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Abstract—Traditional 3D shape classification methods face
challenges due to the complexity and variability of point cloud
data. To address this issue, we propose CFL framework that
integrates proxy weights from two modalities through an average
fusion approach and adopts a proxy-based contrastive learning
strategy to enhance feature representation. By using the average
fusion method. we can effectively capture both texture features
and geometric features via integrating complementary informa-
tion from different modalities. Furthermore, the proxy-based con-
trastive learning method is designed to acquire representations
by learning a unified space. Experimental results demonstrate
that our CFL method significantly improves classification per-
formance on the ModelNet10 dataset. Meanwhile, we conduct
ablation studies on ModelNet10 dataset to confirm the pivotal
role of the average fusion method and the proxy-based contrastive
learning method, highlighting the potential of cross-modal feature
learning method in advancing 3D shape classification tasks.

Index Terms—3D shape classification, geometric complexity,
cross-modal feature learning, proxy weight

I. INTRODUCTION

While 2D classification has seen substantial advancements
[1] [2] with Deep Neural Networks (DNNs), 3D deep learning
techniques [3] are still performing poorly on 3D classification
tasks, which mainly caused by the unique geometric complex-
ities of 3D point cloud data. This complexity poses a challenge
in preserving the intrinsic properties of 3D shapes during
the learning process, making it more difficult for traditional
models to achieve high accuracy.

Existing 3D point cloud classification methods typically
rely only on the inherent geometric information of the point
cloud, ignoring the valuable color and texture cues that can be
gleaned from associated images. Such problem can result in
a less comprehensive representation of the visual environment
due to a lack of multimodal integration, which is particularly
pronounced in applications that require broad classification
capabilities, such as autonomous navigation [6] or augmented
reality [7], where our research aims to explore. Therefore, it’s
urgent to find an robust model that can effectively integrate
cross-modal information, improving its adaptability under dif-
ferent circumstances.

In this paper, we propose a Cross-Modal Feature Learn-
ing(CFL) framework to tackle the shortage of existing 3D
point cloud classification methods. We first feed 3D point
cloud data into Dynamic Gragh CNN(DGCNN) [8], which

Fig. 1: Comprehensive visualization of the 3D object and
rendered image within our framework.

outputs features and proxy weights of the traing point cloud
data. For the corresponding rendered images, we employ a pre-
trained CLIP [9] model, leveraging its image encoder to extract
the features and proxy weights of images. Specifically, our
CFL framework leverages the complementary strengths of both
3D point clouds and 2D images by incorporating their features
via an average fusion method [10]. This approach allows for
a dynamic and context-aware interaction between the spatial
and visual modalities, facilitating a deeper understanding of
the scene’s geometric and textural properties. Moreover, we
employ a proxy-based contrastive learning method to align
samples with proxies, which can enhance the model’s ability
to distinguish between different classes by emphasizing the
differences between class-level representations.

Experimental results illustrate that our proposed method
significantly improves point cloud classification performance
compared to existing approaches [11] [12]. Specifically, our
model demonstrates superior accuracy, outperforming several
state-of-the-art methods in 3D point cloud classification tasks.
Such improvement is particularly notable when compared to
traditional techniques, highlighting the effectiveness of our
approach. Furthermore, ablation studies reveal the critical roles



of the average fusion mechanism and proxy-based learning
method in enhancing feature representation. These studies
confirm that the integration of proxy weights through average
fusion allows our model to capture both geometric and tex-
ture features more effectively, while proxy-based contrastive
learning method further refines the feature representation by
learning a unified space. Our CFL framework not only boosts
classification performance but also provides deeper insights
into the importance of these methods in achieving advanced
3D shape classification.

Our CFL framework has three major advantages:
• We propose a novel framework that effectively integrates

point clouds and images using an average fusion method.
This integration allows our model to leverage comple-
mentary information from both point clouds and images,
enhancing the feature representation and improving clas-
sification performance.

• Our CFL framework employs a proxy-based learning
method that aligns and enhances fused features in point
clouds and images. This technology improves the dis-
criminative ability of learned features, thereby signifi-
cantly improving the performance of point cloud clas-
sification.

• Our approach outperforms multiple baseline methods.
Experimental results demonstrate the effectiveness and
robustness of our proposed framework.

II. RELATED WORKS

In this section, we provide an overview of the existing works
related to the study of our proposed framework. We begin
by examining the current state of the art in 3D point cloud
classification, a field that has seen significant advancements
and serves as a critical component in our approach. We
then delve into the cross-modal representation learning, which
is essential for understanding how features from different
modalities can be effectively integrated to enhance model per-
formance.Finally, we explore contrastive learning, a powerful
technique that has gained considerable attention for its ability
to learn robust feature representations.

A. 3D Point Cloud Classification

When it comes to 3D point cloud classification, previous
studies typically fallen into two main types: 1) projection-
based methods and 2) point cloud-based methods. Projection-
based methods [13], [14] convert 3D point clouds into 2D
representations such as range images or depth maps. These
methods usually rely on multi-view representations of point
clouds, which are very beneficial for capturing view-dependent
features of the data.In contrast, point cloud-based methods [15]
[8] focus directly on raw point cloud data, exploiting the inher-
ent spatial relationships and local neighborhood structures of
point clouds. These methods have evolved significantly with
the advent of deep learning, especially with the development
of point-based neural networks such as PointNet [3], Point-
Net++ [15] and DGCNN. Such networks are able to capture

global features from point cloud data without relying on any
predefined mesh structure.

B. Cross-Modal Representation Learning

In the realm of cross-modal representation learning, previ-
ous studies have explored various techniques to bridge the gap
between different types of data, such as text, images, and 3D
point clouds. These methods aim to learn a unified representa-
tion that captures the essence of each modality and facilitates
the transfer of knowledge across domains. For example, some
methods [16] [17] combine 3D point cloud data with other
modal data, leveraging the spatial and geometric information
of point clouds to enhance the representation capabilities.
These approaches not only utilize the strengths of individual
modalities but also address the challenges of modality-specific
features that may not be fully captured when using a single
type of data. Notable approaches include fusion strategies that
combine point cloud features with image-based features using
neural networks, such as the ULIP [19] which has shown su-
perior performance in cross-modal applications by effectively
combining complementary properties of different data sources.
This fusion enables a richer and more robust representation,
facilitating improved generalization and performance in tasks
that require understanding and integrating multiple forms of
data. Such advancements underscore the importance of cross-
modal techniques in pushing the boundaries of representation
learning across diverse and complex datasets.

C. Contrastive learning

Contrastive learning has become a foundational approach
in representation learning, particularly for its ability to learn
robust embeddings by distinguishing between positive and
negative data pairs. Traditional methods like SimCLR [20]
and MoCo [21] have demonstrated success in visual domains
by maximizing the agreement between positive pairs while
minimizing it between negative pairs, which often requires
large batch sizes and complex sampling strategies. Contrastive
learning has been extended to other domains, including 3D
point clouds and cross-modal data. PointContrast [22] has
been designed to handle the unique challenges of point cloud
data by leveraging its spatial structure to learn invariant repre-
sentations. However, traditional contrastive learning methods
only consider the distance of sample-to-sample. To address
this problem, Proxy-based Contrastive Learning method has
been introduced, which compare samples to proxies, thus
maintaining performance. In our CFL framework, we employ
this proxy-based approach to efficiently integrate and enhance
features from different modalities, ensuring the learned repre-
sentations are both robust and discriminative.

III. PROPOSED METHOD

In this section, we first detail the methods used for fea-
ture extraction from point cloud data and images, which are
essential for the subsequent steps of our proposed method.
Thereafter, we explore the intricacies of the average fusion
mechanism. This mechanism is crucial in our approach as



it promotes interactions between different modalities, thereby
enhancing the learning process. Subsequently, we turn our
attention to the proxy-based learning approach, which is
another cornerstone of our research. Fig. 2 illustrates the
comprehensive overview of the CFL framework.

A. Class Distribution Alignment

We introduce a novel classification loss function designed
to mitigate the impact of class imbalance introduced by
FocalLoss [24].Our approach to classification is fundamentally
anchored in directing increased attention towards underrep-
resented categories with fewer sample instances. Borrowing
insights from existing scholarly work, we have embraced the
mathematical framework from DLSA [25] and FocalLoss to
rebalance the class distribution. This is achieved through a
sophisticated mechanism that recalibrates the class weights,
detailed as follows:

ω(i) =
n−q
i∑K

j=1n
−q
j

, (1)

where ni represents the number of samples in the i-th category,
and q is a positive parameter that regulates the influence
of sample counts on the weight distribution. To address
the challenge of class imbalance, we integrate the class-
specific weighting with the initial classification loss function,
as detailed in Eq.2. This refined approach allows for a more
nuanced treatment of the imbalance, ensuring that each class
contributes appropriately to the learning process. The revised
weighted classification loss, which takes into account this
class-wise weighting, is articulated in the following manner:

LCLS (B) = −
∑
x∈B

ω(y) logL(θ;x), (2)

where B is the set of samples within a batch. This formulation
ensures that the classification loss is adjusted in accordance
with the prevalence of each class, thereby providing a more
balanced optimization objective that mitigates the impact of
class imbalance.

B. Feature and Proxy Weight Extraction

For point clouds, we employ DGCNN [8] as the encoder,
which is good at capturing local and global features of unstruc-
tured point cloud data. DGCNN processes point cloud data
through dynamic graph convolution to provide rich feature
representation and proxy weight for subsequent modal fusion.
Meanwhile, we leverage the image encoder from CLIP, which
has been pre-trained on a large number of image-text pairs,
providing powerful visual feature representations that signifi-
cantly support our cross-modal learning efforts.Therefore, we
can capture the features of point cloud Pi and corresponding
rendered image Ii as follows:

fP
i = fP (Pi), (3)

f I
i = fI(Ii), (4)

where fP is the feature extractor for the point cloud and fI is
the frozen CLIP extractor for the image. Moreover, we extract

TABLE I: Experimental results on different contrastive learn-
ing methods.

Method ModelNet10 Shapenet10 [23] Avg.

PCL 97.8 45.6 71.7
CL 92.6 45.5 69.1

point cloud proxy weight wP as well as image proxy weight
wI . These proxy weights serve a dual purpose: they not only
emphasize the most informative features in each modality, but
also implement a dynamic weighting mechanism that enhances
the learning process. By leveraging the DGCNN encoder, we
exploit its ability to capture fine-grained geometric details and
spatial hierarchy of point clouds to generate proxy weights that
reflect the importance of each point in the cloud. Meanwhile,
the CLIP encoder, which is extensively pre-trained on a diverse
image dataset, generates proxy weights that encapsulate both
the visual saliency and semantic richness of an image.

C. Average Fusion Mechanism

In our framework, the average fusion mechanism plays a
key role in integrating the features of point clouds and images.
This mechanism involves computing the average of the agent
weights obtained from the two modalities to create a fused
super agent.The integration of these proxy weights allows
our CFL framework to adaptively focus on the most relevant
features during training, which is particularly beneficial for
handling the variability and geometric complexity present in
real-word. The average proxy weight is illustrated as follows:

wAvg = (wP + wI)/2 (5)

By averaging these weights, we create a fused super agent
wAvg that effectively combines the complementary informa-
tion from both modalities. This integration enables our CFL
framework to simultaneously capture the rich texture features
inherent in image data and the detailed geometric features
characteristic of point cloud data. Moreover, the adaptive
nature of the average fusion method allows our framework
to dynamically adjust its focus on the most relevant features
throughout the training process. This adaptability is crucial
for managing the inherent variability and complex geometric
structures found in real-world 3D datasets. By emphasizing the
most pertinent features, the average fusion method enhances
the robustness and generalization capabilities of our model,
ensuring that it performs well across different scenarios and
datasets. This capability to adapt and integrate diverse types
of information is a key factor in the superior performance of
our CFL framework in 3D shape classification tasks.

D. Proxy-based Contrastive Learning

When directly applying traditional contrastive-based learn-
ing methods to poing cloud classification, we observe a
significant drop in performance, as evidenced by the results in
Table I. The main factor is that most contrastive-based learning



Fig. 2: The overall view of the Cross-modal Feature Learning (CFL) framework. The framework integrates proxy weights from
two distinct modalities—point cloud and image data—using an average fusion approach. This approach effectively amalgamates
complementary information, capturing a rich set of texture and geometric features. The framework is further enhanced by a
proxy-based contrastive learning strategy, which operates within a unified feature space to refine the representational capabilities
of the model. The harmonious integration of these components facilitates the learning of a comprehensive feature space that
underpins the superior classification performance of our method on the ModelNet10 dataset.

methods focus only on sample-to-sample pairs, which can fail
to capture the intricate relationships and spatial distributions
within point clouds. To tackle this issue, we propose a proxy-
based learning method specifically designed for 3D point cloud
classification, which is inspired by the principles of PCL [26].
In this method, proxies serve as stable anchors, enabling the
model to learn more robust and representative features by
aligning samples with these proxies. We first project both
sample features fP

i and proxy weights wAvg onto a projection
layer, defined as follows:

ei = h
(
fP
i

)
, (6)

vi = g (wAvg) , (7)

where h(·) is a three-layer MLP used for sample embedding
projection, and g(·) is a single-layer MLP used for proxy
weight projection. The core idea of our approach is to mini-
mize the distance between the proxy and the positive sample.
The proxy-based contrastive learning loss is defined as:

LPCL = − 1

N

N∑
i=1

log
exp

(
v⊤
c ei

)
E

, (8)

where E is represented as follows:

E = exp(vTc ei) +

C−1∑
i=1

exp(vTk ej) +

B∑
j=1,j ̸=i

exp(eTi ej). (9)

E. Overall loss

The overall loss function of our CFL framework is a
combination of classification loss and proxy-based learning
loss, which can not only accurately classify but also learn
effective feature representations. The overall loss is defined
as:

Ltotal = µLCLS + λLPCL, (10)

where µ and λ are the weights assigned to the classification
loss LCLS and proxy-based learning loss,respectively.

IV. EXPERIMENTS

In this section, we evaluate the performance of our proposed
method on the ModelNet10 [27] dataset, a widely recognized
benchmark for 3D object classification. We begin by offer-
ing a comprehensive description of the ModelNet10 dataset,
highlighting its selection for our experiments. Following this,
we delve into the specifics of our implementation. We then
present the main results of our experiments, showcasing the
efficacy of our approach through a meticulous comparison with
state-of-the-art techniques and baseline models. We conduct
a thorough ablation study to dissect the contributions of
various components of our method, gaining insight into their
respective impacts on the overall performance.

A. Datasets

ModelNet10 is a widely recognized benchmark dataset for
3D shape classification, comprising 5039 3D CAD models



TABLE II: Results on ModelNet10 under the CFL settings

Rep. Method ModelNet10

2D projection PANORAMA-ENN [28] 96.85

Point Cloud

SO-Net(CVPR’18) [11] 95.50
KCNet [12] 94.40
PCNN [29] 94.40

Cross-atlas [30] 91.20
PolyNet [31] 91.20

SUG [32] 96.7

Ours CFL 97.8

from 10 diverse categories, including common household
items such as beds, chairs, desks, and sofas. The dataset is
meticulously partitioned into 4,183 training samples and 856
testing samples, providing a robust framework for evaluating
the classification accuracy of algorithms. Furthermore, as
shown in Fig. 1, we generate a set of 12 rendered images per
point cloud, capturing the 3D object from various viewpoints
and enhancing the model’s ability to generalize across different
perspectives. This comprehensive approach not only improves
the dataset’s utility for training but also challenges the model
to learn from multiple aspects of the object, thereby improving
its discriminatory capabilities. The strategic combination of
point cloud data and rendered images, alongside our imple-
mentation of the CFL method, has proven to be a winning
formula for achieving exceptional classification results on the
ModelNet10 dataset.

B. Implementation Details

For the point cloud data, we randomly sample 2048 points
from each 3D model and normalize them to fit within a unit
sphere. In addition, we render multiple 2D views of each
3D model and resize the images to 224x224 pixels. For the
optimization of our model, we select the Adam optimizer,
a widely recognized algorithm that adapts the learning rate
based on the average of recent gradients. We initialize the
learning rate at 0.001, a value that has been empirically shown
to provide a robust starting point for a wide range of tasks.
Additionally, we employ weight decay with a coefficient of
0.00005 to regularize the model and mitigate the risk of
overfitting. Furthermore, we use a batch size of 32 and train
the model for 400 epochs.Furthermore, we maintain a detailed
log of training metrics, including loss values, accuracy, and
other relevant indicators, to monitor the model’s progression
and to identify any potential issues during training. This
comprehensive approach to the training process is fundamental
to the success of our model in classifying the diverse categories
present within the ModelNet10 dataset.

C. Main Results

We evaluate our proposed CFL framework on the Model-
Net10 dataset, comparing its performance with several meth-
ods across both 2D projection and point cloud categories. Ta-

ble II summarizes the classification accuracy of these methods,
highlighting the effectiveness of our approach.

In the 2D projection category, the PANORAMA-ENN
method achieves an impressive accuracy of 96.85%. The pro-
posed PANORAMA-ENN method fully exploits the power of
multi-view representation to convert 3D point clouds into 2D
images, thereby effectively capturing view-dependent features.
While this approach is beneficial for extracting texture and
shape cues from different angles, it may fall short in fully
leveraging the spatial structure inherent in raw 3D point
cloud data. For point cloud-based methods, several advanced
techniques are evaluated. For example, SO-Net performs an
accuracy of 95.50%. This method utilizes a self-organizing
map (SOM) to learn hierarchical spatial structures within point
clouds, providing a robust representation of the data. KCNet
and PCNN, both of which focus on point-wise feature learning,
reported accuracies of 94.40%. These methods demonstrate the
challenges of directly working with point cloud data, where
capturing local geometric details and global context simulta-
neously can be difficult. Despite Cross-atlas and PolyNet’s
innovative approaches to processing point cloud data, they
achieve a relatively low accuracy of 91.20%, suggesting po-
tential limitations in their ability to generalize across a wide
range of 3D shapes, especially when dealing with complex
and irregular geometries.The SUG method, which introduces
a novel approach to utilizing geometric features, performed
notably better with an accuracy of 96.7%, underscoring its
strength in capturing fine-grained geometric details in point
clouds.

Our CFL approach, as shown in the last row of Table
II, achieves a top accuracy of 97.8% on the ModelNet10
dataset, surpassing all the compared methods. This significant
improvement can be attributed to the unique strengths of
our framework. Specifically, the integration of cross-modal
feature learning in our CFL framework allows for the effective
fusion of complementary information from 2D images and
3D point clouds. By doing so, our model can capture both
texture and geometric features, leading to richer and more
discriminative representations. This cross-modal synergy is
particularly powerful in addressing the geometric complexity
and variability inherent in 3D shapes. Moreover, class distri-
bution alignment method proposed in our method addresses
the issue of class imbalance, which is often a challenge
in 3D shape classification tasks. By assigning appropriate
weights to different classes, our model is able to focus more
on underrepresented categories, ensuring a more balanced
and accurate classification across all classes. Finally, we use
a proxy-based contrastive learning strategy to enhance the
feature representation by efficiently distinguishing between
different classes. This approach reduces computational com-
plexity while maintaining high performance, ensuring that the
learned representations are both robust and discriminative.

Overall, the experimental results clearly demonstrate that
our CFL framework not only achieves superior performance
on the ModelNet10 dataset but also sets a new benchmark for
3D shape classification.



TABLE III: Class-wise accuracy studies on ModelNet10

Method PCL Image Bathtub Bed Bookshelf Cabinet Chair Lamp Monitor Plant Sofa Table Avg.

CFL

86.7 100 100 91.5 98.7 92.8 96.7 92.5 96.0 97.9 95.3

✓ 76.4 100 97.4 86.2 96.7 96.7 97.8 86.9 97.3 99.0 93.4

✓ ✓ 87.9 98.7 99.0 84.3 100 100 97.6 99.4 95.7 100 96.3

D. Ablation Studies

To further investigate the effectiveness of our proposed
CFL framework, we conduct a series of ablation studies on
the ModelNet10 dataset, focusing on the class accuracy of
different model configurations. Table III shows the results of
these experiments, which aim to isolate the impact of key
components on the overall performance of the model.

The first row in Table III reports the class-wise accuracy of
SUG which plays a role of baseline in our CFL framework.
In this scenario, the model achieved an average accuracy of
95.3%, with certain classes like Bed and Bookshelf reaching
perfect accuracy of 100%. However, performance on more
geometrically complex classes such as Bathtub and Cabinet
was relatively lower, indicating the limitations of relying solely
on point cloud data for 3D shape classification. Specifically,
when we add the proxy-based contrastive learning method
to our framework, the average class-wise accuracy reaches
a superior result of 93.4%. However, although the configu-
ration demonstrates high performance in classes like Chair
and Sofa , it struggled with the Bathtub class, achieving
only 76.4% accuracy. This suggests that while proxy-based
contrastive learning method is effective for capturing the
spatial structure of certain objects, it may not fully exploit
the textural information that is beneficial for differentiating
between geometrically similar classes. The last row in Table
III demonstrates the results when both point cloud and image
modalities are integrated within the CFL framework. This
configuration yielded the highest average accuracy of 96.3%,
with several classes achieving perfect accuracy. The accuracy
improvements across most classes, particularly the challenging
Bathtub and Plant classes, underscore the efficacy of our cross-
modal fusion strategy. This integration effectively leverages
the complementary strengths of both modalities, leading to
more robust and discriminative representations.

These ablation studies highlight the significant contributions
of each component within the CFL framework. The results
clearly demonstrate that the combination of point cloud and
image data within a unified cross-modal learning framework
provides a substantial performance boost, enabling the model
to capture both geometric and textural nuances across different
3D object classes.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a new point cloud classification
method that integrates point clouds and images by using
average fusion method and proxy-based learning techniques.
Our method exploits the complementary information of the

two modalities to enhance feature representation and classifi-
cation accuracy. We conduct experiments on the ModelNet10
dataset, a widely used benchmark for 3D shape classifica-
tion.Moreover, we compare our results with several baseline
methods and show significant performance improvements.
Ablation studies further reveal the importance of average
fusion mechanisms and proxy-based contrastive learning in op-
timizing feature integration and discrimination. These findings
highlight the effectiveness of our approach and its potential
to advance multimodal learning in the field of 3D shape
recognition.

In the future, we aim to extend our research in several
promising directions. For instance, we plan to explore more
advanced fusion methods that can capture the intricate rela-
tionships between point clouds and images, potentially leading
to more robust and discriminative feature representations.
Moreover, we are interested in applying our classification
method to more complex and diverse 3D datasets, such as
ShapeNet. This will not only test the generalizability of our
approach but also allow us to evaluate its performance under
various conditions.
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