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Abstract001

Large language models (LLMs) are increas-002
ingly integrated into academic workflows, with003
many conferences and journals permitting their004
use for tasks such as language refinement and005
literature summarization. However, their use006
in peer review remains prohibited due to con-007
cerns around confidentiality breaches, hallu-008
cinated content, and inconsistent evaluations.009
As LLM-generated text becomes more indis-010
tinguishable from human writing, there is a011
growing need for reliable attribution mecha-012
nisms to preserve the integrity of the review013
process. In this work, we evaluate topic-based014
watermarking (TBW), a semantic-aware tech-015
nique designed to embed detectable signals into016
LLM-generated text. We conduct a system-017
atic assessment across multiple LLM configura-018
tions, including base, few-shot, and fine-tuned019
variants, using authentic peer review data from020
academic conferences. Our results show that021
TBW maintains review quality relative to non-022
watermarked outputs, while demonstrating ro-023
bust detection performance under paraphrasing.024
These findings highlight the viability of TBW025
as a minimally intrusive and practical solution026
for LLM attribution in peer review settings.027

1 Introduction028

As large language models (LLMs) continue to029

evolve, their adoption has accelerated in academic030

writing (Dergaa et al., 2023; Editorials, 2023).031

LLMs are widely used for language polishing, lit-032

erature search, and low-novelty writing. Many033

conferences now explicitly allow authors to use034

LLMs for certain tasks, provided that authors re-035

tain full responsibility for the content (ACL, 2025a;036

NeurIPS, 2025; ICML, 2025a). These policies up-037

hold pre-LLM expectations around authorship and038

accountability while adapting to new technological039

norms.040

In contrast, the use of LLMs by peer review-041

ers is widely prohibited (ACL, 2025b; NeurIPS,042

2025; ICML, 2025b). Such practices risk confiden- 043

tiality breaches, low-quality evaluations, and data 044

exposure (Zhou et al., 2024; Maini et al., 2024). 045

Recent empirical studies suggest, however, that 046

LLM-assisted reviews are already present in ma- 047

jor conferences, leading to inflated scores, reduced 048

reviewer confidence, and distortions in paper rank- 049

ings (Liang et al., 2024; Latona et al., 2024; Ye 050

et al., 2024). These developments underscore the 051

urgency of developing attribution mechanisms to 052

detect and manage LLM usage in peer review. 053

Distinguishing between machine- and human- 054

authored reviews has become difficult, as LLM- 055

generated content continues to improve. This 056

creates an urgent need for technical mechanisms 057

to trace review provenance. Watermarking of- 058

fers a promising approach, embedding impercepti- 059

ble, machine-detectable signatures into generated 060

text (Zhao et al., 2024). However, existing work 061

focuses on general-domain text, with limited anal- 062

ysis in peer review contexts (Liu et al., 2024; Zhao 063

et al., 2023). 064

In this paper, we present the first focused evalua- 065

tion of topic-based watermarking in the context of 066

academic peer reviews. Topic-based watermarking 067

(TBW) offers a balance of efficiency, robustness to 068

paraphrasing, and minimal impact on generation 069

quality, making it suitable for peer review, where 070

stylistic fidelity and semantic coherence are critical. 071

It also supports domain adaptation through cus- 072

tomizable topic lists aligned with peer review struc- 073

ture. Moreover, TBW relies on a topic-matching as- 074

sumption that naturally holds in this setting, where 075

reviews are expected to stay aligned with the sub- 076

ject of the paper. 077

Our goal is to assess whether TBW can preserve 078

review quality and semantic fidelity while offer- 079

ing attribution under realistic adversarial settings. 080

We evaluate across three LLM configurations: a 081

pretrained base model, a few-shot configuration, 082

and a fine-tuned model using authentic reviews 083
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from AI and ML conferences. Our analysis exam-084

ines generation and semantic quality, robustness to085

paraphrasing, and classifier-based attribution. We086

further compare TBW against general-purpose wa-087

termarkings and find that TBW offers better preser-088

vation of text quality, highlighting its suitability for089

domain-sensitive tasks like peer review.090

Without effective attribution mechanisms, the091

credibility and rigor of academic conferences092

could erode, leading to lower-quality evaluations093

and increased reliance on potentially unverifiable,094

machine-generated feedback. Watermarking pro-095

vides a practical and minimally disruptive approach096

for LLM accountability, helping to safeguard aca-097

demic standards while accommodating the evolv-098

ing role of generative models. Related work on099

LLM watermarking and detection approaches is100

provided in §A.101

2 Topic-Based Watermarks102

Topic-based watermarking (TBW) (Anonymous,103

2024) is a semantic-aware watermark that subtly104

influences a language model’s token selection pro-105

cess to leave a detectable signature. Unlike ear-106

lier schemes such as KGW (Kirchenbauer et al.,107

2023), which rely on randomly partitioned vocabu-108

laries, TBW constructs topic-specific token subsets109

(“green lists”) aligned with the semantic content of110

the input prompt, helping preserve fluency while111

enhancing robustness against paraphrasing.112

Token-to-Topic Mappings. TBW first assigns to-113

kens to topic-specific green lists using semantic114

similarity. A small set of topics t1, . . . , tK is de-115

fined, each represented by an embedding eti com-116

puted via a sentence embedding model. Each token117

v ∈ V in the model’s vocabulary is embedded as118

ev, and its cosine similarity with each topic em-119

bedding is computed. If the maximum similarity120

exceeds a threshold τ , the token is assigned to the121

green list Gti for the most similar topic. Tokens122

that do not meet this threshold are placed in a resid-123

ual set and evenly distributed across all green lists124

to maintain full vocabulary coverage.125

Generation & Detection. During generation, the126

most relevant topic is identified from the input127

prompt using keyword extraction, and TBW adds a128

small logit bias δ to all tokens in the corresponding129

green list. This increases the likelihood of sampling130

topic-aligned tokens while preserving the model131

architecture and generation efficiency. The water-132

mark strength is controlled by δ: higher values133

produce stronger attribution signals but may cause 134

detectable shifts in word choice. 135

For detection, TBW recovers the relevant topic
from the input text and counts green-list tokens
g relative to total tokens n. A z-score quantifies
whether the green-token rate exceeds an expected
baseline proportion γ:

z =
g − γ · n√

n · γ · (1− γ)
.

If z > zthreshold, the text is classified as water- 136

marked. 137

Rationale for TBW. We select TBW for its com- 138

bination of robustness, adaptability, and minimal 139

overhead (Anonymous, 2024). TBW is particu- 140

larly well-suited to peer review contexts where 141

paraphrasing represents a realistic threat model 142

where reviewers may rephrase generated content 143

to improve clarity or avoid detection, but are un- 144

likely to introduce noise that would degrade review 145

quality. Additionally, TBW’s requirement of topic 146

alignment between the input prompt and generated 147

text naturally holds in peer review, where content 148

must remain semantically aligned with the paper 149

under evaluation. This contrasts with open-ended 150

generation tasks where topic drift can undermine 151

detection effectiveness. Finally, TBW’s semantic 152

biasing strategy preserves fluency and style while 153

supporting domain adaptation through customiz- 154

able topic sets t1, . . . , tK that can be tailored to 155

specific research fields or venues. 156

3 Experimental Setup 157

We simulate realistic LLM-based peer review gen- 158

eration by training and prompting models to write 159

reviews conditioned on a paper’s title and abstract. 160

We condition on paper abstracts rather than full 161

text due to context length constraints and structured 162

data availability. 163

3.1 Dataset 164

We construct a dataset of paper titles, abstracts, and 165

corresponding reviews from ICLR and NeurIPS 166

conferences using the OpenReview API (Open- 167

Review, 2024)1. To minimize risk of includ- 168

ing LLM-generated content, we restrict data to 169

conferences before ChatGPT’s release (Novem- 170

ber 2022) (OpenAI, 2022): ICLR 2018–2023 and 171

NeurIPS 2021–2022. 172

1Code and dataset available at
https://anonymous.4open.science/r/Watermarking-LLM-
Conference-E051/.
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The final dataset contains approximately 19,000173

reviews, each including summary, strengths/weak-174

nesses, and recommendation scores. For each pa-175

per, we randomly sample a single review to con-176

struct prompt-completion pairs, ensuring reviewer177

diversity while avoiding overrepresentation. De-178

tailed statistics are in §C.1.179

3.2 TBW Domain Adaptation180

We adapt TBW to peer review by modifying181

the topic sets while retaining original parame-182

ter settings. Instead of general-purpose topics183

(e.g., technology, sports), we define domain-184

specific topics: {theory, applications, models,185

optimization} to capture themes in ML confer-186

ence reviews. We use logit bias δ = 2.0 and simi-187

larity threshold τ = 0.7 for primary experiments,188

with additional evaluation at τ = 0.3. Complete189

parameter details are provided in §C.2.190

3.3 Model Configurations191

To assess the feasibility of TBW across varying192

levels of model adaptation and reviewer effort, we193

utilize the Llama-3.1-8B (Grattafiori et al., 2024)194

in three configurations: base, few-shot, and fine-195

tuned. The base configuration uses the pretrained196

model without additional training or prompt engi-197

neering, simulating minimal reviewer effort. The198

few-shot setting provides the model with example199

peer reviews as part of the input prompt, enabling200

it to replicate the expected format and tone with201

lightweight guidance. The fine-tuned configura-202

tion involves supervised training on peer review203

data using parameter-efficient methods, resulting204

in a model more aligned with the review-writing205

task. This model size offers a practical balance206

between computational efficiency and generation207

quality suitable for our multi-configuration exper-208

iments. Detailed setup parameters for few-shot209

prompting and fine-tuning are provided in §C.3.210

4 Experiments211

We conduct a series of experiments across multiple212

dimensions, including text quality, robustness to213

paraphrasing, and classifier-based attribution.214

4.1 Generation Quality215

To assess TBW’s impact on generation quality, we216

evaluate perplexity across 1,000 samples per model217

configuration (base, few-shot, fine-tuned), compar-218

ing against unwatermarked baselines and two ex-219

isting schemes: KGW (Kirchenbauer et al., 2023)220

and Google’s SynthID-Text (Dathathri et al., 2024). 221

Each sample contains approximately 200 ± 5 to- 222

kens. Parameter configurations, additional thresh- 223

old results, and BERTScore evaluations are de- 224

tailed in §D. 225

We compute perplexity using the generating 226

model (Llama-3.1-8B) as a fluency proxy, where 227

lower values indicate higher naturalness. For vi- 228

sualization clarity, values above 20 are truncated 229

in Figure 1. The results demonstrate that TBW

No Watermark
TBW ( =0.7) KGW SynthID

Watermarking Scheme

1

2

3

4

5

6

7
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rp

le
xi

ty

Model Type
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Figure 1: Perplexity distributions across model and wa-
termark configurations. Lower values indicate better
fluency. Values above 20 are truncated for clarity.

230
introduces minimal perplexity degradation while 231

maintaining fluency compared to existing water- 232

marking schemes. Notably, over 50% of unwater- 233

marked base model generations exceed perplexity 234

20, whereas nearly all TBW outputs remain be- 235

low this threshold, the best performance among 236

all watermarking methods tested (detailed counts 237

in §D.2). This suggests TBW not only preserves 238

generation naturalness but enhances lexical consis- 239

tency in low-context scenarios by steering genera- 240

tion toward topic-relevant vocabulary. 241

4.2 Robustness to Paraphrasing Attacks 242

We evaluate TBW’s resilience against paraphrasing 243

attacks, which represent a realistic threat model 244

where reviewers may rephrase LLM-generated con- 245

tent to evade detection while preserving semantic 246

meaning. We focus on full-text paraphrasing at- 247

tacks that best reflect plausible reviewer behavior, 248

excluding token-level or partial edit scenarios. 249

We generate 1,000 samples per model config- 250

uration (base, few-shot, fine-tuned) for each wa- 251

termarking scheme, with each sample containing 252

200 ± 5 tokens. Paraphrasing attacks are imple- 253

mented using two established models: PEGA- 254

SUS (Zhang et al., 2020) and DIPPER (Krishna 255

et al., 2023) (configured with lexical=60 and 256

3



Detection Accurcy
Language Model Attacks TBW KGW SynthID

Base
No Attack 0.946 0.971 0.909
PEGASUS 0.847 0.477 0.135
DIPPER 0.876 0.754 0.173

Few-shot
No Attack 0.622 0.975 0.959
PEGASUS 0.580 0.580 0.359
DIPPER 0.517 0.748 0.225

Fine-tuned
No Attack 0.880 0.926 0.960
PEGASUS 0.583 0.437 0.180
DIPPER 0.584 0.657 0.159

Table 1: Detection accuracy of TBW, KGW, and Syn-
thID across model configurations and paraphrasing at-
tack types. Scores reflect the proportion of correctly
identified watermarked samples per condition.

order=40), following standard robustness evalua-257

tion protocols (Hou et al., 2024; Liu and Bu, 2024).258

Table 1 shows detection accuracy across three259

attack conditions. TBW demonstrates superior ro-260

bustness compared to existing methods, maintain-261

ing detection accuracy for base models and fine-262

tuned models even under paraphrasing attacks. In263

contrast, KGW and SynthID show degradation,264

with SynthID dropping to as low as 13.5% ac-265

curacy under PEGASUS attacks. The few-shot266

configuration exhibits reduced performance across267

all methods, with TBW achieving 58% accuracy268

under PEGASUS and 52% under DIPPER. This269

degradation likely stems from topic misalignment270

between the prompt examples and target papers,271

which weakens topic alignment and reduces de-272

tectability post-paraphrasing.273

We verify that TBW maintains low false pos-274

itive rates on human-written reviews through its275

vocabulary partitioning strategy, which preserves276

lexical diversity across topic-specific green lists.277

Complete ROC analysis is provided in §E.278

4.3 Classifier-Based Attribution279

To complement watermark detection, we evaluate280

whether LLM-generated peer reviews can be at-281

tributed to their original review labels (accept, bor-282

derline, reject) using transformer-based classifica-283

tion models. This task assesses whether water-284

marking affects the semantic structure necessary285

for accurate label prediction in downstream inter-286

pretation tasks.287

We use a balanced dataset of 9,000 training sam-288

ples (3,000 per class) and 1,000 test samples. Re-289

views are mapped to three categories based on orig-290

inal scores: 1–4 (reject), 5–6 (borderline), and 7–10291

(accept). We train BERT and RoBERTa classifiers292

to predict review ratings based on generated review293

Base Few-shot Fine-tuned
Metric NW TBW NW TBW NW TBW

BERT

Accuracy 0.290 0.321 0.403 0.437 0.400 0.416
Precision 0.353 0.346 0.373 0.366 0.367 0.366
Recall 0.328 0.342 0.379 0.369 0.370 0.367
F1 0.278 0.317 0.360 0.358 0.364 0.366

RoBERTa

Accuracy 0.486 0.432 0.399 0.424 0.406 0.443
Precision 0.344 0.357 0.362 0.371 0.367 0.401
Recall 0.341 0.352 0.368 0.371 0.374 0.403
F1 0.305 0.350 0.337 0.353 0.367 0.402

Table 2: Overall classification performance on original
LLM-generated reviews. Metrics are averaged over
Accept, Borderline, and Reject classes.

text, evaluating performance on both watermarked 294

and non-watermarked reviews. 295

As shown in Table 2, TBW demonstrates mixed 296

but generally positive effects on classification per- 297

formance. While some configurations show mod- 298

est degradation (e.g., RoBERTa base accuracy), the 299

majority of results indicate that TBW causes little 300

to no degradation and often leads to improvements 301

in both accuracy and F1 scores. We hypothesize 302

that this occurs because topic-based watermarking 303

encourages more topically consistent language that 304

aligns better with the underlying review content. 305

These findings reinforce TBW’s suitability for 306

domain-sensitive contexts like peer review, where 307

both traceability and semantic fidelity are criti- 308

cal. Additional experimental details, including 309

class-specific performance metrics, evaluation un- 310

der lower similarity thresholds (τ = 0.3), and ro- 311

bustness evaluation under paraphrasing attacks, are 312

provided in §F. 313

5 Conclusion 314

We present the first systematic evaluation of topic- 315

based watermarking (TBW) for academic peer re- 316

view, demonstrating that TBW preserves genera- 317

tion quality while maintaining robust detection un- 318

der paraphrasing attacks. Our experiments across 319

base, few-shot, and fine-tuned LLM configurations 320

show that TBW’s semantic grounding naturally 321

aligns with peer review constraints, where content 322

must remain topically consistent with the evaluated 323

paper. These findings highlight TBW’s viability 324

as a minimally intrusive solution for LLM attribu- 325

tion in peer review settings, offering a practical 326

mechanism to safeguard academic evaluation in- 327

tegrity. Discussion of deployment considerations 328

and limitations is provided in §B. 329
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Limitations330

This work inherits a key limitation of topic-based331

watermarking: the topic-matching assumption. As332

noted in the original proposal (Anonymous, 2024),333

watermark detection may degrade if the semantic334

topic of the generated output drifts significantly335

from the original prompt. This is particularly chal-336

lenging in open-domain generation, where the in-337

put prompt is often unavailable at detection time.338

However, in the context of peer review, this limita-339

tion is largely mitigated. Reviewers must prompt340

the LLM using the content of the paper, either by341

directly including the text or referencing its ab-342

stract and title, ensuring that the generated review343

remains topically aligned with the source. Further-344

more, during detection, conference organizers have345

access to the submission itself, allowing them to346

reliably identify the intended topic and recover the347

correct green list. As a result, the topic-matching348

assumption holds in this use case.349

A second limitation concerns deployment and350

coverage. For watermarking to serve as a reliable351

attribution mechanism, it must be consistently ap-352

plied across all LLMs used in a given environment.353

This is a general challenge for watermarking ap-354

proaches and not unique to TBW. If only certain355

LLM providers implement watermarking while oth-356

ers do not, users can simply switch to unwater-357

marked systems to bypass attribution. While the358

governance and policy mechanisms required to ad-359

dress this challenge are beyond the scope of this pa-360

per, we acknowledge that the effectiveness of TBW361

in real-world enforcement depends on broader co-362

ordination across providers and platforms.363

Ethical Considerations364

This work addresses the growing concern of unau-365

thorized LLM usage in academic peer review.366

While many conferences permit LLM use for au-367

thoring papers, they explicitly prohibit it for gen-368

erating reviews, citing risks to confidentiality, fair-369

ness, and accountability. Our goal is not to penalize370

reviewers but to support conference organizers in371

enforcing existing policies through lightweight and372

interpretable attribution tools. Topic-based water-373

marking introduces no additional risk to authors374

or reviewers, as it operates at the generation level375

without modifying model internals or relying on376

invasive detection mechanisms. We advocate for377

transparent disclosure of LLM usage in reviews378

and emphasize that attribution tools should be de-379

ployed with clear governance structures and ethical 380

oversight. 381
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conferences and journals now permit authors to541

leverage LLMs; however, this permissive stance542

does not extend to peer reviewers. Leading venues543

such as NeurIPS and ACL explicitly prohibit the544

use of LLMs by reviewers (NeurIPS, 2025; ACL,545

2025b). These policies reflect growing concerns546

around review quality, including the risk of shal-547

low or hallucinated feedback, reduced technical548

depth, and breaches of confidentiality that would549

compromise the double-blind review process (Li550

et al., 2024).551

Despite these restrictions, recent studies suggest552

that LLM-assisted reviews are already present at553

major conferences. Liang et al. (2024) estimate554

that 5–15% of reviews were substantially modi-555

fied using LLMs, with affected reviewers showing556

lower confidence and less engagement during re-557

buttals. Latona et al. (2024) report similar trends558

and observe a score inflation effect, while Ye et al.559

(2024) show that even subtle LLM manipulations560

can shift paper rankings. Together, these findings561

underscore the risks unauthorized LLM use poses562

to peer review fairness and rigor.563

Given the increasing use of LLMs for peer re-564

view generation, recent work has focused on de-565

tecting and attributing such content. Much of this566

research explores classifier-based detection or se-567

mantic similarity methods aimed at identifying AI-568

generated text. For example, Yu et al. (2025) pro-569

pose a detection method based on the semantic570

similarity between a known LLM-generated review571

and a test review, flagging a review as machine-572

generated when similarity exceeds a threshold.573

Similarly, Kumar et al. (2025) introduce a partition-574

based method under the assumption that a review575

contains both human- and LLM-written compo-576

nents. They segment the review into distinct points,577

complete each segment with a reference LLM, and578

measure semantic similarity between these comple-579

tions and the original text to detect potential LLM580

involvement.581

However, these detection methods fail under582

paraphrasing or hybrid-review scenarios, where583

even minor edits or partial human rewriting can584

evade detection. To address this limitation, water-585

marking offers a promising alternative by embed-586

ding identifiable signals directly into the generated587

text. One foundational method is the KGW algo-588

rithm (Kirchenbauer et al., 2023), which partitions589

the model’s vocabulary into “green” and “red” to-590

ken sets. During generation, the model is subtly591

biased to sample more frequently from the “green”592

list, which acts as a watermark-carrying set, while 593

avoiding tokens in the “red” list. This results in out- 594

put text that biases outputs toward “green” tokens 595

with minimal quality loss. Variants aim to improve 596

robustness and preserve quality (Liu et al., 2024; 597

Zhao et al., 2023; Hou et al., 2024). 598

More recently, commercial systems have also 599

entered this space. For example, Google’s SynthID- 600

Text watermarking system employs a strategy 601

called Tournament Sampling, in which candidate 602

tokens are ranked according to randomized water- 603

marking functions, and the highest-ranked token is 604

selected during generation (Dathathri et al., 2024). 605

While both academic and commercial watermark- 606

ing approaches have shown promise, they are pri- 607

marily evaluated on general-purpose domains such 608

as news or encyclopedic text, and rarely tested un- 609

der the stylistic and ethical constraints found in 610

peer review. 611

While a few frameworks target peer review 612

watermarking (Rao et al., 2025), they rely on 613

tightly integrated pipelines and lack evaluation 614

across adaptation modes. Topic-based watermark- 615

ing (TBW) (Anonymous, 2024), originally pro- 616

posed for open-domain text, provides a lightweight, 617

semantically guided alternative. 618

B Discussion 619

Topic-based watermarking performs particularly 620

well in the peer review setting due to the natu- 621

ral alignment between the subject of a paper and 622

the content of its corresponding review. Unlike 623

more open-ended generation tasks, peer reviews 624

are tightly grounded in the paper being evaluated, 625

making significant topic shifts unlikely, unless in- 626

troduced deliberately by the reviewer. Since high- 627

quality, relevant reviews are needed for the aca- 628

demic evaluation process, such intentional degra- 629

dation is improbable in practice. 630

We also observe that topic-based watermark- 631

ing is compatible across varying levels of LLM 632

adaptation, from base models to fine-tuned vari- 633

ants. While the few-shot setting shows degradation 634

in detection robustness, we attribute this to topic 635

mismatch between the few-shot exemplars and the 636

review being generated. This limitation can be mit- 637

igated with better exemplar selection or dynamic 638

prompt construction. 639

From a deployment perspective, TBW offers 640

a practical solution for reviewer attribution. The 641

method is efficient and detection incurs minimal 642
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computational overhead, making it suitable for643

integration into existing conference submission644

pipelines (Anonymous, 2024). Its low latency and645

lack of architectural modifications make it a com-646

pelling candidate for enforcement mechanisms in647

venues that prohibit LLM-assisted review writing.648

Lastly, our evaluation uses a constrained input649

(title and abstract) due to context window limita-650

tions. We expect that access to the full paper would651

further enhance generation quality and strengthen652

watermark consistency by grounding outputs in653

topic-relevant content.654

C Peer Review Task Specifics655

This appendix provides additional details regard-656

ing the peer review generation setup described657

in §3. Specifically, we include conference-level658

review statistics and implementation details for659

TBW as well as prompting and fine-tuning the660

Llama-3.1-8B model.661

C.1 Conference Review Statistics662

Table 3 reports the number of reviews collected663

from each ICLR and NeurIPS conference used in664

our experiments. Only reviews submitted prior to665

the release of ChatGPT (November 2022) were666

included to minimize the likelihood of LLM-667

generated content in the training data. No addi-668

tional filtering was applied beyond restricting the669

dataset to pre-ChatGPT conferences where all re-670

views were used in their original form.671

Conference: Year Number of Reviews
ICLR: 2018 935
ICLR: 2019 1419
ICLR: 2020 2213
ICLR: 2021 2594
ICLR: 2022 2617
ICLR: 2023 3793
NeurIPS: 2021 2768
NeurIPS: 2022 2824

Table 3: Review counts per conference used in training
and evaluation. The total number of unique reviews is
19,163.

C.2 TBW Parameter Details672

C.2.1 Implementation Components673

We use the same core components as the origi-674

nal TBW implementation to ensure consistency.675

Token and topic embeddings are computed us- 676

ing the all-MiniLM-L6-v2 sentence embedding 677

model (Reimers and Gurevych, 2020). Topic ex- 678

traction from input prompts is performed using 679

KeyBERT (Grootendorst, 2020) for keyword-based 680

topic identification. 681

C.2.2 Topic Assignment & Green List 682

Construction 683

Following the TBW framework, we partition the
vocabulary into green lists based on semantic sim-
ilarity to our predefined set of K = 4 domain-
specific topics: {theory, applications, models,
optimization}. Each token v ∈ V is assigned to
the green list Gti if its cosine similarity with topic
ti exceeds threshold τ :

sim(v, ti) =
ev · eti

∥ev∥∥eti∥

Tokens not meeting the similarity threshold are 684

placed in a residual set and evenly distributed 685

across all green lists to maintain complete vocabu- 686

lary coverage. 687

C.2.3 Generation & Detection Parameters 688

We apply a logit bias of δ = 2.0 to green-list to- 689

kens during generation, consistent with values re- 690

ported in prior watermarking literature (Kirchen- 691

bauer et al., 2023). For token-to-topic assignment, 692

we primarily use a cosine similarity threshold of 693

τ = 0.7, with additional evaluation at τ = 0.3 to 694

assess how watermark detection and text quality 695

vary under relaxed alignment constraints. 696

For detection, we use the statistical z-test with 697

baseline proportion γ set to the expected green- 698

token rate under random sampling, and threshold 699

zthreshold tuned for desired false positive rates. 700

C.3 Model Configuration Details 701

C.3.1 Few-shot Prompting Setup 702

In the few-shot setting, the model is given a prompt 703

containing a paper’s title and abstract followed by 704

a fixed instruction: 705

Title: [TITLE]
Abstract: [ABSTRACT]
Please write a detailed review.

706

Each prompt includes two example reviews 707

prepended to help the model learn the expected 708

structure and tone of a review. These few-shot 709
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examples are randomly sampled from the train-710

ing pool but excluded from evaluation generations.711

Specifically, the two examples prepended to each712

prompt are drawn from the first two entries in713

the fine-tuning training split, ensuring consistency714

across models.715

C.3.2 Fine-Tuning Setup716

For fine-tuning, we follow a supervised instruction-717

tuning setup where each instance consists of an718

input prompt (title + abstract + instruction) and719

a target completion (review text). The dataset is720

split into training (80%), validation (10%), and test721

(10%) subsets. We fine-tune using LoRA (Low-722

Rank Adaptation) with 4-bit quantization, enabling723

gradient checkpointing and early stopping. The724

objective is to improve the fluency and consis-725

tency of generated reviews while approximating726

the tone and structure typical of human-written727

peer reviews.728

For instruction-tuned generation, we fine-tune729

the Llama-3.1-8B model using a parameter-730

efficient LoRA (Low-Rank Adaptation) method.731

LoRA freezes the original model weights and in-732

jects trainable low-rank matrices into a subset of733

layers, enabling effective fine-tuning with a small734

number of additional parameters. This approach is735

well-suited for large-scale models, reducing mem-736

ory usage and training time while maintaining per-737

formance. Key settings are described in Table 4.738

All experiments were conducted using the Hugging

Parameter Value

Adapter type LoRA
LoRA r/α 16/32
LoRA dropout 0.1
Training epochs 3
Batch size (per device) 2
Max sequence length 2048 tokens
Learning rate 1e-4
Warmup ratio 0.2
Quantization 4-bit (NF4), double quantization
Target modules q_proj, k_proj, v_proj,

o_proj, gate_proj, up_proj,
down_proj

Table 4: Fine-tuning Hyperparameters

739
Face Transformers and PEFT libraries, with train-740

ing orchestrated using the Trainer API. The final741

adapters and tokenizer were saved for downstream742

evaluation. The dataset consists of the prompt (ti-743

tle, abstract, and generation instruction) and a com-744

pletion (review text), compatible with instruction745

tuning for causal language models.746

D Generation Quality Evaluations 747

We expend our evaluation of topic-based water- 748

marking (TBW) to assess its sensitivity to differ- 749

ent token-to-topic similarity thresholds. Specifi- 750

cally, we re-run perplexity and BERTScore evalu- 751

ations using a lower semantic similarity threshold 752

of τ = 0.3 (vs. τ = 0.7 in the main experiments). 753

We also provide BERTScore comparisons of TBW 754

(τ = 0.7) against KGW and SynthID baseline wa- 755

termarking schemes. 756

D.1 Baseline Watermarking Parameters 757

We compare TBW against two established wa- 758

termarking methods: KGW (Kirchenbauer et al., 759

2023), a pioneering approach for LLM watermark- 760

ing, and SynthID-Text (Dathathri et al., 2024), 761

Google’s proprietary technique for text attribution. 762

All baseline implementations use the open-source 763

MarkLLM framework (Pan et al., 2024) with the 764

following configurations: 765

KGW Parameters: 766
767

{ 768
"gamma": 0.5, 769
"delta": 2.0, 770
"prefix_length ": 1, 771
"z_threshold ": 4.0 772

} 773774

SynthID Parameters: 775
776

{ 777
"ngram_len ": 5, 778
"watermark_mode ": non - 779

distortionary , 780
"threshold ": 0.52, 781
"detector_type ": mean 782

} 783784

D.2 Sample Retention Counts 785

Table 5 shows the number of samples retained with 786

perplexity ≤ 20 for the main experiments using 787

τ = 0.7. 788

D.3 BERTScore Evaluation (TBW τ = 0.7) 789

We use BERTScore F1 to evaluate semantic simi- 790

larity between generated reviews and ground-truth 791

references. This metric compares contextual em- 792

beddings and is tolerant to paraphrasing, making it 793

well-suited for open-ended review generation. Re- 794

sults across all model configurations are shown in 795

Figure 2. 796

TBW causes only a minor drop in BERTScore, 797

indicating that semantic fidelity is largely pre- 798

served. Notably, in the base model, TBW narrows 799
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Model Scheme Samples Retained

Base
NW 508
TBW 991
KGW 840
SynthID 538

Few-shot
NW 1000
TBW 1000
KGW 1000
SynthID 1000

Fine-tuned
NW 1000
TBW 1000
KGW 1000
SynthID 1000

Table 5: Number of retained generations with perplexity
≤ 20, comparing no watermark (NW) and TBW (τ =
0.7) across model configurations.
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Figure 2: BERTScore F1 distributions across model con-
figurations with and without TBW (τ = 0.7). Higher
values indicate greater semantic similarity to the ground
truth.

the BERTScore distribution, suggesting more con-800

sistent alignment with the source prompt across801

samples.802

D.4 BERTScore Evaluation (KGW &803

SynthID)804

We evaluate BERTScore F1 for generations pro-805

duced with KGW and SynthID. Results are pre-806

sented in Figure 3.807

In the few-shot and fine-tuned configurations,808

KGW performs comparably to TBW at τ = 0.7,809

with similar median BERTScore values and dis-810

tributional tightness. However, in the base model811

configuration, KGW shows a broader distribution812

of scores, indicating higher variability in seman-813

tic fidelity. This suggests that KGW, like TBW, is814

KGW SynthID
Watermarking Scheme

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

BE
RT

Sc
or

e 
F1

Base
Few-shot
Fine-tuned

Figure 3: BERTScore F1 distributions across model con-
figurations with KGW and SynthID. Higher values in-
dicate greater semantic similarity to the human-written
reference.

more effective when the generation is guided by 815

conditioning or domain adaptation. SynthID shows 816

a similar pattern but with slightly more pronounced 817

effects. In the base model, SynthID outputs ex- 818

hibit a wider spread compared to both TBW and 819

KGW, reflecting less stable semantic alignment. In 820

contrast, SynthID performs slightly better in the 821

few-shot and fine-tuned settings, with a 1–2% im- 822

provement in BERTScore F1 over TBW at τ = 0.7. 823

These results highlight that while all watermark- 824

ing methods introduce some tradeoff between attri- 825

bution and quality, their semantic fidelity is more 826

stable in strongly conditioned generation settings. 827

SynthID offers stronger semantic preservation un- 828

der tight generation constraints, but at the cost of 829

higher perplexity and fluency degradation in lower- 830

context scenarios. 831

D.5 Evaluation with Lower Topic Similarity 832

Threshold (τ = 0.3) 833

We repeat the perplexity and BERTScore evalua- 834

tions using a relaxed topic assignment threshold 835

of τ = 0.3. This setting allows more tokens to be 836

included in each green list, resulting in stronger wa- 837

termark signals but potentially greater degradation 838

in generation quality. The results help assess how 839

sensitive TBW is to this design parameter. 840

D.5.1 Perplexity 841

Figure 4 shows the perplexity distributions for all 842

model configurations, comparing outputs generated 843

with and without TBW under τ = 0.3. Following 844

the same visualization protocol as in the main paper, 845

we truncate values above 20 for readability. Table 6 846

reports how many samples remained below this 847
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threshold in each setting.848
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Watermarking Scheme
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Figure 4: Perplexity distributions across model configu-
rations with and without TBW (τ = 0.3). Lower values
indicate better fluency. Values above 20 are truncated
for clarity.

Model Scheme Samples Retained

Base
NW 508
TBW 684

Few-shot
NW 1000
TBW 1000

Fine-tuned
NW 1000
TBW 1000

Table 6: Number of generations with perplexity ≤ 20,
comparing unwatermarked (NW) and TBW outputs
(τ = 0.3).

As expected, TBW at τ = 0.3 produces slightly849

higher perplexity than unwatermarked generations,850

reflecting modest fluency degradation. Compared851

to TBW at τ = 0.7, this lower-threshold variant852

results in fewer retained samples in the base model853

(684 vs. 991), suggesting increased fluency loss un-854

der weaker semantic filtering. Additionally, there855

is worse performance in the few-shot model, con-856

sistent with less effective topic alignment, but with857

improved perplexity in the fine-tuned model poten-858

tially due to the broader green lists better overlap859

with the model’s learned domain-specific vocabu-860

lary.861

These results support the view that τ serves as862

a tradeoff between watermark strength and gener-863

ation quality, and that optimal settings may vary864

depending on the model’s adaptation level.865

D.5.2 BERTScore Evaluation866

We repeat the BERTScore F1 evaluation, using gen-867

erations produced with TBW at τ = 0.3. Results868

are shown in Figure 5. 869
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Figure 5: BERTScore F1 distributions across model con-
figurations with and without TBW (τ = 0.3). Higher
values indicate greater semantic similarity to the human-
written reference.

We observe that TBW with τ = 0.3 results 870

in similar BERTScore degradation as seen with 871

τ = 0.7 in both the few-shot and fine-tuned model 872

configurations. This indicates that semantic fidelity 873

is largely preserved even with a broader green list, 874

suggesting the robustness of TBW’s semantic bi- 875

asing strategy in these more guided generation set- 876

tings. 877

However, the base model configuration shows 878

more pronounced differences. Compared to TBW 879

at τ = 0.7, the base model with τ = 0.3 produces 880

generations with a broader range of BERTScore 881

values, indicating increased variability in semantic 882

alignment. This dispersion suggests that, in the 883

absence of stronger conditioning (e.g., few-shot 884

or fine-tuning), relaxing the similarity threshold 885

introduces more topical drift, potentially reducing 886

TBW’s ability to maintain consistent semantic guid- 887

ance. 888

These results reinforce that TBW is more sta- 889

ble in controlled generation setups, while its per- 890

formance in lower-context settings (like the base 891

model) is more sensitive to the choice of τ . 892

E Robustness Evaluations 893

We provide comprehensive robustness analysis for 894

the evaluations described in §4.2, including de- 895

tailed performance metrics and ROC curve analysis 896

across all experimental conditions. 897

Figure 6 presents ROC curves for TBW detec- 898

tion performance across base, few-shot, and fine- 899

tuned model configurations under three conditions: 900

no attack baseline, PEGASUS paraphrasing, and 901

DIPPER paraphrasing. The curves demonstrate 902
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Figure 6: ROC curves for TBW detection under no
attack, PEGASUS, and DIPPER paraphrasing, across all
model configurations. The curves demonstrate TBW’s
robustness across attack severity and adaptation settings.

TBW’s consistent robustness across varying attack903

severity and model adaptation settings. Detection904

performance remains robust in base and fine-tuned905

configurations, with area under the curve (AUC)906

values exceeding 0.90 under no attack conditions907

and experiencing only moderate degradation under908

paraphrasing attacks. The few-shot model exhibits909

greater sensitivity to paraphrasing-induced topic di-910

lution, as discussed in §4.2, resulting in reduced de-911

tection confidence and lower overall performance912

across all attack conditions.913

Model Attack AUC F1 TPR@1% TPR@10%

Base
None 0.968 0.955 0.908 0.956
PEGASUS 0.936 0.893 0.746 0.861
DIPPER 0.922 0.857 0.669 0.826

Few-shot
None 0.729 0.768 0.626 0.669
PEGASUS 0.722 0.758 0.609 0.655
DIPPER 0.765 0.754 0.565 0.659

Fine-tuned
None 0.981 0.927 0.817 0.948
PEGASUS 0.944 0.858 0.593 0.826
DIPPER 0.906 0.861 0.348 0.598

Table 7: Detection performance across model configu-
rations and attack settings. Metrics include ROC-AUC,
best F1 score, and true positive rate (TPR) at fixed false
positive rates (FPRs) of 1% and 10%.

Table 7 provides comprehensive detection per-914

formance across all experimental conditions, in-915

cluding ROC-AUC, F1 scores, and true positive916

rates (TPR) at relevant false positive rate (FPR)917

thresholds of 1% and 10%. The base model demon-918

strates robustness, maintaining an AUC above 0.92919

even under the strongest paraphrasing attacks, with920

F1 scores of 0.893 (PEGASUS) and 0.857 (DIP-921

PER). At the 1% FPR threshold, the base model922

achieves TPR values of 74.6% and 66.9% under923

PEGASUS and DIPPER attacks, respectively, in- 924

dicating strong practical utility for high-precision 925

detection scenarios. 926

The fine-tuned model shows similar resilience 927

with AUC values of 0.944 (PEGASUS) and 0.906 928

(DIPPER), though it exhibits greater sensitivity at 929

low FPR thresholds, particularly under DIPPER 930

attacks where TPR@1% drops to 34.8%. This 931

suggests that fine-tuning may increase vulnerability 932

to certain paraphrasing patterns while maintaining 933

overall detection capability. 934

In contrast, the few-shot configuration shows 935

limited degradation under attacks, with AUC values 936

remaining stable around 0.72-0.77 across all con- 937

ditions. However, the consistently lower baseline 938

performance (AUC = 0.729) indicates that topic 939

misalignment limits detectability in this setting, 940

making the relative robustness less operationally 941

significant. 942

The maintained performance at low FPR thresh- 943

olds across model configurations confirms that 944

TBW’s vocabulary partitioning strategy effectively 945

preserves detection capability while minimizing 946

false alarms on human-written content, as evi- 947

denced by the consistent TPR@1% and TPR@10% 948

metrics across experimental conditions. 949

F Classifier Specifics 950

We provide implementation details for the classi- 951

fication experiments described in § 4.3. We out- 952

line the training setup used for both BERT and 953

RoBERTa classifiers and summarize the evaluation 954

strategy for attribution analysis on generated peer 955

reviews. 956

F.1 Data Construction & Protocol 957

We first construct a labeled dataset by extracting 958

review texts from our generation pipeline and as- 959

signing a class label based on the associated ground 960

truth rating (e.g., scores 1–4 mapped to reject, 961

5–6 to borderline, and 7–10 to accept). To en- 962

sure accurate mapping, we align generated reviews 963

with their original metadata using paper titles as 964

unique identifiers. The final dataset consists of gen- 965

erated reviews paired with class labels, drawn from 966

the fine-tuned generation split described in § C.3.2. 967

The final dataset consists of generated reviews 968

paired with class labels, drawn from our experi- 969

mental pipeline. The dataset is stratified into train- 970

ing and held-out test splits, with 9,000 balanced 971

training samples (3,000 per class) and 1,000 test 972
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samples for evaluation.973

F.2 Classifier Training974

For reproducibility, we provide the specific training975

parameters used to fine-tune our LLM classifiers976

for predicting peer review labels corresponding to977

paper rating categories: reject, borderline, and978

accept.979

Each model is fine-tuned using the Hugging Face980

Trainer API with early stopping based on F1. Key981

training settings described in Table 8. Tokenization

Parameter Value

Model types bert-base-uncased,
roberta-large

Number of classes 3 (reject, borderline, accept)
Max sequence length 512 tokens
Training epochs 5
Batch size (per device) 16
Learning rate 2e-5
Warmup ratio 0.1
Optimizer AdamW
Scheduler Cosine with restarts
Dropout 0.2 (attention and hidden layers)
Gradient clipping Max norm 1.0
Label smoothing 0.1
Precision Mixed (FP16 with full-eval)
Quantization 4-bit weight loading
Evaluation strategy Per epoch;

best model selected via F1
Early stopping Enabled (patience = 1)

Table 8: Classifier Training Hyperparameters

982
was performed using each model’s pretrained to-983

kenizer. A padding-aware data collator was used984

for batch construction. All training was conducted985

using the Hugging Face Transformers library and986

saved checkpoints were used for downstream eval-987

uation on generated samples.988

F.3 Classifier Evaluation989

We evaluate both BERT and RoBERTa classifiers990

on a held-out test set of 1,000 human-written peer991

reviews. This evaluation step assesses whether the992

models can correctly recover the original review993

rating category (reject, borderline, accept) be-994

fore applying them to generated or watermarked995

samples.996

Predictions are obtained from each trained classi-997

fier on the tokenized test set and compared against998

the ground truth labels. We compute confusion ma-999

trices to visualize class-specific misclassification1000

patterns and report overall accuracy as a coarse1001

measure of performance. BERT achieves an accu-1002

racy of 51.3%, while RoBERTa performs slightly1003

better at 53.9%. Figures 7 and 8 present the con- 1004

fusion matrices for BERT and RoBERTa, respec- 1005

tively. 1006
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Figure 7: Confusion matrix for the BERT classifier on
1,000 human-written peer reviews.
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Figure 8: Confusion matrix for the RoBERTa classifier
on on 1,000 human-written peer reviews.

Both classifiers exhibit a strong predictive 1007

tendency toward the borderline class. As 1008

shown in the confusion matrices, the majority of 1009

borderline samples are correctly classified by 1010

both BERT (367/763) and RoBERTa (374/763). 1011

However, a large number of reject and accept 1012

samples are also misclassified as borderline. For 1013

instance, BERT misclassifies 18 reject and 60 1014

accept samples as borderline, while RoBERTa 1015

reduces this to 14 and 46, respectively. Compared 1016

to BERT, RoBERTa shows slightly improved sep- 1017

aration between all three classes, with fewer mis- 1018

classifications across off-diagonal entries. In partic- 1019

ular, it shows higher retention of true reject and 1020
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Table 9: Classification performance for topic-based watermarking (TBW) at a lower similarity threshold of τ = 0.3.
Results are shown across all model configurations (base, few-shot, fine-tuned) and for both BERT and RoBERTa
classifiers.

Classifier Model Accuracy Precision Recall F1

BERT
Base 0.289 0.322 0.322 0.288
Few-shot 0.387 0.334 0.342 0.333
Fine-tuned 0.414 0.372 0.366 0.360

RoBERTa
Base 0.438 0.338 0.340 0.332
Few-shot 0.360 0.339 0.344 0.335
Fine-tuned 0.398 0.375 0.368 0.361

accept labels, suggesting better overall discrimi-1021

native performance.1022

F.4 Class-Specific Classifier Evaluation1023

To further characterize classifier performance, we1024

conduct a comprehensive class-specific evaluation1025

of generated peer reviews based on the classifica-1026

tion framework introduced in §4.3. This analysis1027

extends the aggregate metrics reported in Table 21028

by examining model behavior across the three tar-1029

get rating categories under different watermarking1030

conditions and topic similarity thresholds.1031

We examine confusion matrices for each clas-1032

sifier (BERT and RoBERTa), stratified by lan-1033

guage model configuration (base, few-shot, fine-1034

tuned) and watermarking condition. Additionally,1035

we extend our analysis to topic-based watermark-1036

ing (TBW) applied at a lower semantic similarity1037

threshold of τ = 0.3, which relaxes the token-1038

to-topic alignment constraints, thereby increasing1039

green-list coverage and watermark signal strength1040

while potentially impacting semantic coherence.1041

Figure 9 presents the complete set of confusion1042

matrices across all configurations, including both1043

τ = 0.7 and τ = 0.3 conditions.1044

BERT exhibits distinct patterns across model1045

configurations and watermarking conditions. In the1046

base non-watermarked condition (panel a), BERT1047

shows a skew toward the reject column, while the1048

few-shot variant (panel b) demonstrates higher pre-1049

dictions in the accept and borderline columns.1050

The fine-tuned non-watermarked model (panel c)1051

shows the highest concentration in the borderline1052

column, though values remain below 0.50. Un-1053

der watermarking conditions, BERT base mod-1054

els with both TBW τ = 0.7 and τ = 0.3 (pan-1055

els d, g) exhibit a slight skew toward the reject1056

column but with modest values barely exceeding1057

0.50. For few-shot and fine-tuned watermarked 1058

variants (panels e, f, h, i), predictions concentrate 1059

in the borderline column, with accept predic- 1060

tions consistently higher than reject but lower 1061

than borderline. 1062

RoBERTa demonstrates more consistent pat- 1063

terns with clearer biases toward specific categories. 1064

Across all base configurations, non-watermarked, 1065

TBW τ = 0.7, and TBW τ = 0.3 (panels 1066

j, m, p), there is a pronounced bias toward the 1067

borderline column. The few-shot and fine-tuned 1068

variants generally show better-balanced distribu- 1069

tions with higher concentrations in both accept 1070

and borderline columns. Notable exceptions in- 1071

clude the RoBERTa few-shot TBW τ = 0.3 condi- 1072

tion (panel q), which maintains high borderline 1073

predictions, and the fine-tuned TBW τ = 0.7 1074

variant (panel o), which also shows elevated 1075

borderline concentrations. 1076

Table 9 reports the classification metrics for each 1077

classifier and LLM model variant under TBW with 1078

τ = 0.3. While overall performance remains com- 1079

parable to the τ = 0.7 condition, we observe that 1080

the fine-tuned model achieves the highest accuracy 1081

across both BERT and RoBERTa classifiers, sug- 1082

gesting that domain adaptation remains a dominant 1083

factor in attribution effectiveness even under re- 1084

laxed topic alignment. This analysis underscores 1085

the relative semantic distinctiveness of strongly 1086

positive (accept) and moderate (borderline) re- 1087

views, while highlighting the challenges involved 1088

in distinguishing lower-quality (reject) reviews, 1089

which often exhibit more linguistic and structural 1090

variability across different watermarking configu- 1091

rations and similarity thresholds. 1092
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(b) BERT Few-shot NW
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(c) BERT Fine-tuned NW
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(d) BERT Base TBW (τ = 0.7)
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(e) BERT Few-shot TBW (τ = 0.7)
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(f) BERT Fine-tuned TBW (τ = 0.7)
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(g) BERT Base TBW (τ = 0.3)
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(h) BERT Few-shot TBW (τ = 0.3)
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(i) BERT Fine-tuned TBW (τ = 0.3)
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(j) RoBERTa Base NW
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(k) RoBERTa Few-shot NW
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(l) RoBERTa Fine-tuned NW
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(m) RoBERTa Base TBW (τ = 0.7)
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(n) RoBERTa Few-shot TBW (τ = 0.7)
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(o) RoBERTa Fine-tuned TBW (τ = 0.7)
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(p) RoBERTa Base TBW (τ = 0.3)
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(q) RoBERTa Few-shot TBW (τ = 0.3)
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(r) RoBERTa Fine-tuned TBW (τ = 0.3)

Figure 9: Comparison of confusion matrices across different model configurations and watermarking settings. Top
row shows BERT results, middle row shows RoBERTa results, with columns representing no watermarking (NW),
topic-based watermarking at τ = 0.7, and topic-based watermarking at τ = 0.3.
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Classifier Model Watermark PEGASUS DIPPER
Shifts Shifts

BERT

Base
No watermark 58 54
TBW (τ = 0.7) 37 23
TBW (τ = 0.3) 51 45

Few-shot
No watermark 24 14
TBW (τ = 0.7) 24 24
TBW (τ = 0.3) 24 22

Fine-tuned
No watermark 27 20
TBW (τ = 0.7) 15 15
TBW (τ = 0.3) 25 15

RoBERTa

Base
No watermark 13 9
TBW (τ = 0.7) 23 25
TBW (τ = 0.3) 16 19

Few-shot
No watermark 30 13
TBW (τ = 0.7) 27 22
TBW (τ = 0.3) 25 20

Fine-tuned
No watermark 24 14
TBW (τ = 0.7) 18 22
TBW (τ = 0.3) 21 18

Table 10: Number of review classification shifts under paraphrasing attacks. Each entry reflects the count (out of
100 paraphrased samples) where the predicted class label differs from the original. Results are grouped by classifier,
model variant, and watermarking scheme (NW, TBW (τ = 0.7), TBW (τ = 0.3)), and evaluated separately under
PEGASUS and DIPPER paraphrasing models.

F.5 Peer Review Shifts Under Paraphrasing1093

To evaluate the impact of paraphrasing on classifier-1094

based review attribution, we examine both classifi-1095

cation accuracy and label stability under two para-1096

phrasing threat models: PEGASUS and DIPPER.1097

Specifically, we sample 100 LLM-generated peer1098

reviews and apply paraphrasing to each using both1099

models. We then assess the classification perfor-1100

mance before and after paraphrasing under three1101

watermarking conditions: no watermark (NW),1102

topic-based watermarking (TBW) with τ = 0.7,1103

and TBW with τ = 0.3.1104

Figure 10 presents accuracy changes across all1105

classifier and model configurations. Table 10 re-1106

ports the number of label transitions (e.g., Accept1107

→ Borderline) observed in the paraphrased re-1108

views. These metrics reflect the semantic resilience1109

of reviewer intent and classification stability under1110

adversarial rewording.1111

Our results indicate that paraphrasing generally1112

reduces classification accuracy across all settings,1113

though the degree of degradation varies. Notably,1114

TBW models exhibit consistent accuracy declines1115

under paraphrasing for both τ values, suggesting 1116

that watermarked outputs are more sensitive to ad- 1117

versarial modification in terms of downstream at- 1118

tribution. In contrast, non-watermarked outputs 1119

show mixed effects while some configurations ex- 1120

perience accuracy drops, others see minor improve- 1121

ments. We attribute this to incidental lexical clarifi- 1122

cations introduced by the paraphrasers. In terms of 1123

label stability, TBW reduces the number of class 1124

shifts compared to the non-watermarked baseline. 1125

This trend is especially evident under the PEGA- 1126

SUS paraphrasing model, where non-watermarked 1127

outputs exhibit the highest number of shifts. These 1128

findings suggest that TBW not only leaves a de- 1129

tectable signature but may also provide a degree 1130

of structural regularity that preserves classification 1131

under text manipulation. 1132
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Figure 10: Classification accuracy on paraphrased peer
reviews across three watermarking settings: (a) no wa-
termark (NW), (b) topic-based watermarking (TBW)
with τ = 0.7, and (c) TBW with τ = 0.3. Results are
shown across all model configurations (base, few-shot,
fine-tuned) for both BERT and RoBERTa classifiers un-
der PEGASUS and DIPPER paraphrasing attacks.
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