
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LINEAR PROJECTIONS OF TEACHER EMBEDDINGS FOR
FEW-CLASS DISTILLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Knowledge Distillation (KD) has emerged as a promising approach for transferring
knowledge from a larger, more complex teacher model to a smaller student model.
Traditionally, KD involves training the student to mimic the teacher’s output prob-
abilities, while more advanced techniques have explored guiding the student to
adopt the teacher’s internal representations. Despite its widespread success, the
performance of KD in binary classification and few-class problems has been less
satisfactory. This is because the information about the teacher model’s gener-
alization patterns scales directly with the number of classes. Moreover, several
sophisticated distillation methods may not be universally applicable or effective
for data types beyond Computer Vision. Consequently, effective distillation tech-
niques remain elusive for a range of key real-world applications, such as sentiment
analysis, search query understanding, and advertisement-query relevance assess-
ment. Taking these observations into account, we introduce a novel method for
distilling knowledge from the teacher model’s representations, which we term
Learning Embedding Linear Projections (LELP). Inspired by recent findings about
the structure of final-layer representations, LELP works by identifying informative
linear subspaces in the teacher’s embedding space, and splitting them into pseudo-
subclasses. The student model is then trained to replicate these pseudo-subclasses.
Our experimental evaluations on large-scale NLP benchmarks like Amazon Re-
views and Sentiment140 demonstrate that LELP is consistently competitive with,
and typically superior to, existing state-of-the-art distillation algorithms for binary
and few-class problems, where most KD methods suffer.

1 INTRODUCTION

While deep neural networks have revolutionized Natural Language Processing (Devlin et al., 2018;
Brown et al., 2020), Computer Vision (Simonyan & Zisserman, 2014), and other fields, their bal-
looning size and data demands raise challenges. Recent research (Menghani, 2021) aims to develop
efficient models that excel without needing massive datasets or expensive hardware. Knowledge
Distillation (KD) (Buciluǎ et al., 2006; Hinton et al., 2015) is a powerful approach for generating
lightweight models by leveraging a large teacher model to guide their training. In its basic form,
the student model is trained to replicate the teacher’s output probabilities for each training instance.
Additionally, several subsequent studies (e.g., (Romero et al., 2014; Kim et al., 2018; Passalis &
Tefas, 2018; Ahn et al., 2019; Müller et al., 2020)) have proposed advanced distillation techniques
that go beyond mere output probability matching and focus on encouraging the student to learn the
teacher’s internal representations.

While KD can significantly improve student model performance in tasks with numerous classes, its
impact is less pronounced in binary classification and problems with a smaller number of classes.
As Müller et al. (2020) points out, this is because when we distill knowledge using logits or high-
temperature cross-entropy, the information about the teacher model’s generalization patterns scales
directly with the number of classes. Furthermore, Knowledge Distillation research has primarily
focused on Computer Vision, so many sophisticated distillation techniques are not always effective
or even suitable for other data modalities like Natural Language. As a result, effective distillation
techniques remain elusive for a range of critical real-world applications, such as sentiment analysis,
search query understanding, and advertisement-query relevance assessment.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Amazon Reviews Sentiment140
60

65

70

75

80

85

90

95

Ac
cu

ra
cy

+2.95%

over vanilla KD

+1.18%

over vanilla KD

Teacher
Vanilla KD
FitNet
Subclass Dist.
LELP (Ours)

(a)

Teacher Embeddings

Learn only

72.9%

Learn and

79.9% (+7.0%)

on binary CIFAR-100

(b)

Figure 1: Learning with Embedding Projections (LELP) teaches students about subclass structure
(shown by vc,i on (b)) via linear projections. As seen by (a), LELP outperforms existing algorithms
over large scale real-world NLP datasets such as Amazon Reviews (5 classes, 500k examples)
and Sentiment140 (binary, 1.6 million examples) achieving an improvement of 1.85% and 0.88%,
respectively, over the best baseline. In fact, in the former case, the LELP-trained student outperforms
even the teacher, which contains over 20x the number of parameters.
In light of these observations, in this paper we propose a novel approach for capturing information
from the teacher’s representations, which we call Learning Embedding Linear Projections (LELP).
At a high level, it works by extracting knowledge form the teacher’s last-layer representations
(embeddings) and converting it into pseudo-subclasses via linear projections. The student model is
then trained on these pseudo-subclasses, using a single unified cross-entropy loss.

Our approach leverages recent findings about the structure of final-layer representations (embeddings)
in deep learning models and, in particular, aspects of the phenomenon known as Neural Collapse (Pa-
pyan et al., 2020; Fang et al., 2021; Yang et al., 2023). Similar in spirit to Subclass Distillation (Müller
et al., 2020), which uses a modified and retrained teacher model to identify hidden patterns, our
method achieves improved student performance, particularly in finetuning Language Models for tasks
with a few number of classes. Crucially though, and unlike Subclass Distillation, our approach does
not require any retraining of the teacher model. Finally, a key advantage of LELP is its flexibility
in bridging diverse model architectures, making it uniquely versatile for teacher-student learning
scenarios.

Our contributions can be summarized as follows:

1. Motivated by recent insights into the Neural Collapse phenomenon, we demonstrate that the
invention of pseudo-subclasses through unsupervised clustering of teacher embeddings can
enhance distillation performance in binary and few-class classification tasks. However, the
efficacy of this approach is contingent upon the specific clustering algorithm employed.

2. Through empirical evaluation, we observe that carefully calibrated linear projections con-
sistently achieve high performance, leading us to introduce LELP: a novel method for
enhancing Knowledge Distillation. LELP is modality-independent, producing particularly
strong results in NLP tasks and situations where the teacher and student architectures differ.

3. Empirical evaluations on large-scale NLP benchmarks like Amazon Reviews (5 classes, 500k
examples, achieving an improvement of 1.85% over the best baseline) and Sentiment140
(binary, 1.6 million examples, showing a 0.88% improvement over the best baseline) vali-
date that LELP is consistently competitive with, and typically superior to, existing SOTA
distillation algorithms for binary and few class problems, where most KD methods suffer.

4. We show that LELP possesses several advantageous characteristics, including conveying a
large amount of information per example (data efficiency), converging faster than Vanilla
KD, and can provide substantial improvements in semi-supervised KD scenarios.

1.1 ORGANIZATION OF THE PAPER

In Section 2 we discuss related work, including the baselines we considered in this work and the
Neural Collapse phenomenon. In Section 3 we present our method. In Section 4 we present our
experiments. Specifically, in Section 4.2 we present experiments demonstrating that inventing pseudo-
subclasses via clustering of the teacher’s model’s embeddings can improve distillation effectiveness,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

and in Section 4.3 we compare LELP with other distillation baselines. In Section 5 we discuss the
limitations of our work. In Appendix A we discuss the broader impact of our work. In Appendix B we
present our experimental results corresponding to binary classification tasks with subclass structure
in detail. In Appendix C we provide ablations on the design choices behind LELP. In Appendix D
we give a detailed description of the NLP datasets we used. In Appendix E we present results
regarding the applicability of LELP to multiclass classification tasks with a moderate number of
classes. In Appendix F we study additional properties of LELP, including its relative performance in
the semi-supervised setting (Chen et al., 2020; Stanton et al., 2021; Iliopoulos et al., 2022; Baykal
et al., 2023; Kontonis et al., 2023), its data efficiency and its training speed. In Appendix G we
provide pseudo-code for our method. Finally, in Appendix H we provide implementation details.

2 RELATED WORK

Knowledge Distillation. Most of the literature on Knowledge Distillation has been focused on
the fully supervised setting, i.e., when distillation is performed on the labeled training data of the
teacher model rather than on new, unlabeled data — see e.g. the original paper (Hinton et al., 2015).
Specifically, when training the student one typically uses a convex combination of the standard
cross-entropy loss LCE with respect to the ground-truth labels, and the distillation loss Ldistill:

Lstudent = αLCE + (1− α)Ldistill. (1)

In the original paper (Hinton et al., 2015) the distillation loss encourages the student model to mimic
to replicate the teacher’s output probabilities, potentially after scaling the logits of both models
using a temperature-scalar. (The value of the temperature is typically larger than 1, and it is used to
emphasize the differences between the probabilities of wrong answers that would all be very close to
zero at temperature 1.)

In addition to focusing on the teacher model’s final outputs, follow-up methods, like those proposed
in (Romero et al., 2014; Ahn et al., 2019), also consider the teacher model’s internal representations,
often in the form of its embeddings. These methods encourage the student model to mimic not only
the teacher’s final predictions but also its internal representations. The simplest, yet often highly
effective, example of this approach is Embedding Distillation (Romero et al., 2014). In this method,
an additional term, called the “embedding-loss term”, is added to the distillation loss. This term
measures the difference between the embeddings produced by the teacher and student models. The
weight of this term can be adjusted using a hyperparameter. Specifically, one adds the term

LEmbedd =
1

n

n∑
i=1

∥fT (xi)−WfS(xi)∥2, (2)

where x1, . . . , xn denotes the current batch of examples, fT (xi), f
S(xi) the embeddings of the

teacher and student model corresponding to example xi, respectively, and W is a learnable projection
matrix to match the dimension of the teacher/student learned during the distillation phase. Romero
et al. (2014) proposes ways of modeling and pretraining W (and also potentially distilling from
other teacher-layers), while Ahn et al. (2019) proposes losses that minimize the mutual information
between the teacher and student embeddings (instead of considering the ℓ2 loss). Finally, Relational
Knowledge Distillation (Park et al., 2019) transfers mutual relations of data examples instead, e.g.,
they authors introduce a loss that penalizes structural differences in “anglewise” relations. Notably,
Relational KD can naturally handle mismatches in teacher-student embedding dimensionality without
introducing learnable projections.

The Subclass Distillation method (Müller et al., 2020) presents an approach that is closely related to
ours. Here, the teacher is forced to divide each class into many pseudo-subclasses that it invents via
appropriate training, and then the student is trained to match the subclass probabilities. The method
is designed for few-class classification, excelling in such scenarios. Our method shares Subclass
Distillation’s use of invented subclasses for student knowledge transfer, but eliminates the need
for teacher retraining and extensive hyperparameter tuning. (Note that the process of optimizing
hyperparameters for Subclass Distillation necessitates retraining the teacher model repeatedly with
varying loss function configurations, as outlined in equations (7) and (8) of the reference paper by
Müller et al. (2020). However, this iterative retraining becomes excessively computationally intensive
and impractical when dealing with large teacher models.) As we show in Section 4, LELP achieves
performance that is always on par with, and typically exceeding, Subclass Distillation.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Teacher

Student

Subclass Directions

Class 1:
Class 2:

Teacher Subclass ProbabilitiesTeacher Super-Class Predicton

Subclass Splitting

Student Subclass Probabilities Student Prediction

Prediction

PCA

Teacher Embeddings

KL-Div.

Σ

ΣPredicts S x C subclasses

}
}

Figure 2: Schematic of the Learning with Embedding Projections (LELP) algorithm. LELP decom-
poses Teacher predictions into subclasses via a PCA decomposition, and trains a student on these
subclasses. For predictions, subclasses are summed together back into their original classes.

In our study we show that LELP is consistently competitive with the above methods, and that it is
typically superior to them when it comes to classification problems with a few number of classes
(especially in the NLP domain). We also explore two more baseline methods that have found success
in Vision tasks: Contrastive Representation Distillation (CRD) Tian et al. (2019) and Decoupled
Knowledge Distillation (DKD) Zhao et al. (2022). While CRD excels in Vision multi-class tasks,
its reliance on data augmentation for contrastive learning limits its applicability to other domains.
Indeed, in Vision classification tasks the standard “contrastive-learning” approach would be to
generate variations of every image (e.g, via rotations), and then consider as positive any pair of
examples (original or modified) that come from the same source. However, data augmentation of, say
Natural Language examples, is not straightforward and this impairs the performance of the method.
(See Appendix H for more details.) DKD has also demonstrated efficacy in multi-class Vision tasks,
but its performance is notably compromised in scenarios with fewer classes, rendering it inappropriate
for the specific focus of our investigation. In particular, in the context of binary classification, DKD
is mathematically equivalent to the standard Vanilla KD approach. We demonstrate that LELP
significantly outperforms both CRD and DKD in text classification tasks.

Neural Collapse. Papyan et al. (2020) identified a phenomenon called Neural Collapse that occurs in
the final training phase (after achieving zero training error) of deep neural networks. This phenomenon
refers to specific structural properties observed in the last layer’s representations. The simplest of
these properties is known as variability collapse. In a nutshell, as a network is trained extensively, it
tends to group together all training samples with the same label (almost) into a single point in its final
layer.

Our approach is inspired by a recent paper Yang et al. (2023) which provides evidence that further
refines the above description. In particular, it shows that while the final layer representations appear
collapsed, they retain crucial fine-grained structure. This structure, though subtle, accurately reflects
the inherent characteristics of the input distribution. As an illustrative example, the authors consider
a model trained to classify images in the CIFAR-10 Krizhevsky et al. (2009) dataset using only 5
coarse-graned labels (by combining two classes into one superclass). Remarkably, even after this
training, they can still recover the original, more detailed 10-class system by applying unsupervised
clustering techniques to the model’s internal representations. In light of this intriguing observation,
and motivated by the findings of Müller et al. (2020) that creating meaningful pseudo-subclasses
aids student knowledge transfer, we present an unsupervised technique to extract knowledge from
teacher embeddings using linear projections to form pseudo-subclasses. Our approach, which we
compare to other clustering methods (including the one in Yang et al. (2023)) in Table 3 in Section 4.2,
consistently shows superior performance.

3 LEARNING FROM EMBEDDING LINEAR PROJECTIONS (LELP)

Since large models develop embeddings that hold information not captured in their output probabilities
(Yang et al., 2023), we aim to transfer this knowledge to student networks while adhering to three
desiderata:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Modality-independent. We aim to develop a data-agnostic method, meaning its performance remains
consistent regardless of the underlying data type. The method should not be reliant on characteristics
specific to certain data modalities (for instance, the ability to easily perform data augmentation).

Compatibility between differing Student/Teacher architectures. Embedding Distillation, the most
straightforward method for learning the teacher’s embedding information, only works out-of-the-
box when the student and teacher have matching embedding dimensions. Otherwise, a learnable
projection layer is required to match the student/teacher embedding dimensions, which can often
harm performance (and even increase latency in certain cases). Therefore, we aim for a method that
is embedding dimension agnostic.

No Retraining the Teacher Model. When the teacher model is significantly larger than the student
model, retraining it can be prohibitively expensive. Methods which require a modified teacher training
pipeline are significantly more costly to tune hyperparameters for, as not only do the teacher models
have to be retrained multiple times, but in addition the student hyperparameters need to be checked
against varying teacher hyparameters. This precludes methods such as Subclass Distillation (Müller
et al., 2020), which contains several teacher training hyperparameters, and can even hurt the teacher’s
performance.

With these requirements in mind, we present Learning Embedding Linear Projections (LELP), which
extracts the information in the teacher’s embedding layer into pseudo-subclasses, on which the
student is trained in a single unified cross-entropy loss. To motivate our method, we refer to the
toy model of the learned teacher embeddings shown in Figure 2. Here, data points cluster around
their respective class averages, but each cluster exhibits internal structure that holds semantically
meaningful information. This structure differentiates individual items within the same class and
has proven valuable for identifying subclasses when they exist Müller et al. (2020). Additionally,
(Yang et al., 2023) shows that these subclasses can be separated using a linear probe (following an
appropriate clustering of the embeddings space), which motivates the use of linear projections as a
means of extracting further information for distillation.

LELP extracts this embedding information into a single classification loss in three steps. Firstly,
we identify meaningful linear subspaces in the teacher embedding space (section 3.1). Secondly,
we project the teacher embeddings into these subspaces, and use them to form pseudo-subclasses,
expanding the number of classes from C to S × C, where S is the number of linear projections
we employ per class (section 3.2). Finally, we perform standard knowledge distillation, where
additionally the student network’s final layer outputs probabilities for S × C classes (section 3.3).

3.1 IDENTIFYING INFORMATIVE LINEAR SUBSPACES

The first step in LELP requires identifying linear subspaces in the teacher embedding space which
contain useful information for each class cluster. Specifically, let {xc

i}
Nc
i=1, be the Nc training points

in the dataset belonging to class c, and let {hc
i}

Nc
i=1 be the corresponding teacher embeddings in RD,

that is, hc
i = hTeacher(xc

i), where hTeacher(x) is the teacher feature extractor. We want to find the S

most informative linear directions in {hc
i}

Nc
i=1. In absence of further knowledge of the structure of

{hc
i}

Nc
i=1, we opt to take the S top PCA directions. This PCA decomposition yields for each class a

class mean µc and S top PCA directions: {vc,1, vc,2, . . . , vc,S}. Two remarks are in order.

First, observe that such a PCA can contain “redundant” information which is already captured in
the teacher’s output weights. Specifically, if the teacher’s output weights are {wi, . . . , wc}, standard
knowledge-distillation will already contain all the information along these directions, meaning that
further information in these directions from vc,i is unnecessary. Therefore, we have found that it
often helps to first project {hc

i}
Nc
i=1 onto the null-space of the teacher weights {wi, . . . , wc} before

performing the PCA. Of course, in principle, the null-space could be trivial, in which case we do not
apply this step. Typically though, we are working in the regime where D ≥ S + C, so this step does
apply. In particular, we have not run into the problem in the experiments of this study.

A second consideration is the imbalance of variance between PCA directions: projections onto the vc,1
directions to contain the most variances and each subsequent will contain less. If there is significant
imbalance, we find that this can lead to poor performance so we have found it is useful to apply a
random rotation on the PCA directions so the variance in each direction is equal. Specifically, we use

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Ṽc = QVc, where Vc = [vc,1, . . . , vc,S] ∈ RS×D is our PCA vectors concatenated and Q ∈ RS×S is
a random orthonormal matrix. ṼC = [ṽc,1, . . . , ṽc,S] contains our random rotated PCA directions,
which span the same space as V , but each direction has the same variance in expectation.

In Appendix C we perform ablations where we compare applying LELP to simply applying PCA or
Random Projections, in order to show that the above observations can indeed be beneficial in terms
of the student’s performance. Algorithm pseudo-code for the step of identifying the linear subspaces
is provided in Algorithm 1 in appendix G.

The cost of performing the PCA is O(NcD
2 +D3) in time and O(D2) in memory, where D is the

embedding dimension. In practice, the O(NcD
2) associated with forward-passing the dataset through

the teacher network is the most costly compared to the O(D3) PCA cost for practical embedding
dimensions, making the practical cost of the computation O(N) where N is the training dataset size.

3.2 SPLITTING INTO PSEUDO-SUBCLASSES

Given the set of C class embedding means and S PCA vectors per class, we now describe how we
split the C classes into SC subclasses. Let pTeacher

c be the teacher class probability of class c, with
temperature parameter τ . That is,

pTeacher
c =

ezc/τ∑C
i=1 e

zi/τ
,

where zc are teacher logits, i.e. zc = wTeacher⊺
c h− bc, with wTeacher

c the teacher weight for class c and
bc the bias. We split this into S subclass probabilities pc,1, . . . pc,S where

pTeacher
c,s = pTeacher

c ∗ ezc,s/β∑S
j=1 e

zc,j/β
.

where zc,s = ṽ⊺c,s(h− µc). That is, we perform a tempered softmax over subclass logits zc,s, where
zc,s are given by the PCA decomposition coordinates for that class. β is our subclass tempering
parameter which is a hyperparameter in our method. We refer to this subclass splitting algorithm as
subsplit, which takes as input the teacher embedding h, the PCA direction and mean vectors Ṽ
and M , the teacher final layer weights W , and temperature β. Pseudocode is in Appendix G.

3.3 KNOWLEDGE DISTILLATION WITH SUBCLASSES

Finally, we perform standard knowledge distillation with our new SC probabilities pc,s. This requires
a straightforward modification to the student architecture, in which it outputs SC classes as opposed
to the standard C classes. We applying the standard tempered Knowledge Distillation loss as prior
work, using the same temperature τ used to generate pc,s:

LLELP = τ2D(pTeacher
c,s ||pStudent

c,s),

whereD is a standard classification loss like Cross-Entropy or KL-Divergence. (In all our experiments
in this paper we use the latter.)

With pStudent
c,i using the same temperature parameter τ :

pStudent
c,s =

ez
Student
c,s /τ∑C

i=1

∑S
j=1 e

zStudent
i,j /τ

.

At test time, we simply take class probabilities to be the sum over subclass probabilities: pStudent
c =∑S

j=1 p
Student
c,j and take the prediction to be the class with largest probability. By putting embedding

information directly into a unified classification loss, our algorithm avoids careful balancing of training
objectives such as with Embedding Distillation, in which one must carefully tune the embedding
loss coefficient. Furthermore, our method is minimally invasive, requiring only minor changes to the
student network and the training pipeline relative to other effective Knowledge Distillation techniques.
In particular, our method avoids the need for pretraining steps of learnable projections, unlike FitNet
and VID, and it also doesn’t require a memory buffer (sometimes used for CRD), or retraining the
teacher model like Subclass Distillation. All put together, our algorithm is given in Algorithm 3.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 EXPERIMENTAL EVALUATION

In this section we present our experimental results. In Section 4.1 we describe our experimental setup.
Section 4.2 presents experiments showcasing that generating pseudo-subclasses via unsupervised
clustering of the teacher model’s embeddings can improve distillation effectiveness. In Section 4.3
we compare LELP with other distillation baselines.

4.1 THE SETUP

We focus our experiments on a variety of classification tasks, using a standard distillation setup as in
(Hinton et al., 2015). In order to focus solely on the effect of the distillation loss of each method,
we always set α = 0 in equation 1. This reduces the variance between methods which may have
different optimal values of α, and reduces the hyperparameter search space. Furthermore, in the
important case of the semi-supervised setting one does not have access to ground-truth labels.

The Architectures Given that the specific combination of student and teacher architectures is
known to influence the effectiveness of knowledge distillation, we have chosen to evaluate various
student-teacher pairings to ensure the robustness of our method.

For Vision datasets, the “ideal" distillation scenario is given by distilling ResNet-92 to ResNet-56,
where both architectures and embeddings dimensions match (D = 256). We also consider the case
of a smaller and a larger dimension with ResNet-92 (D = 256) and MobileNet with width and depth
multiplier equal to 2 (D = 2048), respectively, distilling to MobileNet (D = 1024). The latter cases
address scenarios where the embedding dimensions differ, with one scenario involving the same
architecture family and the other involving different architectures. For smaller NLP datasets (LMRD,
GLUE/cola, and GLUE/sst2), we consider distillation from an ALBERT-Large model (D = 1024)
to an ALBERT-Base model (D = 768). For the larger scale NLP datasets (based on Amazon US
reviews and Sentiment 140) we consider distillation from an ALBERT-XXL model (D = 4096) and
an ALBERT-XL model (D = 2048) to (i) an ALBERT-Base model (D = 768); (ii) and a two-layer-
MLP of width (D = 4096) that operates over representations generated by a (frozen) sentence-T5
encoder model of 11 billion parameters (Ni et al., 2021). The latter case addresses the scenario
involving different teacher-student architectures but with the same embedding dimension. (Using a
pre-trained, frozen large-scale encoder model to generate representations is a common-in-practice
approach when one needs multiple lightweight models for different classification tasks.)

The Baselines To establish a baseline performance, we chose well-known distillation approaches.
In particular, we consider Standard Training of the model with the ground-truth labels and the
cross-entropy loss, Vanilla Distillation with temperature-scaling as described in the original paper
of Hinton et al. (2015), the Embedding Distillation method as described in Section 2, the general
FitNet Romero et al. (2014) approach1 , the Variational Information Distillation for Knowledge Trans-
fer (VID) framework Ahn et al. (2019), the Relational KD approach Park et al. (2019), Contrastive
Representation Distillation CRD Tian et al. (2019), Decoupled Knowledge Distillation Zhao et al.
(2022) and Subclass Distillation Müller et al. (2020). As previously noted, DKD is functionally
identical to Vanilla KD in the context of binary classification tasks. Consequently, for such tasks,
reported values for DKD and Vanilla KD are congruent. For all baselines we perform a grid search
over their relevant parameters and report the performance (test-accuracy and standard deviation over
three trials) of the best configuration, with hyperparameters given in Appendix H.3. The best forming
algorithm is shown in bold, and the second best underlined. Additionally, for every scenario in our
tables, we display the average improvement of LELP compared to: (i) the top-performing baseline;
(ii) the best baseline excluding Subclass Distillation; (iii) Vanilla Distillation. We report the second
comparison for a couple of reasons. Firstly, optimizing Subclass Distillation’s hyperparameters is
significantly more costly compared to the other baselines, and it can be challenging in real-world
situations (due to the requirement of retraining and storing multiple teacher models). Second, the
accuracy of the teacher model in Subclass Distillation usually differs from the one used for LELP
(and the other baselines). Therefore, comparing them directly might not be entirely fair.

1Embedding Distillation as described in Section 2 can be thought of as an instance of the FitNet framework.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

CIFAR-100bin ResNet-92 -> ResNet-56
60

65

70

75

80

85

90

Ac
cu

ra
cy 78.69

86.42

72.87

76.84 77.03 77.39
79.91

Subclass Method
Teacher
Oracle Clustering
Vanilla KD
Agglomerative
K-means
tSNE + K-means
LELP

(a)

CIFAR-100bin ResNet-92 -> MobileNet
60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

Ac
cu

ra
cy

78.69

76.59

72.16

68.05
69.40

72.19

75.21

Subclass Method
Teacher
Oracle Clustering
Vanilla KD
Agglomerative
K-means
tSNE + K-means
LELP

(b)

Figure 3: The effectiveness of different clustering techniques for creating pseudo-subclasses during
knowledge distillation from a ResNet-92 teacher to (a) a ResNet-56 and (b) a MobileNet student
on the binarized CIFAR-100 dataset is presented. “Oracle Clustering”, where subclass structure is
known a priori, serves as an upper bound and notably surpasses all other methods, even exceeding
the teacher’s performance in the ResNet-56 case. Among practical methods (i.e., those discovering
subclass structure), LELP exhibits superior performance. Agglomerative and K-means clustering
do not consistently outperform vanilla knowledge distillation, demonstrating the dependence of
pseudo-subclasses effectiveness on the chosen clustering algorithm.

4.2 INVESTIGATING METHODS FOR INVENTING PSEUDO-SUBCLASSES

In this section we investigate the extent to which inventing pseudo-subclasses via unsupervised
clustering of the teacher model’s embeddings can be beneficial for distillation. Our investigation
focuses on tasks with inherent subclass structure, driven by the hypothesis that class embeddings
contain rich and informative structural details. Specifically, we utilize binarized versions of CIFAR-10
and CIFAR-100, assigning binary labels based on the original class labels (ybinary = yoriginal%2).
These datasets present a unique challenge for knowledge distillation, as vanilla distillation is known
to underperform due to limited class label information.

Crucially, the availability of original labels (yoriginal) in these subclass datasets allows us to explore
the "Oracle Clustering" approach. This entails training the student model on the full 10/100-way
classification task for CIFAR-10/100, respectively, and subsequently treating the problem as binary
classification during testing. Interestingly, the student models trained utilizing the Oracle Clustering
approach exhibit the highest performance among all evaluated clustering methods. This approach not
only outperforms other clustering strategies but also surpasses the performance of the original teacher
network in certain cases. A t-SNE visualization of the feature embeddings learned by the student
models, presented in Figure 4, offers a deeper understanding of the underlying factors contributing to
this observed performance advantage. While Oracle Clustering represents an idealized scenario where
subclass structure is known a priori and thus impractical for real-world datasets, its consideration
underscores the potential power of inventing pseudo-subclasses as a methodological approach.

We consider several natural ways of inventing pseudo-subclasses by clustering the teacher’s em-
bedding space and we compare them with LELP. In particular, we consider three approaches: (i)
Agglomerative clustering (complete linkage); (ii) K-means clustering; and (iii) K-means clustering
after we first have projected the teacher’s embedding space in a two-dimensional space using t-
SNE (Hinton & Roweis, 2002) as proposed in (Yang et al., 2023). For these methods, we tested both
hard-label (one-hot vector) and soft-label (weighted by teacher probabilities) representations of the
subclasses during student training. We observed that soft-labels, even with temperature tuning, did
not significantly impact performance. Therefore, we present results using only hard-label (one-hot
vector) subclass representations, which can be found in Table 1 (see also Figure 3). Details on the
number of clusters chosen can be found in Appendix H.3.

Analysis of Table 1 reveals several key findings: (i) LELP consistently outperforms all other clustering
methods as well as Vanilla KD across all experimental scenarios; (ii) t-SNE & K-means generally
demonstrate superior performance to Vanilla KD; (iii) Agglomerative clustering and K-means clus-
tering exhibit more varied results in comparison to Vanilla KD. Thus, our findings suggest that the
generation of pseudo-subclasses via clustering methodologies holds significant potential, however,
the efficacy of this approach is contingent upon the specific clustering algorithm employed.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Vanilla KD LELP Oracle Clustering

Figure 4: The t-SNE visualization of the feature embeddings learned by student models during
knowledge distillation from a ResNet-92 teacher to a ResNet-56 student on the binarized CIFAR-10
dataset. The first row depicts embeddings colored according to the two primary classes of the task,
while the second row uses color to represent the underlying subclasses. Notably, the student model
trained with the proposed LELP method exhibits a more intricate embedding structure compared to
the student trained with standard Vanilla KD. Furthermore, the embeddings of the student trained via
the “ideal” Oracle Clustering approach clearly delineate the underlying subclass structure, providing
insight into its ability to surpass even the teacher’s performance.

Table 1: Comparison of different unsupervised clustering approaches for inventing pseudo-subclasses.

Teacher Architecture ResNet92 ResNet92 MobileNetWD2 ResNet92 ResNet92 MobileNetWD2
Student Architecture ResNet56 MobileNet MobileNet ResNet56 MobileNet MobileNet

Dataset CIFAR-10-bin CIFAR-10-bin CIFAR-10-bin CIFAR-100-bin CIFAR-100-bin CIFAR-100-bin
Teacher 96.70 96.70 93.90 78.69 78.69 72.63

Oracle Clustering 97.17 ± 0.02 93.23 ± 0.28 93.48 ± 0.05 86.42 ± 0.11 76.59 ± 0.60 77.03 ± 0.1

Vanilla Distillation 95.75 ± 0.21 92.91 ± 0.17 92.79 ± 0.3 72.87 ± 0.27 72.16 ± 0.39 71.45 ± 0.59

Agglomerative 95.48 ± 0.08 92.16 ± 0.15 92.41 ± 0.28 76.84 ± 0.38 68.05 ± 1.80 66.97 ± 0.93

K-means 95.76 ± 0.09 92.53 ± 0.32 92.05 ± 0.14 77.03 ± 0.21 69.4 ± 0.87 68.97 ± 0.79

t-SNE & K-means Yang et al. (2023) 95.92 ± 0.19 92.97 ± 0.07 91.20 ± 0.52 77.39 ± 0.29 72.19 ± 0.60 68.15 ± 0.09

LELP (Ours) 96.71 ± 0.04 93.99 ± 0.17 93.03 ± 0.10 79.91 ± 0.15 75.21 ± 0.12 72.38 ± 0.24

4.3 COMPARISON WITH PREVIOUS APPROACHES

In this section we compare LELP with other distillation baselines.

4.3.1 WARMUP: BINARY CLASSIFICATION WITH SUBCLASS STRUCTURE

As a warmup, we first focus on on binary datasets that have an inherent subclass structure following
the setting of Section 4.2. The results can be found in Table 3 in Appendix B. Among the baselines,
Subclass Distillation often performs the best, consistent with the finding that subclass-splitting
is effective with little label information (Müller et al., 2020). Our method is able to capture the
learned structure from the teacher subclasses without retraining the more expensive teacher model and
outperforms all baselines. It’s worth noting that our method achieves the highest average improvement
over the leading baseline when applied to the CIFAR-100bin dataset, specifically when transferring
knowledge from a ResNet teacher model to a MobileNet student model. This scenario is particularly
challenging due to the presence of numerous subclasses and significant differences between the
teacher and student models in terms of both embedding dimensions and architectures. Interestingly,
our method even outperforms Oracle Clustering in the CIFAR-10bin ResNet to MobileNet case,
suggesting that it leverages structure that is learned by the teacher that is not present in the original
CIFAR-10 labels.

4.3.2 FEW-CLASS CLASSIFICATION WITHOUT SUBCLASS STRUCTURE

In this section we focus on datasets without subclass structure. We consider classification on six
language classification tasks: the Large Movie Review dataset (Maas et al., 2011), two GLUE
datasets: cola and sst2 (Wang et al., 2018), two datasets sampled from the Amazon US reviews

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

datasets (Datasets, 2020), and a dataset sampled from the Sentiment140 dataset (Go et al., 2009).
Details are given in Appendix D. Our results are shown in Table 2. Notably, Subclass Distillation is
typically the best performing baseline. LELP exceeds or performs as well as Subclass Distillation, but
importantly does not require retraining the teacher, which in the age of ever growing large language
models, becomes increasingly important. It is also worth noting that for the case of Amazon US
Reviews-based datasets (among the largest ones considered in our study) where we distill to an
ALBERT-Base model, LELP significantly outperforms even the teacher model, which contains over
20x the number of parameters.

5 LIMITATIONS

While our method is simple and efficient to implement, there may be limitations in using a simple
linear projection on the teacher final layer embeddings to extract subclass data. Firstly, there is no
reason to assume that the subclasses should be linearly separable in the teacher embedding, and it
is likely that more sophisticated unsupervised clustering methods could extract richer information.
Second, LELP performs when there is limited teacher logit information (such as in binary classi-
fication tasks), however larger image datasets with many classes contain sufficient information in
their teacher logits, obviating the need of subclass splitting methods such as LELP. Indeed, as the
number of classes increases, we anticipate LELP’s performance to converge with vanilla knowledge
distillation. (Consequently, we did not present experiments on datasets with a large number of classes,
such as ImageNet-1k, since LELP is not designed for such scenarios.)

6 CONCLUSION

In this study, we have presented evidence that the creation of pseudo-subclasses via unsupervised
clustering of teacher embeddings can improve distillation performance in binary and few-class
classification tasks, without necessitating the retraining of the teacher model. Through empirical
evaluation, we observed that linear projections consistently yield high performance, prompting us
to introduce LELP. The superior performance of the "Oracle Clustering" method, where subclass
structure is known a priori, suggests that the generation of pseudo-subclasses through clustering
techniques has substantial promise. Consequently, future research can explore more sophisticated
methods for extracting teacher embedding information, drawing insights from the expanding body of
work on Neural Collapse, or investigate strategies for distilling intermediate layer embeddings using
a similar approach.

7 REPRODUCIBILITY STATEMENT

Appendix G provides a detailed description of LELP, including pseudo-code. Implementation details
for all distillation methods employed in this study, including hyperparameter choices, can be found in
Appendix H. Appendix D offers a comprehensive overview of the NLP datasets used in this research.
Finally, a Jupyter Notebook containing the LELP implementation and code to reproduce the binary
classification results with subclass structure is available in the supplementary material.

Table 2: Experiments on Classification Tasks without Subclass Structure.

Teacher Architecture ALBERT-Large ALBERT-Large ALBERT-Large ALBERT-XXL ALBERT-XXL ALBERT-XXL ALBERT-XXL ALBERT-XL
Student Architecture ALBERT-Base ALBERT-Base ALBERT-Base ALBERT-Base MLP/T5(11B) ALBERT-Base MLP/T5(11B) ALBERT-Base

Dataset LMRD GLUE/cola GLUE/sst2 Am. Reviews Bin Am. Reviews Bin Am. Reviews Am. Reviews Sentiment140 Bin
Teacher 90.19 81.87 94.09 87.82 87.82 77.58 77.58 87.29

Subclass Distillation Teacher 90.05 81.49 93.11 87.71 87.53 78.45 78.02 87.45

Standard Training 87.68 ± 0.46 79.13 ± 0.79 91.32 ± 0.12 85.95 ± 0.09 87.83 ± 1.48 74.51 ± 0.32 66.44 ± 0.23 85.82 ± 0.15

Vanilla Distillation 88.70 ± 0.17 80.50 ± 0.05 92.39 ± 0.24 86.76 ± 0.23 88.60 ± 0.1 75.13 ± 0.12 72.30 ± 1.19 85.95 ± 0.17

Embedding Distillation 88.98 ± 0.33 80.66 ± 0.65 92.62 ± 0.16 86.43 ± 0.14 89.84 ± 0.78 75.28 ± 0.07 72.64 ± 0.95 85.78 ± 0.03

FitNet 88.75 ± 0.15 80.82 ± 0.32 92.43 ± 0.18 86.53 ± 0.2 91.40 ± 0.5 75.54 ± 0.05 75.78 ± 0.21 86.07 ± 0.02

VID 88.26 ± 0.20 79.83 ± 0.62 91.47 ± 0.33 83.74 ± 0.7 89.23 ± 0.91 67.48 ± 0.81 63.98 ± 1.79 85.83 ± 0.01

Relational KD 88.90 ± 0.24 81.24 ± 0.43 92.73 ± 0.15 86.36 ± 0.09 89.52 ± 0.95 75.12 ± 0.39 74.72 ± 0.91 86.12 ± 0.07

DKD 88.70 ± 0.17 80.50 ± 0.05 92.39 ± 0.24 86.76 ± 0.23 88.6 ± 0.1 72.41 ± 0.91 72.40 ± 0.82 85.95 ± 0.17

CRD 89.19 ± 0.03 80.79 ± 0.21 92.27 ± 0.48 85.79 ± 0.11 88.12 ± 0.91 74.7 ± 1.32 61.08 ± 1.8 84.60 ± 0.69

Subclass Distillation 89.24 ± 0.31 80.85 ± 0.1 92.85 ± 0.15 87.34 ± 0.1 90.38 ± 0.82 76.23 ± 0.50 77.27 ± 1.45 85.93 ± 0.24

LELP (Ours) 89.22 ± 0.06 81.43 ± 0.47 92.81 ± 0.36 88.49 ± 0.36 91.76 ± 0.17 78.08 ± 0.81 77.48 ± 0.43 87.00 ± 0.25

Avg. gain over the best baseline −0.02 0.20 −0.04 1.15 0.36 1.85 0.21 0.88

Avg. gain over non-subclass baseline 0.24 0.20 0.08 1.73 0.36 2.54 1.68 0.88

Avg. gain over Vanilla KD 0.52 0.93 0.42 1.73 3.16 2.95 5.18 1.18

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

Sungsoo Ahn, Shell Xu Hu, Andreas Damianou, Neil D. Lawrence, and Zhenwen Dai. Variational
information distillation for knowledge transfer. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.

Eric Arazo, Diego Ortego, Paul Albert, Noel E O’Connor, and Kevin McGuinness. Pseudo-labeling
and confirmation bias in deep semi-supervised learning. In 2020 International Joint Conference
on Neural Networks (IJCNN), pp. 1–8. IEEE, 2020.

Cenk Baykal, Khoa Trinh, Fotis Iliopoulos, Gaurav Menghani, and Erik Vee. Robust active distillation.
International Conference on Learning Representations (ICLR), 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
535–541, 2006.

Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E Hinton. Big
self-supervised models are strong semi-supervised learners. Advances in neural information
processing systems, 33:22243–22255, 2020.

TensorFlow Datasets. Amazon us reviews dataset, 2020. URL https://www.tensorflow.
org/datasets/catalog/amazon_us_reviews.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Cong Fang, Hangfeng He, Qi Long, and Weijie J Su. Exploring deep neural networks via layer-peeled
model: Minority collapse in imbalanced training. Proceedings of the National Academy of Sciences,
118(43):e2103091118, 2021.

Alec Go, Richa Bhayani, and Lei Huang. Twitter sentiment classification using distant supervision.
CS224N project report, Stanford, 1(12):2009, 2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Geoffrey E Hinton and Sam Roweis. Stochastic neighbor embedding. Advances in neural information
processing systems, 15, 2002.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
ArXiv, abs/1503.02531, 2015. URL https://api.semanticscholar.org/CorpusID:
7200347.

Fotis Iliopoulos, Vasilis Kontonis, Cenk Baykal, Gaurav Menghani, Khoa Trinh, and Erik Vee.
Weighted distillation with unlabeled examples. In NeurIPS, 2022.

Jangho Kim, SeongUk Park, and Nojun Kwak. Paraphrasing complex network: Network compression
via factor transfer. Advances in neural information processing systems, 31, 2018.

Vasilis Kontonis, Fotis Iliopoulos, Khoa Trinh, Cenk Baykal, Gaurav Menghani, and Erik Vee. Slam:
Student-label mixing for distillation with unlabeled examples. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

11

https://www.tensorflow.org/datasets/catalog/amazon_us_reviews
https://www.tensorflow.org/datasets/catalog/amazon_us_reviews
https://api.semanticscholar.org/CorpusID:7200347
https://api.semanticscholar.org/CorpusID:7200347

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Lu Liu and Robby T Tan. Certainty driven consistency loss on multi-teacher networks for semi-
supervised learning. Pattern Recognition, 120:108140, 2021.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P11-1015.

G Menghani. Efficient deep learning: A survey on making deep learning models smaller. Faster, and
Better. arXiv, 2106, 2021.

Rafael Müller, Simon Kornblith, and Geoffrey Hinton. Subclass distillation. arXiv preprint
arXiv:2002.03936, 2020.

Jianmo Ni, Gustavo Hernández Ábrego, Noah Constant, Ji Ma, Keith B. Hall, Daniel Cer, and
Yinfei Yang. Sentence-t5: Scalable sentence encoders from pre-trained text-to-text models. CoRR,
abs/2108.08877, 2021. URL https://arxiv.org/abs/2108.08877.

Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal
phase of deep learning training. Proceedings of the National Academy of Sciences, 117(40):
24652–24663, 2020.

Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 3967–3976,
2019.

Nikolaos Passalis and Anastasios Tefas. Unsupervised knowledge transfer using similarity embed-
dings. IEEE transactions on neural networks and learning systems, 30(3):946–950, 2018.

Hieu Pham, Zihang Dai, Qizhe Xie, and Quoc V Le. Meta pseudo labels. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11557–11568, 2021.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Samuel Stanton, Pavel Izmailov, Polina Kirichenko, Alexander A Alemi, and Andrew G Wilson.
Does knowledge distillation really work? Advances in Neural Information Processing Systems, 34:
6906–6919, 2021.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. arXiv
preprint arXiv:1910.10699, 2019.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with noisy student
improves imagenet classification. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 10687–10698, 2020.

Yongyi Yang, Jacob Steinhardt, and Wei Hu. Are neurons actually collapsed? on the fine-grained
structure in neural representations. In International Conference on Machine Learning, pp. 39453–
39487. PMLR, 2023.

Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun Liang. Decoupled knowledge distillation.
In Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, pp.
11953–11962, 2022.

12

http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
https://arxiv.org/abs/2108.08877

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A BROADER IMPACT STATEMENT

Due to its popularity and the fact that deep learning is widely used in fields from NLP to robotics to
autonomous vehicles, knowledge distillation, as a deep learning method, carries with it the potential
for harmful societal impact. However, we feel that none of these impacts must be specifically
highlighted here.

B BINARY CLASSIFICATION WITH SUBCLASS STRUCTURE: EXPERIMENTAL
RESULTS

Here we present the table with the experimental results corresponding to Sections 4.2 and 4.3.1.

Table 3: Experiments on Binary Classification tasks with Subclass Structure.

Teacher Architecture ResNet92 ResNet92 MobileNetWD2 ResNet92 ResNet92 MobileNetWD2
Student Architecture ResNet56 MobileNet MobileNet ResNet56 MobileNet MobileNet

Dataset CIFAR-10-bin CIFAR-10-bin CIFAR-10-bin CIFAR-100-bin CIFAR-100-bin CIFAR-100-bin
Teacher 96.70 96.70 93.90 78.69 78.69 72.63

Subclass Distillation Teacher 96.12 95.99 93.82 77.52 75.87 71.53

Oracle Clustering 97.17 ± 0.02 93.48 ± 0.05 93.48 ± 0.05 86.59 ± 0.05 86.38 ± 0.06 86.38 ± 0.06

Standard Training 95.43 ± 0.07 92.04 ± 0.26 92.13 ± 0.17 74.80 ± 0.52 69.13 ± 0.32 68.84 ± 0.97

Vanilla Distillation 95.75 ± 0.21 92.91 ± 0.17 92.79 ± 0.3 72.87 ± 0.27 72.16 ± 0.39 71.45 ± 0.59

Embedding Distillation 96.48 ± 0.1 93.05 ± 0.13 92.57 ± 0.06 78.77 ± 0.35 72.24 ± 0.20 71.99 ± 0.30

FitNet 96.53 ± 0.05 93.31 ± 0.11 92.72 ± 0.1 79.14 ± 0.18 71.76 ± 0.26 68.79 ± 2.82

VID 96.13 ± 0.16 89.95 ± 1.34 84.09 ± 3.38 75.69 ± 0.55 71.99 ± 0.18 61.15 ± 0.40

Relational KD 96.22 ± 0.09 92.98 ± 0.21 92.81 ± 0.14 78.57 ± 0.64 72.53 ± 0.23 71.66 ± 0.1

DKD 95.75 ± 0.21 92.91 ± 0.17 92.79 ± 0.3 72.87 ± 0.27 72.16 ± 0.39 71.45 ± 0.59

CRD 95.83 ± 0.25 92.47 ± 0.13 92.34 ± 0.18 73.01 ± 0.21 72.15 ± 0.63 69.53 ± 1.37

Subclass Distillation 96.44 ± 0.06 93.76 ± 0.06 92.77 ± 0.15 79.23 ± 0.17 73.90 ± 0.18 70.60 ± 0.27

Agglomerative 95.48 ± 0.02 92.16 ± 0.15 92.41 ± 0.28 76.84 ± 0.38 68.05 ± 1.80 66.97 ± 0.93

K-means 95.76 ± 0.09 92.53 ± 0.32 92.05 ± 0.14 77.03 ± 0.21 69.4 ± 0.87 68.97 ± 0.09

t-SNE & K-means 95.92 ± 0.19 92.97 ± 0.07 91.20 ± 0.52 77.39 ± 0.29 72.19 ± 0.60 68.15 ± 0.09

LELP (Ours) 96.71 ± 0.04 93.99 ± 0.17 93.03 ± 0.1 79.91 ± 0.15 75.21 ± 0.12 72.38 ± 0.24

Avg. gain over the best baseline 0.23 0.23 0.22 0.68 1.31 0.39

Avg. gain over non-subclass baseline 0.23 0.68 0.22 0.77 2.68 0.39

Avg. gain over Vanilla KD 0.96 1.08 0.24 7.04 3.05 0.93

C ABLATIONS

One of the key design choices in LELP is to use the top PCA directions to construct the pseudo-
subclasses. This is based on the intuition that axis which contain the most variation also contain the
most information for distillation. Here we test this assumption by comparing PCA projections against
three baselines. The first baseline is random projections (Rand), in which we choose S random
orthogonal directions to use as our subclass direction. The second baseline is raw PCA, which is
using the top-K PCA directions, without the additional projection and random rotation applied, as we
discussed in Section 3. This corresponds to using vectors vc,s instead of ṽc,s. Our final baseline is
the “Identity" projection, which is the same as using all of the teacher embeddings as subclasses. We
consider the binarized CIFAR-100 task, and sweep S from 2− 256, the embedding dimension of the
teacher D = 256. We distill from ResNet92 to ResNet56, with the subclass temperature parameter β
ranging from 2−5−20, with results shown in Figure 5 (top row), averaged over three runs. For a more
clear comparison to the random projection baseline, we also show the “advantange” over random
projections in fig. 5 (bottom row), made by subtracting the accuracy by the equivalent obtained by
random projects with the same S and β. Figure 5 shows the following general trends:

Larger S generally improves performance for Random Projections and LELP, and can harm
PCA. For Rand and LELP, performance seems mostly monotonically increasing with larger S. For
LELP the benefit plateaus around S = 32, while for Rand, the performance slowly increases until
S = 256. This suggests that the PCA step used in LELP obtains the salient information from
teacher embeddings in fewer S than Rand. For PCA without the extra steps used in LELP, large
subclasses with higher temperatures significantly degrades performance, while adding rotation makes
the performance of PCA stable. We conjecture that this is due to the first few PCA directions
containing most of the variation and the remaining direction behaving as random noise.

LELP consistently outperforms Random Projections. We see in fig. 5, when compared to random
projections, LELP almost always has a non-trivial advantage. The performance of Identity projections

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 5: Top row: Ablations of choice of Projection, number of subclasses S and subclass temperea-
ture β on CIFAR-100bin. The set of plots displays raw CIFAR-100bin accuracy. Bottom row: The
second set of plots demonstrates the accuracy gain achieved over random projections (using the same
hyperparameter choice). Values over 0 indicate an advantage over random projections, which we see
consistently with LELP.

is more inconsistent and it can be worse than random projections, depending on β. For larger number
of subclasses, the advantage of LELP over random projections diminishes, as both methods now
contain the majority of information from the entire embedding space.

D DETAILED DESCRIPTION OF THE NLP DATASETS WE USED.

The Corpus of Linguistic Acceptability (GLUE/cola) is a binary classification task which consists
of English acceptability judgments drawn from books and journal articles on linguistic theory.
Each example is a sequence of words annotated with whether it is a grammatical English sentence.
GLUE/cola contains 8, 551 examples for training and 1, 063 examples for testing.

The Large Movie Review dataset (LMRD) is a dataset for binary sentiment classification containing
25, 000 movie reviews for training, and 25, 000 for testing.

The Stanford Sentiment Treebank (GLUE/sst2) consists of sentences from movie reviews and human
annotations of their sentiment. The task is to predict the sentiment (positive or negative) of a given
sentence. It contains 67, 349 examples for training and 1, 821 examples for testing.

The Amazon US reviews datasets comprise a vast collection of over a hundred million customer
reviews and ratings (ranging from 1 to 5 stars). For our study, we selected a subset of these reviews
across various products and devised two classification tasks: a 5-classes classification task and a
binary classification task, which we describe below.

• “Amazon Reviews" contains 500, 000 examples for training and 10, 000 examples for testing.
The task is to predict the star rating of the given review (ranging from 1 to 5). Both the
training and test sets are balanced in terms of the number of examples per rating.

• “Amazon Reviews Bin" is a subset of “Amazon Reviews”, where we exclude all 3-star
reviews. It consists of 400, 000 training and 8, 000 testing examples. The objective is to
determine whether a review is “polarized” (rated either 1 or 5 stars) or “mild” (2 or 4 stars).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

For sampling the examples Amazon Reviews dataset we use the following process. We first first
sequentially parse and concatenate the first 200k examples of the following datasets: “Office Prod-
ucts”, “Video Games”, “Video”, “Toys”, “Tools”, “Sports”, “Jewelry”, “Digital Music Purchase”,
“Mobile Apps”, “Video DVD”, “Watches” (in this order). We then sequentially parse the resulting
collection of examples and we add examples to the training and testing datasets. In particular, for
each class (1-5 stars), we add the first 100k examples we encounter to the training dataset, and the
next 2k examples we encounter to the test dataset.

The Sentiment140 dataset contains 1, 600, 000 tweets extracted using the twitter api, which have been
annotated either as positive or negative. We sample 1, 590, 000 of these tweets to create a balanced
training set, and we use the rest 10, 000 as the test set (also balanced). Note that the Sentiment140
datasets also comes with a validation set of 498 examples, part of which is annotated as “Neutral”.
We are not making use of the latter validation set which is why in our tables we refer to the dataset
we use (described earlier) as “Sentiment140 Bin”.

E MULTICLASS CLASSIFICATION

While our primary focus lies on classification tasks with few classes, here we present results demon-
strating the applicability of LELP to multiclass classification tasks with a moderate number of
classes. To this end, we evaluate LELP on the CIFAR-10 and CIFAR-100 datasets. It is important
to note that our objective is not to establish state-of-the-art performance in vision tasks but rather
to showcase the versatility of our approach. We selected CIFAR-10 and CIFAR-100 as our datasets
because they are widely recognized benchmarks for 10-class and 100-class classification, respectively.
We intentionally disregarded image-specific techniques, such as data augmentation, to focus on
a more general comparison. Consequently, we did not include methods like CRD and DKD that
are specifically tailored to image data. Our results indicate that LELP can effectively handle tasks
with a moderate number of classes and outperforms modality-independent knowledge distillation
methods, particularly in scenarios where there is a significant disparity between the teacher and
student architectures. As the number of classes increases, we anticipate LELP’s performance to
converge with vanilla knowledge distillation. Consequently, we did not conduct experiments on
datasets with a large number of classes, such as ImageNet-1k.

Our results are shown in Table 4, where we distill a ResNet92 to a MobileNet. In this comparison,
LELP significantly outperforms baselines, seeing a 1.1% improvement and 2.31% improvement
over the next best baseline in CIFAR-10 and CIFAR-100, respectively. This validates the hypothesis
that providing subclass information in the form of a classification loss avoids the pitfalls that
methods which directly match embeddings have when students and teachers differ. When there is
either a large performance or architecture gap, embeddings do not transfer readily. Appendix F.1
contains additional experiments in semi-supervised knowledge distillation, where we find that LELP
consistently outperforms existing baselines without modification in the semi-supervised setting.

Table 4: Experiments on Multi-class Classification tasks.

Teacher Architecture ResNet92 ResNet92
Student Architecture MobileNet MobileNet

Dataset CIFAR-10 CIFAR-100
Teacher 94.94 75.55

Subclass Distillation Teacher 93.49 70.23

Standard Training 84.86 ± 0.11 53.15 ± 0.21

Vanilla Distillation 86.45 ± 0.21 56.20 ± 0.11

Embedding Distillation 86.82 ± 0.16 57.27 ± 0.4

FitNet 85.70 ± 0.36 38.23 ± 1.12

VID 76.36 ± 1.56 27.08 ± 1.08

Relational KD 86.92 ± 0.34 59.67 ± 0.58

Subclass Distillation 86.55 ± 0.28 54.45 ± 1.25

LELP (Ours) 88.02 ± 0.19 61.98 ± 0.08

Avg. gain over the best baseline 1.1 2.31

Avg. gain over non-subclass baseline 1.1 2.31

Avg. gain over Vanilla KD 1.57 5.78

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 6: Experiments on the binary and standard CIFAR-100 datasets using ResNet92 as the
teacher and ResNet56 and MobileNet, respectively, as the student. Left: Distillation Dataset Size vs.
Accuracy on binary CIFAR-100. LELP achieves the same performance as standard training while
using only 25% of the data. Middle: Student’s validation accuracy over the training trajectory. LELP
offers both performance gains over Vanilla KD and a faster convergence rate. Right: Illustration
of the performance of LELP in a semi-supervised setting. The x-axis shows the initial quantity
of labeled examples used to train the teacher model, which then generates pseudo-labels for the
remaining (unlabeled) portion of the CIFAR-100 dataset. See Appendix F.1 for more details.

F DATA EFFICIENCY, TRAINING SPEED AND ROBUSTNESS

As we demonstrate in Figure 6, LELP comes with several desirable properties. We consider the
binary and standard CIFAR-100 datasets, ResNet92 as the teacher and ResNet56 and MobileNet,
respectively, as the student. As we have already discussed in Appendix E, we selected CIFAR-10
and CIFAR-100 as our datasets because they are widely recognized benchmarks for 10-class and
100-class classification, respectively, and we intentionally disregarded methods that are tailored to
vision-tasks.

We observe the following. First, the teacher conveys a high amount of information per example, in
the sense that LELP is able to achieve the same performance as standard training using only a small
fraction of the data. Second, LELP both outperforms and converges faster than Vanilla KD. Finally,
in Appendix F.1 we show that LELP can offer significant gains in the semi-supervised setting, where
the teacher is likely to generate inaccurate pseudo-labels.

F.1 SEMI-SUPERVISED KD EXPERIMENTS

Table 5: Experiments in the semi-supervised KD setting.

Teacher Architecture ResNet92 ResNet92 ResNet92
Student Architecture MobileNet MobileNet MobileNet

Dataset CIFAR-100 CIFAR-100 CIFAR-100
Number of Labeled Examples 10000 15000 20000

Teacher 51.08 59.43 64.16

Subclass Distillation Teacher 53.05 60.22 63.93

Standard Training 44.49 ± 0.82 48.31 ± 0.90 50.92 ± 0.04

Vanilla Distillation 44.49 ± 0.82 48.31 ± 0.90 50.92 ± 0.04

Embedding Distillation 42.46 ± 0.47 48.01 ± 0.35 51.60 ± 0.38

FitNet 33.0 ± 0.21 38.85 ± 0.31 38.43 ± 0.29

VID 26.97 ± 2.53 27.16 ± 1.78 28.91 ± 3.38

Relational KD 47.29 ± 0.38 51.94 ± 1.06 55.22 ± 0.76

Subclass Distillation 43.77 ± 0.38 47.53 ± 1.17 49.64 ± 0.38

LELP (Ours) 49.95 ± 0.22 55.07 ± 0.09 57.90 ± 0.16

Avg. gain over the best baseline 2.66 3.13 2.68

Avg. gain over non-subclass baseline 2.66 3.13 2.68

Avg. gain over Vanilla KD 5.46 6.76 6.98

Semi-supervised KD, also known as KD with unlabeled examples, is a potent training paradigm for
generating compact and efficient student models in scenarios where labeled data is scarce but a large
pool of unlabeled data exists. This approach employs a high-capacity teacher model to generate (soft)
pseudo-labels for the unlabeled dataset, which are subsequently utilized to train the student model.

Despite its widespread success in practice, the effectiveness of this powerful approach generally
depends on the quality of the pseudo-labels generated by the teacher model. Indeed, training the
student model on noisy pseudo-labels often leads to significant degradation of its generalization
performance, and this is a well-known phenomenon that has been observed and studied in a plethora

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

of papers in the literature, e.g., Arazo et al. (2020); Liu & Tan (2021); Pham et al. (2021); Stanton
et al. (2021); Xie et al. (2020); Baykal et al. (2023); Iliopoulos et al. (2022); Kontonis et al. (2023).
Additionally, enforcing more teacher-student consistency, e.g., by blindly mimicking the teacher’s
embeddings, can even hinder performance when the teacher’s output contains high noise (i.e., one
may get worse performance than simply applying Vanilla KD). Finally, in this setting, often times the
expense of using the teacher model to generate pseudo-labels can be a significant limitation. This
becomes particularly problematic for methods like Subclass Distillation, which necessitate training
multiple teacher models and generating pseudo-labels with each one of them, further compounding
the cost.

In Table 5 (see also the rightmost plot in Figure 6) we study such a semi-supervised setting in the
case of CIFAR-100, with the teacher model being a ResNet92 and student model being a MobileNet.
(We choose this setting because it is the task where the teacher models will be the most noisy, and
also the teacher and student models have different architectures.)

We consider the cases where the teacher model has available 10000, 15000, 20000 labeled examples
for training, and it is then used to pseudo-label the rest of the CIFAR-100 dataset. (Note that the
amount of available labeled examples for training the teacher model directly affects its accuracy.)
Finally, the student-model is trained on both the available labeled data (which are also soft-labeled by
the teacher model) and the teacher’s pseudo-labels on the unlabeled data.

We observe that LELP provides significant gains in this setting. Also notably, for the 10000 and the
15000 case, the only baseline that outperforms Vanilla KD is Relational KD — showing that, while
the teacher’s embeddings in a noisy teacher setting may contain valuable information, extracting it
effectively is a complex challenge — especially when the teacher and student come from different
architecture families.

G DETAILED DESCRIPTION OF LELP

Here we provide further details and pseudo-code for the steps detailed in Section 3.

G.1 STEP 1: PCA ON TEACHER EMBEDDINGS

Algorithm 1 Learning Embedding Linear Projections (LELP) - Step 1 - Computing Subclass Direction

Input: Teacher model feature extractor hTeacher(x), teacher final layer weight WT ∈ RD×C ,
dataset with class labels {xi, yi}i≤N , with class counts Nc

Output: S × C class vectors Ṽ = {ṽc,s} and C class means M = {µc}

Instantiate set of ṽc,s as empty set Ṽ ← {}
Compute QR Decomposition of WT , W̃T ← QR(WT) with Gram-Schmidt Algorithm
for c = 1 to C do

Get set of all inputs Xc = {xi} belonging to class c
Compute matrix of teacher features for class c, Hc ∈ RNc×D, s.t. Hc

i = hTeacher(Xc
i)

Project Hc onto null space of WT : H̃c ← Hc −HcW̃T

Compute top-S PCA on H̃c to obtain {vc,s} for 1 ≤ s ≤ S
Produce random orthogonal matrix Qc ∈ RS×S

Set ṽc,s ← Qcvc,s for 1 ≤ s ≤ S

Compute {σc,s}, as σ2
c,s =

1
Nc
||H̃cṽc,s||22

Normalize ṽc,s ← ṽc,s
maxs{σc,s} (Normalizing ṽc,s)

Add {ṽc,s} to Ṽ : Ṽ ← Ṽ ∪ {ṽc,s}
end for
Return: Ṽ

This corresponds to section 3.1, and the main goal of this step is to obtain S × C vectors ṽs,c ∈ RD

to create subclasses from, with D the teacher embedding dimension. The pseudocode is provided in
algorithm 1. Note that the version provided in algorithm 1 works with the full teacher embedding

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

matrix for a class Hc ∈ RNc×D, but it is straightforward to adapt this to a streaming approach that
does not require storing all the embeddings at the same time by keeping running statistics. Note
we additionally perform a small normalization step, so that the maximum variance along any of the
teacher projection vectors {ṽc,s} is 1 for any class.

G.2 STEP 2/3: KNOWLEDGE DISTILLATION WITH SUBCLASSES

Algorithm 2 Subclass Splitting from teacher embedding, subsplit(h, Ṽ ,M,W, β, τ)

Input: Teacher embedding h
C × S subclass projection vectors Ṽ = {ṽc,s}
C class means M = {µc}
Teacher final layer classification weights W = [w1 . . . wC] ∈ RD×C and biases [b1 . . . bC]
Subclass Temperature β
Student-Teacher Temperature τ

Output: C × S Teacher subclass probabilities: pTeacher
c,s

Compute teacher coarse label logits: zc ← w⊺
ch− bc

Compute teacher C coarse label probabilities with temperature τ : pTeacher
c ← ezc/τ∑C

j=1 ezc/τ
(τ

-tempered Softmax)
for c = 1 to C do

Compute S subclass logits: zc,s ← ṽ⊺c,s(h− µc)

Compute subclass probabilities for class c: pTeacher
c,s ← pTeacher

c ∗ ezc,s/β∑S
j=1 ezc,j/β

. (β-tempered

softmax over subclass logits)
end for
Return: pTeacher

c,s

Algorithm 3 Learning Embedding Linear Projections (LELP) - Knowledge Distillation with Sub-
classes

Input: Teacher model feature extractor hTeacher(x)

C × S subclass projection vectors Ṽ = {ṽc,s}
C class mean vectors M = {µc}
Teacher final layer classification weights W = [w1 . . . wC] ∈ RD×C and biases [b1 . . . bC]
Subclass Temperature β
Student-Teacher Temperature τ
C × S class student model fStudent

θS
(x) and weights θS

Dataset p(x)
Learning rate η

Output: Trained Student Model θ
while Not converged do

Sample x ∼ p(x)
Compute teacher embedding hTeacher ← hTeacher(x)

Compute teacher subclass probabilities pTeacher
s,c ← subsplit(h, Ṽ ,M,W, β, τ)

Compute C × S student logits: zStudent
c,s ← fStudent

θS
(x)

Compute C × S tempered student probabilities: pStudent
c,s ← e

zStudent
c,s /τ∑C

i=1

∑S
j=1 e

zStudent
i,j

/τ

Compute LELP loss LLELP = τ2
∑C

c=1

∑S
s=1 p

Teacher
c,s log

pTeacher
c,s

pStudent
c,s

(Standard KL Divergence)

Update student parameters: θS ← θS − η ∂LLELP

∂θS
end while
Return: θS

This corresponds to Section 3.2 and Section 3.3. In Algorithm 2 we describe how to generate the
pseudo-subclasses from a given teacher embedding, h. This subprocess is used in Algorithm 3 for

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

knowledge distillation. In Algorithm 3 we describe the pure-knowledge distillation setting (i.e. with
α = 0 in eq. (1)), meaning we are not using the hard labels at all, as we did in the main text, but it is
straightforward to combine with with the standard cross-entropy loss with hard labels using eq. (1).

H IMPLEMENTATION DETAILS

We implemented all algorithms in Python and used the TensorFlow deep learning library Abadi et al.
(2016). We ran our experiments on 64 Cloud TPU v4s each with two cores.

For a fair comparison, we use the teacher’s last-layer embeddings throughout the distillation process
across all relevant baselines (Embedding Distillation, FitNet, VID, Relational KD, CRD). Further-
more, to handle mismatches in embedding dimensions between teacher and student, we introduce a
trainable fully connected layer as a learnable projection for all these methods. (For Vision datasets,
we have experimented with convolutional layers as suggested in Romero et al. (2014), and while these
do reduce the size of the student model, they do not significantly impact its performance compared to
the fully connected ones.)

For FitNet and CRD, in any given experiment, we pre-train the learnable projection once. This
same pre-trained projection is then utilized consistently across all three trials corresponding to the
experiment. The optimizer used for the pre-training of the learnable projection is Adam with initial
learning rate 10−3 and 10−6 for Vision (200 epochs training) and Natural Language (40 epochs
training) datasets, respectively.

We implement VID by using the loss function as described in (5) of Ahn et al. (2019) where the
squared difference in the second term is taken over the teacher’s and student’s embeddings (using a
learnable projection if there is a mismatch in their dimensions).

We implement Relational KD using the loss function as described in (9) and (10) of Park et al.
(2019).

For CRD we implement the objective described in (17) of Tian et al. (2019) and perform grid search
over {0.1, 1.0, 5.0, 10.0, 100.0} for its coefficient. We consider the standard negative sampling policy
where a pair of examples (x, y) is considered “negative" if x ̸= y, i.e., given a batch the number
of positive pairs is equal to the batch size. (Note that in Vision classification tasks the standard
approach would be to generate variations of every image (e.g, via rotations), and then also consider as
positive any pair of examples (original or modified) that come from the same source. However, data
augmentation of Natural Language examples is not straightforward and this impairs the performance
of the method — this is the main point we are trying to convey here.)

For DKD we implement equations (1), (2) and (7) in Zhao et al. (2022). We set the ’target’ hy-
perparameter α equal to 1 and perform grid search for the “non-target" hyperparameter β over
{1, 2, 4, 6, 8, 10} (following examples in Zhao et al. (2022)).

The hyperparameters chosen for each method and dataset can be found in Appendix H.3.

H.1 VISION DATASETS

In every experiment, both the teacher and student models are trained for 200 epochs.

For training ResNet-92 we use the SGD optimizer with initial learning rate 10−3, non-Nesterov
momentum value equal to 0.9, cosine annealing learning rate schedule (minimum learning rate value
is set to 10−6), and batch size 256. For training ResNet-56 we use the SGD optimizer with initial
learning rate 5 ·10−2, Nesterov momentum value equal to 0.9, cosine annealing learning rate schedule
(minimum learning rate value is set to 10−6) and batch size 256. (This is a training schedule similar
to the one described in Stanton et al. (2021)).

For training MobileNet (both the larger teacher-model and the student-model) we use the Adam
optimizer with initial learning rate lr = 0.001 and batch size 128. We then proceed according to the

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

following learning rate schedule for 200 epochs (see, e.g., He et al. (2016)):

lr←


lr · 0.5 · 10−3, if #epochs > 180

lr · 10−3, if #epochs > 160

lr · 10−2, if #epochs > 120

lr · 10−1, if #epochs > 80

Finally, in all cases we use data-augmentation. In particular, we use random horizontal flipping and
random width and height translations with width and height factor, respectively, equal to 0.1.

H.2 NATURAL LANGUAGE DATASETS

For the GLUE/COLA dataset, the teacher model undergoes training for 2 epochs. In the case of
GLUE/SST-2 and the Large Movie Review Dataset, teacher model training extends to 3 epochs. We
employ the Adam optimizer (batch size 64, initial learning rate 10−5) for these training processes. To
minimize variance across experiments, we consistently train the student model for 40 epochs using a
smaller learning rate. The training uses the Adam optimizer with a batch size of 64 and an initial
learning rate of 10−6.

For both the Amazon Reviews datasets, the teacher and student models (both the ALBERT-base and
the MLPs over frozen-T5 embeddings) are trained for 2 epochs using the Adam optimizer with a
batch size of 64 and an initial learning rate of 10−6.

For the Sentiment140 Bin dataset the teacher and the student models are trained for 1 epoch using the
Adam optimizer with batch size of 64 and an initial learning rate of 10−6.

H.3 HYPERPARAMETER OPTIMIZATION

In this section, we present the hyperparameter optimization (grid search) procedure we followed
for each method, dataset and experiment of Section 4 and Appendix 4.2. For Vision datasets, bold
numbers correspond to the hyperparameters chosen for the case of ResNet56 student, the number
in italicized numbers correspond to the hyperparameters chosen for the case of MobileNet student
with ResNet92 as a teacher and, finally, the underlined numbers correspond to the case of MobileNet
student with (a larger) MobileNet as a teacher. For Natural Language datasets, bold numbers
correspond to the case of ALBERT-base student, and italicized numbers correspond to the case of a
MLP over frozen sentence-T5 (11B) embeddings as a student.

Table 6: Hyperparameters for Vanilla
KD

Dataset Temperature
CIFAR-10-bin {1.0, 2.0, 3.0, 4.0, 5.0, 10.0}
CIFAR-100-bin {1.0, 2.0, 3.0, 4.0, 5.0, 10.0}

CIFAR-10 {1.0, 2.0, 3.0, 4.0, 5.0, 10.0}}
CIFAR-100 {1.0, 2.0, 3.0, 4.0, 5.0, 10.0}

LMRD {1.0, 2.0, 3.0, 4.0, 5.0, 10.0}
GLUE/cola {1.0, 2.0, 3.0, 4.0, 5.0, 10.0}
GLUE/sst2 {1.0, 2.0, 3.0, 4.0, 5.0, 10.0}

Amazon Reviews Bin {1.0, 2.0, 3.0, 4.0, 5.0, 10.0}
Amazon Reviews {1.0, 2.0, 3.0, 4.0, 5.0, 10.0}
Sentiment140 Bin {1.0, 2.0, 3.0, 4.0, 5.0, 10.0}

Table 7: Hyperparameters for Embedding KD

Dataset Temperature Embeddings-loss coefficient
CIFAR-10-bin {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 1.0, 5.0, 10.0, 100.0, 1000.0}
CIFAR-100-bin {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 1.0, 5.0, 10.0, 100.0, 1000.0}

CIFAR-10 {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 1.0, 5.0, 10.0, 100.0, 1000.0}
CIFAR-100 {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 1.0, 5.0, 10.0, 100.0, 1000.0}

LMRD {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 1.0, 5.0, 10.0, 100.0, 1000.0}
GLUE/cola {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 1.0, 5.0, 10.0, 100.0, 1000.0}
GLUE/sst {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 1.0, 5.0, 10.0, 100.0, 1000.0}

Amazon Reviews Bin {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 1.0, 5.0, 10.0, 100.0, 1000.0}
Amazon Reviews {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 1.0, 5.0, 10.0, 100.0, 1000.0}
Sentiment140 Bin {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 1.0, 5.0, 10.0, 100.0, 1000.0}

Table 8: Hyperparameters for FitNet

Dataset Temperature Embeddings-loss coefficient
CIFAR-10-bin {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 1.0, 5.0, 10.0, 100.0, 1000.0}
CIFAR-100-bin {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 1.0, 5.0, 10.0, 100.0, 1000.0}

CIFAR-10 {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 1.0, 5.0, 10.0, 100.0, 1000.0}
CIFAR-100 {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 1.0, 5.0, 10.0, 100.0, 1000.0}

LMRD {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 1.0, 5.0, 10.0, 100.0, 1000.0}
GLEU/cola {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 1.0, 5.0, 10.0, 100.0, 1000.0}
GLEU/sst {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 1.0, 5.0, 10.0, 100.0, 1000.0}

Amazon Reviews Bin {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 1.0, 5.0, 10.0, 100.0, 1000.0}
Amazon Reviews {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 1.0, 5.0, 10.0, 100.0, 1000.0}
Sentiment140 Bin {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 1.0, 5.0, 10.0, 100.0, 1000.0}

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 9: Hyperparameters for VID

Dataset Temperature Embeddings-loss coefficient
CIFAR-10-bin {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 0.2, 0.5, 1.0, 5.0, 10.0, 100.0}
CIFAR-100-bin {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 0.2, 0.5, 1.0, 5.0, 10.0, 100.0}

CIFAR-10 {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 0.2, 0.5, 1.0, 5.0, 10.0, 100.0}
CIFAR-100 {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 0.2, 0.5, 1.0, 5.0, 10.0, 100.0}

LMRD {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 0.2, 0.5, 1.0, 5.0, 10.0, 100.0}
GLEU/cola {1.0, 3.0, 3.0, 4.0, 5.0, 10.0} {0.1, 0.2, 0.5, 1.0, 5.0, 10.0, 100.0}
GLEU/sst {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 0.2, 0.5, 1.0, 5.0, 10.0, 100.0}

Amazon Reviews Bin {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 0.2, 0.5, 1.0, 5.0, 10.0, 100.0}
Amazon Reviews {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 0.2, 0.5, 1.0, 5.0, 10.0, 100.0}
Sentiment140 Bin {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 1.0, 5.0, 10.0, 100.0, 1000.0}

Table 10: Hyperparameters for Relational KD

Dataset Temperature Embeddings-loss coefficient
CIFAR-10-bin {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 0.2, 0.5, 1.0, 5.0, 10.0, 100.0}
CIFAR-100-bin {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 0.2, 0.5, 1.0, 5.0, 10.0, 100.0}

CIFAR-10 {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 0.2, 0.5, 1.0, 5.0, 10.0, 100.0}
CIFAR-100 {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 0.2, 0.5, 1.0, 5.0, 10.0, 100.0}

LMRD {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 0.2, 0.5, 1.0, 5.0, 10.0, 100.0}
GLEU/cola {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 0.2, 0.5, 1.0, 5.0, 10.0, 100.0}
GLEU/sst {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 0.2, 0.5, 1.0, 5.0, 10.0, 100.0}

Amazon Reviews Bin {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 0.2, 0.5, 1.0, 5.0, 10.0, 100.0}
Amazon Reviews {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 0.2, 0.5, 1.0, 5.0, 10.0, 100.0}
Sentiment140 Bin {1.0, 2.0, 3.0, 4.0, 5.0, 10.0} {0.1, 1.0, 5.0, 10.0, 100.0, 1000.0}

Table 11: Hyperparameters for Subclass Distillation

Dataset Num. Subclasses Auxiliary loss Temp. Auxiliary loss weight Distill. Temp.
CIFAR-10-bin {2, 3, 4, 5, 10} {1.0, 5.0, 10.0} {0.0, 0.1, 1.0, 5.0, 10.0, 100.0} {1.0, 2.0, 3.0, 4.0, 5.0, 10.0}
CIFAR-100-bin {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100} {1.0, 5.0, 10.0} {0.0, 0.1, 1.0, 5.0, 10.0, 100.0} {1.0, 2.0, 3.0, 4.0, 5.0, 10.0}

CIFAR-10 {2, 4, 8, 10} {1.0, 5.0, 10.0} {0.0, 0.1, 1.0, 5.0, 10.0, 100.0} {1.0, 2.0, 3.0, 4.0, 5.0, 10.0}
CIFAR-100 {2, 4, 8, 10} {1.0, 5.0, 10.0} {0.0, 0.1, 1.0, 5.0, 10.0, 100.0} {1.0, 2.0, 3.0, 4.0, 5.0, 10.0}

LMRD {2, 3, 4, 5, 10, 25, 50} {1.0, 5.0, 10.0} {0.0, 0.1, 1.0, 5.0, 10.0, 100.0} {1.0, 2.0, 3.0, 4.0, 5.0, 10.0}
GLEU/cola {2, 3, 4, 5, 10} {1.0, 5.0, 10.0} {0.0, 0.1, 5.0, 10.0, 100.0} {1.0, 2.0, 3.0, 4.0, 5.0, 10.0}
GLEU/sst2 {2, 3, 4, 5, 10} {1.0, 5.0, 10.0} {0.0, 0.1, 5.0, 10.0, 100.0} {1.0, 2.0, 3.0, 4.0, 5.0, 10.0}

Amazon Reviews Bin {2, 4, 5, 10, 20, 40, 50, 100, 200, 500} {1.0, 5.0, 10.0} {0.0, 0.1, 5.0, 10.0, 100.0} {1.0, 2.0, 3.0, 4.0, 5.0, 10.0}
Amazon Reviews {2, 4, 8, 16, 20, 40, 80, 200} {1.0, 5.0, 10.0} {0.0, 0.1, 5.0, 10.0, 100.0} {1.0, 2.0, 3.0, 4.0, 5.0, 10.0}
Sentiment140 Bin {2, 4, 5, 10, 20, 40, 50, 100, 200, 500} {1.0, 5.0, 10.0} {0.0, 0.1, 5.0, 10.0, 100.0} {1.0, 2.0, 3.0, 4.0, 5.0, 10.0}

Table 12: Hyperparameters for LELP (ours)

Dataset Num. Subclasses Subclass Temp. Distill. Temp.
CIFAR-10-bin {5, 10, 20} {1/32, 1/16, 1/8, 1/4, 1/2, 1} {1.0, 2.0, 4.0, 8.0, 10.0}
CIFAR-100-bin {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100} {1/32, 1/16, 1/8, 1/4, 1/2, 1} {1.0, 2.0, 4.0, 8.0, 10.0}

CIFAR-10 {2, 4, 8, 10} {1/32, 1/16, 1/8, 1/4, 1/2, 1} {1.0, 2.0, 4.0, 8.0, 10.0}
CIFAR-100 {2, 4, 8, 10} {1/32, 1/16, 1/8, 1/4, 1/2, 1} {1.0, 2.0, 4.0, 8.0, 10.0}

LMRD {5, 10, 15, 20} {1/32, 1/16, 1/8, 1/4, 1/2, 1} {1.0, 2.0, 3.0, 4.0, 5.0, 10.0}
GLEU/cola {5, 10, 15, 20} {1/32, 1/16, 1/8, 1/4, 1/2, 1} {1.0, 2.0, 3.0, 4.0, 5.0, 10.0}
GLEU/sst2 {5, 10, 15, 20} {1/32, 1/16, 1/8, 1/4, 1/2, 1} {1.0, 2.0, 3.0, 4.0, 5.0, 10.0}

Amazon Reviews Bin {2, 4, 5, 10, 20, 40, 50, 100, 200, 500} {1/32, 1/16, 1/8, 1/4, 1/2, 1} {1.0, 2.0, 3.0, 4.0, 5.0, 10.0}
Amazon Reviews {2, 4, 8, 16, 20, 40, 80, 200} {1/32, 1/16, 1/8, 1/4, 1/2, 1} {1.0, 2.0, 3.0, 4.0, 5.0, 10.0}
Sentiment140 Bin {2, 4, 5, 10, 20, 40, 50, 100, 200, 500} {1/32, 1/16, 1/8, 1/4, 1/2, 1} {1.0, 2.0, 3.0, 4.0, 5.0, 10.0}

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 13: Hyperparameters for Agglomerative Clustering

Dataset Number of Clusters
CIFAR-10-bin {4, 6, 8, 10, 20, 50, 100, 1000}
CIFAR-100-bin {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200}

Table 14: Hyperparameters for K-Means Clustering

Dataset Number of Clusters
CIFAR-10-bin {4, 6, 8, 10, 20, 50, 100, 1000}
CIFAR-100-bin {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200}

Table 15: Hyperparameters for t-SNE & K-Means Clustering

Dataset Number of Clusters
CIFAR-10-bin {2, 3, 4, 5, 10, 25, 50, 500}
CIFAR-100-bin {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100}

22

	Introduction
	Organization of the paper

	Related Work
	Learning from Embedding Linear Projections (LELP)
	Identifying Informative Linear Subspaces
	Splitting into pseudo-subclasses
	Knowledge Distillation with subclasses

	Experimental Evaluation
	The Setup
	Investigating methods for inventing pseudo-subclasses
	Comparison with previous approaches
	Warmup: Binary Classification with Subclass Structure
	Few-Class Classification without Subclass Structure

	Limitations
	Conclusion
	Reproducibility Statement
	Broader Impact Statement
	Binary Classification with Subclass Structure: Experimental Results
	Ablations
	Detailed description of the NLP datasets we used.
	Multiclass Classification
	Data Efficiency, Training Speed and Robustness
	Semi-supervised KD experiments

	Detailed Description of LELP
	Step 1: PCA on Teacher Embeddings
	Step 2/3: Knowledge Distillation with Subclasses

	Implementation Details
	Vision Datasets
	Natural Language Datasets
	Hyperparameter optimization

