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ABSTRACT

Humans can accurately anticipate their movements to behave as expected in var-
ious manipulation tasks. We are inspired to propose that integrating prior knowl-
edge of robot dynamics into world models can effectively improve the sample
efficiency of model-based reinforcement learning (MBRL) in visual robot con-
trol tasks. In this paper, we introduce the Robo-Centric World Model (RCWM),
which explicitly decouples the robot dynamics from the environment and enables
pre-training to learn generalized and robust robot dynamics as prior knowledge
to accelerate learning new tasks. Specifically, we construct respective dynam-
ics models for the robot and the environment and learn their interactions through
cross-attention mechanism. With the mask-guided reconfiguration mechanism,
we only need a few prior robot segmentation masks to guide the RCWM to dis-
entangle the robot and environment features and learn their respective dynamics.
Our approach enables independent inference of robot dynamics from the environ-
ment, allowing accurate prediction of robot movement across various unseen tasks
without being distracted by environmental variations. Our results in Meta-world
demonstrate that RCWM is able to efficiently learn robot dynamics, improving
sample efficiency for downstream tasks and enhancing policy robustness against
environmental disturbances compared to the vanilla world model in DreamerV3.
Code and visualizations are available on the project website: https://robo-centric-
wm.github.io.

1 INTRODUCTION

Model-based reinforcement learning (MBRL) holds significant promise for achieving sample-
efficient learning in visual robot control tasks (Ebert et al., 2018; Hafner et al., 2019; 2020a; Sekar
et al., 2020; Mendonca et al., 2021; Rybkin et al., 2021; Seo et al., 2023). By constructing world
models (Ha & Schmidhuber, 2018) that approximate the dynamics of the real environment, agents
can leverage generated imaginary trajectories for planning (Hafner et al., 2019; Ye et al., 2021;
Hansen et al., 2022; Chung et al., 2023; Hansen et al., 2024) or behavioral learning (Hafner et al.,
2020b; 2023; Seo et al., 2023), thereby reducing the interaction with the environment. However,
learning accurate world models from scratch, especially in the absence of prior knowledge, poses
a formidable challenge. The presence of model errors hinders the policy learning, restricting the
further improvement of sample efficiency in MBRL.

One feasible way to address this challenge is to pre-train world models to obtain useful information
for downstream tasks to accelerate learning. Inspired by the success of pre-training paradigms in
domains such as computer vision (CV) (Deng et al., 2009; Radford et al., 2021) and natural language
processing (NLP) (Brown et al., 2020; OpenAI, 2022), recent works have aimed to investigate effec-
tive pre-training methods for world models (Seo et al., 2022; Wu et al., 2023; Mazzaglia et al., 2023;
Rajeswar et al., 2023). For visual manipulation tasks that require precise estimation of the current
robot state, it is necessary for the world model to accurately capture the robot dynamics to generate
realistic imaginary trajectories in response to the action for policy learning. However, existing works
rarely recognize this and typically focuses on pre-training effective representations.

When humans interact with physical world, they typically have the ability to anticipate their own
movements, allowing them to act aligned with their expectations (Miall & Wolpert, 1996). With this
in mind, we naturally ask the following question:
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Figure 1: Overall pipeline of our approach. We first guide the warmup of the RCWM using a few
trajectories with the prior robot mask generated with SAM2 to ensure that the robot branch learns
the relevant features. Then we pre-train the robo-centric world model using trajectories collected
on upstream tasks without prior robot masks to learn robot dynamics generalized to other tasks.
Finally, we use the pre-trained world model with robot dynamics prior for learning various new
tasks to improve sample efficiency.

Can we integrate prior knowledge of robot dynamics into world models to mitigate the disparity
between imagined and actual behaviors for improving sample efficiency?

However, existing methods often rely on a single model to learn world dynamics, which results
in the entanglement of robot and environment dynamics, making it difficult to provide accurate
robot state estimation when confronted with new tasks. In this paper, we introduce the Robot-
Centric World Model (RCWM), which is designed to extract robot dynamics through pre-training
and apply this prior knowledge on new tasks to provide accurate dynamics prediction, as shown
in Figure 1. Specifically, we construct two branches to learn the dynamics of the environment and
robot, respectively, and use an interaction model with cross-attention mechanism to learn robot-
object interaction relations. In order for both branches to capture their respective relevant features,
we design the mask-guided reconstruction mechanism and use only a few prior robot segmentation
masks generated by Segment-Anything-Model-2 (SAM 2) (Ravi et al., 2024) to achieve implicit
feature disentanglement at the beginning of the pre-training period.

RCWM offers several advantages: (1) Accurate prediction of robot dynamics. We find that explic-
itly modeling robot dynamics individually results in more accurate predictions compared to learning
global dynamics with a single model; (2) Robust against environmental disturbance. Due to implicit
feature disentanglement, the robot branch is hardly affected by environmental disturbances, provid-
ing robust robot representation for the policy; (3) Utilization of prior masks. The architecture of
RCWM naturally introduces the use of robot segmentation masks, which can enhance the prediction
accuracy of robot dynamics. We evaluate and analyze RCWM on Meta-world and show that RCWM
is more suitable for robots to learn a variety of manipulation tasks than the vanilla world model in
DreamerV3 (Hafner et al., 2023) that uses a single dynamic model to learn global dynamics.

2 RELATED WORKS

MBRL from pixels Model-based approaches have shown promise in efficiently tackling decision
problems with visual inputs, such as video games (Ha & Schmidhuber, 2018; Schrittwieser et al.,

2
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Figure 2: (a) The robot responds to action signals, driving changes in the environment as it moves.
The dashed outline of the lever switch indicates the potential effect of the environment on the robot.
(b) We implicitly model the potential environmental effects on the robot, represented by dashed
boxes, and explicitly model the rest.

2020; Kaiser et al., 2020; Hafner et al., 2020b; Ye et al., 2021) and visual robot control tasks (Ebert
et al., 2018; Hafner et al., 2020a; Sekar et al., 2020; Rybkin et al., 2021; Seo et al., 2023). Some
approaches concentrate on acquiring effective representations to construct learning-friendly latent
spaces, achieved by image reconstruction (Hafner et al., 2019; Seo et al., 2023) or contrastive learn-
ing (Okada & Taniguchi, 2021; Deng et al., 2022). Several approaches improve the structure of
world models to achieve more accurate predictions, such as utilizing the transformer (Chen et al.,
2022; Micheli et al., 2023; Zhang et al., 2023) or state space model (Deng et al., 2023; Samsami
et al., 2024). In addition, there are methods that focus on extracting task-relevant information from
noisy observations (Pan et al., 2022; Fu et al., 2021). Unlike existing approaches that typically learn
a whole-world dynamic, we separately learn the robot dynamics and the environment dynamics, as
well as the interactions between them.

Pretraining world models World models have recently received a lot of attention in various fields
such as autonomous driving (Wang et al., 2023b;a) and video generation (Bruce et al., 2024; Zhen
et al., 2024; OpenAI, 2024; Yang et al., 2024). In contrast to the CV and NLP domains, research
on pre-training methods in MBRL remains relatively nascent. Some approaches learn representa-
tions that can be used for various downstream tasks by pre-training video prediction models with
easily accessible action-free videos (Seo et al., 2022; Mendonca et al., 2023; Wu et al., 2023). How-
ever, these methods are of limited help when confronted with robot manipulation tasks that require
accurate predictions. There are also methods that utilize unsupervised learning for task-agnostic ex-
ploration to collect data to pre-training world models (Mazzaglia et al., 2023; Rajeswar et al., 2023).
Nevertheless, these methods usually require pre-training and fine-tuning in the same task scenario.
Our approach provides a new idea for pre-training by integrating prior knowledge of robot dynam-
ics into world models, and applying the extracted robot dynamics to various downstream tasks for
accurate robot motion predictions.

3 BACKGROUND

Problem formulation In this paper, we focus on visual robot control tasks that we formulate as a
partially observable Markov decision process (POMDP) (Sutton & Barto, 2018) represented by the
tuple (O,A, p, r, γ). O is the visual observation space, A is the action space, p(ot | o<t, a<t) is
the transition dynamics, r is the reward function that maps previous observations and actions to a
reward rt = r(o≤t, a<t), and γ ∈ [0, 1) is the discount factor.

DreamerV3 DreamerV3 (Hafner et al., 2023) is a model-based RL method that formulates the
world model with a Recurrent State Space Model (RSSM) (Hafner et al., 2019), which consists of
the following components:

Representation model: zt ∼ qϕ(zt |ht, ot) Image decoder: ôt ∼ pϕ(ôt | st)
Sequence model: ht ∼ fϕ(ht−1, zt−1, at−1) Reward predictor: r̂t ∼ pϕ (r̂t | st)
Dynamics predictor: ẑt ∼ pϕ(ẑt |ht) Continue predictor: ĉt ∼ pϕ (ĉt | st)

(1)
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Figure 3: The architectural design of the robo-centric world model. We build separate branches
for robot and environment, and design an interaction model to learn how the robot interacts with
the environment. The two branches reconstruct the observations of the robot and the environment
through mask-guided decoders and add them together to obtain the final reconstruction result.

The representation model embeds the current observation ot and the recurrent state ht into a low-
dimensional latent space. The sequence model updates the recurrent state ht based on stochastic
representation zt−1 and action at−1, without direct access to ot. The dynamics predictor predicts
the prior stochastic representation ẑt using ht. The image decoder reconstructs the ot to provide
supervised signals for representation learning. Additionally, the reward predictor and continue pre-
dictor estimate the reward and episode continuation flags ct ∈ {0, 1} respectively for the latent state
st

.
= {ht, zt} instead of the reconstructed observation. The overall models are jointly learned by

minimizing the negative variational lower bound (ELBO)(Kingma & Welling, 2014):

LKL(q, p)
.
=βdyn max(1,KL [sg(q) ∥ p]) + βrep max(1,KL [(q) ∥ sg(p)]) (2)

L(ϕ) .= Eqϕ(z1:T |a1:T ,o1:T )

[ T∑
t=1

(
− ln pϕ(ot | st)− ln pϕ(rt | st)− ln pϕ(ct | st) (3)

+LKL(qϕ(zt |ht, ot), pϕ(ẑt |ht))
)]
.

For behavior learning, DreamerV3 utilizes imaginary trajectories generated by interacting with the
learned world model for actor-critic learning (see Appendix A.1 for the details).

4 METHODS

4.1 ROBOT DYNAMICS DECOUPLING

We consider visual robot control scenarios in which the same robot is employed for various manip-
ulation tasks. Although MBRL approaches can efficiently learn visual control policies, training the
world model from scratch for each task still requires a significant amount of interaction with the
environment, which limits further improvements in sample efficiency. Intuitively, the intrinsic dy-
namics of the robot remain consistent across different tasks. However, existing approaches typically
use a single model to learn the world dynamics which couples the robot dynamics with the environ-
ment dynamics. As a result, when confronted with new tasks, the world model is unable to avoid
the visual interference on robot dynamics prediction caused by environmental changes, thus making
it difficult to directly provide generalized prior knowledge about the robot dynamics for learning
new tasks. If we can individually extract this prior knowledge from the collected trajectories and
integrate it into the world model, we can leverage it to provide accurate predictions of the robot
dynamics when learning new tasks, without requiring significant training data.
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However, the intricate interactions between the robot and objects in the environment make it chal-
lenging to learn intrinsic robot dynamics in isolation. For example, when the robot operates the
lever switch, it encounters resistance from the lever, and when it pushes all the way down, it can no
longer move forward. Additionally, the lever itself moves as a result of the robot’s movement. This
interplay complicates learning generalized robot dynamics that are applicable across various tasks.

Therefore, we propose a simplified interaction framework as shown in Figure 2. We decouple world
dynamics into robot dynamics and environment dynamics. The robot dynamics need to take into
account the intrinsic dynamics of robot itself as well as potential effects of the environment on the
robot, such as resistance to encountering an object, with no need to know the detailed environmental
state transitions. The environment dynamics then infer the movement of objects in the environment
based on the execution results of the robot rather than directly through action signals. This frame-
work simplifies the robot-object interaction by explicitly modeling the robot’s effects on the objects
while implicitly modeling the objects’ influences on the robot.

Based on this framework, we allow inference on robot dynamics to be relatively independent of
the environment dynamics, thus learning intrinsic robot dynamics that can be generalized across a
variety of tasks. For example, as shown in Figure 2(a), the robot first executes the action according
to the control signal, and it does not need to know how the lever moves, but only needs to know that
the reaction force of the lever will be applied when it pushes forward. We denote the potential effects
on the robot by the lever switch at the edge of the dashed line. Then, based on the robot’s execution
results, we can infer the specific movement track of the lever switch. Eventually, we combine the
two inference results to obtain the complete state estimation.

4.2 ROBO-CENTRIC WORLD MODELS

Based on the above idea, we introduce a novel architecture called Robo-Centric World Model
(RCWM), which comprises two branches to learn robot dynamics and environment dynamics sep-
arately, and an interaction model leveraging the cross-attention mechanism to assess the effect of
robot dynamics predictions on the environment state. RCWM builds upon DreamerV3 and an
overview of the architecture is shown in Figure 3. We describe the components of it in detail below.

Representation model To ensure that each branch captures relevant features, we first utilize a
shared encoder to learn low-level features. Subsequently, distinct encoders are constructed for each
branch to capture their respective features. We denote the robot branch with the superscript R and
the environment branch with the superscript E. The stochastic representations are calculated as
follows:

zRt ∼ qφ(z
R
t |hRt , ot) zEt ∼ qϕ(z

E
t |hEt , ot) (4)

Dynamics model Based on the simplified interaction framework described above, we design the
robot dynamics model to be action-conditioned, which updates the next recurrent state hRt based on
the latent state [hRt−1, z

R
t−1] and the action at−1. The environment dynamics model does not directly

take actions as inputs; instead, it uses the interaction features et−1, which are calculated by the
interaction model. Then we can get the stochastic representation based on the recurrent state:

hRt ∼ fφ(h
R
t−1, z

R
t−1, at−1) hEt ∼ fϕ(h

E
t−1, et−1) (5)

ẑRt ∼ pφ(ẑ
R
t |hRt ) ẑEt ∼ pϕ(ẑ

E
t |hEt ) (6)

Interaction model The interaction model aims to calculate how the robot’s movements will affect
the environment. This design allows the environment dynamics to be predicted not directly with
actions, but with the effect of the robot’s movements results on the environment, thus allowing the
environment dynamics to derive state predictions that are consistent with the robot’s movements.
Specifically, after the robot branch predicts the next latent state ŝRt according to the action, we seek
to capture the effect this movement will induce in the current representation of the environment zEt−1.
To learn about this interaction, we construct a model with the cross-attention mechanism, generating
keys and values from ŝRt and queries from zEt−1. We then add the attention result x and zEt−1 to get
the interaction feature et−1. See Appendix A.2 for implementation details. The interaction model is

5
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Figure 4: (a) Robot dynamics prediction error of pre-trained RCWM on the unseen coffee-pull task.
(b) Robot dynamics prediction error curves for each step of the imaginary trajectory. The solid line
and shaded regions represent the mean and standard deviation, respectively, across 100 imaginary
trajectories. See Appendix A.5.2 for full curves for all tasks.

calculated as follows:

Q = gϕ(z
E
t−1) K = V = gφ(ŝ

R
t ) x = Attention(Q,K, V )

et−1 = LayerNorm(x+ zEt−1)
(7)

Mask-guided decoder To enable the two branches to capture their respective relevant information
from high-dimensional image observations, we design a mask-guided reconstruction mechanism to
introduce structured prior robot masks inspired by Gmelin et al. (Gmelin et al., 2023). We construct
independent image decoders for each branch, which take latent state as input and output the recon-
structed image with a sigmoid-activated mask. Then we multiply the reconstructed image with the
mask and combine the results from both branches to produce the final reconstructed observation:

ôRt , m̂
R
t ∼ pφ(ô

R
t , m̂

R
t | sRt ) ôEt , m̂

E
t ∼ pϕ(ô

E
t , m̂

E
t | sEt )

ôt = ôRt ∗ m̂R
t + ôEt ∗ m̂E

t

(8)

Then we construct an auxiliary loss that guides the robot branch to capture relevant features by
minimizing the mean squared error between the prediction robot mask m̂R

t and the prior robot mask
mR
t . With the assistance of prior robot masks, we implicitly achieve feature disentanglement through

the decoder, rather than explicitly processing the image input. This allows the robot branch to
focus on robot-related features without entirely disregarding environmental information, seamlessly
aligning with our simplified interaction framework, in which robot dynamics need to implicitly take
into account the potential effects of the environment. This mechanism allows the world model to
naturally utilize the prior robot mask to provide additional structured information for the learning of
robot dynamics. Moreover, by using a few prior robot masks to guide the warm-up of RCWM, it can
provide stable and accurate mask predictions for subsequent training without relying on prior masks.
In addition, we find that this architecture naturally captures structured information even without the
prior mask, which we provide more details in Appendix A.5.1.

Predictor Heads The latent state of both branches contains only partial information relevant to
their respective purpose. To provide comprehensive information to the reward predictor and the
continue predictor, we combine them to form the final latent state st

.
= [sRt , s

E
t ]. This combined

latent state is also utilized for behavior learning.

Overall, RCWM can be jointly optimized by the following loss:

LRC .
= E

[ T∑
t=1

(
− ln p(ot | sRt , sEt )− ln p(rt | st)− ln p(ct | st) + (m̂R

t −mR
t )

2

+LKL(qφ(zRt |hRt , ot), pφ(ẑRt |hRt )) + LKL
(
qϕ(z

E
t |hEt , ot), pϕ(ẑEt |hEt )

))]
.

(9)
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Figure 5: Interaction predictions of pre-trained RCWM on door-open task. The complete imaginary
trajectory with the length of 64 steps is shown from left to right at 8-step interval.

4.3 IMPLEMENTATION PIPELINE

In this subsection, we introduce the pre-training and fine-tuning pipeline for our proposed Robo-
Centric World Model, as shown in Figure 1. Note that unlike previous approaches, we concentrate
on pre-training on upstream tasks that are entirely different from downstream tasks but involve the
same robot.

First, we need to obtain a few prior robot masks to guide the warm-up of RCWM. We randomly se-
lect a small number of trajectories from the pre-training dataset formed by the trajectories collected
from upstream tasks. In our experiments, we sample 16 full trajectories totaling 4000 steps. Then
we segment the robot in the image to obtain the mask with the help of SAM2. SAM2 can automati-
cally track segmented objects, so we only need to provide detection points for the first frame of the
trajectory. Since the initial position of the robot is fixed, we only need to set identical positive and
negative points for the first frame of all trajectories. We provide details in Appendix A.4. Then we
utilize these trajectories with masks to warm up the RCWM, thus ensuring that both the robot branch
and the environment branch capture the corresponding features. Since RCWM is naturally capable
of separating structured information, it does not heavily rely on prior masks, thereby avoiding ex-
cessive costs. In cases where prior masks are readily available, e.g., directly from the environment
simulator, we can use them throughout the pre-training phase to guide training of RCWM, thus
enhancing robot dynamics learning.

After warmup, RCWM already has the ability to capture robot features. With mask reconstruc-
tion mechanism, RCWM is still able to accurately predict robot masks without using prior masks.
Therefore, we can automatically learn robot dynamics by mask free pre-training of RCWM on the
full pre-training dataset. After pre-training, the robot branch has been able to accurately predict the
robot’s movements based on actions. We keep the robot dynamics model and reset the environment
dynamics and interaction models to prepare for learning new tasks. The robot branch is not affected
by the reset of these two models, as its inference is completely independent of the environment
branch.

During the online fine-tuning phase, although the environmental observations change in new tasks,
the robot branch remains capable of robustly predicting the robot mask, allowing for the fine-tuning
of RCWM without using prior robot masks. Despite being well-trained, the robot branch still needs
to learn about the potential effects of the environment on the robot when faced with new tasks. With
online fine-tuning of the RCWM overall, it is able to quickly adapt to the dynamics of new tasks and
learn about the robot-object interaction.

5 EXPERIMENTS

In this section, we aim to explore the advantages of RCWM and answer the following questions: (1)
Can RCWM effectively learn generalized robot dynamics applicable to various new tasks? (2) Can

7
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Figure 6: Fine-tuning results on Meta-world. (a) The solid line and shaded regions represent the
mean and bootstrap confidence intervals, respectively, across five runs. (Pre: O) represents pre-
training usage and (Pre: X) indicates no pre-training. (b) Aggregate performance across a total of
40 runs over 8 tasks.

RCWM accurately learn the interactions between the robot and objects? (3) Can pre-trained RCWM
improve sample efficiency for learning new tasks? (4) Can RCWM provide robust representations
for the policy in the presence of environmental visual disturbances?

5.1 EXPERIMENTAL SETUP

Environments Our approach is focused on visual robot control scenarios that utilize the same
robot for various manipulation tasks. Therefore, we select the Meta-world benchmark (Yu et al.,
2020) to evaluate our approach, which includes 50 manipulation tasks performed with the Sawyer
robot and is friendly to reinforcement learning. We first select 4 simple tasks for pre-training data
collection. Then we select 8 challenging tasks for sample efficiency evaluation. All of these tasks
involve complex robot-object interactions and require precise manipulation, which places significant
demands on the predictive accuracy of world models. we set the action repeat to 2 and the episode
length to 500 for all tasks. See Appendix A.3 for detailed task description and parameter setting.

Pre-training dataset We utilize the replay buffer from 4 tasks trained by DreamerV3 as our
dataset, with each replay buffer containing 500K steps of interaction data. We randomly selected 16
full trajectories from the pre-training dataset and then used SAM 2 to generate a total of 4k masks
for mask-guided warmup.

Baseline We choose Dreamerv3 with vanilla world models (WM) as our baseline since our ap-
proach is built upon it. As RCWM utilizes prior robot masks, we also add a mask predictor to the
vanilla world model for fairness. The pre-training process for vanilla WM is identical to that of
RCWM, except that it does not require resetting the dynamic model after pre-training.

Implementation details Since Meta-world features hard-exploration tasks, this leads to signifi-
cant variance in the learning curves, making the evaluation of sample efficiency challenging. In
addition, exploring randomness can seriously impact the assessment of pre-trained world models.
This is because trying to explore a successful trajectory often requires numerous interactions with
the environment, causing the advantages of pre-training to diminish as online interactions and train-
ing progress. To mitigate these problems, we randomly select 20 successful trajectories to pre-fill
the replay buffer at the beginning of training. This practice is effective in improving the stability of
training on Meta-world tasks (Wu et al., 2024).

5.2 EXPERIMENTAL RESULTS

Robot dynamics learning We evaluate the effectiveness of RCWM in learning robot dynamics
based on the prediction accuracy. We collect 100 trajectories containing rich robot dynamics for
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Figure 7: Comparison of the reconstruction error and the reward loss for imaginary trajectories
generated on the evaluation dataset. The solid line and shaded regions represent the mean and
standard deviation, respectively, across 100 imaginary trajectories.

each task using well-trained policies as the evaluation dataset and use the world model to generate
imaginary trajectories for comparison. We multiply the imagined reconstructed image with the
ground-truth robot mask and compute the mean square error with the ground-truth robot image to
serve as the robot dynamics prediction error. As shown in Figure 4, even without fine-tuning, the pre-
trained RCWM is still able to consistently delivers more accurate predictions of robot movements
in response to action signals compared to the vanilla WM when applied to unseen tasks. After fine-
tuning, the vanilla WM still does not achieve the same level of accuracy in predicting robot dynamics
as RCWM. See Appendix A.5.2 for complete results evaluated on all tasks. The results indicate that
explicitly decoupling and learning robot dynamics individually can lead to more accurate dynamics
predictions than using a single dynamics model to learn the whole world dynamics.

Robot-object interaction learning We analyze the learning of the interaction between robot and
objects according to the consistency of movement between the predictions of the environment branch
and the robot branch. We select the door-open task to demonstrate this, as it involves significant in-
teractions. Figure 5 illustrates the prediction of object movements in the environment as the robot
moves. We can see that RCWM successfully learns the interaction between the robot and the door.
We also visualize the attention map in the interaction model, with detailed descriptions and ad-
ditional visualizations provided in Appendix A.5.3. Our observations indicate that the interaction
model does not simply feed all information from the robot branch into the environment branch, as
the attention map is only significantly activated at certain locations. In addition, we notice an in-
teresting phenomenon where the attention map seems to be significantly activated when the robot
induces changes in the environment, such as when it first touches or grabs the object. This sug-
gests that the interaction model does learn certain physical interaction relationships. We provide
visualizations for other tasks in Appendix A.5.3. The results demonstrate the effectiveness of our
proposed simplified interaction framework and RCWM, which not only decouples robot dynamics
but also models physical interactions with objects.

Sample efficiency improvement Figure 6 shows the learning curves comparing RCWM and
vanilla WM across 8 challenging tasks in Meta-world. The results indicate that pre-trained RCWM
can significantly improve sample efficiency compared to DreamerV3 with vanilla world model. We
consider that this is due to the accurate prediction of the robot dynamics provided by the pre-trained
RCWM, which allows it to quickly adapt to new tasks and generate accurate imaginary trajectories.
Although the prediction of environment dynamics is also crucial for reward estimation, only accu-
rate prediction of the robot’s movements can better predict the interaction with the environment.
Since the actor and critic are based on imaginary trajectories for policy improvement and value es-
timation, the accuracy of the generated trajectories is crucial, especially for tasks that require fine
manipulation. We evaluate the reconstruction errors and the reward loss of imaginary trajectories,
and the results are presented in Figure 7. There is no significant final performance gap between the
policies learned respectively on the two world models used for the comparison, ensuring fairness.
See AppendixA.5.4 for comparisons of other tasks. We can see that RCWM generates more accu-
rate imaginary trajectories and reward predictions than vanilla WM on almost all tasks, especially
on sweep-into and stick-push, both of which require fine control of the robot. This explains the
improvement in sample efficiency achieved by our approach.

9
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Figure 8: Robustness evaluation with environmental visual disturbances. Each task is evaluated 100
times. The D in the legend of Figure 8(b) denotes disturbances.

Robustness against environmental disturbances Considering that one feature of RCWM is the
ability to learn generalized robot dynamics individually without paying too much attention to en-
vironment information, we would like to evaluate whether it can still provide robust representation
and dynamics prediction of the robot against environmental visual disturbances. This is crucial for
the robustness of the policy. We change the texture of some objects in the environment to introduce
disturbances, as shown in Figure 8. We visualize the results of the fine-tuned RCWM in predicting
robot dynamics when faced with unseen texture changes, see Appendix A.5.5. We find that the robot
branch in RCWM is not sensitive to environmental disturbances and is still able to accurately pre-
dict the robot’s movements, even when replacing the background with random noise. To illustrate
whether RCWM can provide robust representations for the policy, we select policies with similar
performance that are trained with RCWM and vanilla WM, respectively, to evaluate the change in
performance after the disturbance. As shown in Figure 8(b), the policy trained with vanilla WM suf-
fers severe performance drop when faced environmental disturbances, while the policy trained with
the RCWM exhibits robustness on almost all tasks. We propose that this is because our policy learn-
ing concatenates the respective representations of the robot and the environment as inputs. Even
if the environmental representation is disturbed to some extent, the policy can still make decisions
based on the robust robot representation, thereby enhancing its overall robustness.

6 CONCLUSION AND DISCUSSION

In this paper, we introduce the Robo-Centric World Model (RCWM), which can decouple the dy-
namics of the robot and the environment, and learn their interaction via an interaction model based
on the cross-attention mechanism. With RCWM, we can extract robot dynamics through pre-training
on upstream tasks with the assistance of a few prior robot masks, and use this prior knowledge about
robot dynamics to improve sample efficiency on downstream tasks. Compared to vanilla world mod-
els, the RCWM has significant advantages in that it can be efficiently pre-trained to learn generalized
robot dynamics applicable to various new tasks and can remain robust against noise disturbances.
In addition, we provide an efficient way to introduce external prior robot masks into the training
of the world model to enhance robot dynamics learning. Our experiments on Meta-world support
our argument that integrating prior knowledge of robot dynamics into world models can effectively
improve sample efficiency for downstream visual robot control tasks.

Despite these results, some limitations still remain. Our approach focuses on visual robot control
tasks and is difficult to effectively extend to more general tasks such as video games or autonomous
driving. In addition, our approach requires using the same robot’s interaction data for pre-training
and cannot be directly expanded to general in-the-wild robot data. However, we still believe that we
provides a novel idea for constructing world models applicable to robot manipulation tasks, which
can further improve the sample efficiency for MBRL. In future work we would like to explore
utilizing the long horizon predictive accuracy of the RCWM for robot manipulation planning.
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A APPENDIX

A.1 BEHAVIOR LEARNING DETAILS

We follow the actor-critic learning scheme of DreamerV3 as described below:

Actor: at ∼ πθ(at | st) Critic: vψ(st) ≈ Epφ,pϕ,πθ
[Rt]

Rλt
.
= rt + γct

(
(1− λ)vψ (st+1) + λRλt+1

)
RλT

.
= vψ (sT )

(10)

The world model generates imaginary trajectories {s1:T , a1:T , r1:T , c1:T } starting from the sampled
latent state with the actor. To estimate returns that consider rewards beyond the prediction horizon,
bootstrapped λ-returns (Sutton & Barto, 2018; Schulman et al., 2015) are calculated to integrate the
predicted rewards and the values. The critic learns to predict the distribution of the return estimates
λ-target Rλt using the maximum likelihood loss:

L(ψ) .= −
T∑
t=1

ln pψ
(
Rλt | st

)
(11)

The actor learns to select actions that maximize the return while exploring through an entropy regu-
larizer. Since we deal with a continuous action space, we use stochastic backpropagation following
DreamerV3 to estimate the gradient of the following loss:

L(θ) .=
T∑
t=1

Eπθ,pϕ

[
− sg

(
Rλt

)
/max(1, S)

]
− ηH [πθ (at | st)]

S = Per
(
Rλt , 95

)
− Per

(
Rλt , 5

) (12)

where sg is a stop gradient function and S represents the return scale which is calculated using the
average of the exponential decay from the 5th batch percentile to the 95th batch percentile. We set
entropy scale η = 3 ·10−4 in all experiments. For more details about DreamerV3 we refer to Hafner
et al. (2023)

A.2 INTERACTION MODEL DETAILS

The stochastic representation zt ∈ Rn×m is a vector of multiple categorical variables following
DreamerV3, where n is the number of categoricals and m is the dimension of each categorical
variable. In our experiments we set n = m = 32. In order to fully utilize the predictive information
about the robot dynamics, we take ŝRt = {ht, ẑRt } as input to compute its relationship with zEt−1.
Since the dimension of ht ∈ Rd is different from ẑRt , we first input ht into a MLP and reshape the
output to get gt ∈ Rk×m, where in our experiment k = 8. Then we concatenate the two together to
get uRt ∈ R(n+k)×m. We generate queries using zEt−1 and keys and values using uRt . We construct
the cross-attention model with output dimension m to get xt ∈ Rn×m. To ensure the completeness
of the environment information, we add zEt−1 and xt to get the final interaction feature et−1 ∈ Rn×m.

A.3 TASK SETTINGS

We report the specific tasks in our experiment in Table 1 and show all the task scenarios in Figure
X. All tasks use the v2 version and the ”goal-observable” mode 1. We refer to Seo et al. (Seo et al.,
2023) to adjust the camera position to [0.75, 0.075, 0.7]. We set the maximum length of the episode
to 500 environment steps with the action repeat set to 2. The fine-tuning task is incredibly difficult
compared to the pre-training task. This setup can demonstrate the characteristics of our approach,
which is able to extract task-irrelevant robot dynamics to accelerate training of various downstream
tasks.

1https://github.com/Farama-Foundation/Metaworld
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Pre-training tasks Fine-tuning tasks

Figure 9: Visualization of task scenarios.

Table 1: Specific tasks in Meta-world used in our experiments.
Task name

Pre-training tasks button-press window-open
door-open reach

Fine-tuning tasks

box-close coffee-push
coffee-pull hammer
peg-insert-side peg-unplug-side
sweep-into stick-push

A.4 ROBOT MASK GENERATION

We utilize Segment-Anything-Model 2 (SAM 2) to generate robot masks. Since SAM 2 has the abil-
ity to track and segment objects in the video, we select complete trajectories rather than fragments,
thus only needing to give positive and negative points to the first frame of each trajectories. We find
that there is no randomization of the initial position of the robot in Meta-world, so the initial position
of the robot is fixed for each trajectory. In our selected tasks, there are a total of two initial positions
involved. We manually create two sets of prompt points, as shown in Figure 10. The positive points
for the robot cover the robot’s body as well as the gripper, while the negative points are used to avoid
segmentation failures due to the object’s initial position being too close to the gripper. In order for
SAM 2 to generate masks accurately, we additionally save high-quality image observations obtained
from the simulator with a resolution of 256*256. After generated the mask, we resize it to 64*64 for
model training. This can effectively improve the accuracy of mask generation. In our tests, SAM 2
performs well in all tasks.

T=0 T=1 T=250

Figure 10: Visualization of robot mask generation with SAM 2. The green markers in the first frame
indicate positive points and the red markers indicate negative points.
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Figure 11: Visualization of RCWM reconstruction results.
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Figure 12: Reconstruction results on the door-open task that training without prior robot masks.

A.5 SUPPLEMENTAL EXPERIMENT RESULTS

A.5.1 MASK-GUIDED REPRESENTATION DISENTANGLEMENT

With the help of prior robot masks, RCWM can disentangle robot-related information and
environment-related information from high-dimensional image inputs. Figure 11 shows the recon-
struction results of two branches of RCWM on several tasks. In our experiments, we also notice that
without the auxiliary loss about the prior mask, both branches of RCWM still capture some struc-
tured information. We show the results of the reconstruction of RCWM in Figure 12, which is not
trained with the prior mask. We can see that each of the two branches captures different structured
information. However, without the prior information, we find that we cannot control with certainty
exactly what information is captured by the two branches. Sometimes robot-related information is
captured by the environment branch. Despite the problems, this implies that the architecture of the
RCWM has the potential for representation disentanglement. This problem is solved by using the
auxiliary task with the prior robot mask for warm-up.

A.5.2 ROBOT DYNAMICS LEARNING

We complement the visualization of the robot dynamics prediction error using the pre-trained
RCWM on the unseen hammer task as shown in Figure 14. Figure 13 illustrates the curve of
prediction error of robot dynamics for all tasks on the evaluation dataset. The evaluation dataset
is collected using the well-performing policies that have been fine-tuned on each tasks, and robot
masks have been generated for all data using SAM2. During the evaluation of errors, we select the
trajectories corresponding to each task, using the first 10 steps of data as historical observations, and

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 20 40
Rollout Steps

20

40

60

80

100

M
ea

n 
Sq

ua
re

 E
rro

r

box-close
RCWM RCWM (w/o FT)
Vanilla WM (w/o FT)
RCWM (w/ FT)
Vanilla WM (w/ FT)

0 20 40
Rollout Steps

0

20

40

60

80

100

coffee-push

0 20 40
Rollout Steps

20

40

60

80

100

120

coffee-pull

0 20 40
Rollout Steps

0

20

40

60

80

100
hammer

0 20 40
Rollout Steps

20

40

60
M

ea
n 

Sq
ua

re
 E

rro
r

peg-insert-side

0 20 40
Rollout Steps

10

20

30

40

50

60

70
peg-unplug-side

0 20 40
Rollout Steps

20

40

60

80

100

120

sweep-into

0 20 40
Rollout Steps

0

20

40

60

80

100

stick-push

Figure 13: Robot dynamics prediction error curves on all tasks.
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Figure 14: Visualization of robot dynamics prediction error.
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Figure 15: Interaction prediction results on Meta-world peg-insert-side task.
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Figure 16: Interaction prediction results on Meta-world hammer task.
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Figure 17: Comparison of reconstruction errors.
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Figure 18: Comparison of reward loss.

then utilize the world model to predict the next 54 steps of states based on the actions. We calculate
the error for all trajectories and compute the mean and standard deviation.

A.5.3 ROBOT-OBJECT INTERACTION LEARNING

We supplement some interaction prediction results from fine-tuned RCWM as shown in Figure 15
and Figure 16. It can be seen that RCWM is able to capture the interaction between robots and
objects and can make accurate predictions. In addition, we visualize the attention map in the inter-
action model to show its activation in different states. The shape of the attention map is 40 × 32,
where the 32× 32 map at the top represents the attention between zEt−1 and ẑRt , and the 8× 32 map
at the bottom represents the attention between zEt−1 and ĥRt . We reshape it to 80 × 64 in the figure
to align the size of the observation. It can be seen that the interaction model mainly captures the
information in ĥRt , which contains information about the robot’s history as well as the current action.
Since ẑRt is a stochastic representation computed from ĥRt , when the environment is not stochastic,
the information contained in ẑRt is not as comprehensive as ĥRt . However, given the consistency of
the information, we still compute attention using ŝRt = {ẑRt , ĥRt }.
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Figure 19: Comparison of the reward loss and reconstruction loss during pre-training.
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Figure 20: Robot dynamics prediction error visualization with environmental texture changes.

A.5.4 SAMPLE EFFICIENCY IMPROVEMENT

We supplement the comparison of the reconstruction error and the reward loss for imaginary trajec-
tories in all tasks, as shown in Figure 17 and Figure 18. We select models that perform well after
fine-tuning and have no significant performance gaps for evaluation. It can be seen that RCWM is
able to generate more accurate trajectories and significantly outperforms the vanilla world model
in long horizon prediction. We will try to utilize this long-horizon prediction capability for plan-
ning in our future work. In addition, we find that RCWM has lower reconstruction loss and reward
estimation loss during pre-training, as shown in Figure 19.

A.5.5 ROBUSTNESS AGAINST ENVIRONMENTAL DISTURBANCES

We visualize the predicted robot dynamics of the fine-tuned RCWM when facing environmental
disturbances, as shown in Figure 20 and Figure 21. We find that it is still effective in predicting the
robot’s movement based on action.

A.6 CODE IMPLEMENTATION

Our code references the official DreamerV3 code 2 and the PyTorch implementation 3. Our code
is available in the anonymous repository: https://github.com/robo-centric-wm/robo-centric-world-
model.

2https://github.com/danijar/dreamerv3
3https://github.com/NM512/DreamerV3-torch
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Figure 21: Robot dynamics prediction error visualization with random noise disturbances.

A.7 COMPUTATIONAL RESOURCES

We use a single Nvidia RTX3090 GPU and 10 CPU cores for each training run. In terms of parameter
counts, RCWM consists of 24.7M parameters, while the vanilla world model in DreamerV3 consists
of 19.1M parameters. In terms of training time, it takes ∼50 hours for pre-training of RCWM over
500K updates and ∼90 hours for fine-tuning of RCWM with MBRL for each run of Meta-world
experiments over 1M environment steps. This takes longer than training of vanilla DreamerV3,
which requires ∼60 hours for pre-training and ∼80 hours for fine-tuning. We consider that this is
mainly because RCWM creates two RNNs that compute in sequential order. In terms of memory
usage, RCWM requires ∼5GB GPU memory for each run of Meta-world experiments, while vanilla
DreamerV3 requires ∼4GB GPU memory.

A.8 HYPERPARAMETERS

We report the hyperparameters used in our experiments in Table 2. Unless otherwise specified, we
use the same hyperparameters as DreamerV3 (Hafner et al., 2023). In the pre-training phase, we set
the number of pre-training update steps to 500k, at which point the model has converged. To avoid
performance gains due to the increase in the number of model parameters, we reduce the hidden
dimension of the dynamic model in RCWM to 256, while the vanilla world model is 512. In order
to improve training stability, we increase the scale of the reward loss to 100 with reference to Ma
et al. (2024). We set the mask-guided warmup steps to 1000, which is much larger than DreamerV3’s
original pre-training step of 100 after random prefilling. This is because we want to make RCWM
learn to capture robot-related features with only a few prior robot mask data.
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Table 2: Hyperparameters settings in our experiments. Unless otherwise specified, we use the same
hyperparameters used in DreamerV3 (Hafner et al., 2023)

Hyperparameter Value

Base settings

Image observation 64× 64× 3
Action repeat 2
Max episode length 500 (Meta-world)
Evaluation episodes 20
Random exploration 2500 steps
Replay buffer capacity 1× 106

Batch size 16
Batch length (T ) 64
Imagination horizon (L) 15
Discount (γ) 0.997
Return lambda (λ) 0.95
World model learning rate 1× 10−4

Actor-critic learning rate 3× 10−5

Actor entropy scale (η) 3× 10−4

Dynamics hidden dimension 256
Reward loss scale 100

Pre-training

Pre-training steps 5× 105

Replay buffer capacity 2× 106

Mask-guided warmup steps 1000
Generated mask number 4000

Fine-tuning
Expert trajectory number 20
Mask-free warmup steps 500
Fine-tuning steps 1× 106
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