉 and edge set 𝐸

𝐺 ′ ⊆ 𝐺 explanation set

𝐺 ′ ⊆ 𝐺 the complement subgraph of 𝐺 ′ w.r.t. 𝐺
𝐼 mutual information

𝑌 predicted label

𝑈 uniform distribution

𝑚𝑎𝑠𝑘 ∈ [0, 1]𝑛×𝑛 informative weights of 𝑛 edges

⊙ element-wise multiplication

contain as less information about input graph as possible. In the

works [41, 40, 23], hyperparameters are required to determine the

final explanation subgraph, or to control the sparsity of the expla-

nation set during the training phase, which is unknown in most

real-world cases.

3 ADVERSARIAL MASK EXPLAINER
This work studies how to find an explanation for GNNs model’s pre-

diction, including node classification and graph classification. For

the sake of simplicity in our discussion, we primarily focus on node

classification in the subsequent sections. However, it is important

to note that our approach is also applicable to graph classification

and can be straightforwardly applied in practice. In this section, we

begin by providing an overview of fundamental concepts related

to GNNs. Subsequently, we formalize the problem of GNNs model

explanation. Following that, we introduce our training objective

function, specifically the adversarial objective. Moreover, we intro-

duce a novel scaling function that effectively detects and enhances

the mask weights of informative elements within the graph. Lastly,

we present our innovative model, AMExplainer.

3.1 Preliminary
Given𝐺 = (𝑉 , 𝐸) as the graph with the node set𝑉 and the adjacent

matrix 𝐸, the𝑚𝑎𝑠𝑘 is defined as a fraction matrix𝑚𝑎𝑠𝑘 ∈ [0, 1]𝑛×𝑛 ,
where 𝑛 = |𝑉 |. When multiplied to 𝐸 element-wisely, 𝑚𝑎𝑠𝑘 can

be regarded as a small perturbation on the original graph 𝐺 . We

denote the perturbated new graph as 𝐺 ′ = 𝐺 (𝑉 , 𝐸 ⊙𝑚𝑎𝑠𝑘), where
⊙ is the element-wise multiplication. Then the problem we studied

in this work is formalized as follows:

Definition 1 (Problem of GNNs Explanation). Given a graph
𝐺 (𝑉 , 𝐸) and a trained GNNs model for node/graph classification, the
objective is to identify a compact subgraph that can serve as the
model’s input while producing identical predictions to those obtained
when the entire graph 𝐺 is used as input.

The notations used in this work are summarized in Table 1.

3.2 Adversarial Objectives
To understand why the GNNs model makes a certain classification

prediction, we target to find the most informative part of the input

2023-10-12 09:22. Page 3 of 1–9.
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graph, i.e., this informative subgraph should contain all the informa-

tion to make a correct prediction. Existing works [39, 20] use the

following objective function to look for a perturbed subgraph𝐺 ′
,

which maximizes the mutual information 𝐼 between the predicted

label 𝑌 and the perturbed graph 𝐺 ′
:

𝐺 ′ = argmax

𝐺 ′
𝐼 (𝑌,𝐺 ′) (1)

In addition, they incorporate a regularization term to constrain

the size of 𝐺 ′
and curate the explanation set by selecting edges

with the highest 𝐾 mask weights. The value of 𝐾 is manually deter-

mined based on prior knowledge. Interestingly, we get the following

observation:

Observation 1. If regarding the ground truth as the explanation
subgraph, the remaining part of the entire graph (i.e., complemen-
tary subgraph) has no prediction ability on any class. The predicted
classification distribution by the complementary subgraph is almost
uniform.

This is consistent with our intrinsic since we expect that the

ground truth contains all the necessary knowledge that is required

for accurate prediction, and the complementary subgraph contains

only useless knowledge for prediction. This inspires us to maxi-
mize the mutual information between the complementary
subgraph and the uniform distribution to approach the elu-
sive ground truth:

𝐺 ′ = argmax

𝐺 ′
𝐼 (𝑈 ,𝐺 ′) (2)

where 𝑈 is a uniform distribution, 𝐺 ′ = 𝐺 (𝑉 , 𝐸 ⊙ 𝑚𝑎𝑠𝑘), and
𝐺 ′ = 𝐺 (𝑉 , 𝐸 ⊙ (1 −𝑚𝑎𝑠𝑘)). However, in practice, the GNNs model

might not always succeed to find the ground truth to make the pre-

diction. One of the reasons is that the accuracy of the trained GNNs

model is not 100%. Another reason is that GNNs model exhibits

a distinct cognitive logic and methodology in contrast to human

cognition when it comes to comprehending graphs. This means

that Eq 1 and Eq 2 can have different optimal values. To under-

stand how the GNNs model make a certain prediction, we need

Eq 1. To make the GNNs’ cognitive logic on comprehending graphs

understandable, we need Eq 2 to help the solution to approach

the understandable ground truth. Hence, it naturally leads us to

consider employing adversarial network techniques as a means to

reconcile these two solutions. Following the training methodology

of adversarial networks, the identical set of mask parameters is

employed for cross-training the two objective functions. This ad-

versarial process ensures the convergence of parameters towards

an equilibrium point between the solutions of the two equations.

The idea can be formalized as:

Idea 1. (1) Train the network with parameter𝑚𝑎𝑠𝑘 using Eq 1 for
𝑒1 epochs; (2) Train the network with parameter 1 −𝑚𝑎𝑠𝑘 using Eq 2
for 𝑒2 epochs; (3) Repeat (1&2) until the𝑚𝑎𝑠𝑘 converge.

We observe that the convexity of mutual information actually

causes the𝑚𝑎𝑠𝑘 used in cross-training to transition between so-

lutions of Eq 1 and Eq 2. When Eq 1 is being trained, the 𝑚𝑎𝑠𝑘

moves towards the solution of Eq 1. When Eq 2 is being trained, the

𝑚𝑎𝑠𝑘 moves towards the solution of Eq 2. The final mask tends to

converge to a position between the two solutions, and this position

Figure 2: As 𝑑 increases, the curve of 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑀,𝑑) moves
from left to right.

is actually adjusted by the epoch ratio 𝑒2/𝑒1. While we leverage the

concept of adversarial training, the fact that cross-training operates

on the same set of parameters and both objective functions aim

towards maximizing leads us to simplify the training process by

combining the two objective functions into a single network. The

new objective function is formulated as follows:

𝐺 ′ = argmax

𝐺 ′
[𝐼 (𝑌,𝐺 ′) + 𝛽 · 𝐼 (𝑈 ,𝐺 ′)] (3)

where 𝛽 is utilized to adjust the extremum point of this new convex

function, which is formed as a linear combination of the two convex

functions, namely Eq 1 and Eq 2. In other words, 𝛽 adjusts the

equilibrium point of the solutions to Eq 1 and Eq 2, and its role is

entirely equivalent to that of the epoch ratio 𝑒2/𝑒1. Thus, we get
our simplified idea:

Idea 2 (Eqivalent but simplified). Train the network with
parameter𝑚𝑎𝑠𝑘 using Eq 3.

3.3 Scaling Function
After conducting extensive experiments, we found that training the

network directly to optimize Eq 3 did not yield satisfactory results.

However, we got the following two observations.

Observation 2. During the training process, the mask weights
of edges that contain substantial information and significantly con-
tribute to accurate predictions rapidly increase and converge to
values close to 1.

Observation 3. During the training process, the mask weights of
edges that carry irrelevant information and provide little assistance
in making accurate predictions decrease slowly and tend to remain
far from approaching zero.

To enhance training efficiency, these two observations inspired

us to prioritize maintaining mask weights close to 1 for important

edges while actively suppressing the mask weights of irrelevant

edges. This strategy aims to expedite the convergence of mask

weights associated with irrelevant edges towards zero, ensuring the

sparsity of the explanation set. In general, the sigmoid function is

2023-10-12 09:22. Page 4 of 1–9.
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Algorithm 1 AMExplainer

Input: The input graph 𝐺 = (𝑉 , 𝐸), a trained GNNs model,

number of epochs 𝑛, interval epochs 𝑇 , shift step 𝐷 , 𝛽 , and

initialized𝑚𝑎𝑠𝑘 .

Output: The explanation set.

1: for 𝑖 = 1, ..., 𝑛 do
2: if 𝑖 is divisible by 𝑇 then
3: Increase the value of 𝑑 in the 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑚𝑎𝑠𝑘, 𝑑) by 𝐷 ;
4: 𝑚𝑎𝑠𝑘 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑚𝑎𝑠𝑘, 𝑑); ⊲ Eq 4

5: Compute loss; ⊲ Eq 3

6: Update𝑚𝑎𝑠𝑘 by backpropagation;

7: Include all the edges whose𝑚𝑎𝑠𝑘 ≥ 0.1 into the explanation

set.

commonly employed for re-scaling mask values. However, in light

of our Observation 2 and Observation 3, we require the sigmoid

function to possess a capability of rightward shifting. This ensures

that the weights of important edges remain close to 1, while the

weights of irrelevant edges fall within the steepest region of the

sigmoid function and converge to zero more rapidly. In this paper,

we introduce a novel scaling function defined as a sigmoid function

with a shift parameter:

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑀,𝑑) = 1

1 + exp (− (𝑀 − 𝑑)) (4)

where 𝑀 is the element of the mask matrix, and 𝑑 is the shift

parameter. As illustrated in Figure 2, the curve shifts towards the

right as 𝑑 increases, effectively driving the weights of irrelevant

edges towards zero. Lastly, and perhaps most importantly, it is

crucial for the shift parameter to gradually increase from 0. This

ensures that the weights of important edges do not mistakenly fall

within the steepest region of the sigmoid function before reaching

proximity to 1, which would result in their erroneous exclusion

from the explanation set.

3.4 Adversarial Mask Explainer: AMExplainer
The mask values were expected to follow a random distribution

within the range of [0, 1]. However, in the actual experiments, we

observed that the majority of edges had mask values that were

nearly close to zero, while only a small fraction of edges fell within

the range of [0.1, 1]. After completing the mask training process, in

order to avoid missing any potentially informative edge, we adopt

a very conservative edge selection strategy. Specifically, we set the

threshold for including edges in the explanation set to a very low

value of 0.1. If the mask value obtained from training for a particular

edge exceeds 0.1, it is included in the explanation set.

Finally, AMExplainer is formalized as Algorithm 1. The𝑚𝑎𝑠𝑘 is

updated every epoch by backpropagation, and the shift parameter

increases from 0 with a step 𝐷 every 𝑇 epochs.

3.5 Regularization Term 𝑣𝑠. Eq 2
Some may argue that Eq 2 serves as a regularization term in Eq 3,

aiming to suppress the magnitude of mask values. However, the

reality is that the size of the explanation set is unknown, and thus, it

is inappropriate for algorithm designers to impose a predetermined

constraint on the size of the explanation set based on personal

preferences. The true role of Eq 2 is to facilitate a more interpretable

explanation that closely resembles a ground truth interpretation by

incorporating it into the adversarial process with Eq 1. The sparsity

of the results, in fact, emerges as an incidental outcome of pursuing

the interpretability of solutions.

4 EXPERIMENTAL STUDIES
In this section, we conduct extensive experiments to study two

essential research questions:

1. To what extent AMExplainer can provide an effective expla-

nation set?

2. How sparse is the explanation set?

We study the two research questions for both node classification and

graph classification. The baselines are chosen to be GNNExplainer

[39] and PGExplainer [20]. In the following, we first introduce the

benchmark datasets used in this work. Then we give the setup

details for reproducibility. Finally, we answer the aforementioned

two research questions by the experimental results.

4.1 Baselines
We compare AMExplainer with the following baselines:

• GNNExplainer[39]: The first model-agnostic approach to

providing explanations for the output of a trained GNNs

model. It learns masks over node features and edges. For

comparison with AMExplainer, we use GNNExplainer to

learn masks over edges.

• PGExplainer[20]: This approach trains a parameterized

mask predictor to generate masks over edges. The predictor

takes edge embeddings as input, which are the concatenation

of node embeddings, and outputs the probability of each edge

being selected.

• GSAT[23]: GSAT learns masks over edges based on the

information bottleneck principle. The selected edges should

be informative for the original prediction while containing

limited information from the input.

• OrphicX[18]: From a causal perspective, this approach iden-

tifies informative edges by determining the causal compo-

nents in the latent space that contribute to the prediction.

4.2 Dataset[39, 20]
For the node classification task, we use four synthetic datasets to

test the performance of our algorithm:

1. BA-Shapes: This dataset comprises a single base Barabási-

Albert (BA) graph consisting of 300 nodes. Additionally, 80

house-structured motifs are randomly attached to the BA

graph, followed by the introduction of additional edges to

perturb the overall graph. Nodes in the base BA-graph are

assigned the same label, while nodes in the house-structured

motif are classified into three distinct categories based on

their relative positions within the house structure (top, mid-

dle, or bottom).

2. BA-Community: The BA-Community dataset bears resem-

blance to the BA-Shapes dataset, as it connects two BA-

Shapes while incorporating node features sampled from two
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distinct Gaussian distributions. Nodes with features sampled

from the same Gaussian distribution are deemed to belong

to the same community, along with their varying relative

positions within each BA-Shape. This combination results

in a total of 8 classes in the BA-Community dataset.

3. Tree-Cycles: The Tree-Cycle dataset utilizes a balanced

binary tree as the underlying graph, supplemented by the

random attachment of 80 cycle-structured motifs to the tree

structure. This dataset exhibits two distinct types of labels,

depending on whether the node is located within the base

tree graph or not.

4. Tree-Grid: The Tree-Grid dataset shares similarities with

the Tree-Cycle dataset, with the distinction being the uti-

lization of grid-structured motifs instead of cycle-structured

motifs. The label assignment follows the same setup as the

Tree-Circles dataset.

For the graph classification task, we use one synthetic dataset

and one real-world dataset to test the performance of our algorithm:

5. BA-2motifs: The synthetic dataset, BA-2motifs, comprises

800 graphs, half of which are augmentedwith house-structured

motifs, while the remaining half are appended with five-

node-cycle motifs. Consequently, the BA-2motifs dataset en-

compasses two distinct classes based on the type of attached

motifs.

6. Mutag: The Mutag dataset is a real-world dataset consisting

of 4337 graphs categorized into two classes. A graph is la-

beled as mutagenic if it contains the chemistry groups 𝑁𝐻2

or 𝑁𝑂2, while graphs without these groups are considered

nonmutagenic.

4.3 Setup and Reproducibility
Mean Squared Error: These studies [39, 20] provide evidence

that, within the scope of our investigation, mutual information

can be effectively replaced by cross-entropy. Cross-entropy is usu-

ally employed as a metric to quantify the divergence between two

probability distributions. In the context of our research problem,

it serves to gauge the disparity between the class probability dis-

tribution predicted using the original graph and the probability

distribution predicted using only the informative subgraph. In the

practical training procedure, we discovered that substituting cross-

entropy with Mean Squared Error (MSE) yields comparable or even

improved training outcomes. Consequently, in real-world applica-

tions, we propose the direct utilization of MSE as a replacement for

mutual information in the two loss terms during training.

Assessment of Effectiveness: To evaluate the effectiveness

of the AMExplainer in comparison to the baselines, we assess the

extent to which the prediction distribution generated by the expla-

nation set resembles that produced by the entire graph. For this

evaluation, we employ the measure of absolute fidelity, denoted as

𝑓 𝑖𝑑𝑒𝑙𝑖𝑡𝑦𝑎𝑏𝑠 :

𝑓 𝑖𝑑𝑒𝑙𝑖𝑡𝑦𝑎𝑏𝑠 =
1

𝑁

𝑁∑︁
𝑖=1

��𝑝𝑦𝑖 − 𝑝𝑚𝑖

�� (5)

Here 𝑖 is the node index. 𝑝𝑦𝑖 is the original prediction probability of

assigning node 𝑖 into the correct class by the entire graph, and 𝑝𝑚𝑖
is

the prediction probability of assigning node 𝑖 into the correct class

by the subgraph induced by the explanation set. The expression

1

𝑁

∑𝑁
𝑖=1 represents the average taken over all nodes within a motif,

where 𝑁 denotes the number of nodes contained in the motif. A

lower value of 𝑓 𝑖𝑑𝑒𝑙𝑖𝑡𝑦𝑎𝑏𝑠 indicates a closer similarity between

the prediction distribution generated by the explanation set and

that produced by the original graph. This, in turn, signifies higher

effectiveness of the algorithm.

One might question why we chose fidelity as the measure of

effectiveness. Since the task at hand is classification, why not use a

metric such as the following: if the informative subgraph and the

entire graph predict the same label when used as input to GNNs,

the metric is 0; otherwise, the metric is 1. In reality, this seemingly

stricter metric compared to fidelity harbors an inherent pitfall in

its underlying logic. Specifically, predicting the same label does

not necessarily imply that GNNs have utilized the same informa-

tive graph at the lower levels. For instance, consider a scenario

where the informative subgraph and the entire graph, when used

as input to GNNs, yield prediction probabilities of 51% and 99%,

respectively, for a certain label. Although both cases yield the same

label prediction, it is evident that in this situation, the informative

graph/explanation set used in the case of a fluctuating prediction at

51% and an extremely confident prediction at 99% would certainly

differ significantly. Considering this scenario, we have chosen fi-

delity as a more reasonable measure specifically tailored for the

classification task in this work.

Assessment of Sparsity: One crucial distinction between hu-

man reasoning and machine reasoning when seeking explanations

for a problem lies in the difficulty of humans constructing complex

sets of causes, akin to machines. Humans tend to simplify problems

by reducing them to a few fundamental causes. In other words, we

desire the algorithm to yield a sparse explanation set, even though

the algorithm designers themselves may not be certain whether

the true explanation set is indeed sparse. It is not appropriate to

impose the designer’s subjective preference for sparsity on the al-

gorithm. However, extensive experiments have demonstrated that

the sparsity of the solution can be naturally achieved during the

process of employing Eq 2 to progressively align the mask with the

ground truth. In this work, we define the 𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 as:

𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 =
1

𝑁

𝑁∑︁
𝑖=1

(1 − |𝑚𝑖 |
|𝑀𝑖 |

) (6)

Here 𝑖 is the node index. The term |𝑚𝑖 | refers to the size of the

explanation set for node 𝑖 , while |𝑀𝑖 | represents the total number of

edges in the computation graph. The expression
1

𝑁

∑𝑁
𝑖=1 represents

the average taken over all nodes within a motif, where 𝑁 denotes

the number of nodes contained in the motif. A higher degree of

sparsity implies a sparser explanation set, which in turn indicates

that the explanation set is more easily comprehensible by human

reasoning.

4.4 Fidelity
Node Classification Task: Table 2 presents the average fidelity
of the results obtained when five different algorithms are applied

to perform node classification tasks on four distinct datasets. For

instance, we executed the AMExplainer algorithm on all five nodes

within a specific motif from the BA-shapes dataset. Subsequently,
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Table 2: Fidelity of node classification

Algorithm BA-shapes BA-Com Tree-Cycle Tree-Grid

AMExplainer 0.0028 0.0342 0.0072 0.0015

GNNExplainer 0.1743 0.1704 0.1535 0.0389

PGExplainer 0.5439 0.6005 0.0402 0.0253

GSAT 0.0010 0.0017 0.0079 0.0034

OrphicX 0 0 0 0

we calculated the fidelity based on Eq 5 and repeated the process by

randomly selecting motifs from the entire graph, computing their

average fidelity using the same approach. Then we get the first

data 0.0028 in Table 2. AMExplainer further reduces the fidelity

compared to GNNExplainer and PGExplainer by 79.93% to 98.39%.

Although GSAT and OrphicX include all edges in their final expla-

nations, as discussed in the next section, AMExplainer’s fidelity

performance remains comparable. This suggests that the explana-

tion set produced by AMExplainer closely aligns with the original

prediction. This implies that the explanation set generated by AM-

Explainer is close to the true subgraph used by the underlying logic

of GNNs for node classification prediction.

Graph Classification Task: the computation of fidelity differs

from node classification tasks. Since graph classification predictions

are made on a graph level rather than on a per-node basis, there is

no need to take an average over different nodes. Instead, fidelity is

calculated by randomly selecting different graphs from the dataset

and averaging the results. Compared to the better-performing ap-

proach between GNNExplainer and PGExplainer, AMExplainer

further reduces fidelity by 94.22% to 99.94%. A comparable perfor-

mance is achieved by AMExplainer when compared with GSAT

and OrphicX, which take input as the explanation. When applied to

the real-world dataset Mutag, AMExplainer demonstrates its best

performance. When GNNs take the subgraph generated by AMEx-

plainer as input, the resulting graph classification probabilities are

nearly identical to those obtained when the entire original graph is

used as input, with a difference of around 0.01%.

4.5 Sparsity
Node Classification Task: Now we compare the sparsity of the

explanation obtained by AMExplainer with baselines. In fact, the

concept of sparsity does not directly apply to these baselines be-

cause they select the top-𝐾 edges based on the mask values as the

explanation set, which means the size of the explanation set is fixed.

To ensure fairness, we still count the number of edges with mask

values greater than 0.1 and calculate the sparsity using the same

method as in Equation 6. The experimental results are presented in

Table 4.

We can see that three baselines, PGExplainer, GSAT, and Or-

phicX, exhibit a sparsity of 0 across all datasets. This is because

they include all edges in the explanation set when the mask value

threshold is set to 0.1. In comparison, the sparsity of GNNExplainer

provides more meaningful insights. In relation to GNNExplainer,

AMExplainer demonstrates a decrease in sparsity by approximately

20% on the BA-shapes and Tree-Grid datasets, an increase in sparsity

by approximately 20% on the Tree-Cycle dataset, and comparable

Table 3: Fidelity of graph classification

Algorithm BA-2motifs Mutag

AMExplainer 0.0144 0.0001

GNNExplainer 0.2625 0.1748

PGExplainer 0.2492 0.2669

GSAT 0.0073 0.0010

OrphicX 0 0

performance to GNNExplainer on the BA-Community dataset. Ex-

perimental results indicate that while AMExplainer significantly

improves prediction effectiveness by 1 to 2 orders of magnitude, it

also maintains a reasonable level of sparsity in the explanation set,

comparable to the baselines.

Graph Classification Task: In the case of graph classification

tasks, as shown in Table 5, we observe that three baselines, PGEx-

plainer, GSAT, and OrphicX, assign values greater than 0.1 to all

masks, rendering the discussion of sparsity for them meaningless.

When compared to GNNExplainer, AMExplainer exhibits a slight

decrease in sparsity on theMutag dataset, approximately 20%, while

showing an increase in sparsity of about 60% on the BA-2motifs

dataset. Overall, AMExplainer performs on par with or slightly

better than the baselines in terms of solution sparsity.

4.6 Ablation study
Scaling Function: An ablation study was conducted to indepen-

dently assess the practical impact of the scaling function. In other

words, we investigated whether it is necessary to shift the scaled

curve to the right during the training process. Results are shown in

Table 6. In this experiment, we set the value of 𝑑 to 0 and used node

classification as an example to observe the comparison between the

experimental results and those obtained with the normal setting of

𝑑 . The numerical values following the slash represent the experi-

mental results obtained under the regular setting of 𝑑 . We observed

that the setting of 𝑑 had a minor impact on fidelity but a signif-

icant effect on sparsity. The scaling function shifted to the right

enhanced sparsity by 1.7 to 7 times compared to a regular sigmoid

function. In other words, the scaling function effectively removed

ineffective information from the explanation set, achieving a sparse

explanation set while ensuring prediction accuracy.

Extremum Point: As we can adjust the extremum point of the

convex function (Eq 3) using 𝛽 , we conducted another ablation

study to examine the effect of the second term in Eq 3. We set the

value of 𝛽 to 0, so the loss function only included the first term. In

other words, during training, we did not consider forcing the pre-

diction distribution of the complement set of the explanation set to

approximate a uniform distribution. Using node classification as an

example, the results are shown in Table 7. The numerical values fol-

lowing the slash represent the experimental results obtained under

the regular setting of 𝛽 . We observed a slight decrease in sparsity,

ranging from 5% to 20%, after adding the second term to the loss

function. However, fidelity experienced a significant improvement,

ranging from 2 to 119 times. In other words, AMExplainer achieves

a significant enhancement in prediction accuracy by sacrificing a

small degree of sparsity in the explanation set. Through these two
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Table 4: Sparsity of node classification

Algorithm BA-shapes BA-Community Tree-Cycle Tree-Grid

AMExplainer 0.6475(↓ 26.96%) 0.8745(↓ 3.13%) 0.8397 (↑ 19.14%) 0.7509(↓ 17.43%)

GNNExplainer 0.8865 0.9028 0.7048 0.9094

PGExplainer 0 0 0 0

GSAT 0 0 0 0

OrphicX 0 0 0 0

Table 5: Sparsity of graph classification

Algorithm BA-2motifs Mutag

AMExplainer 0.4509(↑ 58.27%) 0.7335(↓ 19.63%)

GNNExplainer 0.2849 0.9126

PGExplainer 0 0

GSAT 0 0

OrphicX 0 0

sets of ablation studies, we found that the scaling function effec-

tively removes redundant information to achieve sparsity while

ensuring prediction accuracy. Additionally, the second term in Eq 3

significantly enhances prediction accuracy while maintaining spar-

sity essentially unchanged.

4.7 Summary
Now we can answer the two research questions that were posed at

the beginning of this section:

1. When applied to node classification tasks, AMExplainer out-

performs the state-of-the-art by reducing fidelity by 79.93%.

In other words, AMExplainer achieves an effectiveness im-

provement of 1 order of magnitude compared to the state-of-

the-art [39]. Here we only consider GNNExplainer because it

is meaningless to compare AMExplainer with baselines that

include all the edges into the explanation set with informa-

tion redundancy. For graph classification tasks, AMExplainer

surpasses the state-of-the-art by reducing fidelity by 94.22%.

This implies an effectiveness improvement of 2 orders of

magnitude compared to the state-of-the-art.

2. In both node classification and graph classification tasks, the

sparsity of the explanation set generated by AMExplainer is

comparable to that of the state-of-the-art, with fluctuations

of around 20% in both directions. Overall, while significantly

enhancing prediction effectiveness by 1 to 2 orders of mag-

nitude, AMExplainer maintains a similar level of sparsity

to the state-of-the-art, ensuring its effectiveness matches or

exceeds that of the existing approaches.

5 CONCLUSION AND FUTUREWORK
In this paper, we have studied the problem of explainability in GNN

models. Leveraging the concept of adversarial networks, we have

proposed a novel explainability model called AMExplainer. The

objective of this model is twofold: to find an informative graph that

Table 6: Ablation study of AMExplainer with different 𝑑

BA-shapes BA-Com Tree-Cycle Tree-Grid

Fidelity 0.0046/0.0028 0.0284/0.0342 0.0021/0.0072 0.0158/0.0015

Sparsity 0.3895/0.6475 0.3661/0.8745 0.1421/0.8397 0.2076/0.7509

Table 7: Ablation study of AMExplainer with different 𝛽

BA-shapes BA-Com Tree-Cycle Tree-Grid

Fidelity 0.3333/0.0028 0.1977/0.0342 0.0171/0.0072 0.0101/0.0015

Sparsity 0.8376/0.6475 0.9163/0.8745 0.9861/0.8397 0.9643/0.7509

provides accurate prediction probabilities and to find an informative

graph that aligns with the understanding of humans, resembling a

ground truth. During the training process, these two objectives cre-

ate an adversarial relationship, resulting in a balanced solution that

captures both aspects. Additionally, we have introduced a novel

scaling function to expedite the convergence of the solution during

training. Extensive experiments have demonstrated that AMEx-

plainer outperforms the state-of-the-art by improving prediction

effectiveness by 1 to 2 orders of magnitude while preserving the

sparsity of the solution. Moreover, this performance improvement

is particularly prominent on real-world dataset.

The AMExplainer, while it is promising for generating explana-

tion subgraphs, faces a limitation. The issue lies in its inability to

achieve a fully sparse explanation subgraph solely by controlling

the move distance of the sigmoid function. Ideally, we aim for a

scenario where all informative edges are assigned a mask value of

1, while all irrelevant edges receive a mask value of 0. Our experi-

mental results indicate that there exists a small subset of edges with

mask values falling between 0.1 and 1, suggesting that the current

approach falls short of achieving complete sparsity. To address this

challenge, a potential solution lies in introducing adjustments to

the slope of the sigmoid function during the training phase. By

making the sigmoid function steeper, we can exert greater control

over the mask values, effectively driving them toward the desired

extremes of 0 and 1. This approach requires a carefully designed

schedule for modifying both the move distance and slope rate of

the sigmoid function. We leave this part for future work. It is im-

portant to highlight that while AMExplainer is primarily tailored

for elucidating the inner workings of a trained GNNs model, its

utility extends beyond GNNs and can be effectively employed with

various other types of neural networks.

2023-10-12 09:22. Page 8 of 1–9.
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