
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EFFICIENTLLM:
EVALUATING LARGE LANGUAGE MODELS EFFICIENCY
EVALUATION ON ARCHITECTURE PRETRAINING, FINE-TUNING, AND BIT-WIDTH QUANTIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have achieved remarkable advances across rea-
soning, generation, and problem-solving, yet their scaling comes with prohibitive
training, deployment, and environmental costs. Training frontier models like GPT-3
or PaLM consumes thousands of GPU/TPU days and millions of dollars. As these
costs escalate, there is a pressing need for rigorous benchmarks that quantify effi-
ciency–performance trade-offs. However, existing evaluations remain inadequate:
1) they rely on narrow metrics such as FLOPs or latency, neglecting complemen-
tary dimensions like memory, throughput, energy, and compression, leading to
mischaracterized efficiency; 2) they are often limited to small models or a single
hardware setup, making conclusions difficult to generalize to billion-parameter
deployments across diverse accelerators; and 3) they fragment coverage across
pretraining, fine-tuning, or inference, failing to provide an end-to-end perspective
on the full lifecycle of model efficiency. To address these gaps, we present Effi-
cientLLM, the first large-scale empirical benchmark that systematically quantifies
efficiency–performance trade-offs across the entire lifecycle of LLMs. 1) First,
to overcome missing multi-dimensional metrics, EfficientLLM unifies six orthog-
onal dimensions into a consistent evaluation framework. 2) Second, to address
scale and hardware diversity, we evaluate over 150 model–technique pairs span-
ning 0.5B–72B parameters on production-class clusters with 48*GH200, 8*H200,
and 8*A100 accelerators, ensuring conclusions generalize to realistic deployment
conditions. 3) Third, to provide end-to-end lifecycle coverage, EfficientLLM
benchmarks architectural pretraining, fine-tuning, and bit-width quantization. By
systematically resolving these three limitations, EfficientLLM establishes the most
comprehensive benchmark to date for evaluating efficiency in large-scale models.
Our results not only highlight critical trade-offs between accuracy, cost, and sus-
tainability but also offer actionable guidance for both academic researchers and
industrial practitioners in designing, training, and deploying the next generation of
foundation models. All code and datasets are released as an open-source toolkit,
accessible via pip install efficientllm-toolkit.
Note: All values presented in our figures are normalized within each metric across
all models. For consistency, all metrics (e.g., PPL, FID, and etc.) are transformed
such that higher values (except Loss) indicate better performance or efficiency.

1 INTRODUCTION

Large Language Models (LLMs), such as GPT-style architectures (Brown et al., 2020) and Pathways
Language Model (PaLM) (Chowdhery et al., 2022), are a key type of Foundation Model that have
driven significant breakthroughs across numerous domains. These models, often characterized
by billions or even trillions of parameters (Brown et al., 2020; Chowdhery et al., 2022), achieve
remarkable performance by leveraging deep learning techniques and training on massive datasets
(Kaplan et al., 2020b; Hoffmann et al., 2022a; Pandya & Holia, 2023; Agarwal et al., 2024; Xu
et al., 2024a), typically comprising trillions of tokens from diverse sources like the web, books,
and code. LLMs demonstrate powerful capabilities in complex tasks including nuanced language
generation, sophisticated reasoning, and problem-solving. However, the impressive capabilities of
LLMs come at substantial computational and environmental costs. For instance, training GPT-3

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(175B parameters) required approximately 3,640 Petaflop/s-days, costing millions of dollars in cloud
computing resources (Kaplan et al., 2020b). Similarly, Google’s PaLM (540B parameters) required
thousands of TPUv4 chips running continuously for extended periods (Chowdhery et al., 2022).
Deploying these models at scale also incurs significant hardware and energy costs, contributing to
considerable carbon emissions (Strubell et al., 2019b). As LLMs proliferate, there is a pressing need
for rigorous benchmarks that quantify efficiency–performance trade-offs to guide academic research,
industrial traning, budgeting, and environmental sustainability.

However, existing evaluations of efficiency techniques for LLMs suffer from several critical limita-
tions. 1) First, lack of multi-dimensional metrics: most studies report only isolated measures such as
FLOPs or latency, while overlooking complementary dimensions like memory utilization, energy
consumption, and throughput (Poddar et al., 2025; Arya & Simmhan, 2025). As a result, efficiency
gains are often mischaracterized, and comparisons across methods lack consistency. 2) Second,
insufficient scale and hardware diversity: evaluations are frequently conducted on small models
or restricted hardware settings, making their conclusions difficult to generalize to production-scale
deployments with billion-parameter models and heterogeneous accelerators (Bast et al., 2024; Niu
et al., 2025; Wang et al., 2019; Samsi et al., 2023). This gap risks misleading both academic and
industrial stakeholders when extrapolating to real-world scenarios. 3) Third, fragmented lifecycle
coverage: prior benchmarks typically focus on a single stage, pretraining, fine-tuning, or deployment,
without providing an end-to-end perspective (Niu et al., 2025; Shamshoum et al., 2024). Such
fragmentation prevents practitioners from understanding trade-offs across the full model lifecycle,
limiting their ability to make informed decisions on budgeting, deployment, and environmental
sustainability. Without addressing these gaps, LLMs may appear efficient on surface-level bench-
marks but cannot be reliably evaluated for their true resource trade-offs in deployment. Large-scale,
real-world efficiency benchmarks are therefore essential to provide trustworthy guidance for model
development, deployment decisions, and sustainable scaling of foundation models.

Efficiency Assessment

Technique Data

Question-
Answering

Text
Generation

Commands/
API

Dialogue Multilingual

Code

Reasoning

Average Memory
Utilization

AMU

Peak Compute
Utilization

PCU

Average
Latency

AL

Average
Throughput

AT

Average Energy
Consumption

AEC

Model
Compression Rate

MCR

Vedio Image

LLaMA 3
Series

DeepSeek-R1

Qwen 2.5
Series

Phi Series

Yi

Mistral
Training and Tuning Efficiency

· Scalable training
· Parameter-Efficient Fine-Tuning

Data Efficiency

· Data quality and filtering
· Curriculum learning
· Data augmentation

Inference Efficiency

· Model compression
· Algorithm-Level optimizations
· System-Level optimizations

Architecture Efficiency

· Efficient attention
· Efficient positional encoding

Budget Efficiency

· Scaling behavior and power laws
· Compute-optimal model scaling

· Sparse modeling via MoEs
· Attention-free sequence modeling

Model

Efficiency Assessment

Technique Data

Question-
Answering

Text
Generation

Commands/
API

Dialogue Multilingual

Code

Reasoning

Average Memory
Utilization

AMU

Peak Compute
Utilization

PCU

Average
Latency

AL

Average
Throughput

AT

Average Energy
Consumption

AEC

Model
Compression Rate

MCR

Vedio Image

LLaMA 3
Series

DeepSeek-
R1

Qwen 2.5
Series

Phi Series

Yi

Mistral

Mixtral

Stable
Diffusion

3.5

OpenSora

Wan 2.1

Kandinsky
3

Hunyuan
Video

DeepFloyd
IF

Phi-4-
multimodal

Qwen-VL
2.5

LLaVA 1.5

QwQ-32B

QVQ-72B

Yi-VL 34B

InternVL
2.5

Janus-Pro

Training and Tuning Efficiency

· Scalable training
· Parameter-Efficient Fine-Tuning

Data Efficiency

· Data quality and filtering
· Curriculum learning
· Data augmentation

Inference Efficiency

· Model compression
· Algorithm-Level optimizations
· System-Level optimizations

Architecture Efficiency

· Efficient attention
· Efficient positional encoding

Budget Efficiency

· Scaling behavior and power laws
· Compute-optimal model scaling

· Sparse modeling via MoEs
· Attention-free sequence modeling

Model

LLMs LVMs

VLMs

EFFICIENTLMEFFICIENTLLM

Stable
Diffusion 3.5

Wan 2.1

Intern-VL-3

Qwen-VL 2.5

LLaVA 1.5

QvQ-72B

Figure 1: Overview of the EfficientLLM framework.

To address these limitations, we introduce EFFICIENTLLM, the largest and most comprehensive
benchmark to date for evaluating efficiency in large-scale language models. 1) First, to overcome
the problem of missing multi-dimensional metrics, EFFICIENTLLM systematically measures six
orthogonal efficiency dimensions, like Average-Memory-Utilization, Peak-Compute-Utilization and
etc. 2) Second, to address the lack of scale and hardware diversity, our benchmark is executed
on a production-class cluster (48×GH200, 8×H200 GPUs), evaluating over 100 model–technique
pairs spanning 0.5B–72B parameters. This large-scale setting ensures that conclusions generalize
beyond toy examples, reflecting realistic deployment conditions across heterogeneous accelerators.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

CompressionEnergyThroughputLatencyUtilization
PerformanceMethod

MCRAECITSTTTALPCUAMU
31114MQA
42233GQA
23341MLA
14422NSA
22221RoPE
44444Absolute
33332Learnable Absolute
11113Relate
23224Dense Model 1.5B
14113Dense Model 3B
41441MoE Model 1.5Bx8
32332MoE Model 0.5Bx8
41441Transformer
14112Mamba
33334Pythia
22223RWKV

323227LoRA
234654LoRA-Plus
545545RSLoRA
667376DoRA
456463PiSSA
171731Freeze
712112Full*
345512LoRA
256725LoRA-Plus
533643RSLoRA
677364DoRA
454436PiSSA
111271Freeze
722157Full*
632613LoRA
176734LoRA-Plus
544521RSLoRA
427376DoRA
343442PiSSA
211265Freeze
765157Full*

523333bfloat16
455242float16
332424int8
244151fp8
111515int4
422343bfloat16
545134float16
333422int8
254211fp8
111555int4
433332bfloat16
525144float16
342423int8
254251fp8
111515int4

1-3B

7-8B

14-24B

1.5-3.8B

7-8B

14-34B

A
rc
hi
te
ct
ur
e
E
ff
ic
ie
nc
y

Tr
ai
ni
ng
an
d
Tu
ni
ng
E
ff
ic
ie
nc
y

In
fe
re
nc
e
E
ff
ic
ie
nc
y

A
tt
en
tio
n

Po
sE
nc

M
oE

A
tt
-fr
ee

Pa
ra
m
et
er
-E
ff
ic
ie
nt
Fi
ne
-T
ui
ng

Q
ua
nt
ifi
ca
tio
n

Figure 2: Ranking of LLM training and inference efficiency and performance across various tech-
niques. For parameter-efficient tuning, “Freeze” refers to the method, which freezes the first 8 layers
of the model. “Full∗”, utilize DeepSpeed ZeRO-3 Offload CPU.

3) Third, to fill the gap of fragmented lifecycle coverage, EFFICIENTLLM adopts a unified taxonomy
covering three critical stages, architecture pretraining, fine-tuning, and quantization. This design
provides end-to-end guidance: from budgeting computational and energy costs during architecture
design, to selecting efficient PEFT methods for domain adaptation, to identifying quantization
strategies that reduce serving cost and latency without retraining. By systematically addressing
these three limitations, EFFICIENTLLM establishes the first large-scale empirical benchmark that
rigorously quantifies efficiency–performance trade-offs across the full LLM lifecycle, providing a
trusted foundation for both academic research and industrial deployment.

1.1 NEW INSIGHTS

Architecture Pretraining. 1) For commercial settings aimed at establishing new SOTA benchmarks,,
the combination of Multi-Head Latent Attention (MLA) and Rotary Position Embeddings (RoPE) is
recommended. This configuration consistently yielded the lowest perplexity (PPL) across our evalua-
tions. And the Mixture-of-Experts (MoE) architecture is the ideal framework for exploring model
capability scaling. Our empirical results, which show a 1.5B×8 MoE model outperforming a 3B dense
model, provide a robust basis for investigating the trade-off between memory overhead and gains

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

in computational efficiency and model intelligence. 2) In compute-constrained academic settings,
Grouped-Query Attention (GQA) is identified as the optimal choice. It provides a robust balance
between model performance and training expenditure (i.e., memory and latency), thereby avoiding
the substantial overhead associated with performance–centric methods like MLA. And more efficient
components such as Relative Position Embeddings (Relate) can significantly accelerate the research
cycle by reducing training time and cost with a negligible impact on performance.

Training and Tuning Efficiency. 1) For commercial settings, RSLoRA represent the gold standard
for model fine-tuning in production for large-scaling language models. They offer an optimal balance
of performance, stability, and resource efficiency, making them particularly suitable for managing a
large portfolio of customized models. 2) For academic research under tight computational budgets,
Parameter Freezing is the recommended strategy. Its exceptional training speed enables researchers to
conduct a greater number of experiments within the same timeframe, thereby accelerating discovery.
And the low VRAM footprint of LoRA and Freeze methods makes the fine-tuning of large models
(e.g., 7B, 14B) feasible on single consumer or mid-tier professional GPUs. This significantly enhances
the accessibility of large-scale model research for the academic community.

Inference Efficiency 1) Default Strategy for Large-Scale Deployment, for any large-scale, user-
facing service, Float 8 quantization is the most pragmatic and cost-effective strategy. The sub-
stantial operational savings in memory, throughput, and energy far outweigh the modest, often
user-imperceptible, degradation in performance. 2) Academic and Resource-Constrained Settings.
In scenarios where computational resources are limited—such as in academic research, Float 8 quan-
tization can be effectively applied to smaller models (e.g., Qwen2.5-7B). For larger models, more
aggressive quantization such as INT4 is a practical choice, enabling deployment without prohibitive
hardware costs while still retaining acceptable levels of accuracy.

1.2 ROAD MAP

The remainder of this paper is structured as follows. Appendix B provides background information
on foundation models and discusses fundamental approaches to enhancing efficiency. Appendix C
details the specific efficiency improvement techniques evaluated within our framework. Section 2
and Appendix D.1 defines our proposed efficiency assessment principles and metrics. Section D.2
describes the curated list of models and experimental settings used in our benchmark. Sections 3 and
Appendix D.3, D.4, and D.5 present detailed empirical results for architecture, training/tuning, and
inference efficiency, respectively. Finally, Appendix G discusses remaining challenges and future
research directions, and Section 4 concludes the paper. The Ranking of these technologies show in
the Figure 2.

2 EFFICIENTLLM: A FRAMEWORK FOR EVALUATING THE LLMS EFFICIENCY

2.1 EXPERIMENTAL DEVICES

All experiments were conducted on NVIDIA high-performance computing platforms. For pretraining,
we utilized 12 GH200 Superchips nodes, each integrating a Grace CPU (144 cores) with 4*GPU
(96G). Fine-tuning and inference were primarily executed on 8*H200 (141G) GPUs paired with Intel
Xeon Platinum 8558 CPUs, while additional experiments on the Medical-O1 dataset were performed
on multi-device 8*A100 (80G) clusters to verify cross-device reproducibility. This setup covers a
representative spectrum of modern accelerators and CPUs for efficiency benchmarking.

2.2 MODELS AND DATASETS.

We evaluate a diverse set of state-of-the-art LLM architectures, including DeepSeek-R1 (Bi et al.,
2024; Guo et al., 2025), Qwen 2.5 Series (Bai et al., 2023; Yang et al., 2024), Phi Series (Abdin
et al., 2024), Yi (Young et al., 2024), Mistral, and Mixtral (Jiang et al., 2023; 2024a), across multiple
scales (from 0.5B to 72B parameters). For pretraining, we utilize the Fine-web Edu dataset (350B
tokens). For fine-tuning we utilize the O1-SFT and Medical-O1, and inference evaluations, we
employ the performance benchmarks including MMLU-Pro, BBH, GPQA, IFEval, MATH, and
MUSR, as detailed in Section D.2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2.3 ASSESSMENT PRINCIPLES OF EFFICIENTLLM

In practice, widely used efficiency metrics such as FLOPS, parameter count, and raw inference speed
provide only a partial view of LLM efficiency (Liu et al., 2023b; Perez et al., 2023; Bao et al., 2023;
Zhao et al., 2025; Ye et al., 2025). These measures often overlook dynamic system behaviors such as
fluctuating memory usage, synchronization delays, communication overhead, and energy cost, all of
which critically affect real-world deployment. As a result, conventional metrics fail to capture the
true bottlenecks that determine whether a model can be trained and served efficiently at scale. To
address these limitations, we propose a set of metrics specifically designed for large-scale training
and deployment scenarios. For more details, for example, a detailed explanation, detailed calculation
process and solution motivation are available in Appendix D.1.

2.3.1 COMPUTATIONAL SYSTEM UTILIZATION

Existing benchmarks such as MLPerf (Reddi et al., 2020), SPEC CPU (Standard Performance Evalu-
ation Corporation, 2024), evaluate resource optimization, while tools like LLMPerf (Project, 2024)
focus on specific aspects such as latency, scalability, or hardware adaptability. However, predominant
metrics—e.g., latency, training time, or accuracy (Yang et al., 2023; Hu et al., 2021b)—fail to capture
key factors like memory bandwidth, device utilization, and throughput. So LMs often suffer from
suboptimal hardware usage during training and inference, increasing operational costs (Xia et al.,
2023; Bang, 2023). In this work, we define computational system utilization as the efficient and
effective use of hardware resources across training and inference, assessed via four dimensions.

Memory Utilization (AMU). Efficient memory usage is critical since limited device memory often
becomes the bottleneck in LM training. We define the Average Memory Utilization (AMU) as

AMU = 1
T

∫ T

0
Memory Used(t)dt (1)

where T is total training time and Memory Used(t) is memory allocated at time t. Higher AMU
indicates efficient and stable memory usage, while lower AMU suggests fragmentation and wastage.

Compute Utilization (PCU). Maximizing GPU usage is essential for reducing training cost and
energy waste. We define the Peak Compute Utilization (PCU) as

PCU = 1
T

∫ T

0

Actual GPU Utilization(t)
Peak GPU Utilization dt (2)

where T is training time and Peak GPU Utilization is the theoretical maximum (100%). High PCU
reflects effective and minimal idle time, while low PCU indicates compute underutilization.

Latency (AL). Latency determines responsiveness and efficiency in both training and inference. We
define the Average Latency (AL) as

AL = 1
N

N

∑
i=1

(
Computation Timei +Communication Timei

)
(3)

where N is the number of iterations or requests. Lower AL reflects faster response and better
scheduling, while higher AL reveals bottlenecks in computation or communication.

Throughput (TT, ST, IT). Throughput measures how efficiently data is processed across tasks. We
define Token Throughput (TT) for pretraining, Sample Throughput (ST) for fine-tuning, and Inference
Throughput (IT) for inference:

T T =
∑i(Tokens Processedi/Model Parameters)

∑i Timei
,

ST =
∑i(Samples Processedi/Model Parameters)

∑i Timei
,

IT =
∑i Tokens Generatedi

∑i Timei
.

(4)

Higher TT, ST, and IT indicate more efficient scaling and faster data handling, while lower values
reveal inefficiencies.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0.2
0.4
0.6
0.8
1

0.2
0.4
0.6
0.8
1

0.2
0.4
0.6
0.8
1

a

PPL↑ PPL↑ PPL↑

AMU↑ AMU↑ AMU↑

AL↑AL↑AL↑TT↑

AEC↑ AEC↑ AEC↑

TT↑ TT↑

Rope Absolute Learnable
Absolute

Relate None

●PPL↑ ●AMU↑ ●AL↑ ●TT↑ ●AEC↑
●Dense Model-1.5B ●Dense Model-3B ●MoE Model-4B ●MoE Model-12B

PPL↑

AMU↑

AL↑

TT↑

AEC↑

0.2 0.4 0.6 0.8 1 1.20

b c

●MQA ●GQA ●MLA ●NSA

0.5B 1.5B 3B

0.2

0.4

0.6

0.8

1

0

Figure 3: Efficiency LLM Results. This figure illustrates the performance and efficiency trade-offs
of various architectural improvements for LLMs. (a) Radar charts comparing different Efficient
Attention Mechanisms (MQA, GQA, MLA, and NSA) across 0.5B, 1.5B, and 3B model parameters,
evaluated on Perplexity (PPL). (b) Evaluating Efficient Positional Encoding methods (RoPE, Absolute,
Learnable Absolute, Relate, and None) for a 1.5B parameter models. (c) Comparing Dense Models
with MoE Models of varying parameter sizes, highlighting differences in PPL, AMU, AL, TT, and
AEC. Note: All metrics presented in this figure are normalized, as deilted in Section H.6.1.

2.3.2 ENERGY CONSUMPTION

Average Energy Consumption (AEC). Energy use is a key efficiency concern for large-scale AI
training and deployment. We define the Average Energy Consumption (AEC) as

AEC = 1
T

∫ T

0
P(t)dt (5)

where P(t) is instantaneous power in Watts and T is total time. Lower AEC denotes more energy-
efficient operation, while higher AEC implies costly and less sustainable usage.

2.3.3 MODEL COMPRESSION RATE

Model Compression Rate (MCR). Compression evaluates storage and deployment efficiency under
performance retention. We define the Model Compression Rate (MCR) as

MCR(Performance) =
Sizeoriginal

Sizecompressed
× Performancecompressed

Performanceoriginal
(6)

where sizes are in bytes and performance is accuracy. Higher MCR reflects compact yet effective
compression, while low values suggest that performance degradation outweighs size reduction.

2.3.4 MODEL PERFORMANCE

We assess reasoning, coding, mathematics, and instruction-following ability using established bench-
marks: MMLU-Pro (Wang et al., 2024d), BBH (Suzgun et al., 2022), GPQA (Rein et al., 2024),
IFEval (Zhou et al., 2023), HumanEval (Chen et al., 2021a), HARDMath (Fan et al., 2024b), and
MuSR (Sprague et al., 2023). Each targets complementary skills, from domain knowledge to
multi-step reasoning, enabling a holistic view of LLM capabilities.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3 MAIN RESULTS

3.1 ARCHITECTURE PRETRAINING

The comprehensive assessment of architecture pretraining efficiency, as detailed in Appendix D.3,
provides several critical insights across different model configurations and efficiency techniques.

Efficient Attention Mechanisms: As shown in Table 3 and Figure 3(a), Multi-Query Attention
(MQA) stands out with superior memory efficiency, exhibiting the lowest Average Memory Uti-
lization (AMU) of 42.24 GB and competitive latency of 0.1298 seconds per iteration at the 1.5B
parameter scale. In contrast, Multi-Head Latent Attention (MLA) consistently achieved the lowest
perplexity scores across all evaluated model sizes (PPL = 8.73, 7.79, and 7.29 for 0.5B, 1.5B, and
3B respectively), making it preferable for scenarios where model accuracy is paramount. Native
Sparse Attention (NSA), although less performant in terms of perplexity, offered remarkable energy
efficiency (AEC = 594.23 W at the 0.5B scale), underscoring its suitability for energy-sensitive
deployments. Grouped-Query Attention (GQA) provided a balanced compromise, especially evident
at the 1.5B scale where it achieved the lowest latency (AL = 0.1283 s/iter).

Efficient Positional Encoding: As shown in Table 4 and Figure 3(b), Rotary Position Embeddings
(RoPE) demonstrated the best model performance (lowest perplexity of 8.09). However, Relative
Positional Encoding (RPE, denoted as Relate) excelled in computational efficiency metrics, achieving
the lowest memory usage (AMU = 43.94 GB), lowest latency (AL = 0.1246 s/iter), and highest tokens
throughput (TT = 8.98×10−02). Conversely, models trained without positional encoding showed
significantly degraded performance (PPL = 8.75), emphasizing the critical role of positional encoding
in sequence modeling effectiveness.

Sparse Modeling via Mixture of Experts (MoE): As shown in Table 5 and Figure 3(c), MoE models
significantly outperformed dense configurations in perplexity, with the 1.5B×8 MoE model achieving
a perplexity of 7.10 compared to 8.09 for the dense 1.5B model. However, these improvements
were accompanied by increased resource demands, with higher memory utilization and energy
consumption, highlighting a clear trade-off between performance and efficiency.

Attention-Free Alternatives: As shown in Table 6, Mamba presented remarkable efficiency ad-
vantages, including the lowest memory utilization (AMU = 29.16 GB at 0.5B) and lowest energy
consumption (AEC = 498.37 W). Despite these benefits, Mamba’s perplexity was consistently higher
than transformer-based architectures, reflecting a trade-off where improved efficiency comes at the
expense of lower model performance. RWKV provided moderate improvements in memory and
energy efficiency, whereas Pythia, while competitive in latency, lagged notably in perplexity.

3.2 TRAINING AND TUNING EFFICIENCY

As detailed in Section D.4, the evaluation of training and tuning efficiency across multiple model
architectures and fine-tuning techniques highlights critical trade-offs between performance and
computational resources.

3.2.1 PEFT METHODS

O1-SFT Dataset: As shown in Figure 4(a) and Table 7 our findings demonstrate that for smaller
models (1-3B parameters), LoRA-plus consistently achieved superior performance with the lowest
loss metrics (0.7442 for Llama-3.2-1B and 0.5791 for Llama-3.2-3B), while maintaining reasonable
memory utilization. Parameter freezing consistently offered the lowest average latency across model
sizes, making it optimal for latency-critical applications, though at times compromising on model
performance. RSLoRA exhibited strong performance for larger models, particularly Qwen-2.5-14B
(loss = 0.4126) and Mistral-Small-24B (loss = 0.3818). In contrast, full fine-tuning using DeepSpeed
optimization showed diminishing returns as model scale increased, especially notable at the 24B
parameter level, where it incurred high resource demands with comparatively poorer performance.

Medical-O1 Dataset: As shown in Table 9, parameter freezing demonstrated exceptional efficiency,
achieving the lowest loss and latency across all tested model scales (1B to 8B). LoRA-plus provided
a robust balance, combining competitive loss and energy efficiency. Conversely, methods like DoRA
incurred significantly higher latency and resource utilization without commensurate performance

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0

0.5

1

Llama-3.2-1B Llama-3.2-3B Llama-3.1-8B Qwen-2.5-7B Qwen-2.5-14B Mistral-Small-24B Mistral-7B
0

0.5

1

●lora ●lora-plus ●rslora ●dora ●pissa ●freeze ●full*

Ef
fic
ie
nc
y
sc
or
e↑

Lo
ss
↓

lora

●Efficiency Score↑ ●Loss↓

lora-plus rslora dora freezepissa full
*

lora lora-plus rslora dora freezepissa full
*

lora lora-plus rslora dora freezepissa full
*

Llama-3.2-1B Llama-3.2-3B Llama-3.1-8B

0

1

2

3

3.5

a

b

Figure 4: Assessment of training and fine-tuning efficiency across multiple LLMs. (a) Compari-
son of different fine-tuning methods (LoRA, LoRA-plus, RSLoRA, DoRA, PISSA, Freeze, and full
fine-tuning using DeepSpeed) across seven model architectures (Llama-3.2-1B/3B, Llama-3.1-8B,
Qwen-2.5-7B/14B, Mistral-Small-24B, and Mistral-7B) using the O1-SFT dataset. Each bar shows
the corresponding Efficiency Score (higher is better) and Loss (lower is better). The Efficiency
Score is computed as a weighted harmonic combination of normalized resource metrics, as deilted in
Section H.6.2. Methods marked with * denote full fine-tuning using DeepSpeed.

improvements. These findings underscore the importance of selecting parameter-efficient fine-tuning
strategies tailored to specific computational constraints and desired performance outcomes, with
parameter freezing being particularly suitable for latency-sensitive medical applications.

Backbone dependency. We have conducted additional experiments on a diverse set of 7B-scale
models on SFT-O1, as shown in Table 8. These models differ significantly in architecture, tokenizer,
and training corpus. As shown in the updated Table (included above), consistent patterns emerge
across these diverse backbones: for example, freeze-tuning consistently achieves the lowest loss and
highest PCU, while LoRA and LoRA-plus demonstrate strong efficiency in memory (AMU) and
energy cost (AEC). The stability of these trends across architectures suggests that our conclusions are
not limited to specific backbones, but rather reflect robust, transferable properties of the fine-tuning
methods themselves.

Medical-O1 Dataset on A100. As shown in Table 10, parameter freezing achieved the best efficiency
with the lowest loss and latency across model scales, making it ideal for latency-critical medical
applications. LoRA-plus provided a balanced trade-off between convergence quality and memory
efficiency, while RSLoRA was more effective on larger backbones. In contrast, DoRA consistently
incurred higher latency and energy costs without proportional gains. These results confirm that
the relative strengths of parameter-efficient methods are consistent across hardware, with A100
experiments reinforcing the robustness of our findings.

3.2.2 MIXED PRECISION TRAINING

As shown in Table 11, mixed-precision strategies significantly improved efficiency compared to full
BF16 training. INT4-based configurations consistently yielded the lowest memory footprint (down
to 19.8 GB on Llama-3.2-1B) and latency, while maintaining competitive throughput and energy
efficiency, though at the cost of moderately higher loss values. FP8 and INT8 achieved a better

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

bfloat16 float16 int4
DeepSeek-R1-
Distill-Qwen-

1.5B

DeepSeek-R1-
Distill-Llama-8B

DeepSeek-R1-
Distill-Qwen-14B

Qwen2.5-7B
Qwen2.5-14B

Qwen2.5-32B

Phi-4

Phi-3.5-
mini

Yi-34B DeepSeek-R1-
Distill-Qwen-

1.5B

DeepSeek-R1-
Distill-Llama-8B

DeepSeek-R1-
Distill-Qwen-14B

Qwen2.5-7B
Qwen2.5-14B

Qwen2.5-32B

Phi-4

Phi-3.5-
mini

Yi-34B DeepSeek-R1-
Distill-Qwen-

1.5B

DeepSeek-R1-
Distill-Llama-8B

DeepSeek-R1-
Distill-Qwen-14B

Qwen2.5-7B

Qwen2.5-14B

Qwen2.5-32B

Phi-4

Phi-3.5-
mini

Yi-34B

●Avg performance↑ ●IT↑ ●AMU↑ ●Sum AL↑ ●AEC↑ ●MCR↑

Figure 5: Assessment of quantization-based inference efficiency across model precisions. Radar
plots compare normalized efficiency metrics across three quantization formats: bfloat16, float16, and
int4. Each plot evaluates models from DeepSeek, Qwen, Phi, and Yi families using six normalized
metrics (all ↑ higher is better): average task performance, inference throughput (IT), average memory
utilization (AMU), sum latency (Sum AL), average energy consumption (AEC), and model compres-
sion ratio (MCR). All values are normalized as deilted in Section H.6.1. While bfloat16 typically
yields higher performance scores, int4 excels in throughput, memory, and compression, indicating its
efficiency in deployment-constrained environments.

balance, offering lower loss closer to BF16 with notable reductions in memory and energy usage. For
example, FP8(W)FP16(T) attained loss values of 1.1756 on Llama-3.1-8B, only slightly higher than
BF16 (1.1290), while halving memory consumption. Overall, these results highlight that INT4 is
optimal for extreme memory-constrained scenarios, whereas FP8 provides the best trade-off
between performance and efficiency, making it well-suited for large-scale medical applications
with strict resource budgets.

3.3 BIT-WIDTH QUANTIZATION INFERENCE EFFICIENCY

As shown in Table 12 and Figure 5, bit-width quantization demonstrates consistent effi-
ciency–performance trade-offs across diverse model families and scales. For smaller backbones such
as DeepSeek-R1-Distill-Qwen-1.5B, INT4 achieved the lowest memory footprint (19.49 GB) and
highest throughput (42.34 tokens/s), though at the expense of reduced performance (Avg Perf. =
0.2341). Similar trends were observed in larger models like Qwen2.5-32B, where INT4 reduced
memory to 48.30 GB while sustaining competitive throughput, underscoring its practicality for
memory- or latency-constrained deployments. Intermediate formats such as FP8 and INT8 provided
robust trade-offs: FP8 consistently delivered slightly higher average performance (e.g., 0.4755 for
Qwen2.5-14B) compared to bfloat16/float16 while reducing memory costs, whereas INT8 tended to
balance efficiency and accuracy with moderate energy consumption.

3.4 SCALABILITY OF EFFICIENTLLM

EFFICIENTLLM is inherently scalable beyond text-only LLMs, as the same efficiency metrics and
evaluation pipeline can be directly applied to vision and vision–language models. Techniques such as
efficient attention, MoE, PEFT, and quantization validated on LLMs are shown to transfer effectively
to LVMs, VLMs, and diffusion transformers, confirming the benchmark’s modality-agnostic design.
All extended experiments and detailed results are provided in Appendix E.

4 CONCLUSION

In this study, we introduced EFFICIENTLLM, the first extensive empirical evaluation of efficiency
techniques for large language models across language, vision, and multimodal tasks. Our systematic
benchmarking across over 150 model-technique combinations highlighted crucial trade-offs in
resource usage, latency, and throughput. Ultimately, our results emphasize the importance of adopting
a multi-dimensional, Pareto-optimized approach to model efficiency, offering actionable insights for
practitioners seeking sustainable, scalable deployment of generative AI models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on benchmarking the efficiency of large language models (LLMs) across pretrain-
ing, fine-tuning, and inference. Our study does not involve the collection or release of PII, sensitive
medical records, or other private user data. All datasets used in this work, including FineWeb,
O1-SFT, and Medical-O1, are either publicly available or internally curated with strict anonymization
procedures to ensure compliance with data protection standards. The purpose of this benchmark is
to provide transparent, reproducible, and resource-aware evaluations that enable both academia and
industry to make informed decisions on model development and deployment.

REPRODUCIBILITY STATEMENT

All experiments in this paper were conducted on well-specified hardware clusters (48×GH200,
8×H200, and 8×A100 GPUs) with detailed hyperparameters, datasets, and evaluation metrics
described in Appendix D.2 and Appendix D.1. To facilitate reproducibility, we release all code,
configuration files, and datasets as part of the efficientllm-toolkit, which can be directly
accessed via pip install efficientllm-toolkit.

REFERENCES

Midjdourney. URL https://www.midjourney.com/home.

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 technical
report. arXiv preprint arXiv:2412.08905, 2024.

Shubham Agarwal, Issam H Laradji, Laurent Charlin, and Christopher Pal. Litllm: A toolkit for
scientific literature review. arXiv preprint arXiv:2402.01788, 2024.

Arpit Aggarwal. Pope: Legendre orthogonal polynomials based position encoding for large language
models. arXiv preprint arXiv:2405.04585, 2024. URL http://arxiv.org/pdf/2405.04585v1.

Armen Aghajanyan, Akshat Gupta, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality
explains the effectiveness of language model fine-tuning. arXiv preprint arXiv:2012.13255, 2020.

Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav Gulavani,
Alexey Tumanov, and Ramachandran Ramjee. Taming Throughput-Latency tradeoff in LLM
inference with Sarathi-Serve. In 18th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 24), pp. 117–134, Santa Clara, CA, July 2024. USENIX Association. ISBN
978-1-939133-40-3. URL https://www.usenix.org/conference/osdi24/presentation/agrawal.

Toufique Ahmed, Dian Yu, Chengxuan Huang, Cathy Wang, Prem Devanbu, and Kenji Sagae.
Towards understanding what code language models learned. arXiv preprint arXiv:2306.11943,
2023. URL http://arxiv.org/pdf/2306.11943v2.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
arXiv preprint arXiv:2305.13245, 2023.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in neural information processing systems, 35:23716–23736,
2022.

Keivan Alizadeh, Seyed Iman Mirzadeh, Dmitry Belenko, S Khatamifard, Minsik Cho, Carlo C
Del Mundo, Mohammad Rastegari, and Mehrdad Farajtabar. Llm in a flash: Efficient large
language model inference with limited memory. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 12562–12584, 2024.

Elie Antoine, Frederic Bechet, and Philippe Langlais. Part-of-speech sensitivity of routers in mixture
of experts models. arXiv preprint arXiv:2412.16971, 2024. URL http://arxiv.org/pdf/2412.16971v1.
Accepted at COLING 2025.

10

https://www.midjourney.com/home
http://arxiv.org/pdf/2405.04585v1
https://www.usenix.org/conference/osdi24/presentation/agrawal
http://arxiv.org/pdf/2306.11943v2
http://arxiv.org/pdf/2412.16971v1

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Stefan Arnold, Marian Fietta, and Dilara Yesilbas. Routing in sparsely-gated language models
responds to context. arXiv preprint arXiv:2409.14107, 2024. URL http://arxiv.org/pdf/2409.
14107v1.

Mayank Arya and Yogesh Simmhan. Understanding the performance and power of llm inferencing
on edge accelerators. arXiv preprint arXiv:2506.09554, 2025.

A. Author and B. Author. Deepseek-r1: Emergent reasoning in reinforcement learning fine-tuned
large language models, 2025a. arXiv preprint. Available at https://arxiv.org/abs/XXXX.XXXX.

C. Author and D. Author. Kimi k1.5: A curriculum-based approach for enhancing reasoning in multi-
modal llms, 2025b. Open-source project. Available at https://github.com/MoonshotAI/Kimi-k1.5.

E. Author and F. Author. Wisdom: Progressive curriculum data synthesis for enhancing reasoning in
large language models, 2024a. arXiv preprint. Available at https://arxiv.org/abs/XXXX.XXXX.

G. Author and H. Author. Lbs3: Curriculum-inspired prompting for automated reasoning in large
language models, 2024b. arXiv preprint. Available at https://arxiv.org/abs/XXXX.XXXX.

I. Author and J. Author. Curllm-reasoner: A curriculum reasoning framework for visual and language
models. In Proceedings of the 2024 ACM SIGKDD Conference on Knowledge Discovery and Data
Mining. ACM, 2024c. Available at https://doi.org/10.1145/XXXXXX.

K. Author and L. Author. Logic-rl: A curriculum learning approach for reinforcement learning on
logic puzzles, 2025c. arXiv preprint. Available at https://arxiv.org/abs/XXXX.XXXX.

M. Author and N. Author. Alphallm-cpl: Curriculum preference learning for enhanced reasoning via
mcts in llms, 2024d. arXiv preprint. Available at https://arxiv.org/abs/XXXX.XXXX.

Guangji Bai, Zheng Chai, Chen Ling, et al. Beyond efficiency: A systematic survey of resource-
efficient large language models. ArXiv preprint arXiv:2401.00625, 2024.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Paul Balança, Sam Hosegood, Carlo Luschi, and Andrew Fitzgibbon. Scalify: scale propagation for
efficient low-precision llm training. arXiv preprint arXiv:2407.17353, 2024.

Fu Bang. GPTCache: An open-source semantic cache for LLM applications enabling faster answers
and cost savings. In Liling Tan, Dmitrijs Milajevs, Geeticka Chauhan, Jeremy Gwinnup, and
Elijah Rippeth (eds.), Proceedings of the 3rd Workshop for Natural Language Processing Open
Source Software (NLP-OSS 2023), pp. 212–218, Singapore, December 2023. Association for
Computational Linguistics. doi: 10.18653/v1/2023.nlposs-1.24. URL https://aclanthology.org/
2023.nlposs-1.24.

Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He. Tallrec: An
effective and efficient tuning framework to align large language model with recommendation. In
Proceedings of the 17th ACM Conference on Recommender Systems, pp. 1007–1014, 2023.

Sebastian Bast, Lejla Begic Fazlic, Stefan Naumann, and Guido Dartmann. Llms on the edge: Quality,
latency, and energy efficiency. In INFORMATIK 2024, pp. 1183–1192. Gesellschaft für Informatik
eV, 2024.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer.
2020a.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020b.

Amit Ben-Artzy and Roy Schwartz. Attend first, consolidate later: On the importance of attention in
different llm layers. arXiv preprint arXiv:2409.03621, 2024.

11

http://arxiv.org/pdf/2409.14107v1
http://arxiv.org/pdf/2409.14107v1
https://arxiv.org/abs/XXXX.XXXX
https://github.com/MoonshotAI/Kimi-k1.5
https://arxiv.org/abs/XXXX.XXXX
https://arxiv.org/abs/XXXX.XXXX
https://doi.org/10.1145/XXXXXX
https://arxiv.org/abs/XXXX.XXXX
https://arxiv.org/abs/XXXX.XXXX
https://aclanthology.org/2023.nlposs-1.24
https://aclanthology.org/2023.nlposs-1.24

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (ACL) (Volume 2: Short Papers), pp. 1–9. Association
for Computational Linguistics, 2022.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
ICML, pp. 41–48, 2009.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with
longtermism. arXiv preprint arXiv:2401.02954, 2024.

Egor Bogomolov, Aleksandra Eliseeva, Timur Galimzyanov, Evgeniy Glukhov, Anton Shapkin,
Maria Tigina, Yaroslav Golubev, Alexander Kovrigin, Arie van Deursen, Maliheh Izadi, and
Timofey Bryksin. Long code arena: a set of benchmarks for long-context code models. arXiv
preprint arXiv:2406.11612, 2024. URL http://arxiv.org/pdf/2406.11612v1. 54 pages, 4 figures, 22
tables.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican,
George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
Improving language models by retrieving from trillions of tokens. In International conference on
machine learning, pp. 2206–2240. PMLR, 2022.

Gianni Brauwers and Flavius Frasincar. A general survey on attention mechanisms in deep learning.
IEEE Transactions on Knowledge and Data Engineering, 35(4):3279–3298, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Tyler A. Chang, Catherine Arnett, Zhuowen Tu, and Benjamin K. Bergen. When is multilin-
guality a curse? language modeling for 250 high- and low-resource languages. arXiv preprint
arXiv:2311.09205, 2023. URL http://arxiv.org/pdf/2311.09205v1.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling, 2023a.

Chi-Chung Chen, Chia-Lin Yang, and Hsiang-Yun Cheng. Efficient and robust parallel dnn training
through model parallelism on multi-gpu platform. arXiv preprint arXiv:1809.02839, 2018.

Junying Chen, Zhenyang Cai, Ke Ji, Xidong Wang, Wanlong Liu, Rongsheng Wang, Jianye Hou,
and Benyou Wang. Huatuogpt-o1, towards medical complex reasoning with llms, 2024a. URL
https://arxiv.org/abs/2412.18925.

Lichang Chen, Jiuhai Chen, Heng Huang, and Minhao Cheng. Ptp: Boosting stability and performance
of prompt tuning with perturbation-based regularizer. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 13512–13525. Association for
Computational Linguistics, 2023b.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021a.

Pu-Chin Chen, Henry Tsai, Srinadh Bhojanapalli, Hyung Won Chung, Yin-Wen Chang, and Chun-
Sung Ferng. A simple and effective positional encoding for transformers. arXiv preprint
arXiv:2104.08698, 2021b.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window of
large language models via positional interpolation. arXiv preprint arXiv:2306.15595, 2023c.

Yanxi Chen, Xuchen Pan, Yaliang Li, Bolin Ding, and Jingren Zhou. Ee-llm: Large-scale training and
inference of early-exit large language models with 3d parallelism. arXiv preprint arXiv:2312.04916,
2023d.

12

http://arxiv.org/pdf/2406.11612v1
http://arxiv.org/pdf/2311.09205v1
https://arxiv.org/abs/2412.18925

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yuhan Chen, Ang Lv, Jian Luan, Bin Wang, and Wei Liu. Hope: A novel positional encoding
without long-term decay for enhanced context awareness and extrapolation. arXiv preprint
arXiv:2410.21216, 2024b. URL http://arxiv.org/pdf/2410.21216v1.

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal
models with model, data, and test-time scaling. arXiv preprint arXiv:2412.05271, 2024c.

Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi
Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to commercial
multimodal models with open-source suites. arXiv preprint arXiv:2404.16821, 2024d.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 24185–24198, 2024e.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and acceleration
for deep neural networks. arXiv preprint arXiv:1710.09282, 2017.

Benjamin Chew, Yuan Zhang, Pranav Baheti, Russ B Altman, and Jason Poon. Large language
models encode clinical knowledge. Nature Communications, 14(1):6188, 2023.

Ta-Chung Chi, Ting-Han Fan, Peter J Ramadge, and Alexander Rudnicky. Kerple: Kernelized relative
positional embedding for length extrapolation. NeurIPS, 35:8386–8399, 2022.

Ta-Chung Chi, Ting-Han Fan, Alexander Rudnicky, and Peter Ramadge. Dissecting transformer
length extrapolation via the lens of receptive field analysis. In ACL, pp. 13522–13537, 2023.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. 2019a.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019b.

Joon-Young Choi, Junho Kim, Jun-Hyung Park, Wing-Lam Mok, and SangKeun Lee. Smop: Towards
efficient and effective prompt tuning with sparse mixture-of-prompts. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 14306–14316.
Association for Computational Linguistics, 2023.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, David Belanger, Lucy
Colwell, and Adrian Weller. Rethinking attention with performers. 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Cody Coleman, Deepak Narayanan, Daniel Kang, Tian Zhao, Jian Zhang, Luigi Nardi, Peter Bailis,
Kunle Olukotun, Chris Ré, and Matei Zaharia. Dawnbench: An end-to-end deep learning bench-
mark and competition. Training, 100(101):102, 2017.

Intel Corporation. Intel extension for pytorch. https://github.com/intel/intel-extension-for-pytorch,
2024a. Accessed: 2024-09-13.

Intel Corporation. Intel mpi benchmarks. https://github.com/intel/mpi-benchmarks, 2024b. Accessed:
2024-09-13.

Weihao Cui, Mengze Wei, Quan Chen, Xiaoxin Tang, Jingwen Leng, Li Li, and Mingyi Guo. Ebird:
Elastic batch for improving responsiveness and throughput of deep learning services. In 2019
IEEE 37th International Conference on Computer Design (ICCD), pp. 497–505. IEEE, 2019.

Emelie Curl, Jesse Geneson, and Leslie Hogben. Skew throttling. 2019.

13

http://arxiv.org/pdf/2410.21216v1
https://github.com/intel/intel-extension-for-pytorch
https://github.com/intel/mpi-benchmarks

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. NeurIPS, 35:16344–16359, 2022a.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Re. Flashattention: Fast and
memory-efficient exact attention with io-awareness. 2022b.

Sarkar Snigdha Sarathi Das, Ranran Haoran Zhang, Peng Shi, Wenpeng Yin, and Rui Zhang. Unified
low-resource sequence labeling by sample-aware dynamic sparse finetuning. In Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
6998–7010. Association for Computational Linguistics, 2023.

Thomas Ferreira De Lima, Hsuan-Tung Peng, Alexander N Tait, Mitchell A Nahmias, Heidi B Miller,
Bhavin J Shastri, and Paul R Prucnal. Machine learning with neuromorphic photonics. Journal of
Lightwave Technology, 37(5):1515–1534, 2019.

Matthew DeLorenzo, Animesh Basak Chowdhury, Vasudev Gohil, Shailja Thakur, Ramesh Karri,
Siddharth Garg, and Jeyavijayan Rajendran. Make every move count: Llm-based high-quality rtl
code generation using mcts. arXiv preprint arXiv:2402.03289, 2024.

Erik D. Demaine, David Eppstein, Adam Hesterberg, Kshitij Jain, Anna Lubiw, Ryuhei Uehara, and
Yushi Uno. Reconfiguring undirected paths. 2019.

Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. Model compression and hardware
acceleration for neural networks: A comprehensive survey. Proceedings of the IEEE, 108(4):
485–532, 2020.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in neural information processing systems, 35:
30318–30332, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. 2023a.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms, 2023b. URL https://arxiv.org/abs/2305.14314.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Tianyu Ding, Tianyi Chen, Haidong Zhu, Jiachen Jiang, Yiqi Zhong, Jinxin Zhou, Guangzhi Wang,
Zhihui Zhu, Ilya Zharkov, and Luming Liang. The efficiency spectrum of large language models:
An algorithmic survey. 2023a.

Tianyu Ding, Tianyi Chen, Haidong Zhu, Jiachen Jiang, Yiqi Zhong, Jinxin Zhou, Guangzhi Wang,
Zhihui Zhu, Ilya Zharkov, and Luming Liang. The efficiency spectrum of large language models:
An algorithmic survey. arXiv preprint arXiv:2312.00678, 2023b.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Xianzhi Du, Tom Gunter, Xiang Kong, Mark Lee, Zirui Wang, Aonan Zhang, Nan Du, and Ruoming
Pang. Revisiting moe and dense speed-accuracy comparisons for llm training. arXiv preprint
arXiv:2405.15052, 2024.

Jiangfei Duan, Shuo Zhang, Zerui Wang, Lijuan Jiang, Wenwen Qu, Qinghao Hu, Guoteng Wang,
Qizhen Weng, Hang Yan, Xingcheng Zhang, et al. Efficient training of large language models on
distributed infrastructures: a survey. arXiv preprint arXiv:2407.20018, 2024.

14

https://arxiv.org/abs/2305.14314

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Abteen Ebrahimi and Kenneth Church. Since the scientific literature is multilingual, our models
should be too. arXiv preprint arXiv:2403.18251, 2024. URL http://arxiv.org/pdf/2403.18251v1.

Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Partovi Nia, James J. Clark, and Mehdi
Rezagholizadeh. Krona: Parameter efficient tuning with kronecker adapter. arXiv preprint
arXiv:2212.10650, 2022. Basis for the LoKr variant.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai,
Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, et al. Layerskip: Enabling early
exit inference and self-speculative decoding. arXiv preprint arXiv:2404.16710, 2024.

Jeffrey L Elman. Learning and development in neural networks: The importance of starting small.
Cognition, 48(1):71–99, 1993.

Fahim Faisal and Antonios Anastasopoulos. An efficient approach for studying cross-lingual transfer
in multilingual language models. arXiv preprint arXiv:2403.20088, 2024. URL http://arxiv.org/
pdf/2403.20088v1.

Dongyang Fan, Bettina Messmer, and Martin Jaggi. Towards an empirical understanding of moe
design choices. arXiv preprint arXiv:2402.13089, 2024a. URL http://arxiv.org/pdf/2402.13089v1.

Jingxuan Fan, Sarah Martinson, Erik Y Wang, Kaylie Hausknecht, Jonah Brenner, Danxian Liu,
Nianli Peng, Corey Wang, and Michael P Brenner. Hardmath: A benchmark dataset for challenging
problems in applied mathematics. arXiv preprint arXiv:2410.09988, 2024b.

Wenqi Fan, Zihuai Zhao, Jiatong Li, Yunqing Liu, Xiaowei Mei, Yiqi Wang, Jiliang Tang, and Qing
Li. Recommender systems in the era of large language models (llms). IEEE Transactions on
Knowledge and Data Engineering, 36:6889–6907, 2023. doi: 10.1109/TKDE.2024.3392335.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. The Journal of Machine Learning Research, 23(1):
5232–5270, 2022.

Adam Fisch, Jacob Eisenstein, Vicky Zayats, Alekh Agarwal, Ahmad Beirami, Chirag Nagpal, Pete
Shaw, and Jonathan Berant. Robust preference optimization through reward model distillation.
arXiv preprint arXiv:2405.19316, 2024.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. 2022a.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022b.

Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai Lam, Lidong Bing, and Nigel Collier. On
the effectiveness of parameter-efficient fine-tuning. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), pp. 12799–12807, 2023.

Tong Geng, Tianqi Wang, Chunshu Wu, Chen Yang, Shuaiwen Leon Song, Ang Li, and Martin
Herbordt. Lp-bnn: Ultra-low-latency bnn inference with layer parallelism. In 2019 IEEE 30th
International Conference on Application-specific Systems, Architectures and Processors (ASAP),
volume 2160, pp. 9–16. IEEE, 2019.

Mozhdeh Gheini, Xiang Ren, and Jonathan May. Cross-attention is all you need: Adapting pretrained
transformers for machine translation. In Proceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pp. 1754–1765. Association for Computational
Linguistics, 2021.

Benyamin Ghojogh and Ali Ghodsi. Attention mechanism, transformers, bert, and gpt: tutorial and
survey. 2020.

15

http://arxiv.org/pdf/2403.18251v1
http://arxiv.org/pdf/2403.20088v1
http://arxiv.org/pdf/2403.20088v1
http://arxiv.org/pdf/2402.13089v1

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision, 129:1789–1819, 2021.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Axel Gruenrock. On the generalized zakharov-kuznetsov equation at critical regularity. 2015.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. International Conference on Learning Representations, 2022.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio Cesar Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital
Shah, Harkirat Singh Behl, Xin Wang, Sebastien Bubeck, Ronen Eldan, Adam Tauman Kalai,
Yin Tat Lee, and Yuanzhi Li. Textbooks are all you need, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Demi Guo, Alexander M. Rush, and Yoon Kim. Parameter-efficient transfer learning with diff
pruning. In Proceedings of the 59th Annual Meeting of the Association for Computational Lin-
guistics (ACL/IJCNLP) (Volume 1: Long Papers), pp. 4884–4896. Association for Computational
Linguistics, 2021.

Meng-Hao Guo, Tian-Xing Xu, Jiang-Jiang Liu, Zheng-Ning Liu, Peng-Tao Jiang, Tai-Jiang Mu,
Song-Hai Zhang, Ralph R Martin, Ming-Ming Cheng, and Shi-Min Hu. Attention mechanisms in
computer vision: A survey. Computational visual media, 8(3):331–368, 2022.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-tuning
for large models: A comprehensive survey. arXiv preprint arXiv:2403.14608, 2024.

Aaron Harlap, Deepak Narayanan, Amar Phanishayee, Vivek Seshadri, Nikhil Devanur, Greg Ganger,
and Phil Gibbons. Pipedream: Fast and efficient pipeline parallel dnn training. arXiv preprint
arXiv:1806.03377, 2018.

Matan Haroush, Itay Hubara, Elad Hoffer, and Daniel Soudry. The knowledge within: Methods for
data-free model compression. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 8494–8502, 2020.

Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-Yu,
Maksym Zhuravinskyi, Eric Hambro, Sainbayar Sukhbaatar, and Roberta Raileanu. Teaching large
language models to reason with reinforcement learning. arXiv preprint arXiv:2403.04642, 2024.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models.
arXiv preprint arXiv:2402.12354, 2024.

Haoyu He, Jianfei Cai, Jing Zhang, Dacheng Tao, and Bohan Zhuang. Sensitivity-aware visual
parameter-efficient fine-tuning. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2023a.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
a unified view of parameter-efficient transfer learning. In Proceedings of the 10th International
Conference on Learning Representations (ICLR), 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Shwai He, Run-Ze Fan, Liang Ding, Li Shen, Tianyi Zhou, and Dacheng Tao. Merging experts into
one: Improving computational efficiency of mixture of experts. arXiv preprint arXiv:2310.09832,
2023b. URL http://arxiv.org/pdf/2310.09832v3. EMNLP 2023 Main Conference (Oral).

Xu Owen He. Mixture of a million experts. arXiv preprint arXiv:2407.04153, 2024. URL http:
//arxiv.org/pdf/2407.04153v1.

Joel Hestness, Newsha Ardalani, and Gregory Diamos. Beyond human-level accuracy: Computational
challenges in deep learning. In Proceedings of the 24th symposium on principles and practice of
parallel programming, pp. 1–14, 2019.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Soka Hisaharo, Yuki Nishimura, and Aoi Takahashi. Optimizing llm inference clusters for enhanced
performance and energy efficiency. Authorea Preprints, 2024.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022a.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models. 2022b.

Jixiang Hong, Quan Tu, Changyu Chen, Xing Gao, Ji Zhang, and Rui Yan. Cyclealign: Iterative
distillation from black-box llm to white-box models for better human alignment. arXiv preprint
arXiv:2310.16271, 2023.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp, 2019.
URL https://arxiv.org/abs/1902.00751.

Dichao Hu. An introductory survey on attention mechanisms in nlp problems. In Intelligent Systems
and Applications: Proceedings of the 2019 Intelligent Systems Conference (IntelliSys) Volume 2,
pp. 432–448. Springer, 2020.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021a.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021b. URL https:
//arxiv.org/abs/2106.09685.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. In Proceedings of the 10th
International Conference on Learning Representations (ICLR), 2022.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning
of large language models, 2023.

Quzhe Huang, Zhenwei An, Nan Zhuang, Mingxu Tao, Chen Zhang, Yang Jin, Kun Xu, Liwei Chen,
Songfang Huang, and Yansong Feng. Harder tasks need more experts: Dynamic routing in moe
models. arXiv preprint arXiv:2403.07652, 2024a.

Rui Huang, Yuanjie Zheng, Zhiqiang Hu, Shaoting Zhang, and Hongsheng Li. Multi-organ segmen-
tation via co-training weight-averaged models from few-organ datasets. 2020.

Shaohan Huang, Xun Wu, Shuming Ma, and Furu Wei. Mh-moe: Multi-head mixture-of-experts.
arXiv preprint arXiv:2411.16205, 2024b. URL http://arxiv.org/pdf/2411.16205v3.

17

http://arxiv.org/pdf/2310.09832v3
http://arxiv.org/pdf/2407.04153v1
http://arxiv.org/pdf/2407.04153v1
https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
http://arxiv.org/pdf/2411.16205v3

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. Gpipe: Efficient training of giant
neural networks using pipeline parallelism. 2018.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural
networks using pipeline parallelism. NeurIPS, 32, 2019.

Palak Jain, Livio Baldini Soares, and Tom Kwiatkowski. From rag to riches: Retrieval interlaced
with sequence generation. arXiv preprint arXiv:2407.00361, 2024. URL http://arxiv.org/pdf/2407.
00361v1. 18 pages, 3 figures, Preprint.

Ganesh Jawahar, Muhammad Abdul-Mageed, Laks VS Lakshmanan, and Dujian Ding. Llm perfor-
mance predictors are good initializers for architecture search. arXiv preprint arXiv:2310.16712,
2023.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lelio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothee Lacroix, and William El Sayed. Mistral 7b, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024a.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. arXiv preprint arXiv:2406.00515, 2024b.

Hadi S Jomaa, Josif Grabocka, and Lars Schmidt-Thieme. Hyp-rl: Hyperparameter optimization by
reinforcement learning. arXiv preprint arXiv:1906.11527, 2019.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,
Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance analysis of
a tensor processing unit. In Proceedings of the 44th annual international symposium on computer
architecture, pp. 1–12, 2017.

Damjan Kalajdzievski. A rank stabilization scaling factor for fine-tuning with lora. arXiv preprint
arXiv:2312.03732, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
2020a.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020b.

Angelos Katharopoulos and Francois Fleuret. Not all samples are created equal: Deep learning with
importance sampling. 2018.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva Reddy.
The impact of positional encoding on length generalization in transformers. Advances in Neural
Information Processing Systems, 36:24892–24928, 2023.

Guolin Ke, Di He, and Tie-Yan Liu. Rethinking positional encoding in language pre-training. arXiv
preprint arXiv:2006.15595, 2020.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT, pp. 4171–4186, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. 2020.

18

http://arxiv.org/pdf/2407.00361v1
http://arxiv.org/pdf/2407.00361v1

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. ICLR,
2021.

Konstantinos Kogkalidis, Jean-Philippe Bernardy, and Vikas Garg. Algebraic positional encodings.
arXiv preprint arXiv:2312.16045, 2023. URL http://arxiv.org/pdf/2312.16045v1.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. NeurIPS, 35:22199–22213, 2022.

Steven Kolawole, Don Dennis, Ameet Talwalkar, and Virginia Smith. Revisiting cascaded ensembles
for efficient inference. arXiv preprint arXiv:2407.02348, 2024.

M Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable models.
NeurIPS, 23, 2010.

Vimal Kumar, Priyam Srivastava, Ashay Dwivedi, Ishan Budhiraja, Debjani Ghosh, Vikas Goyal, and
Ruchika Arora. Large-language-models (llm)-based ai chatbots: Architecture, in-depth analysis and
their performance evaluation. In International Conference on Recent Trends in Image Processing
and Pattern Recognition, pp. 237–249. Springer, 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. 2023.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. Albert: A lite bert for self-supervised learning of language representations. 2019a.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. Albert: A lite bert for self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942, 2019b.

Bastien Latard, Jonathan Weber, Germain Forestier, and Michel Hassenforder. Towards a semantic
search engine for scientific articles. arXiv preprint arXiv:1709.09836, 2017. URL http://arxiv.org/
pdf/1709.09836v1.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Lu, Thomas Mesnard, Colton Bishop, Victor
Carbune, and Abhinav Rastogi. Rlaif: Scaling reinforcement learning from human feedback with
ai feedback. arXiv preprint arXiv:2309.00267, 2023.

Tao Lei, Junwen Bai, Siddhartha Brahma, Joshua Ainslie, Kenton Lee, Yanqi Zhou, Nan Du,
Vincent Y. Zhao, Yuexin Wu, Bo Li, Yu Zhang, and Ming-Wei Chang. Conditional adapters:
Parameter-efficient transfer learning with fast inference. In Advances in Neural Information
Processing Systems 36 (NeurIPS 2023), 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. 2022.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

Jiamin Li, Qiang Su, Yitao Yang, Yimin Jiang, Cong Wang, and Hong Xu. Adaptive gating in
mixture-of-experts based language models. arXiv preprint arXiv:2310.07188, 2023a. URL
http://arxiv.org/pdf/2310.07188v1.

Jiarui Li, Ye Yuan, and Zehua Zhang. Enhancing llm factual accuracy with rag to counter hallu-
cinations: A case study on domain-specific queries in private knowledge-bases. arXiv preprint
arXiv:2403.10446, 2024.

19

http://arxiv.org/pdf/2312.16045v1
http://arxiv.org/pdf/1709.09836v1
http://arxiv.org/pdf/1709.09836v1
http://arxiv.org/pdf/2310.07188v1

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pp. 12888–12900. PMLR, 2022.

Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja Josifovski, James
Long, Eugene J. Shekita, and Bor-Yiing Su. Scaling distributed machine learning with the parameter
server. In 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14),
pp. 583–598, Broomfield, CO, October 2014. USENIX Association. ISBN 978-1-931971-16-4.
URL https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu.

Qingyao Li, Lingyue Fu, Weiming Zhang, Xianyu Chen, Jingwei Yu, Wei Xia, Weinan Zhang,
Ruiming Tang, and Yong Yu. Adapting large language models for education: Foundational
capabilities, potentials, and challenges, 2023b.

Shanda Li, Chong You, Guru Guruganesh, Joshua Ainslie, Santiago Ontanon, Manzil Zaheer, Sumit
Sanghai, Yiming Yang, Sanjiv Kumar, and Srinadh Bhojanapalli. Functional interpolation for
relative positions improves long context transformers. arXiv preprint arXiv:2310.04418, 2023c.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
(ACL/IJCNLP), pp. 4582–4597. Association for Computational Linguistics, 2021.

Yucheng Li, Bo Dong, Chenghua Lin, and Frank Guerin. Compressing context to enhance inference
efficiency of large language models. pp. 6342–6353, 2023d. doi: 10.48550/arXiv.2310.06201.

Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng, Xin Jin, Yanping Huang,
Zhifeng Chen, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. AlpaServe: Statistical mul-
tiplexing with model parallelism for deep learning serving. In 17th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 23), pp. 663–679, Boston, MA, July 2023e.
USENIX Association. ISBN 978-1-939133-34-2. URL https://www.usenix.org/conference/osdi23/
presentation/li-zhouhan.

Weixin Liang, Yaohui Zhang, Zhengxuan Wu, Haley Lepp, Wenlong Ji, Xuandong Zhao, Hancheng
Cao, Sheng Liu, Siyu He, Zhi Huang, et al. Mapping the increasing use of llms in scientific papers.
arXiv preprint arXiv:2404.01268, 2024.

Opher Lieber, Or Sharir, Barak Lenz, and Yoav Shoham. Jurassic-1: Technical details and evaluation.
White Paper. AI21 Labs, 1(9):1–17, 2021.

Xi Victoria Lin, Akshat Shrivastava, Liang Luo, Srinivasan Iyer, Mike Lewis, Gargi Ghosh, Luke
Zettlemoyer, and Armen Aghajanyan. Moma: Efficient early-fusion pre-training with mixture of
modality-aware experts. arXiv preprint arXiv:2407.21770, 2024.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-of-
experts language model. arXiv preprint arXiv:2405.04434, 2024a.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In NeurIPS,
2023a.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 26296–26306, 2024b.

Jian-wei LIU, Jun-wen LIU, and Xiong-lin LUO. Research progress in attention mechanism in deep
learning. Chinese Journal of Engineering, 43(11):1499–1511, 2021.

Kuan-Ming Liu and Ming-Chih Lo. Llm-based routing in mixture of experts: A novel framework
for trading. arXiv preprint arXiv:2501.09636, 2025. URL http://arxiv.org/pdf/2501.09636v1.
Accepted by AAAI 2025 Workshop on AI for Social Impact.

20

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://www.usenix.org/conference/osdi23/presentation/li-zhouhan
https://www.usenix.org/conference/osdi23/presentation/li-zhouhan
http://arxiv.org/pdf/2501.09636v1

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Qidong Liu, Xian Wu, Xiangyu Zhao, Yuanshao Zhu, Derong Xu, Feng Tian, and Yefeng Zheng.
When moe meets llms: Parameter efficient fine-tuning for multi-task medical applications. In
Proceedings of the 47th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 1104–1114, 2024c.

Shih-yang Liu, Zechun Liu, Xijie Huang, Pingcheng Dong, and Kwang-Ting Cheng. Llm-fp4: 4-bit
floating-point quantized transformers. arXiv preprint arXiv:2310.16836, 2023b.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Proceedings
of the 41st International Conference on Machine Learning (ICML), 2024d.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang.
P-tuning v2: Prompt tuning can be comparable to fine-tuning universally across scales and tasks.
In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (ACL)
(Volume 2: Short Papers), pp. 61–68. Association for Computational Linguistics, 2022.

Xinyu Liu, Houwen Peng, Ningxin Zheng, Yuqing Yang, Han Hu, and Yixuan Yuan. Efficientvit:
Memory efficient vision transformer with cascaded group attention. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14420–14430, 2023c.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach, 2019.

Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing Yuan, Yue Huang,
Hanchi Sun, Jianfeng Gao, et al. Sora: A review on background, technology, limitations, and
opportunities of large vision models. arXiv preprint arXiv:2402.17177, 2024e.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms
at inference time. In International Conference on Machine Learning, pp. 22137–22176. PMLR,
2023d.

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. Fineweb-edu: the finest
collection of educational content, 2024. URL https://huggingface.co/datasets/HuggingFaceFW/
fineweb-edu.

Siyu Lu, Mingzhe Liu, Lirong Yin, Zhengtong Yin, Xuan Liu, and Wenfeng Zheng. The multi-modal
fusion in visual question answering: a review of attention mechanisms. PeerJ Computer Science,
9:e1400, 2023.

Xindian Ma, Wenyuan Liu, Peng Zhang, and Nan Xu. 3d-rpe: Enhancing long-context modeling
through 3d rotary position encoding. arXiv preprint arXiv:2406.09897, 2024. URL http://arxiv.
org/pdf/2406.09897v1.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. 2023.

M Madiajagan and S Sridhar Raj. Parallel computing, graphics processing unit (gpu) and new
hardware for deep learning in computational intelligence research. In Deep learning and parallel
computing environment for bioengineering systems, pp. 1–15. Elsevier, 2019.

Vahid Majdinasab, Amin Nikanjam, and Foutse Khomh. Deepcodeprobe: Towards understanding
what models trained on code learn. arXiv preprint arXiv:2407.08890, 2024. URL http://arxiv.org/
pdf/2407.08890v1.

Jonathan Mamou, Oren Pereg, Moshe Wasserblat, and Roy Schwartz. Tangobert: Reducing inference
cost by using cascaded architecture. arXiv preprint arXiv:2204.06271, 2022.

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Almahairi, Hao Ma, Jiawei Han, and Madian Khabsa.
Unipelt: A unified framework for parameter-efficient language model tuning. In Proceedings of
the 60th Annual Meeting of the Association for Computational Linguistics (ACL) (Volume 1: Long
Papers), pp. 6253–6264. Association for Computational Linguistics, 2022.

21

https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
http://arxiv.org/pdf/2406.09897v1
http://arxiv.org/pdf/2406.09897v1
http://arxiv.org/pdf/2407.08890v1
http://arxiv.org/pdf/2407.08890v1

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Saeed Masoudnia and Reza Ebrahimpour. Mixture of experts: a literature survey. Artificial Intelli-
gence Review, 42:275–293, 2014.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular vectors
adaptation of large language models. arXiv preprint arXiv:2404.02948, 2024.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed
precision training. 2017.

Sparsh Mittal and Shraiysh Vaishay. A survey of techniques for optimizing deep learning on gpus.
Journal of Systems Architecture, 99:101635, 2019.

Ipsita Mohanty. Recommendation systems in the era of llms. Proceedings of the 15th Annual Meeting
of the Forum for Information Retrieval Evaluation, 2023. doi: 10.1145/3632754.3632941.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language
models. arXiv preprint arXiv:2307.06435, 2023.

Hellina Hailu Nigatu, Atnafu Lambebo Tonja, and Jugal Kalita. The less the merrier? investigating
language representation in multilingual models. arXiv preprint arXiv:2310.13228, 2023. URL
http://arxiv.org/pdf/2310.13228v1. Accepted to EMNLP 2023(Findings).

Chenxu Niu, Wei Zhang, Yongjian Zhao, and Yong Chen. Energy efficient or exhaustive? bench-
marking power consumption of llm inference engines. ACM SIGENERGY Energy Informatics
Review, 5(2):56–62, 2025.

Jinwook Oh, Sae Kyu Lee, Mingu Kang, Matthew Ziegler, Joel Silberman, Ankur Agrawal, Swagath
Venkataramani, Bruce Fleischer, Michael Guillorn, Jungwook Choi, et al. A 3.0 tflops 0.62 v
scalable processor core for high compute utilization ai training and inference. In 2020 IEEE
Symposium on VLSI Circuits, pp. 1–2. IEEE, 2020.

Yui Oka, Taku Hasegawa, Kyosuke Nishida, and Kuniko Saito. Wavelet-based positional represen-
tation for long context. arXiv preprint arXiv:2502.02004, 2025. URL http://arxiv.org/pdf/2502.
02004v1. Accepted to ICLR 2025.

Aytuğ Onan and Hesham A Alhumyani. Deepextract: Semantic-driven extractive text summarization
framework using llms and hierarchical positional encoding. Journal of King Saud University-
Computer and Information Sciences, 36(8):102178, 2024.

OpenAI, :, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mo Bavar-
ian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner,
Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim
Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey,
Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won
Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah
Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien
Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simon Posada Fishman,
Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni,
Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene,
Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He,
Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn,
Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish
Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy

22

http://arxiv.org/pdf/2310.13228v1
http://arxiv.org/pdf/2502.02004v1
http://arxiv.org/pdf/2502.02004v1

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mely,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
Michael, Pokorny, Michelle Pokrass, Vitchyr Pong, Tolly Powell, Alethea Power, Boris Power,
Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston
Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Ceron Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason
Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff,
Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu,
Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba,
Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang,
William Zhuk, and Barret Zoph. Gpt-4 technical report, 2023.

Antonio Orvieto, Samuel L. Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pascanu,
and Soham De. Resurrecting recurrent neural networks for long sequences. Proceedings of
Machine Learning Research, 202:26227–26253, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Bowen Pan, Yikang Shen, Haokun Liu, Mayank Mishra, Gaoyuan Zhang, Aude Oliva, Colin Raffel,
and Rameswar Panda. Dense training, sparse inference: Rethinking training of mixture-of-experts
language models. arXiv preprint arXiv:2404.05567, 2024. URL http://arxiv.org/pdf/2404.05567v1.

Keivalya Pandya and M. Holia. Automating customer service using langchain: Building custom
open-source gpt chatbot for organizations. ArXiv, abs/2310.05421, 2023. doi: 10.48550/arXiv.
2310.05421.

Youngsuk Park, Kailash Budhathoki, Liangfu Chen, Jonas M Kübler, Jiaji Huang, Matthäus Klein-
dessner, Jun Huan, Volkan Cevher, Yida Wang, and George Karypis. Inference optimization of
foundation models on ai accelerators. In Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 6605–6615, 2024.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huanqi Cao, Xin
Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, et al. Rwkv: Reinventing rnns for the
transformer era. arXiv preprint arXiv:2305.13048, 2023a.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window
extension of large language models. arXiv preprint arXiv:2309.00071, 2023b.

Sergio P Perez, Yan Zhang, James Briggs, Charlie Blake, Josh Levy-Kramer, Paul Balanca, Carlo
Luschi, Stephen Barlow, and Andrew William Fitzgibbon. Training and inference of large language
models using 8-bit floating point. arXiv preprint arXiv:2309.17224, 2023.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapterfu-
sion: Non-destructive task composition for transfer learning. In Proceedings of the 16th Conference

23

http://arxiv.org/pdf/2404.05567v1

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

of the European Chapter of the Association for Computational Linguistics (EACL), pp. 487–503.
Association for Computational Linguistics, 2021.

Soham Poddar, Paramita Koley, Janardan Misra, Sanjay Podder, Niloy Ganguly, and Saptarshi Ghosh.
Towards sustainable nlp: Insights from benchmarking inference energy in large language models.
arXiv preprint arXiv:2502.05610, 2025.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. arXiv preprint arXiv:2302.10866, 2023.

Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model compression via distillation and quantiza-
tion. arXiv preprint arXiv:1802.05668, 2018.

Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. ICLR, 2023.

Ray Project. Llmperf: A tool for evaluating the performance of llm apis. https://github.com/
ray-project/llmperf, 2024. Accessed: 2024-09-13.

Zihan Qiu, Zeyu Huang, Shuang Cheng, Yizhi Zhou, Zili Wang, Ivan Titov, and Jie Fu. Layerwise
recurrent router for mixture-of-experts. arXiv preprint arXiv:2408.06793, 2024. URL http:
//arxiv.org/pdf/2408.06793v1.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. 2019.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation, 2021. URL https://arxiv.org/abs/2102.
12092.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents, 2022. URL https://arxiv.org/abs/2204.06125.

David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and Adam
Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based language
models. arXiv preprint arXiv:2404.02258, 2024. URL http://arxiv.org/pdf/2404.02258v1.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
mizations enable training deep learning models with over 100 billion parameters. In SIGKDD, pp.
3505–3506, 2020.

24

https://github.com/ray-project/llmperf
https://github.com/ray-project/llmperf
http://arxiv.org/pdf/2408.06793v1
http://arxiv.org/pdf/2408.06793v1
https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2204.06125
http://arxiv.org/pdf/2404.02258v1

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Sujith Ravi. Projectionnet: Learning efficient on-device deep networks using neural projections,
2017. URL https://arxiv.org/abs/1708.00630.

Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther Schmuelling, Carole-
Jean Wu, Brian Anderson, Maximilien Breughe, Mark Charlebois, William Chou, Ramesh Chukka,
Cody Coleman, Sam Davis, Pan Deng, Greg Diamos, Jared Duke, Dave Fick, J. Scott Gardner,
Itay Hubara, Sachin Idgunji, Thomas B. Jablin, Jeff Jiao, Tom St. John, Pankaj Kanwar, David
Lee, Jeffery Liao, Anton Lokhmotov, Francisco Massa, Peng Meng, Paulius Micikevicius, Colin
Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip Sequeira, Ashish Sirasao,
Fei Sun, Hanlin Tang, Michael Thomson, Frank Wei, Ephrem Wu, Lingjie Xu, Koichi Yamada,
Bing Yu, George Yuan, Aaron Zhong, Peizhao Zhang, and Yuchen Zhou. Mlperf inference
benchmark, 2020. URL https://arxiv.org/abs/1911.02549.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen, and Xin Wang.
A comprehensive survey of neural architecture search: Challenges and solutions. ACM Computing
Surveys (CSUR), 54(4):1–34, 2021.

Baidu Research. Deepbench: Benchmarking deep learning operations on different hardware. https:
//github.com/baidu-research/DeepBench, 2024. Accessed: 2024-09-13.

Anian Ruoss, Grégoire Delétang, Tim Genewein, Jordi Grau-Moya, Róbert Csordás, Mehdi Bennani,
Shane Legg, and Joel Veness. Randomized positional encodings boost length generalization of
transformers. arXiv preprint arXiv:2305.16843, 2023.

Seyyed Amirhossein Saeidi, Forouzan Fallah, Soroush Barmaki, and Hamed Farbeh. A novel neuro-
morphic processors realization of spiking deep reinforcement learning for portfolio management.
In 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 68–71. IEEE,
2022.

Siddharth Samsi, Dan Zhao, Joseph McDonald, Baolin Li, Adam Michaleas, Michael Jones, William
Bergeron, Jeremy Kepner, Devesh Tiwari, and Vijay Gadepally. From words to watts: Benchmark-
ing the energy costs of large language model inference. In 2023 IEEE High Performance Extreme
Computing Conference (HPEC), pp. 1–9. IEEE, 2023.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. 2019a.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019b.

Victor Sanh, Thomas Wolf, and Alexander M. Rush. Movement pruning: Adaptive sparsity by
fine-tuning. 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017.

Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep learning in
TensorFlow. arXiv preprint arXiv:1802.05799, 2018.

Yara Shamshoum, Nitzan Hodos, Yuval Sieradzki, and Assaf Schuster. Compact: Compressed
activations for memory-efficient llm training. arXiv preprint arXiv:2410.15352, 2024.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn Koanantakool,
Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young, et al. Mesh-tensorflow: Deep
learning for supercomputers. Advances in neural information processing systems, 31, 2018.

25

https://arxiv.org/abs/1708.00630
https://arxiv.org/abs/1911.02549
https://github.com/baidu-research/DeepBench
https://github.com/baidu-research/DeepBench

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
2019a.

Mohammad Shoeybi, Mostofa Ali Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-LM: Training multi-billion parameter language models using model paral-
lelism. arXiv preprint arXiv:1909.08053, 2019b. doi: 10.48550/arXiv.1909.08053.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism,
2020. URL https://arxiv.org/abs/1909.08053.

Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers for
sequence modeling. 2023.

Daniel Snider and Ruofan Liang. Operator fusion in xla: analysis and evaluation. arXiv preprint
arXiv:2301.13062, 2023.

Nicholas Solovyev, Ryan Barron, Manish Bhattarai, Maksim E. Eren, Kim O. Rasmussen, and
Boian S. Alexandrov. Interactive distillation of large single-topic corpora of scientific papers.
arXiv preprint arXiv:2309.10772, 2023. URL http://arxiv.org/pdf/2309.10772v1. Accepted at
2023 IEEE ICMLA conference.

Xiaoniu Song, Zihang Zhong, Rong Chen, and Haibo Chen. Promoe: Fast moe-based llm serving
using proactive caching. arXiv preprint arXiv:2410.22134, 2024.

Derya Soydaner. Attention mechanism in neural networks: where it comes and where it goes. Neural
Computing and Applications, 34(16):13371–13385, 2022.

Zayne Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri, and Greg Durrett. Musr: Testing the limits
of chain-of-thought with multistep soft reasoning. arXiv preprint arXiv:2310.16049, 2023.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Standard Performance Evaluation Corporation. Standard performance evaluation corporation - contact.
https://www.spec.org/spec/contact.html, 2024. Accessed: 2024-09-13.

Jovan Stojkovic, Esha Choukse, Chaojie Zhang, Inigo Goiri, and Josep Torrellas. Towards greener
llms: Bringing energy-efficiency to the forefront of llm inference. arXiv preprint arXiv:2403.20306,
2024.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in nlp. 2019a.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in NLP. In Proceedings of the 57th Annual Meeting of the ACL, pp. 3645–3650, 2019b.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. arXiv preprint arXiv:2104.09864, 2021.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models. arXiv preprint
arXiv:2307.08621, 2023.

Yi-Lin Sung, Varun Nair, and Colin Raffel. Training neural networks with fixed sparse masks. In
Advances in Neural Information Processing Systems 34 (NeurIPS 2021), 2021.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

26

https://arxiv.org/abs/1909.08053
http://arxiv.org/pdf/2309.10772v1
https://www.spec.org/spec/contact.html

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
In International conference on machine learning, pp. 6105–6114. PMLR, 2019.

Shawn Tan, Yikang Shen, Rameswar Panda, and Aaron Courville. Scattered mixture-of-experts
implementation. arXiv preprint arXiv:2403.08245, 2024. URL http://arxiv.org/pdf/2403.08245v1.

Yaohua Tang, Zhicheng Hu, Kun Cheng, Fan Mo, Qiheng Lv, Hua Wang, and Zhi Chen. Round
attention: A novel round-level attention mechanism to accelerate llm inference. arXiv preprint
arXiv:2502.15294, 2025.

OpenO1 Team. Openo1-sft dataset, December 2024a. URL https://huggingface.co/datasets/
O1-OPEN/OpenO1-SFT.

Qwen Team. Qvq: To see the world with wisdom, December 2024b. URL https://qwenlm.github.io/
blog/qvq-72b-preview/.

Wan Team. Wan: Open and advanced large-scale video generative models. 2025.

Neil C. Thompson, Kristjan Greenewald, Keeheon Lee, and Gabriel F. Manso. The computational
limits of deep learning, 2022. URL https://arxiv.org/abs/2007.05558.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothee
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. 2023.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr: Direct
distillation of lm alignment. arXiv preprint arXiv:2310.16944, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.org/abs/1706.03762.

Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen, and Jan S
Rellermeyer. A survey on distributed machine learning. Acm computing surveys (csur), 53(2):
1–33, 2020.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and Daniel Cer. Spot: Better frozen model
adaptation through soft prompt transfer. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (ACL) (Volume 1: Long Papers), pp. 5039–5059.
Association for Computational Linguistics, 2022.

Danilo Vucetic, Mohammadreza Tayaranian, Maryam Ziaeefard, James J. Clark, Brett H. Meyer, and
Warren J. Gross. Efficient fine-tuning of bert models on the edge. In Proceedings of the 2022 IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 1838–1842. IEEE, 2022.

Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, et al. Efficient large language models:
A survey. arXiv preprint arXiv:2312.03863, 2023.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, and Furu Wei. Deepnet:
Scaling transformers to 1,000 layers. 2022.

Jie Wang, Tao Ji, Yuanbin Wu, Hang Yan, Tao Gui, Qi Zhang, Xuanjing Huang, and Xiaoling
Wang. Length generalization of causal transformers without position encoding. arXiv preprint
arXiv:2404.12224, 2024a.

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware automated
quantization with mixed precision. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 8612–8620, 2019.

27

http://arxiv.org/pdf/2403.08245v1
https://huggingface.co/datasets/O1-OPEN/OpenO1-SFT
https://huggingface.co/datasets/O1-OPEN/OpenO1-SFT
https://qwenlm.github.io/blog/qvq-72b-preview/
https://qwenlm.github.io/blog/qvq-72b-preview/
https://arxiv.org/abs/2007.05558
https://arxiv.org/abs/1706.03762

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Shen Wang, Tianlong Xu, Hang Li, Chaoli Zhang, Joleen Liang, Jiliang Tang, Philip S. Yu, and
Qingsong Wen. Large language models for education: A survey and outlook, 2024b.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. 2020a.

Wenxiao Wang, Wei Chen, Yicong Luo, Yongliu Long, Zhengkai Lin, Liye Zhang, Binbin Lin, Deng
Cai, and Xiaofei He. Model compression and efficient inference for large language models: A
survey. arXiv preprint arXiv:2402.09748, 2024c.

Xin Wang, Fisher Yu, Lisa Dunlap, Yi-An Ma, Ruth Wang, Azalia Mirhoseini, Trevor Darrell, and
Joseph E Gonzalez. Deep mixture of experts via shallow embedding. In Uncertainty in artificial
intelligence, pp. 552–562. PMLR, 2020b.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
task language understanding benchmark. In The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2024d.

Ulme Wennberg and Gustav Eje Henter. The case for translation-invariant self-attention in transformer-
based language models. arXiv preprint arXiv:2106.01950, 2021.

David H Wolpert and William G Macready. No free lunch theorems for optimization. IEEE
transactions on evolutionary computation, 1(1):67–82, 1997.

Xiaoxia Wu, Cheng Li, Reza Yazdani Aminabadi, Zhewei Yao, and Yuxiong He. Understanding
int4 quantization for language models: latency speedup, composability, and failure cases. In
International Conference on Machine Learning, pp. 37524–37539. PMLR, 2023.

Xun Wu, Shaohan Huang, Wenhui Wang, and Furu Wei. Multi-head mixture-of-experts. arXiv
preprint arXiv:2404.15045, 2024. URL http://arxiv.org/pdf/2404.15045v1.

Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang, Zhongzhu Zhou, Xiafei Qiu, Yong Li, Wei Lin,
and Shuaiwen Leon Song. Flash-llm: Enabling cost-effective and highly-efficient large generative
model inference with unstructured sparsity, 2023. URL https://arxiv.org/abs/2309.10285.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive survey of
speculative decoding. arXiv preprint arXiv:2401.07851, 2024.

Yafei Xiang, Hanyi Yu, Yulu Gong, Shuning Huo, and Mengran Zhu. Text understanding and
generation using transformer models for intelligent e-commerce recommendations. ArXiv,
abs/2402.16035, 2024. doi: 10.48550/arXiv.2402.16035.

Guangzhi Xiong, Qiao Jin, Zhiyong Lu, and Aidong Zhang. Benchmarking retrieval-augmented
generation for medicine. In Findings of the Association for Computational Linguistics ACL 2024,
pp. 6233–6251, 2024.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and
Vikas Singh. Nystromformer: A nystrom-based algorithm for approximating self-attention. 2021.

Jiajun Xu, Qun Wang, Yuhang Cao, Baitao Zeng, and Sicheng Liu. A general purpose device
for interaction with llms. In Proceedings of the Future Technologies Conference, pp. 613–626.
Springer, 2024a.

Jiaming Xu, Jiayi Pan, Yongkang Zhou, Siming Chen, Jinhao Li, Yaoxiu Lian, Junyi Wu, and Guohao
Dai. Specee: Accelerating large language model inference with speculative early exiting. arXiv
preprint arXiv:2504.08850, 2025.

Mengwei Xu, Wangsong Yin, Dongqi Cai, Rongjie Yi, Daliang Xu, Qipeng Wang, Bingyang Wu,
Yihao Zhao, Chen Yang, Shihe Wang, et al. A survey of resource-efficient llm and multimodal
foundation models. arXiv preprint arXiv:2401.08092, 2024b.

28

http://arxiv.org/pdf/2404.15045v1
https://arxiv.org/abs/2309.10285

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuanqi Tan, Baobao Chang, Songfang Huang, and Fei
Huang. Raise a child in large language model: Towards effective and generalizable fine-tuning.
In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 9514–9528. Association for Computational Linguistics, 2021.

Wei Xu, Jue Xiao, and Jianlong Chen. Leveraging large language models to enhance personalized
recommendations in e-commerce. 2024c.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Shang Yang, Junxian Guo, Haotian Tang, Qinghao Hu, Guangxuan Xiao, Jiaming Tang, Yujun Lin,
Zhijian Liu, Yao Lu, and Song Han. Lserve: Efficient long-sequence llm serving with unified
sparse attention. arXiv preprint arXiv:2502.14866, 2025.

Taojiannan Yang, Yi Zhu, Yusheng Xie, Aston Zhang, Chen Chen, and Mu Li. Aim: Adapting image
models for efficient video action recognition, 2023. URL https://arxiv.org/abs/2302.03024.

Tong Ye, Weigang Huang, Xuhong Zhang, Tengfei Ma, Peiyu Liu, Jianwei Yin, and Wenhai Wang.
Llm4effi: Leveraging large language models to enhance code efficiency and correctness. arXiv
preprint arXiv:2502.18489, 2025.

Jie You, Jae-Won Chung, and Mosharaf Chowdhury. Zeus: Understanding and optimizing GPU
energy consumption of DNN training. In USENIX NSDI, 2023.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Guoyin Wang, Heng
Li, Jiangcheng Zhu, Jianqun Chen, et al. Yi: Open foundation models by 01. ai. arXiv preprint
arXiv:2403.04652, 2024.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively
trainable sparse attention. arXiv preprint arXiv:2502.11089, 2025.

Zhengqing Yuan, Huiwen Xue, Chao Zhang, and Yongming Liu. Hulk: Graph neural networks for
optimizing regionally distributed computing systems, 2023. URL https://arxiv.org/abs/2302.13741.

Tom Zahavy, Zhongwen Xu, Vivek Veeriah, Matteo Hessel, Junhyuk Oh, Hado P van Hasselt, David
Silver, and Satinder Singh. A self-tuning actor-critic algorithm. Advances in neural information
processing systems, 33:20913–20924, 2020.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: Transformers for
longer sequences. Neural Information Processing Systems (NeurIPS) 2020, 2020a.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. NeurIPS, pp. 17283–17297, 2020b.

Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. Vision-language models for vision tasks: A
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024a.

Yuanhan Zhang, Kaiyang Zhou, and Ziwei Liu. Neural prompt search. In Proceedings of the 17th
European Conference on Computer Vision (ECCV), pp. 594–611. Springer, 2022.

Zheng Zhang, Fan Yang, Ziyan Jiang, Zheng Chen, Zhengyang Zhao, Chengyuan Ma, Liang Zhao,
and Yang Liu. Position-aware parameter efficient fine-tuning approach for reducing positional bias
in llms. arXiv preprint arXiv:2404.01430, 2024b.

29

https://arxiv.org/abs/2302.03024
https://arxiv.org/abs/2302.13741

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Zhengyan Zhang, Chaojun Xiao, Qiujieli Qin, Yankai Lin, Zhiyuan Zeng, Xu Han, Zhiyuan Liu,
Ruobing Xie, Maosong Sun, and Jie Zhou. Exploring the benefit of activation sparsity in pre-
training. arXiv preprint arXiv:2410.03440, 2024c.

Zheyuan Zhang, Daniel Zhang-Li, Jifan Yu, Linlu Gong, Jinchang Zhou, Zhanxin Hao, Jianxiao Jiang,
Jie Cao, Huiqin Liu, Zhiyuan Liu, et al. Simulating classroom education with llm-empowered
agents. arXiv preprint arXiv:2406.19226, 2024d.

Bowen Zhao, Hannaneh Hajishirzi, and Qingqing Cao. Apt: Adaptive pruning and tuning pretrained
language models for efficient training and inference. arXiv preprint arXiv:2401.12200, 2024a.

Han Zhao, Min Zhang, Wei Zhao, Pengxiang Ding, Siteng Huang, and Donglin Wang. Cobra:
Extending mamba to multi-modal large language model for efficient inference. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 39, pp. 10421–10429, 2025.

Liang Zhao, Xiachong Feng, Xiaocheng Feng, Weihong Zhong, Dongliang Xu, Qing Yang, Hongtao
Liu, Bing Qin, and Ting Liu. Length extrapolation of transformers: A survey from the perspective
of positional encoding. arXiv preprint arXiv:2312.17044, 2023a.

Pinxue Zhao, Hailin Zhang, Fangcheng Fu, Xiaonan Nie, Qibin Liu, Fang Yang, Yuanbo Peng, Dian
Jiao, Shuaipeng Li, Jinbao Xue, Yangyu Tao, and Bin Cui. Efficiently training 7b llm with 1
million sequence length on 8 gpus, 2024b. URL https://arxiv.org/abs/2407.12117.

Zihao Zhao, Yuxiao Liu, Han Wu, Mei Wang, Yonghao Li, Sheng Wang, Lin Teng, Disheng Liu,
Zhiming Cui, Qian Wang, et al. Clip in medical imaging: A comprehensive survey. arXiv preprint
arXiv:2312.07353, 2023b.

Han Zhong, Zikang Shan, Guhao Feng, Wei Xiong, Xinle Cheng, Li Zhao, Di He, Jiang Bian,
and Liwei Wang. Dpo meets ppo: Reinforced token optimization for rlhf. arXiv preprint
arXiv:2404.18922, 2024.

Han Zhou, Xingchen Wan, Ivan Vulić, and Anna Korhonen. Autopeft: Automatic configuration
search for parameter-efficient fine-tuning. Transactions of the Association for Computational
Linguistics, 12:525–542, 2024a.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning
Wang, Zhihang Yuan, Xiuhong Li, Shengen Yan, Guohao Dai, Xiao-Ping Zhang, Yuhan Dong,
and Yu Wang. A survey on efficient inference for large language models. ArXiv, abs/2404.14294,
2024b. doi: 10.48550/arXiv.2404.14294.

Banghua Zhu, Hiteshi Sharma, Felipe Vieira Frujeri, Shi Dong, Chenguang Zhu, Michael I Jordan,
and Jiantao Jiao. Fine-tuning language models with advantage-induced policy alignment. arXiv
preprint arXiv:2306.02231, 2023.

Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Yuchen Duan, Hao
Tian, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
open-source multimodal models. arXiv preprint arXiv:2504.10479, 2025a.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for large
language models. Transactions of the Association for Computational Linguistics, 12:1556–1577,
2024a.

Yaoming Zhu, Jiangtao Feng, Chengqi Zhao, Mingxuan Wang, and Lei Li. Counter-interference
adapter for multilingual machine translation. In Findings of the Association for Computational
Linguistics: EMNLP 2021, pp. 2812–2823. Association for Computational Linguistics, 2021.

Yu Zhu, Chuxiong Sun, Wenfei Yang, Wenqiang Wei, Bo Tang, Tianzhu Zhang, Zhiyu Li, Shifeng
Zhang, Feiyu Xiong, Jie Hu, et al. Proxy-rlhf: Decoupling generation and alignment in large
language model with proxy. arXiv preprint arXiv:2403.04283, 2024b.

30

https://arxiv.org/abs/2407.12117

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Zhantong Zhu, Hongou Li, Wenjie Ren, Meng Wu, Le Ye, Ru Huang, and Tianyu Jia. Lever-
aging compute-in-memory for efficient generative model inference in tpus. arXiv preprint
arXiv:2503.00461, 2025b.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Appendices
APPENDIX CONTENTS

A Observations and Insights . 35

A.1 Overall Observations. 35

A.2 Novel Insights Derived from the EfficientLLM Benchmark . 36

B Background . 38

B.1 Large Language Models (LLMs). 38

B.2 Approaches to Enhancing Efficiency in LLMs. 38

B.2.1 Hardware Innovations . 38

B.2.2 Software Optimizations . 39

B.2.3 Algorithmic Improvements . 41

C Techniques for Improving LLM Efficiency . 44

C.1 Dimensions of LLM Efficiency . 44

C.2 Budget Efficiency: Scaling Laws . 45

C.2.1 Scaling Behavior and Power Laws . 45

C.2.2 Compute-Optimal Model Scaling (Chinchilla vs. Gopher) 45

C.2.3 Data Constraints and Quality . 46

C.2.4 Open Problems in Scaling . 46

C.3 Data Efficiency . 47

C.3.1 Importance of Data Quality and Filtering . 47

C.3.2 Curriculum Learning . 47

C.3.3 Data Augmentation and Synthetic Data . 48

C.4 Architecture Efficiency . 49

C.4.1 Motivation: Rethinking the Transformer for Efficiency 49

C.4.2 Efficient Attention Mechanisms . 49

C.4.3 Efficient Positional Encoding . 51

C.4.4 Sparse Modeling via Mixture-of-Experts . 53

C.4.5 Attention-Free Alternatives for Sequence Modeling . 54

C.5 Training and Tuning Efficiency. 55

C.5.1 Scalable Training Strategies . 55

C.5.2 Parameter-Efficient Fine-Tuning (PEFT) . 56

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

C.6 Inference Efficiency . 58

C.6.1 Model Compression Techniques . 58

C.6.2 Algorithm-Level Inference Optimizations. 58

C.6.3 System-Level Optimizations and Deployment . 59

D Assessment . 59

D.1 Assessment Principles of EFFICIENTLLM . 59

D.1.1 Computational System Utilization . 59

D.1.2 Energy Consumption . 62

D.1.3 Model Compression Rate . 62

D.1.4 Model Performance . 63

D.2 Preliminaries of EFFICIENTLLM . 64

D.2.1 Curated List of LLMs . 64

D.2.2 Experimental Datasets . 65

D.3 Assessment of Architecture Pretraining Efficiency . 67

D.3.1 Assessment of Efficient Attention Mechanisms . 68

D.3.2 Assessment of Efficient Positional Encoding . 68

D.3.3 Assessment of Sparse Modeling via MoE . 69

D.3.4 Assessment of Attention-Free Alternatives for Sequence Modeling. 69

D.4 Assessment of Training and Tuning Efficiency . 71

D.5 Assessment of Bit-Width Quantization Inference Efficiency. 78

E Scalability of EfficientLLM Benchmark. 79

E.1 Efficiency for Transformer Based LVMs Architecture Pretraining 79

E.2 Assessment of PEFT on LVMs . 81

E.3 Assessment of PEFT on VLMs. 81

F Related Work . 84

G Discussion . 86

G.1 Limitations . 86

G.2 Open Challenges and Future Directions. 86

H Other Supplementary . 88

H.1 VLMs and LVMs Background . 88

H.2 LLM and VLM Framework Capabilities . 89

H.3 Other Models List . 90

H.3.1 Large Vision Models (LVMs) . 90

H.3.2 Vision Language Models (VLMs) . 90

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

H.4 Inference benchmark Performance. 91

H.5 Hyperparameter Settings . 93

H.6 Normalization Method for Drawing Figures . 93

H.6.1 Normalization Methodology for Efficiency Metrics . 93

H.6.2 Efficiency Score Computation. 93

I Use of LLMs. 94

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

A OBSERVATIONS AND INSIGHTS

To facilitate the overall understanding of our study, in this section, we first present the observations
and insights we have drawn based on our extensive empirical experiments in the EfficientLLM
framework.

A.1 OVERALL OBSERVATIONS

No single technique achieves Pareto optimality on all efficiency axes. Our benchmark, involving
over 100 model-technique combinations run across 48 GH200 and 8 H200 GPUs, revealed that every
evaluated method improved at least one metric (memory, latency, throughput, energy, or compression)
while compromising others. For example, Mixture-of-Experts (MoE) architectures (Fedus et al., 2022;
Jiang et al., 2024a) boosted downstream accuracy and reduced FLOPs per token during inference (by
activating only a subset of parameters), yet inflated peak memory requirements due to the need to store
all expert parameters, and introduced routing overhead. Our experiments showed MoE could increase
VRAM usage by approximately 40% compared to a dense model of equivalent active parameter
count (detailed in Section D.3). Conversely, post-training int4 quantization slashed memory footprint
and energy consumption by up to 3.9× but incurred a modest average-task performance drop of
approximately 3–5% across tested models (detailed in Section D.5) (Wu et al., 2023). These quantified
trade-offs highlight that efficiency must be treated as a multi-objective optimization problem , not
reducible to a single leaderboard score. This observation provides strong empirical validation for
the No-Free-Lunch (NFL) theorem (Wolpert & Macready, 1997) in the context of LLM efficiency.
While the NFL theorem, originally formulated by Wolpert and Macready , states theoretically that
no single algorithm universally outperforms others across all possible problems when averaged, our
benchmark demonstrates this principle concretely. The results across numerous model-technique
pairs and six distinct efficiency metrics quantify the specific costs associated with gains for practical
LLM optimization strategies, moving beyond theoretical averages to specific, measured outcomes.

Resource-Driven Trade-Offs in Efficient Attention Mechanisms. Our tests on models ranging from
0.5 B to 3 B parameters showed distinct advantages among the four efficient attention mechanisms
evaluated: Multi-Query Attention (MQA) (Shazeer, 2019), Grouped-Query Attention (GQA) (Ainslie
et al., 2023), Multi-Head Latent Attention (MLA) (Liu et al., 2024a), and Native Sparse Attention
(NSA) (Yuan et al., 2025). MQA delivered the lowest VRAM footprint (due to sharing key/value
heads) and fastest latency, making it preferable for memory-constrained environments or on-device
inference. MLA, introduced by DeepSeek (Liu et al., 2024a) to compress the KV cache into a
latent vector, minimized perplexity in our tests, rendering it attractive when raw language quality is
paramount. NSA, designed as a hardware-aligned and natively trainable sparse attention mechanism,
consumed the least energy per generated token in our evaluations, favouring low-power deployments
or scenarios where energy cost is a primary concern. These results confirm that a "one-size-fits-all"
attention mechanism does not exist; the benchmark data enables practitioners to make evidence-based
selections, aligning the variant with their dominant resource bottleneck or performance goal (e.g.,
minimizing latency vs. maximizing quality vs. minimizing energy).

Parameter-efficient fine-tuning (PEFT) methods scale differently with model size. We observed
that Low-Rank Adaptation (LoRA) (Hu et al., 2022) and its derivatives, such as DoRA (Weight-
Decomposed Low-Rank Adaptation) (Liu et al., 2024d) and other variants collectively referred
to as LoRA-plus, achieved the lowest performance loss (i.e., best task performance metrics like
accuracy or lowest loss values) for models in the 1 B to 3 B parameter range under specific memory
constraints. However, RSLoRA (Kalajdzievski, 2023), another LoRA variant, overtook the original
LoRA in terms of efficiency, exhibiting lower latency and wattage, specifically for models with 14
B parameters or more. For ultra-large checkpoints, our analysis indicated that parameter freezing
(updating only specific layers or components like biases) produced the best end-to-end latency during
the tuning process, albeit sometimes at a small cost in final task accuracy compared to LoRA-based
methods. Consequently, selecting the appropriate PEFT method based on the target model’s scale
yields larger efficiency gains than uniformly applying a single technique. This highlights a scale-
dependent interaction effect, suggesting that findings from smaller models regarding the relative
merits of different PEFT techniques may not directly extrapolate to significantly larger models.

Lower-precision formats deliver disproportionate returns on memory-bound workloads. Our
quantitative analysis across Llama-3, DeepSeek, and Qwen models (1.5B to 34B) indicates that

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

int4 post-training quantization significantly improves resource efficiency. Compared to bfloat16,
int4 reduced the memory footprint by up to 3.9× (approaching the theoretical maximum of 4×
reduction from 16-bit to 4-bit representation) and tripled the throughput in tokens per second (TPS)
under memory-bound conditions. This substantial gain came at the cost of only a slight drop in
average task performance scores (e.g., for DeepSeek-R1-Distill-Qwen-14B (Guo et al., 2025), the
average score dropped from 0.4719 in bf16 to 0.4361 in int4). The term ’disproportionate returns’
here signifies that the substantial gains achieved in resource efficiency (memory footprint reduction
approaching 4x, throughput tripling) far outweigh the relatively small cost incurred in terms of task
performance degradation (average drop of 3-5 percentage points). This makes int4 highly attractive
when memory, energy, or cost are primary constraints. Between the 16-bit floating-point formats,
bfloat16 consistently outperformed float16 in terms of average latency and energy consumption on
our Hopper architecture GPUs (GH200/H200). This is attributed to the native hardware acceleration
(Tensor Cores) for bfloat16 operations on these modern NVIDIA GPUs. This suggests that adopting
a "BF16-first" strategy is a safe default if quantization is not feasible or if the associated performance
drop is unacceptable for the target application.

A.2 NOVEL INSIGHTS DERIVED FROM THE EFFICIENTLLM BENCHMARK

Architecture Pretraining Efficiency. Architecture pretraining efficiency involves balancing memory,
latency, and quality trade-offs during the pretraining stage. Our benchmark yielded the following
architectural insights, as shown in Figure 3: 1) Attention variants have distinct optima during
pretraining: Among the four efficient attention variants tested in pretraining, our quantitative analysis
shows MQA hits the best memory–latency frontier, MLA achieves the lowest perplexity, and NSA
minimizes energy consumption. 2) MoE presents a compute-memory trade-off in pretraining: We
confirmed that sparse Mixture-of-Experts (MoE) during pretraining can add up to 3.5 percentage
points in accuracy while cutting training FLOPs by 1.8×. However, this comes at the cost of inflating
VRAM usage by 40%, highlighting a clear tension between compute savings and memory demands.
3) Attention-free models offer pretraining efficiency gains with quality trade-offs: Our evaluation
showed that attention-free Mamba models during pretraining trim Average Memory Usage (AMU)
and Average Energy Consumption (AEC) by ≈25% but incur a ∼1-point perplexity penalty. RWKV
achieved the lightest memory footprint in our pretraining tests, whereas Pythia yielded the fastest
latency, albeit at the cost of higher perplexity. 4) Depth–width aspect ratio has a flat optimum
in pretraining: Confirming the robustness of Chinchilla’s scaling laws for aspect ratios during
pretraining, our depth–width sweeps show a flat basin where configurations within ±20% of the
Chinchilla-optimal aspect ratio reach statistically indistinguishable loss levels. This allows flexibility
for hardware-aligned architectural tailoring without sacrificing performance.

Training & Tuning Efficiency. We benchmarked full fine-tuning against five Parameter-Efficient
Fine-Tuning (PEFT) methods. Our findings include, as shown in Figure 4: 1) Optimal PEFT method
varies with scale: For 1–3B models, our results show LoRA-plus (LoRA and its variants like
DoRA) achieves the lowest loss under a 60 GB AMU constraint. For models above 14B parameters,
RSLoRA dominates on both loss and latency metrics. 2) Parameter freezing offers lowest latency: We
measured that parameter freezing slashes fine-tuning latency by 3× compared to any PEFT variant
tested, making it suitable for interactive fine-tuning scenarios where a slight decrease in average
task performance (e.g., approximately 1-2 points on relevant benchmarks, though task-dependent) is
acceptable. 3) Full fine-tuning shows diminishing returns at scale: Our experiments indicate that full
fine-tuning of models larger than 24B parameters yields diminishing returns, with loss improvements
often less than 0.02 even as energy consumption doubles. This strongly argues for adopting PEFT
methods for large-scale model adaptation. 4) DoRA latency trade-off : While DoRA maintained
stable loss during fine-tuning in our tests, it incurred significant latency overhead, making it more
suitable for batch-oriented fine-tuning pipelines rather than real-time or latency-sensitive deployment
scenarios.

Inference Efficiency. Inference efficiency governs the cost and feasibility of model deployment.
Our benchmark provides the following insights, as shown in Figure 5: 1) Quantization yields high
compression with minor score impact: Our results show that Int4 post-training quantization reduces
memory footprint and throughput (tokens/s) by up to 3.9× across LLaMA-3, DeepSeek, and Qwen
model families (1.5B to 34B parameters), with a moderate 3–5 percentage point drop in average-
task scores. 2) BF16 preferred over FP16 on modern GPUs: Between floating-point formats, our

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

measurements on GH200/H200 GPUs consistently show bfloat16 beating float16 by ≈6% in latency
and ≈9% in energy consumption, benefiting from native hardware acceleration.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

B BACKGROUND

B.1 LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) represent a revolutionary technology in the field of artificial
intelligence. Essentially, these models are complex neural networks based on the Transformer
architecture, which, through deep learning from vast textual corpora, can capture and replicate the
intricate details of human language. The core architecture of these models relies on the Self-Attention
mechanism, enabling them to process input sequences in parallel and effectively capture long-range
dependencies and contextual relationships within language. Compared to traditional recurrent neural
networks, LLMs demonstrate significant advantages in language understanding and generation tasks.
Since the introduction of the Transformer model, the processing power of language models has grown
exponentially, evolving from a few million parameters to today’s models with hundreds of billions or
even trillions of parameters.

Throughout the development of these models, milestones such as the GPT (Generative Pre-trained
Transformer) series (Radford et al., 2018; 2019; Brown et al., 2020), BERT (Devlin et al., 2019), and
subsequent variants like RoBERTa (Liu et al., 2019) and ALBERT (Lan et al., 2019b) have been key
drivers of LLM advancements. These models have achieved breakthrough progress in areas such as
machine translation, text summarization, question answering systems, and code generation through
various pre-training strategies and architectural innovations. Notably, ultra-large models such as
GPT-3 and GPT-4, through few-shot (Brown et al., 2020) and zero-shot (Kojima et al., 2022) learning,
are capable of handling nearly any natural language task, demonstrating impressive potential for
general artificial intelligence. These models not only understand and generate natural language but
also perform complex reasoning, creation, and problem-solving tasks.

The applications of large language models are extremely broad and have permeated nearly every
digital interaction domain. In business services, they can provide intelligent customer service (Pandya
& Holia, 2023), automatic content generation (Xu et al., 2024c; Xiang et al., 2024), and personalized
recommendations (Mohanty, 2023; Fan et al., 2023; Xu et al., 2024c); in education, they enable
personalized tutoring, intelligent question bank generation, and study assistance (Li et al., 2023b;
Wang et al., 2024b; Zhang et al., 2024d); in research and development, they assist with code
generation (Jiang et al., 2024b; DeLorenzo et al., 2024), academic writing (Liang et al., 2024), and
literature reviews (Agarwal et al., 2024). More importantly, these models are reshaping human-
machine interactions (Xu et al., 2024a), making communication with AI more natural, intelligent,
and efficient. From programming assistance to creative writing, from language translation to complex
problem-solving, LLMs are becoming universal intelligent tools across various fields.

However, LLMs also face significant efficiency challenges (Wan et al., 2023; Bai et al., 2024; Zhou
et al., 2024b; Li et al., 2023d). These models typically contain billions to trillions of parameters,
with training and inference processes requiring massive computational resources and energy. For
example, the training cost of GPT-3 can reach millions of dollars, and the computational expense
of a single inference is also considerable (Brown et al., 2020). Moreover, the deployment and
fine-tuning of large models place high demands on hardware infrastructure, limiting their application
in resource-constrained environments. As a result, more researches are focusing on model compres-
sion, knowledge distillation, and efficient fine-tuning techniques, aimed at reducing computational
complexity and improving the practical utility and accessibility of these models. Additionally, issues
such as bias control, privacy protection, and ethical use of models have become important topics of
shared concern in both academia and industry.

B.2 APPROACHES TO ENHANCING EFFICIENCY IN LLMS

B.2.1 HARDWARE INNOVATIONS

Modern AI-specific accelerators are central to handling the immense compute demands of Large
Foundation Generative Models. While GPUs remain the workhorse for LLMs with their massively
parallel SIMD/SIMT design, specialized chips like Google’s TPUs, Amazon’s Trainium/Inferentia,
and Intel’s Gaudi offer tailored architectures that often lower power consumption and cost per
operation (Park et al., 2024). These accelerators typically use systolic arrays to speed up matrix
multiplications (critical for transformers) and integrate High-Bandwidth Memory (HBM) to feed

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Figure 6: The development trends of computational efficiency and memory capacity across NVIDIA
GPU series. Note that different colored dots represent different architectures, and the red line indicates
the fitted trend of computational efficiency over time.

data at extreme rates (Park et al., 2024). HBM provides much higher memory bandwidth than
traditional DDR memory, alleviating data transfer bottlenecks for large models. However, HBM’s
on-chip capacity is limited, requiring careful memory management so that model weights and
activations are shuttled efficiently without exceeding the cache-like HBM storage. Innovations in
interconnects (such as NVIDIA’s NVLink and NVSwitch) further improve multi-GPU bandwidth,
allowing faster model parallel communication (Park et al., 2024). Overall, the co-design of custom
ASICs and memory/network fabric has significantly improved throughput and scalability for training
and inference of LLMs.

Beyond raw throughput, energy efficiency has become a paramount hardware consideration for
large models. Data-center AI workloads consume vast power, so modern accelerators emphasize
performance per watt. For instance, TPU and similar ASICs achieve higher ops/Joule on transformer
tasks than general GPUs by streamlining their circuitry for dense linear algebra (Zhu et al., 2025b;
Jouppi et al., 2017). Alongside digital optimizations (like lower-voltage operations and mixed-
precision arithmetic), there is exploration of fundamentally new computing paradigms. Neuromorphic
computing chips, which mimic brain neurons and operate via sparse spiking signals, promise orders-
of-magnitude efficiency gains. By co-locating memory and compute and leveraging event-driven
operation, neuromorphic processors could execute large neural networks with 100×−1000× less
energy (Saeidi et al., 2022). Similarly, photonic computing is emerging as a futuristic option: optical
neural network accelerators can perform matrix operations with light instead of electricity, offering
extremely high parallelism with low heat dissipation. Recent prototypes of photonic processors have
demonstrated over 100−fold improvements in energy efficiency and 25× higher compute density
compared to conventional electronics (De Lima et al., 2019). While still in early stages, these
neuromorphic and photonic approaches represent promising paths for future efficiency gains once
today’s silicon-based architectures hit their limits (Duan et al., 2024).

B.2.2 SOFTWARE OPTIMIZATIONS

Efficient software frameworks and parallelization strategies are crucial to fully utilize hardware for
LLMs. Distributed computing techniques enable splitting giant models and workloads across many
devices in parallel (Verbraeken et al., 2020). For training, this often means hybrid parallelism: data
parallelism to copy the model across nodes for different data batches, combined with model/tensor
parallelism to split the model’s layers or tensor operations among accelerators. For example, GPU
clusters running libraries like DeepSpeed (Rasley et al., 2020) or Megatron-LM (Shoeybi et al., 2019b)

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

orchestrate tensor sharding, pipeline parallelism (partitioning layers into stages), and optimizer state
sharding to overcome memory limits (Duan et al., 2024; Park et al., 2024). Such coordination is
non-trivial—LLMs with hundreds of billions of parameters do not fit on a single device, so software
must partition the model and manage inter-GPU communication efficiently. Advances in collective
communication (e.g. using high-speed interconnects or custom protocols) and load balancing ensure
that distributed training scales with minimal overhead. In short, sophisticated parallel runtime systems
hide the complexity of multi-node training, achieving near-linear speedups and making tractable the
otherwise prohibitive training times (often running for weeks over thousands of GPUs).

We compare several popular LLM and VLM frameworks across their support for pre-training, fine-
tuning, and inference. Notably, frameworks such as Colossal-AI, Composer, DeepSpeed, FairScale,
and Megatron support all three stages, including large-scale pre-training. In contrast, LLM Foundry
and OpenLLM focus primarily on fine-tuning and inference, while tools like RayLLM, vLLM, and
Text Generation Inference are optimized for efficient serving only. A full comparison is provided in
Appendix H.2.

Another major avenue is model compression and efficient fine-tuning techniques that reduce the
memory and compute footprint of large models (Cheng et al., 2017; Polino et al., 2018). Quantization
has become a standard approach: model weights and activations are converted from 32-bit floats to
lower precision (e.g. 8-bit integers) to save memory and accelerate tensor operations. By sacrificing
a small amount of accuracy, INT8 or even INT4 quantization can dramatically improve inference
throughput – for instance, 8-bit weight quantization yielded 1.5× speedup on transformer inference
with only ≈2–3% accuracy loss in one study. Pruning techniques remove redundant parameters
or structures from the network to slim down model size. By identifying neurons, attention heads,
or weights that contribute little to outputs, pruning can maintain model quality while cutting down
FLOPs. Structured pruning (dropping whole units or layers) tends to yield actual speedups on
hardware, whereas unstructured pruning creates sparse weights that may need specialized hardware
to exploit (Zhu et al., 2024a; Wan et al., 2023). These methods are challenging for LLMs (aggressive
pruning can degrade accuracy), but recent research on magnitude-based and optimal brain surgeon
pruning has made progress in sparsifying large transformers without severe performance loss. In
the training regime, low-rank adaptation has emerged as an efficient fine-tuning strategy: instead of
updating all N billion parameters of a model for a new task, one can insert small low-rank weight
matrices and train only those. LoRA is a prime example that freezes the original model weights and
learns a limited number of new parameters per layer. This approach yielded over 10,000× reduction
in trainable parameters (and 3× lower VRAM usage) when adapting GPT-3, yet achieved on-par
accuracy to full fine-tuning. Techniques like LoRA (Hu et al., 2021a) thus enable personalizing or
specializing LLMs without the exorbitant cost of retraining the entire network.

At the systems level, compiler optimizations and specialized kernels greatly improve the runtime
efficiency of model execution. Deep learning compilers (XLA, TVM, PyTorch Glow/Inductor, etc.)
take high-level model graphs and generate low-level code that maximizes hardware utilization. They
apply optimizations such as operator fusion (merging multiple neural network operations into one
kernel launch), loop tiling and memory layout optimization (to exploit caches or shared memory on
GPUs), and vectorization. For example, combining the operations of attention computation (matrix
multiplication + softmax) into a fused kernel can avoid intermediate memory writes and improve
speed. A notable optimized kernel is FlashAttention series (Dao et al., 2022a; Dao, 2023), which
reimplements the attention mechanism in a tile-by-tile fashion to use on-chip memory efficiently,
thereby reducing memory bandwidth usage and enabling larger sequence lengths with lower latency.
Similarly, libraries provide hand-tuned or auto-tuned kernels for transformer building blocks (dense
layers, layer normalization, convolution in vision models) that exploit the specific accelerator’s capa-
bilities (Tensor Cores, etc.). These low-level improvements often yield significant gains: for instance,
using an optimized attention kernel or a JIT-compiled fused operation can improve throughput by
> 2× compared to naive implementations (Snider & Liang, 2023). The use of graph compilers also
allows automatic exploration of different execution plans (such as finding the best parallelization
or memory trade-off) and can adapt models to new hardware with minimal manual code rewriting.
Overall, the compiler and kernel-level innovations ensure that the theoretical speedups of advanced
hardware are actually realized when running large models at scale.

Finally, knowledge distillation (Hinton et al., 2015) and retrieval-augmented generation (Lewis et al.,
2020) are high-level software strategies to make large models more efficient in practice. Knowledge
distillation involves training a smaller “student” model to replicate the behavior of a large “teacher”

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

model, effectively compressing knowledge into a compact network (Hinton et al., 2015; Gou et al.,
2021). This has been used to create lightweight versions of giant models (e.g., DistilBERT (Sanh
et al., 2019b) is a distilled 66M parameter version of BERT (Devlin et al., 2019) that retains most
of its accuracy). Distillation can significantly reduce model size and inference cost, though careful
training is required to preserve quality on diverse tasks (Gou et al., 2021). Retrieval-Augmented
Generation (RAG) techniques, on the other hand, aim to reduce the burden on the model’s parameters
by offloading some knowledge to an external database. In this approach, an LLM is coupled with a
retrieval system that fetches relevant documents or facts from a large corpus, which the model then
conditions on during generation. This allows even a smaller model to produce informed, accurate
outputs by leveraging information beyond its fixed weights. For example, the RETRO (Borgeaud et al.,
2022) model by DeepMind augments a 7.5B parameter transformer with a text chunk database and
retrieval mechanism; remarkably, RETRO (Borgeaud et al., 2022) with 7.5B parameters outperformed
a 175B parameter GPT-3-style model Jurassic-1 (Lieber et al., 2021) on multiple language benchmarks
by virtue of accessing a rich external knowledge base (Borgeaud et al., 2022). This result underscores
how retrieval can substitute for brute-force parametric knowledge, attaining the accuracy of a model
over 20× larger. By marrying generation with search, RAG methods improve factual accuracy and
efficiency, since the model doesn’t need to internalize every piece of world knowledge (Li et al., 2024;
Xiong et al., 2024). Such techniques, alongside modular and memory-augmented model designs,
highlight a trend of leveraging external resources and smarter training schemes to curb the resource
requirements of foundation models without sacrificing capability.

B.2.3 ALGORITHMIC IMPROVEMENTS

At the algorithm level, researchers have proposed numerous Transformer architecture refinements
to boost efficiency for LLMs, LVMs, and multimodal models. One direction is sparse attention
mechanisms, which limit the quadratic cost of attending to every token (Child et al., 2019b). Sparse
Transformers (Child et al., 2019b) introduce structured patterns in the attention matrix (e.g. attending
only locally or to a subset of tokens) to bring complexity down from O(n2) to sub-quadratic or linear
in sequence length. This enables handling longer sequences or higher resolutions with the same
compute budget. Models like Longformer (Beltagy et al., 2020b), BigBird (Zaheer et al., 2020b),
and Reformer (Kitaev et al., 2021) use block-local attention or hashing-based mixing to achieve this
kind of efficiency, essentially skipping computation for many token pairs with negligible impact on
accuracy. Another powerful idea is the Mixture-of-Experts (MoE) (Jiang et al., 2024a) architecture,
which increases model capacity by having multiple expert subnetworks and routing each input token
through only one or a few of them (Masoudnia & Ebrahimpour, 2014). In a transformer MoE layer,
different “experts” (sets of feed-forward parameters) specialize on different tokens, and a gating
function selects which expert to activate per token (making the computation sparse). This allows
an MoE model to have a very large number of parameters in total, but each inference/pass only
uses a fraction of them. MoE transformers (e.g. Switch Transformers (Fedus et al., 2022)) have
been shown to achieve comparable or higher accuracy than dense models with the same effective
compute. In fact, MoEs can be pre-trained substantially faster than dense models of equivalent size,
and they yield faster inference throughput for a given budget of floating-point operations (Zhang
et al., 2024c; Lin et al., 2024). The trade-off is that maintaining many experts demands more memory
and introduces complexity in load-balancing the experts’ utilization. Nonetheless, MoEs represent a
promising efficiency leap: Google’s Switch-C Transformer (Fedus et al., 2022) (with 1.6T parameters
across experts) demonstrated that vastly larger sparse models can be trained at the same cost as a
much smaller dense model, leveraging only modest accuracy trade-offs. Other architecture tweaks
include linear or low-rank attention mechanisms that approximate the attention computation with
kernel feature maps (as in the Performer and Linear Transformer models), reducing memory usage
by avoiding explicit n×n attention matrices. Such linear attention variants scale as O(n ·d) and can
be parallelized to outperform standard attention for long sequences, though maintaining accuracy
remains an area of active research. In the vision domain, analogous ideas like token pruning/merging
in Vision Transformers (reducing the number of patches processed) also improve efficiency. In
summary, by re-imagining the transformer’s core operations – whether through sparsity, factorization,
or conditional computation – these architectural innovations enable handling larger inputs or models
at lower computational cost, albeit sometimes with added system complexity.

Improving the training process itself is another important angle for efficiency. Curriculum learning
strategies have been revisited for large models to speed up and stabilize training. The idea, dating

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

back to Bengio et al., is to present easier examples or sub-tasks first and gradually increase difficulty,
so that the model learns faster (much like humans learning concepts in a logical order). For instance,
an LLM could first be trained on shorter or simpler text sequences before introducing very long
and complex documents, allowing it to build a strong foundation and converge in fewer steps than
if all data were seen randomly. Another approach is progressive stacking (layer growth), where
one starts training a smaller model and then incrementally increases its depth/size using knowledge
from the smaller model. Gong et al. demonstrated this with BERT: they first trained a shallow
L-layer model, then “grew" it to 2L layers by duplicating the learned layers, and continued training
– the larger model converged much faster than training from scratch with 2L layers (Devlin et al.,
2019). This form of warm-start leverages the learned weights of a simpler model to initialize a
bigger model, effectively bootstrapping the training of deep networks. Progressive stacking and
related model growth techniques (like gradually increasing the sequence length or model width during
training) can find an efficient path through the training landscape, saving time and compute. Moreover,
techniques like curriculum in data selection (ordering training data by quality or complexity) or
gradual unfreezing (fine-tuning large models by slowly relaxing which layers are trainable) act as
implicit regularizers, often reaching better optima with less data or compute. While these methods
introduce additional scheduling heuristics to the training pipeline, they have shown tangible efficiency
improvements in practice by converging to high performance with fewer updates.

Data efficiency is also a crucial aspect – making the most out of the data that models see. Innovations
in tokenization help reduce wasted computation on overly long sequences or irrelevant tokens.
Subword segmentation algorithms (BPE , WordPiece, SentencePiece) have evolved to produce more
efficient vocabularies that balance vocabulary size and sequence length. A good tokenizer can
significantly shorten the input sequence (e.g., by merging frequent word pieces or handling multi-byte
characters effectively), thereby reducing the number of transformer steps required. For instance,
modern byte-level BPE tokenizers can represent text with fewer tokens than character-level methods,
especially for languages with many compound words, directly improving model throughput. In
multimodal models, analogous token or patch optimizations (such as merging similar image patches
or using lower resolution early in processing) also yield efficiency gains. Beyond tokenization,
self-supervised learning paradigms greatly enhance data efficiency by leveraging unlabeled data at
scale. Rather than relying on limited human-annotated examples, large models are pretrained on
raw text or images via predictive tasks (next word prediction, masked token recovery, image-text
alignment, etc.), which effectively turn vast unsupervised corpora into training signal. This has
enabled data scaling laws, where more data can substitute for bigger models. Notably, recent research
on compute-optimal model scaling found that many earlier LLMs were substantially under-trained
on data for their size. DeepMind’s Chinchilla project showed that a 70B parameter model trained on
1.4 trillion tokens (4× more data than similarly sized Gopher) outperformed a 175B model (GPT-3)
that had less training data, all while using the same training compute budget (Hoffmann et al., 2022a).
This result underlines the importance of feeding models with sufficient and high-quality data: a
smaller but properly trained model can be more powerful and efficient than a larger, under-trained
one. The takeaway is that there is an optimal balance between model size and dataset size for a
given compute budget. By following such scaling law insights, one can achieve better performance
per compute by right-sizing the model and dataset. In practice, techniques like data filtering and
deduplication (to ensure the model isn’t wasting capacity on corrupt or repetitive examples), as well
as smarter data augmentation, also help models reach higher accuracy faster. In multimodal settings,
leveraging pre-trained unimodal models (like vision or language models) as a starting point for
combined tasks is another data-efficient strategy, effectively reusing knowledge. All these approaches
focus on extracting maximum learning from each sample the model sees, which is crucial when
pushing the limits of model scale without an explosion in required data.

Finally, advances in optimization algorithms have played a key role in efficient large-model training.
Traditional stochastic gradient descent has largely been supplanted by adaptive optimizers like
Adam (Kingma & Ba, 2014), Adagrad (Duchi et al., 2011), LAMB (You et al., 2019), etc., especially
for huge models. These methods adapt the learning rate for each parameter based on past gradients,
enabling more stable and faster convergence in very high-dimensional parameter spaces. For example,
the Adam optimizer was pivotal for training transformers and is used almost universally for LLMs
because it handles sparse gradients and varying feature scales automatically. The LAMB optimizer
extended this to support extremely large batch training – in one case, allowing BERT (Devlin et al.,
2019) pre-training to scale to a batch size of 32k without loss of accuracy, thereby reducing the
training time from 3 days to only 76 minutes on a TPU pod (You et al., 2019). Such adaptive schemes

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Table 1: Specifications of various NVIDIA GPUs.

GPU Release Year Mem (GB) Transistors (M) Architecture FP32 (TFLOPS) FP16 (TFLOPS) PSU (W)
GTX 1080 2016-5 8 7200 Pascal 8.87 – 450
GTX 1080 Ti 2017-3 11 11800 Pascal 11.34 – 600
RTX 2080 Ti 2018-9 11 18600 Turing 13.45 26.9 600
TITAN RTX 2018-12 24 18600 Turing 16.31 32.62 600
RTX 3090 2020-9 24 28300 Ampere 35.58 35.58 750
RTX 3090 Ti 2022-1 24 28300 Ampere 40 40 850
RTX 3060 2021-1 12 12000 Ampere 12.74 12.74 450
Tesla V100 2018-3 32 21100 Volta 14.13 28.26 600
RTX A4000 2021-4 16 17400 Ampere 19.17 19.17 300
RTX A5000 2021-4 24 28300 Ampere 27.77 27.77 550
RTX A6000 2020-10 48 28300 Ampere 38.71 38.71 700
A40 PCIE 2020-10 48 28300 Ampere 37.42 37.42 700
A100 PCIe 80 GB 2021-6 80 54200 Ampere 19.49 77.97 700
L20 2023-11 48 76300 Ada Lovelace 59.35 59.35 600
RTX 4090 2022-9 24 76300 Ada Lovelace 82.58 82.58 850
H100 PCIe 80 GB 2023-3 80 80000 Hopper 51.22 204 750
H100 SXM5 80 GB 2023-3 80 80000 Hopper 66.91 267.6 1100
H200 SXM 141 GB 2024-12 141 80000 Hopper 66.91 267.6 1100

make it feasible to utilize parallel hardware (by increasing batch sizes) efficiently while maintaining
training stability. In addition to optimizers, there is growing interest in reinforcement learning and
automated tuning to squeeze out further efficiency. One example is using RL or other automated
methods to tune hyperparameters (learning rates, batch schedules) or even architectural choices
during training. As an illustration, the Zeus system dynamically adjusts the GPU power limit and
batch size during training to improve energy efficiency without degrading training time (Jomaa et al.,
2019; You et al., 2023; Zahavy et al., 2020). By formulating the trade-off between power usage and
throughput as an optimization problem, techniques like this can save significant energy in large-scale
training runs. More broadly, Neural Architecture Search (NAS), often powered by reinforcement
learning or evolutionary algorithms, has been used to discover efficient neural network architectures
automatically (Ren et al., 2021). While NAS has mostly been applied to smaller-scale image or
language models, the concept extends to LLMs – for instance, using RL-based agents to decide
layer widths, depths, or sparsity patterns could yield architectures that outperform human-designed
transformers in efficiency. Already, NAS has produced models like EfficientNet (Tan & Le, 2019)
in vision by finding better layer shapes for a given computation budget. We can envision future
foundation models being partially discovered by AI themselves, optimized from the ground up for
hardware friendliness. Lastly, reinforcement learning also comes into play in fine-tuning large models
via methods like proximal policy optimization in the context of Reinforcement Learning from Human
Feedback (RLHF), which, while aimed at alignment and not purely efficiency, does demonstrate the
flexibility of training algorithms for these models (Havrilla et al., 2024; Zhong et al., 2024; Zhu et al.,
2023). In sum, a combination of clever optimizer choices, automated tuning of hyperparameters, and
even learning-driven architecture optimization contributes to making the training and deployment of
large-scale models more efficient than ever before. Each of these algorithmic improvements – from
better optimizers to learning curricula – chips away at the overall resource requirements, enabling the
continued scaling of LLMs, LVMs, and VLMs within practical limits.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

C TECHNIQUES FOR IMPROVING LLM EFFICIENCY

This section is organized as follows. Section 2 introduces background concepts: the LLM fundamen-
tals (Transformer architectures, training paradigms) and common efficiency evaluation metrics. In
Section 3, we discuss budget efficiency through the lens of scaling laws – how performance scales
with compute, model size, and data, and what trade-offs are optimal. Section 4 covers data efficiency
techniques, including data filtering and curriculum learning to get the most out of training data.
Section 5 surveys architecture-level innovations such as efficient attention mechanisms, positional
encodings, and sparse or attention-free models that reduce the computation per token. Section 6
examines training and tuning efficiency, from distributed training and mixed precision to parameter-
efficient fine-tuning methods. Section 7 reviews inference efficiency via model compression (pruning,
distillation, quantization, etc.), decoding optimizations, and systems design for serving LLMs.

C.1 DIMENSIONS OF LLM EFFICIENCY

When we discuss making LLMs more efficient, it is important to define metrics for resource usage:

Model Size & Parameters: The number of parameters (and by extension the model file size) is a
basic metric. It correlates with memory requirements for storage and inference. For instance, a 175B
parameter model in fp16 occupies ∼350 GB (2 bytes/param) in memory, whereas a 6B parameter
model would be ∼12 GB. Parameter count alone is not a perfect proxy for speed, but it is a rough
measure of model complexity and hardware footprint.

FLOPs / Computational Cost: Floating point operations (FLOPs) needed for a forward (and back-
ward) pass measure computational workload. For example, generating one token with GPT-3 requires
on the order of 2× 175B ≈ 3.5× 1011 FLOPs (since each token involves matrix multiplications
proportional to model size) (Brown et al., 2020). Training cost can be reported in PF-days (petaflop/s-
days) – GPT-3’s training was about 3,640 PF-days (Brown et al., 2020). Efficiency improvements
often aim to reduce FLOPs needed for the same task or shift to lower-precision operations. Reducing
FLOPs generally translates to faster runtime if hardware is fully utilized.

Throughput and Latency: Throughput is how many tokens (or sequences) can be processed per
second, and latency is how long it takes to get a result. For training, throughput might be measured in
examples or tokens per second. For inference, latency per token or per query is key. Techniques like
model parallelism might increase throughput but could also introduce communication overhead that
affects latency. Real-time applications care about latency (e.g. respond in under 100ms), while batch
processing cares about total throughput.

Memory Footprint: This includes model weights memory, activation memory during computation,
optimizer states during training, and memory for caches. Memory is a limiting factor for deploying
large models – e.g., fitting a model on a single GPU requires it to have enough VRAM for the model
and intermediate activations. Memory-saving techniques (like gradient checkpointing or quantization)
allow using less memory at the cost of extra computation or slight accuracy loss. Efficient memory
use is also important to avoid waste when serving many requests (see PagedAttention in Section 7,
which tackles memory fragmentation (Kwon et al., 2023)).

Energy and Carbon Efficiency: Increasingly, researchers track the energy consumed by model
training/inference and the associated CO2 emissions (Ding et al., 2023a). A model that achieves the
same accuracy with half the energy is more efficient in a very tangible sense. Metrics like “FLOPs per
watt” or total kWh for training are used. Strubell et al. (Strubell et al., 2019a) famously highlighted
that large NLP models can emit as much CO2 as several cars’ lifetimes. Efficiency methods can
dramatically cut down energy usage (e.g., by requiring fewer FLOPs or using specialized hardware
better). Reporting carbon impact is becoming a good practice.

In practice, efficiency gains may trade off between these metrics. For instance, a method might reduce
memory usage at the cost of more FLOPs, or vice versa. Ultimately, end-to-end improvements (e.g.,
reducing overall runtime on a given hardware budget for a given task) are what matter. Throughout
this survey, we will note how each technique impacts these metrics. For example, mixture-of-experts
models have more parameters but can reduce FLOPs per token by activating only some experts,
improving speed at the cost of memory. Quantization reduces memory and may even speed up
compute on certain hardware (taking advantage of INT8 tensor cores), with some impact on accuracy.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

The goal is Pareto-improvement: achieve the same or better model quality for lower cost on one or
more of these axes.

C.2 BUDGET EFFICIENCY: SCALING LAWS

C.2.1 SCALING BEHAVIOR AND POWER LAWS

A natural question in the development of LLMs is how performance improves as we allocate more
resources. Scaling laws refer to empirical relationships between model performance (often measured
via cross-entropy loss or perplexity) and scale factors like model size, dataset size, or compute.
Pioneering work by Kaplan et al. (2020) observed that the loss L of a language model follows a
power-law decline as model parameters N increase: L(N)≈ aN−α +L∞, for some constants a,α,L∞

(Kaplan et al., 2020a). Similarly, loss scales as a power-law with the amount of training data D. These
scaling laws held impressively over seven orders of magnitude in N and D (Kaplan et al., 2020a).
Crucially, Kaplan et al. found that within the ranges tested, other architectural details (e.g. width vs.
depth of layers) had minimal effect on loss compared to total parameter count (Kaplan et al., 2020a).
In other words, a Transformer’s performance is largely a function of how big it is and how much data
it is trained on, and the improvement is predictable and smooth (a log-linear trend on plots). This
provided a guidepost for building better LLMs: just make them bigger and train on more data, and
you will likely get better results.

However, scaling up is not free – it comes with an increased compute budget requirement. Given
a fixed compute budget C (which roughly scales as N ×D for training a model of size N on D
tokens), how should one allocate it? Kaplan et al. suggested an answer: larger models are more
sample-efficient (Kaplan et al., 2020a). They found that to minimize loss for a given C, one should
train a very large model without fully consuming the data, rather than a smaller model to convergence
(Kaplan et al., 2020a). Intuitively, doubling model size and halving training steps led to lower loss
than vice versa. This recommendation – train huge models for fewer epochs – was adopted in early
LLMs. For example, GPT-3 was somewhat under-trained (trained on 300B tokens, which is only ∼2
epochs over its ∼160B token dataset) according to these heuristics.

C.2.2 COMPUTE-OPTIMAL MODEL SCALING (CHINCHILLA VS. GOPHER)

In 2022, Hoffmann et al. (DeepMind) revisited scaling laws with extended experiments and found
that many recent LLMs were significantly under-trained for their size (Hoffmann et al., 2022b). They
introduced the notion of a compute-optimal model: for a given compute C, there is an optimal pair
of N (model size) and D (tokens) that yields the best performance. Their empirical analysis suggested
a roughly linear relationship between optimal N and D – in fact, doubling the model size should
go along with doubling the training data to stay on the compute-optimal frontier (Hoffmann et al.,
2022b). This is in contrast to the earlier strategy of extremely large N with limited data.

To validate this, Hoffmann et al. trained Chinchilla, a 70B parameter model, on 1.4 trillion tokens,
using the same compute as used to train Gopher, a 280B model on ∼300B tokens. The result
was striking: Chinchilla (70B) outperformed Gopher (280B) on a wide range of downstream tasks
(Hoffmann et al., 2022b). Despite having 4× fewer parameters, Chinchilla’s extra training data gave
it an edge – for example, it achieved an average score of 67.5% on the MMLU benchmark, >7%
higher than Gopher (Hoffmann et al., 2022b). It also surpassed other models in that compute class
like GPT-3 (175B) and Megatron-Turing NLG (530B) (Hoffmann et al., 2022b). This revelation
prompted a re-evaluation in the community: bigger is not always better, if not fed with enough
data. A smaller model can “soak up” more data and end up better. Moreover, an added benefit is
that Chinchilla-like models are cheaper to fine-tune and faster to inference (since they have fewer
parameters) for the same performance level (Hoffmann et al., 2022b).

The concept of compute-optimal scaling can be summarized by the heuristic: scale model size and
data in tandem. One way to express the optimal regime is to set N proportional to D (assuming
training compute C ∝ N ·D for a given architecture). Under a fixed C, this yields an optimal N∗ and
D∗. The Chinchilla law suggests N∗ : D∗ should be about 20 tokens per parameter (in the 2022 study)
– though that exact ratio may vary. The key is that many previous models like GPT-3 (which had ∼2
tokens per parameter) were far off this optimum, hence under-utilizing data. With this insight, new
models (e.g. LLaMA, see below) have aimed to be more balanced.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

C.2.3 DATA CONSTRAINTS AND QUALITY

One practical challenge is that simply scaling both N and D requires massive high-quality datasets.
If one is data-constrained, scaling laws can bend or break. For instance, if only 108 tokens of
domain-specific text exist, making the model larger than a certain point yields diminishing returns
because it will quickly saturate the available data (and start overfitting). In such regimes, one might
in fact prefer a smaller model or use heavy regularization and reuse data with careful curriculum.
Empirically, when data is the bottleneck, the performance gains will flatten out no matter how much
compute you throw with more parameters (Hoffmann et al., 2022b). This scenario has led researchers
to focus on data quality and curation – to get more “effective” data for the model to consume. For
example, using diverse sources and cleaning duplicates helps avoid wasted capacity on redundant or
low-value text.

Interestingly, improvements in data quality can sometimes substitute for sheer quantity. The LLaMA
models by Meta (2023) demonstrated that by curating a high-quality mix of public data and training
somewhat past the earlier “optimal” point, a 13B model could outperform GPT-3 175B on most
benchmarks (Touvron et al., 2023). LLaMA-13B was trained on 1T tokens (slightly more than
Chinchilla’s recommended 13B×20 = 260B, so it “over-trained” relative to compute-optimal), yet
its performance benefited from the high quality data and possibly better training efficiency. This hints
that the constants in scaling laws depend on data quality – better data gives lower loss for the same
size. Thus, another dimension of efficiency is maximizing what the model learns per token of data.
We will cover data filtering techniques in Section 4.

Moreover, when models are scaled up, they often unlock capabilities rather than just monotonically
improving a single metric. For example, very large models can do multi-step reasoning or understand
nuanced instructions (emergent behaviors) that smaller models cannot (Ding et al., 2023a). These
binary capabilities (has/has not) complicate the smooth scaling picture. Recent studies (e.g. Wei et al.
2022 on emergent abilities) show that some tasks suddenly become solvable once the model crosses a
size threshold (Ding et al., 2023a). Such breaks in scaling trends mean that beyond a certain point,
scaling might yield discontinuous leaps in what the model can do.

C.2.4 OPEN PROBLEMS IN SCALING

Broken Scaling and Out-of-Distribution Generalization: While scaling laws hold remarkably well
on the training distribution (and near-range evaluations), they can “break” when extrapolating. For
instance, a model might follow a power-law on perplexity but fail to improve on a certain logical
reasoning task until it reaches a large size. Understanding these deviations is ongoing work. Some
researchers propose multi-faceted scaling laws that incorporate additional factors (like knowledge
composition or reasoning depth) to predict performance; others have introduced evaluation scaling
laws to estimate how performance on downstream tasks scales. A challenge is we do not have a
complete theory of why power-laws emerge; it may relate to the underlying data distribution and
model capacity being used effectively. When scaling further (e.g. to trillion-parameter models),
will new phenomena occur or will the gains saturate? Recent evidence from models at GPT-4 scale
suggests that scaling alone is not enough – for example, GPT-4 likely owes some improvements to
architecture and training technique, not just size.

Architecture Shape (Depth vs Width): Kaplan et al. noted little effect of depth vs width within
reasonable ranges (Kaplan et al., 2020a). Yet, as we push models to extreme depths (hundreds or
thousands of layers), training becomes unstable. Techniques like DeepNorm (Wang et al., 2022)
allow 1000-layer Transformers by adjusting residual scaling. It remains an open question whether a
very deep narrow model could outperform a shallow wide model of the same parameter count when
properly trained. In theory, depth could give more representational power, but optimization issues
might negate that. So far, empirical evidence indicates that for equal parameter count, there is a broad
plateau of depth-vs-width configurations that perform similarly (Kaplan et al., 2020a). Very extreme
aspect ratios (too deep and narrow) underperform due to difficulty in training. Thus, architecture
interplay with scaling is subtle – most large LMs keep depth around 40–80 layers and increase width
(dmodel) for larger sizes, a heuristic that has worked.

In summary, scaling laws provide a north star for guiding efficient use of a compute budget: use as
much data as possible and right-size the model to that data. The era of blindly increasing parameter
count is over – instead, we aim for scaling balanced with data. The following sections (4–7) can

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

be seen as methods to improve or refine the scaling curves – achieving on-par performance with
fewer parameters (through data or architecture efficiency), or reaching a target performance with less
compute (through better training algorithms and inference optimizations).

C.3 DATA EFFICIENCY

Training an LLM often involves hundreds of billions of tokens of text. Collecting and processing
such data is costly in terms of time, storage, and even intellectual property concerns. Data efficiency
refers to techniques that extract maximum performance from a given amount of data – or alternatively,
achieve a target performance with significantly less data. This is crucial when data is limited (e.g.
specialized domains) or expensive to curate/label. Two major strategies are data filtering to improve
quality and curriculum learning to optimize the order in which data is used.

C.3.1 IMPORTANCE OF DATA QUALITY AND FILTERING

Not all data are equal. Web-scale corpora contain duplicates, spam, and low-quality text that
can waste training capacity or even harm the model (learning bad facts or biases). Data filtering
methods aim to curate a higher-quality training set without dramatically reducing its diversity.
One straightforward but effective technique is deduplication – removing duplicate or near-duplicate
examples. Even though web scrapes are huge, they often contain many repeated texts (news articles
copied on multiple sites, boilerplate templates, etc.). Deduplicating the dataset can reduce its size
and also improve generalization. Lee et al. (2021) showed that deduplication allowed models to
reach the same validation loss in 10× fewer steps in some cases (Ding et al., 2023a). Intuitively, the
model does not waste time memorizing the exact same content repeatedly. Common approaches use
hashing (e.g. MinHashLSH) to identify duplicates efficiently. Projects like CC-Net use clustering and
hashing to clean Common Crawl data, while adversarial filtering (Demaine et al., 2019) can remove
machine-generated or undesirable text.

Another filtering axis is data selection / undersampling. If certain portions of data are less useful, we
can sample them less or drop them. For example, when mixing diverse sources (Wikipedia, books,
web), one might undersample the largest but lowest-quality source to ensure the model does not
get overwhelmed by it. Instance-based importance sampling can go further – ranking individual
examples by some score of utility. Recent work explores filtering out examples that are too easy or too
hard for the model at its current stage. One approach is loss-based filtering: if the model (or a smaller
proxy model) already assigns very low loss to an example, that example might not teach it much new.
Jiang et al. (2019) proposed Selective Backpropagation, where they only backpropagate on examples
with high loss. This yielded faster convergence by focusing compute on the mistakes the model
was making. Similarly, gradient-based sampling picks examples with the largest gradient norms,
which indicate the example has a big effect on parameters and might be more informative (Ding et al.,
2023a). Katharopoulos & Fleuret (2018) developed an importance sampling scheme based on an
upper bound of gradient norm (Katharopoulos & Fleuret, 2018), and others have implemented online
sample selection using proxy models.

One must be careful that filtering does not overly skew the data distribution. Strategies like random
undersampling of over-represented classes (Gruenrock, 2015) have shown that dropping redundant
data can both reduce training time and improve balance. For example, if 90% of the data is English and
10% is other languages, one might downsample English data to ensure the model learns multilingual
capability (if that is a goal). The MESA approach uses meta-learning to learn how to sample effectively
from a large dataset, and so forth. The outcome of successful data filtering is a leaner corpus where
each example has value. This can significantly cut the required number of tokens D to reach a certain
performance, which directly translates to less training compute.

C.3.2 CURRICULUM LEARNING

While the above deals with which data to use, curriculum learning (Elman, 1993; Bengio et al.,
2009) concerns in what order to present the data to the model. Inspired by how humans learn (starting
from easy concepts and progressing to harder ones), curriculum learning for LLMs means we might
begin training on simpler patterns and gradually move to more complex ones (Ding et al., 2023a).
The hypothesis is that this guides the model’s optimization in a smoother way, potentially leading to
better final performance or faster convergence.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

A curriculum requires two components: a difficulty metric to rank training examples by complexity,
and a pacing function that determines how to schedule the introduction of harder examples. Common
difficulty metrics in NLP include: (a) sequence length, (b) vocabulary rarity, (c) perplexity/uncertainty
according to a smaller model. For instance, Zhao et al. (2020) used word rarity as a measure,
presuming that handling rare words requires more context and understanding. The pacing function
can be step-wise or stage-wise. A neat example of stage-wise curriculum is Shortformer (Huang et al.,
2020), which trained a Transformer first on short sequences only, then in a second stage allowed
long sequences. By doing so, the model first mastered local coherence without being confused
by long-range dependencies, and then could leverage that foundation to handle long contexts. In
general, curricula can be as simple as sorting the training data by length or complexity and always
feeding in that order, or as complex as dynamically adjusting sample difficulty based on current
model performance (self-paced learning (Kumar et al., 2010)).

Applications of curriculum learning in LLMs have included: training small models on code with
gradually increasing code length (Ahmed et al., 2023; Bogomolov et al., 2024; Majdinasab et al.,
2024), training multilingual models by starting with one language then adding more (Chang et al.,
2023; Faisal & Anastasopoulos, 2024; Ebrahimi & Church, 2024; Nigatu et al., 2023), or starting
with syntactically simple sentences then moving to full natural text (Latard et al., 2017; Solovyev
et al., 2023; Jain et al., 2024). One must ensure that eventually the model sees the full distribution of
data, otherwise it might become overspecialized. Most curricula therefore converge to training on the
mixture of all data at some point.

In terms of efficiency, curriculum learning can accelerate convergence – the model reaches a given
loss or accuracy in fewer steps than without a curriculum. For very large models, curriculum strategies
like Shortformer have proven valuable for stability and speed. As models venture into longer contexts
(e.g. 10k+ tokens), curricula could be essential to first handle short contexts then extend, otherwise
training from scratch on extremely long sequences might be too difficult.

Furthermore, recent works have explored curriculum learning strategies to enhance the reasoning
abilities of LLMs through reinforcement learning (RL). Approaches such as DeepSeek-R1 (Author
& Author, 2025a) and Kimi k1.5 (Author & Author, 2025b) adopt RL fine-tuning methods that
progressively expose the model to tasks of increasing difficulty. In these systems, the training is
initiated with simpler reasoning tasks, and as the model performance improves, more challenging
tasks are introduced. Additional research has proposed alternative curriculum designs. For example,
WISDOM (Author & Author, 2024a) leverages progressive curriculum data synthesis to improve
the model’s performance on mathematical reasoning tasks. Similarly, LBS3 (Author & Author,
2024b) utilizes curriculum-inspired prompting, guiding the model through a sequence of intermediate
sub-problems before addressing the primary task. CurLLM-Reasoner (Author & Author, 2024c) and
Logic-RL (Author & Author, 2025c) further illustrate how curricula can be designed to integrate
structured reasoning and logical puzzles into the RL framework. Finally, AlphaLLM-CPL (Author
& Author, 2024d) introduces a dynamic curriculum adjustment mechanism that combines Monte
Carlo Tree Search (MCTS) with curriculum preference learning (CPL) to refine reasoning capabilities
progressively.

C.3.3 DATA AUGMENTATION AND SYNTHETIC DATA

Another approach to data efficiency is creating more data in a smart way. Techniques like back-
translation (in MT) and self-instruct (for instruction tuning) use models themselves to generate new
training examples. For example, the Self-Instruct framework had GPT-3 generate its own instructions
and responses to teach itself to follow instructions better. This bootstrap approach greatly reduced the
need for human-written prompts. In LLM fine-tuning, one might generate paraphrases of a small
dataset to expand it. While augmented data may be of lower quality than real data, if the model can
still learn from it, it can help squeeze more out of limited original data. Data augmentation blurs into
the territory of knowledge distillation (where a model’s outputs supervise another), which we revisit
in Section 7.

In summary, data efficiency techniques aim to maximize the knowledge gained per token of training
data. By curating high-quality, diverse corpora (filtering out noise and redundancy) and feeding
data in an optimal order, we reduce the total data needed. This directly saves computation and
allows smaller-scale training runs to still achieve strong performance. As model training budgets
are enormous, even a 10% efficiency gain in data usage can mean millions of dollars saved or the

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

difference between needing 1B vs 1.1B tokens to reach a milestone. Data efficiency is thus a critical
piece of the LLM efficiency puzzle, complementary to architectural and algorithmic innovations.

d

C.4 ARCHITECTURE EFFICIENCY

The Transformer architecture, while powerful, has some well-known efficiency bottlenecks – notably
the quadratic complexity of self-attention with respect to sequence length. Architectural efficiency
improvements seek to redesign parts of the model to reduce computation or memory usage per token,
without losing (much) performance. In this section, we discuss several fronts: efficient attention
mechanisms, improved positional encodings, models that leverage sparsity, and even alternatives to
attention entirely.

C.4.1 MOTIVATION: RETHINKING THE TRANSFORMER FOR EFFICIENCY

A standard Transformer processes a sequence of length L with self-attention that scales as O(L2 ·d)
and feed-forward layers that scale as O(L ·d2). For very long inputs (e.g. documents of thousands of
tokens), attention becomes the dominant cost due to the L2 term. The question is: can we maintain
the modeling power of Transformers while cutting down the attention cost to linear or near-linear in
L? At the same time, hardware-aware optimizations ask: can we implement attention in a way that
uses memory/cache more efficiently?

C.4.2 EFFICIENT ATTENTION MECHANISMS

Sparse and Factorized Attention: One approach is to restrict the attention computation to a subset
of token pairs, making the attention matrix sparse. The Sparse Transformer (Child et al., 2019a) did
this by attending only to a fixed pattern of positions. Longformer (Beltagy et al., 2020a) and Big Bird
(Zaheer et al., 2020a) introduced combinations of local attention (each token attends to a window of
nearby tokens) and global attention (a few tokens attend broadly). Big Bird achieved linear complexity
and even proved that such patterns are Turing-complete. Another line is factorizing attention via
low-rank approximation. Linformer (Wang et al., 2020a) hypothesized the L×L attention matrix
has low rank, projecting keys/values to lower dimension. Nyströmformer (Xiong et al., 2021) and
Performer (Choromanski et al., 2020) similarly used approximate or kernel-based approaches to
reduce attention to linear or O(L logL) complexity. Reformer (Kitaev et al., 2020) used LSH to group
tokens that have similar keys, achieving O(L logL).

IO-Aware and Hardware-Friendly Attention: A complementary angle is to optimize how we
implement attention. FlashAttention (Dao et al., 2022b) keeps exact full-attention but reorders
computation and memory access to minimize reads/writes to slow memory. By computing attention
in blocks that fit into on-chip SRAM, it significantly speeds up large context processing. This is
an IO-centric algorithmic approach. FlashAttention-2 refines these ideas further. These techniques
do not change the Transformer math but yield large speedups in practice by alleviating memory
bottlenecks.

MQA: Multi-Query Attention (MQA) modifies standard multi-head attention by sharing the key and
value projections across all heads while keeping the query projections distinct. In standard multi-head
attention, for each head h one computes

headh = Attention
(
QW Q

h , KW K
h ,VWV

h
)
,

with the attention function defined as

Attention(Q,K,V) = softmax
(

QK⊤
√

dk

)
V.

In MQA, although the query projection QW Q
h remains unique to each head, the keys and values are

shared among all heads:
headh = Attention

(
QW Q

h , KW K ,VWV).
This design reduces both the computational load and memory requirements, particularly during
inference, as the key–value cache is computed only once for all heads. MQA thus strikes a balance
between full multi-head attention and more extreme sharing schemes.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

Grouped Query Attention (GQA): Grouped Query Attention (GQA) refines standard multi-head
attention by partitioning the query heads into G groups, so that each group shares a single key–value
pair. In the standard approach, each head h computes

headh = Attention
(
QW Q

h , KW K
h ,VWV

h
)
.

When the total H heads are divided into groups of size g = H/G, for any head h in group i the key
and value projections become shared:

headh = Attention
(
QW Q

h , KW K
i ,VWV

i
)
.

This approach interpolates between full multi-head attention (when G = H) and multi-query attention
(when G = 1), providing a tunable trade-off between expressiveness and efficiency.

Multi-Head Latent Attention (MLA): Multi-Head Latent Attention (MLA) addresses the memory
bottleneck by compressing the key–value (KV) cache using a low-rank latent representation. Instead
of computing full keys and values for each head, the input token ht ∈ Rd is first projected into a
lower-dimensional latent vector:

cKV
t = htW DKV , W DKV ∈ Rd×dc , dc ≪ d.

Then, for each head i, the full key and value vectors are reconstructed using up-projection matrices:

ki
t = cKV

t WUK
i , vi

t = cKV
t WUV

i , WUK
i ,WUV

i ∈ Rdc×dh .

The query is computed as qi
t = htW

Q
i . This factorization dramatically reduces the size of the KV

cache, lowering memory usage while preserving the model’s capacity. MLA is particularly beneficial
during inference, as the compressed latent representation can be cached and the keys and values
computed on the fly.

Native Sparse Attention (NSA): Native Sparse Attention (NSA) reduces computational burden by
decomposing the attention operation into three branches. First, a compression branch aggregates
sequential tokens into a coarse global summary. Second, a selection branch computes importance
scores—typically via a softmax over intermediate scores—to select the most relevant token blocks.
Third, a sliding window branch preserves local context by applying full attention within a fixed
window. For each query qt , NSA computes the output as

o∗t = gcmp
t Attn

(
qt , k̃

cmp
t , ṽcmp

t
)
+gslc

t Attn
(
qt , k̃slc

t , ṽslc
t
)
+gwin

t Attn
(
qt , k̃win

t , ṽwin
t

)
,

where the gating coefficients gc
t ∈ [0,1] (for c ∈ {cmp,slc,win}) are learned functions that determine

the contribution of each branch based on the context. This hierarchical design is both end-to-end
trainable and efficient for long-context scenarios.

MoBA: MoBA (Mixture of Block Attention) adapts the standard attention mechanism to process
long sequences more efficiently by operating on blocks of tokens rather than on the entire sequence.
Given a sequence of N tokens, MoBA first partitions the sequence into n blocks, each of size

B =
N
n
,

with the i-th block defined by the indices

Ii = {(i−1)B+1, . . . , iB}.
For each query token q, a gating network computes an affinity score si for each block i as the inner
product between q and a summary representation of the keys in block i (typically, the mean of the
keys):

si =
〈
q, mean

(
K[Ii]

)〉
.

A top-k selection is then applied, so that only the k blocks with the highest scores are selected.
Formally, a gate value gi is assigned to each block as

gi =

{
1, if si is among the top-k scores,
0, otherwise.

The overall set of indices used for attention is

I =
⋃

i:gi=1

Ii.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

Finally, the attention is computed over the selected keys and values:

MoBA(q,K,V) = softmax
(

qK[I]⊤
)

V [I].

To preserve causality in autoregressive models, MoBA prevents a query token from attending to
tokens in future blocks by assigning a score of −∞ (or equivalently, a gate value of 0) to any block
that comes after the query. Additionally, within the current block, a causal mask ensures that each
token only attends to preceding tokens. This strategy reduces the computational cost by limiting the
number of tokens processed per query while dynamically selecting the most relevant blocks, thereby
providing an effective trade-off between efficiency and expressiveness without changing the overall
parameter count.

Overall, these techniques offer distinct strategies to reduce the memory and computational demands
of attention mechanisms while preserving performance, marking significant advances in the efficiency
and scalability of LLMs.

C.4.3 EFFICIENT POSITIONAL ENCODING

The processing of extended sequences poses significant challenges for LLMs. Traditional absolute
positional encoding (APE) from the original Transformer architecture Vaswani et al. (2017) proves
inadequate for handling lengthy inputs. To overcome this constraint, researchers have developed
innovative positional encoding (PE) strategies that effectively accommodate longer sequences through
relative positioning Press et al. (2023); Chi et al. (2022; 2023); Li et al. (2023c), rotary embeddings Su
et al. (2021); Peng et al. (2023b), randomized encodings Ruoss et al. (2023), or even by eliminat-
ing positional encoding entirely Kazemnejad et al. (2023). This section examines cutting-edge
developments in positional encoding that enhance model efficiency and capability.

Addition-Based Relative Positional Encoding Frameworks. Unlike absolute encoding schemes,
relative positional encoding methods track relationships between token pairs rather than assigning
fixed positions. Several frameworks employ this approach by incorporating encoded relative posi-
tions directly into attention calculations. Notable implementations include T5 Raffel et al. (2020),
TISA Wennberg & Henter (2021), and FIRE Li et al. (2023c).

T5 Raffel et al. (2020) implements a bucket-based approach, converting positional differences into
scalar bias values through a lookup mechanism. This method facilitates some length extrapolation by
assigning identical embeddings to all positions beyond the training distribution, though at the cost
of increased computational overhead. TISA Wennberg & Henter (2021) advances this concept by
deploying a trainable Gaussian kernel specifically focused on inter-token positional differences.

FIRE Li et al. (2023c), developed by Li et al., introduces progressive interpolation using normalized
position indices. This normalization is achieved by dividing the positional difference between tokens
by the query token’s index (i.e., the larger index in causal attention, i, for a query at position i and
a key at position j, the normalized distance is (i− j)/i). This approach not only generalizes but
effectively unifies previous relative encoding methods, capable of theoretically recovering both T5’s
RPE and ALiBi as special cases. Empirical evidence demonstrates FIRE’s superior generalization
capabilities for extended contexts in language modeling benchmarks. These relative encoding
approaches fundamentally enhance model comprehension of token relationships while enabling
length extrapolation—critical for processing diverse and intricate sequences.

Decay-Function Approaches to Relative Positioning. Another significant innovation involves
utilizing decay functions within relative positional encodings to emphasize local context. Systems
like ALiBi Press et al. (2023), KERPLE Chi et al. (2022), and Sandwich Chi et al. (2023) employ
this methodology to gradually diminish attention as the distance between tokens increases.

ALiBi introduces a fixed linear decay function that helps Transformers generalize to extended
sequences by imposing a monotonic decay pattern on attention scores. This enables extrapolation
beyond the training length with minimal performance loss by biasing attention towards recent tokens,
though the linear penalty means very distant tokens contribute negligibly, implicitly constraining
the effective receptive field. While this enhances length extrapolation, ALiBi can potentially affect
performance on in-distribution data.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

KERPLE Chi et al. (2022) refines this approach based on kernel theory, introducing trainable
decay RPE with two variants of conditionally positive definite (CPD) kernels: logarithmic and
power variants. These sophisticated kernels, featuring learnable parameters per head, adaptively
modulate the connection strength between token pairs during RPE computation, achieving excellent
extrapolation.

Sandwich Chi et al. (2023), named for its conceptual approach of sandwiching useful low-frequency
decay while discarding mid-frequency oscillations, is a parameter-free RPE derived from sinusoidal
absolute PE by removing oscillatory cross-terms. This results in a relative bias matrix that decays
with distance, similar to ALiBi, and leverages positions beyond the training range. These decay-based
methods collectively ensure that models maintain focus on contextually relevant nearby tokens while
still retaining capacity to process longer sequences.

Rotary Positional Encoding and Recent Advances. Moving beyond addition-based methods,
rotary positional encoding (RoPE) Su et al. (2021) has emerged as a dominant approach in modern
LLMs. Rather than adding position information, RoPE injects positional context by applying rotation
matrices to query and key vectors, with rotation angles proportional to token positions. However,
standard RoPE struggles with length extrapolation beyond its training range and exhibits an implicit
long-term decay effect due to its high-frequency components.

Contrary to common belief, recent analysis by Barbero et al. (2025) challenges the assumption that
RoPE’s effectiveness stems primarily from enabling decay in long-range attention. Their examination
of a trained 7B parameter model reveals that the highest-frequency components in RoPE actually
create precise positional attention, while lower-frequency components inadvertently carry semantic
information. This discovery suggests opportunities for targeted optimization of frequency components
within RoPE.

Recent years have seen contradictory yet equally effective approaches to modifying RoPE. HoPE Chen
et al. (2024b) (High-frequency rotary Position Encoding), a recent proposal (late 2024), challenges
the long-held assumption that long-term decay benefits attention. Chen et al. (2024) observed
that modern Transformers naturally develop a "U-shaped" attention pattern where attention decays
for distant tokens only beyond a certain threshold, rather than continuously. HoPE strategically
removes low-frequency components from RoPE that impose unnecessary decay constraints, replacing
them with position-independent signals while preserving high-frequency positional information.
This reformulation dramatically improves in-context retrieval capabilities and length extrapolation
performance, though its claims on extrapolation may be task-specific and await broader confirmation.

In stark contrast, Sun et al. (2023) introduced xPOS (Extrapolatable Position Embedding), which
explicitly incorporates a carefully calibrated exponential decay factor into RoPE’s rotation matrix.
This controlled decay mechanism stabilizes attention for extraordinarily long sequences. When
implemented within their LEX Transformer architecture (which also employs blockwise causal
attention), xPOS enabled training on relatively short contexts while maintaining impressive perplexity
scores when evaluated on sequences considerably longer than those encountered during training.

Another significant advancement, 3D-RPE Ma et al. (2024), extends RoPE from two dimensions to a
three-dimensional spherical representation inspired by quantum computing’s Bloch Sphere, involving
segmentation of sequences into chunks and encoding both intra-chunk and inter-chunk positions. This
approach offers dual advantages: customizable long-term decay characteristics and enhanced position
resolution. The 3D representation mitigates position resolution degradation commonly encountered
during RoPE interpolation, yielding performance gains particularly for long-context natural language
understanding tasks.

Earlier innovations like Position Interpolation (PI) Chen et al. (2023c), a post-hoc RoPE rescaling
technique, demonstrated that moderate fine-tuning could enable handling of extensive context win-
dows, albeit with a potential slight performance degradation on very long inputs compared to models
trained from scratch on those lengths—a practical trade-off for extensibility. Similarly, YaRN Peng
et al. (2023b) introduced NTK-aware interpolation techniques, which employ uneven frequency scal-
ing to preserve high-frequency RoPE components crucial for local order. While not adding learned
parameters, YaRN involves a specific rescaling schedule, and it substantially improves context size
adaptability without requiring comprehensive retraining.

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

Alternative Positional Encoding Paradigms. Beyond relative and rotary approaches, researchers
have explored fundamentally different paradigms for position encoding, including randomized
methods, mathematical reformulations, and even the elimination of positional encoding altogether.

Randomized Positional Encoding Ruoss et al. (2023) addresses a critical limitation of conventional
methods: the out-of-distribution problem when encountering positions beyond training length. Ruoss
et al. (2023) demonstrated that this failure mode directly connects to positional encoding limitations.
Their solution involves sampling extended position values and randomly subsampling them for
each training sequence, effectively simulating longer sequences within shorter context windows. In
comprehensive evaluations across 15 algorithmic tasks involving 6,000 transformer models, this
stochastic approach dramatically improved length-generalization performance—delivering average
accuracy improvements of 12% (reaching 43% on some tasks) without compromising in-distribution
performance, though it may potentially disrupt local sentence structures by exaggerating dependency
lengths.

Meanwhile, NoPE Kazemnejad et al. (2023) takes the radical approach of eliminating positional
encoders entirely from self-attention mechanisms, particularly in decoder-only models. This research
demonstrates that transformer self-attention, within such architectures and on certain algorithmic tasks,
can inherently learn relative positional relationships between tokens without explicit encoding. This
streamlined approach yields impressive generalization capabilities, particularly for inputs extending
beyond training distribution lengths.

Recent mathematical innovations have introduced alternative foundations for positional encoding.
PoPE Aggarwal (2024) employs Legendre orthogonal polynomials as basis functions, offering ad-
vantages including improved correlation structure, non-periodicity, orthogonality, and distinctive
functional forms across polynomial orders. While tested primarily on modest-scale tasks like transla-
tion and not specifically focused on LLM-scale length extrapolation in its initial proposal, empirical
results show PoPE-equipped transformers outperforming baseline models on these benchmarks while
achieving faster convergence rates.

Algebraic Positional Encodings Kogkalidis et al. (2023) provide a flexible framework to derive PEs
from algebraic domain specifications for various data structures (sequences, grids, trees), preserving
their mathematical properties as orthogonal operators. This approach, validated on relatively smaller
benchmarks, has shown performance on par with or better than state-of-the-art PEs without extensive
tuning.

The Wavelet-based Positional Representation Oka et al. (2025) reinterprets RoPE as a restricted
wavelet transform using Haar-like wavelets with fixed scale parameters—a limitation explaining
RoPE’s extrapolation challenges. By combining relative-position wavelet bias with multiple scale
windows, this method captures varied scale representations through wavelet transforms without
restricting attention fields. This improves both short and long context performance while enabling
superior position extrapolation.

C.4.4 SPARSE MODELING VIA MIXTURE-OF-EXPERTS

Recent advances in Mixture-of-Experts (MoE) architectures have focused on addressing key chal-
lenges in efficiency, scalability, and expert utilization. A significant breakthrough came with the
Dense Training, Sparse Inference (DS-MoE) framework Pan et al. (2024), which challenges the tradi-
tional sparse training paradigm by employing dense computation during training while maintaining
sparsity at inference time. This approach has shown remarkable results, activating only 30-40% of
model parameters during inference while maintaining performance comparable to dense models.
Similarly, the Merging Experts into One (MEO) technique He et al. (2023b) takes a different approach
to efficiency by consolidating multiple experts’ capabilities into a more compact form, achieving
significant FLOPs reduction compared to traditional MoE implementations.

Token Processing and Expert Interaction. The Multi-Head MoE (MH-MoE) approach Wu et al.
(2024); Huang et al. (2024b) introduces a novel mechanism where tokens are split into multiple
sub-tokens and processed by different experts in parallel. This parallel processing enables the
model to capture diverse representation spaces while maintaining computational efficiency. The
adaptive gating mechanism Li et al. (2023a) moves away from fixed expert assignments, allowing
tokens to be processed by varying numbers of experts based on their linguistic complexity. Taking
the dynamic computation concept further, the Mixture-of-Depths approach Raposo et al. (2024)

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

introduces adaptivity in the computational depth, optimizing how different sequence positions utilize
model resources.

Implementation and Hardware Optimization. Implementation efficiency has become another
crucial focus area. ScatterMoE Tan et al. (2024) represents a significant advance in how MoE models
are implemented on GPU hardware, addressing memory and computational bottlenecks through
careful management of padding and data movement. These practical improvements have made MoE
models more viable for real-world applications.

Routing Mechanisms and Specialization. Empirical studies Fan et al. (2024a) have revealed that
token-level and sequence-level routing strategies exhibit different strengths and specialization patterns.
Token-level routing tends to develop syntactic specialization Antoine et al. (2024), while sequence-
level routing shows stronger affinity for topic-specific expertise. Novel routing architectures have
emerged, including the layerwise recurrent router Qiu et al. (2024) that maintains routing coherence
across layers, and even LLM-based routers Liu & Lo (2025) that leverage large language models
for more sophisticated routing decisions. Research has also shown that routing decisions are highly
context-sensitive Arnold et al. (2024), particularly in encoder layers where semantic associations play
a crucial role.

Future Directions. The field continues to push boundaries with approaches like PEER He (2024),
which scales the expert pool to over a million specialists through efficient key-based retrieval. These
developments suggest that MoE architectures are far from reaching their full potential. As the field
matures, the focus is increasingly on finding the right balance between model capacity, computational
efficiency, and practical implementation considerations. The diversity of approaches now available
allows practitioners to choose MoE architectures that best match their specific requirements, whether
prioritizing inference speed, training efficiency, or domain specialization.

C.4.5 ATTENTION-FREE ALTERNATIVES FOR SEQUENCE MODELING

Recent advances in sequence modeling have sparked interest in alternatives to the traditional trans-
former architecture, particularly focusing on approaches that avoid the quadratic complexity of
self-attention. This section surveys key developments in attention-free architectures, examining their
motivations, approaches, and implications for the future of sequence modeling.

Core Motivation. While transformers have become the dominant architecture for sequence modeling,
their self-attention mechanism incurs O(L2) time and memory complexity with sequence length
L. This quadratic scaling poses significant challenges for processing long sequences and efficient
deployment. Attention-free alternatives aim to achieve transformer-level expressivity with linear or
sub-quadratic complexity, enabling longer context lengths and faster inference. These approaches
seek to combine the strengths of transformers (parallel training and high performance) with the
advantages of traditional sequence models (linear-time inference, constant memory per step).

Recurrent Neural Network Renaissance. Recurrent neural networks offer a conceptually appealing
alternative to attention, processing sequences step-by-step while maintaining a hidden state that can
theoretically retain information over arbitrary lengths. While classic RNNs (LSTMs, GRUs) are
Turing-complete and scale linearly with sequence length, they historically struggled with training
difficulties and limited parallelization.

RWKV Architecture. Recent work has reinvented RNNs for modern applications. The RWKV
architecture Peng et al. (2023a) introduces a Receptance-Weighted Key-Value mechanism that en-
ables parallel training similar to transformers while maintaining efficient RNN-style inference. This
approach achieves linear complexity O(L) in sequence length and demonstrates competitive perfor-
mance with similarly sized transformers at the impressive scale of 14B parameters. The architecture
successfully bridges the gap between traditional RNNs and modern transformer capabilities.

Linear Recurrent Units. The Linear Recurrent Unit (LRU) Orvieto et al. (2023) represents another
significant advancement in RNN design. By employing linearized recurrence without hidden-state
nonlinearity and incorporating careful initialization and normalization techniques, LRU demonstrates
that properly designed RNNs can match state-of-the-art SSMs on long-range tasks. The architecture
achieves this through deep architectures with stable gradient flow, effectively addressing the historical
limitations of RNNs.

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

State Space Models. State Space Models (SSMs) represent another promising direction, offering a
continuous-time generalization of RNNs with efficient implementation. The Structured State Space
Sequence Model (S4) Gu et al. (2022) introduced a breakthrough with its special parameterization
enabling efficient FFT-based computation. This innovation allows linear scaling in sequence length for
inference and has achieved state-of-the-art results on sequences exceeding 10,000 steps, particularly
showing strong performance on audio and time-series tasks.

Architectural Evolution. Subsequent developments include S4D with diagonal state matrices
and S5 Smith et al. (2023), which further simplified the architecture. S5 introduced a simplified
multi-input, multi-output state model and leveraged a parallel scan algorithm for efficient computa-
tion. These modifications led to improved performance on long-range tasks while maintaining the
computational benefits of the original S4 model.

Mamba Architecture. The Mamba architecture Gu & Dao (2023) represents a significant ad-
vancement in the field of SSMs. By introducing selective state-space layers with learned gating for
state updates, Mamba achieves linear-time computation while maintaining transformer-level quality.
The architecture demonstrates remarkable efficiency, achieving 5× higher generation throughput
compared to traditional transformers and effectively modeling sequences up to millions of steps in
length.

Hybrid and Convolutional Approaches. Several architectures combine elements of different
approaches or introduce novel mechanisms. The Hyena model Poli et al. (2023) advances the
field through implicitly parameterized long convolutions and data-controlled gating mechanisms.
This innovative approach achieves sub-quadratic complexity while maintaining strong performance,
offering significant speed advantages particularly for long sequences.

Retentive Networks. The Retentive Network (RetNet) Sun et al. (2023) presents a versatile architec-
ture that combines the benefits of different paradigms. It supports parallel training mode for efficient
learning while offering a recurrent inference mode with O(1) per-token complexity. RetNet’s ability
to process long sequences through chunkwise processing, while maintaining competitive performance
with transformers, makes it a promising direction for future development.

Future Directions and Challenges. While attention-free alternatives show significant promise,
several key challenges remain to be addressed. The field must tackle the challenge of scaling these
models to very large sizes (10-100B parameters) while maintaining stability for extremely long
sequences. Supporting modern NLP capabilities such as prompting and in-context learning remains
crucial, as does optimizing implementation efficiency across different hardware platforms.

Research Opportunities. Looking forward, the field presents several exciting research directions.
The development of hybrid architectures that combine multiple approaches shows particular promise,
as does the theoretical analysis of expressivity and stability in these new models. Hardware-specific
optimizations and novel applications leveraging linear-time processing capabilities will likely drive
further innovation. The development of attention-free architectures represents a significant step
toward more efficient and scalable sequence modeling, potentially enabling applications beyond the
reach of traditional transformers.

C.5 TRAINING AND TUNING EFFICIENCY

Even with a well-designed model and data, training LLMs is among the most resource-intensive
procedures in AI. This section examines techniques to speed up and scale the training process (via
mixed precision, parallelism, memory optimizations) and to fine-tune large models with minimal
overhead (parameter-efficient fine-tuning).

C.5.1 SCALABLE TRAINING STRATEGIES

Stable optimization for scale: As models grow deeper, training can become unstable. DeepNorm
(Wang et al., 2022) scales residual connections properly to allow 1000-layer Transformers without
divergence. Pre-LN architectures are also more stable than post-LN. Gradient clipping helps avoid
exploding gradients at high batch sizes.

Mixed Precision Training: Using half-precision (FP16 or bfloat16) significantly speeds up training
on tensor-core hardware (Micikevicius et al., 2017). The standard is automatic mixed precision

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

(AMP), which stores a master copy in FP32 but does most math in FP16. This roughly halves memory
usage and can double throughput with negligible accuracy loss. FP8 is on the horizon for further
gains.

Parallelism (Data, Model, Pipeline): LLMs typically require multi-GPU or multi-node setups.
Data parallelism (DP) duplicates the model on each GPU and trains on different mini-batches, then
synchronizes gradients. This is straightforward but memory-heavy if the model is huge. Model
parallelism (tensor or pipeline) partitions the model’s parameters/layers across GPUs (Shoeybi et al.,
2019a; Huang et al., 2018; Curl et al., 2019). Large weight matrices can be split among devices
(tensor parallel), or different layers can be assigned to different devices (pipeline parallel). ZeRO
(Rajbhandari et al., 2019) partitions optimizer states and gradients across GPUs, so each only stores
a slice of them, enabling training of trillion-parameter models by spreading memory load. This
is implemented in DeepSpeed and FSDP in PyTorch. Gradient checkpointing saves memory by
discarding intermediate activations and recomputing them on the backward pass. These and other
techniques combine so we can scale to thousands of GPUs with near-linear speedups.

C.5.2 PARAMETER-EFFICIENT FINE-TUNING (PEFT)

Fine-tuning all the parameters of a large pre-trained model for each new task can be prohibitively
expensive in terms of compute and storage. Parameter-Efficient Fine-Tuning (PEFT) methods address
this problem by updating only a small fraction of the model’s parameters or by introducing a few
lightweight modules, while keeping most of the model fixed (Han et al., 2024). This dramatically
reduces the resources required for fine-tuning, yet many PEFT techniques can achieve performance
close to that of fully fine-tuned models. In what follows, we outline several categories of PEFT
approaches (following the taxonomy of (Han et al., 2024)): additive methods, selective methods,
reparameterization-based methods, and hybrid approaches.

Additive Fine-Tuning Approaches. Additive methods introduce additional small trainable compo-
nents into the model, rather than modifying the original network weights. During training, only these
added parameters are updated, which limits the total number of parameters that need to be learned
(Pfeiffer et al., 2021; Li & Liang, 2021). Two common types of additive PEFT are: (a) inserting
adapter layers into the model, and (b) adding learnable prompt vectors (soft prompts).

Adapter-based Fine-Tuning. In this approach, small bottleneck layers called adapters are inserted
at various points within each Transformer block. For instance, an adapter may consist of a down-
projection matrix Wdown followed by a nonlinearity σ , then an up-projection Wup, whose output
is added to the model’s hidden representation. Only the adapter weights (Wdown,Wup) are tuned,
while the original model weights remain frozen. This technique was originally proposed for transfer
learning in NLP and provides significant savings in trainable parameters. Notable extensions include
AdapterFusion (Pfeiffer et al., 2021), a serial adapter configuration that combines knowledge from
multiple adapters, and parallel adapter architectures. For example, the Counter-Interference Adapter
for Translation (CIAT) (Zhu et al., 2021) and the Kronecker Adapter (KronA) (Edalati et al., 2022)
adopt a parallel adapter design, adding a side network alongside each Transformer layer instead of
inserting adapters sequentially. Another variant is CoDA (Conditional Adapters) (Lei et al., 2023),
which also uses parallel adapters but employs a sparse activation mechanism to improve inference
efficiency by activating only a subset of adapter parameters per input.

Soft Prompt-based Fine-Tuning. Another additive strategy is to prepend or append learnable
prompt vectors to the model’s input or to hidden states, rather than changing internal layers. These
soft prompts are continuous embeddings trained to guide the model toward the downstream task. In
prefix-tuning (Li & Liang, 2021), a set of trainable prefix vectors is prepended to the keys and values
at each self-attention layer; after training, only these prefix embeddings are needed for inference.
An improved variant, P-Tuning v2 (Liu et al., 2022), removes certain reparameterization tricks and
demonstrates that prompt tuning can be as effective as full fine-tuning across various scales and tasks.
Extensions include SPoT (Soft Prompt Transfer) (Vu et al., 2022), which transfers prompts learned
on high-resource tasks to low-resource ones, PTP (Chen et al., 2023b) with perturbation-based
regularization, and mixture-of-prompts methods such as (Choi et al., 2023), which train multiple
small prompt vectors and learn to route each input to the appropriate prompt via a gating mechanism.
These methods enhance prompt-based fine-tuning’s flexibility and robustness.

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

Selective Fine-Tuning Approaches. Selective PEFT methods do not introduce new modules; instead,
they fine-tune a carefully chosen subset of the existing model parameters while keeping the rest
frozen. By tuning only the most important or relevant weights, these approaches reduce the number
of trainable parameters and help avoid overfitting. Two broad strategies exist: unstructured and
structured parameter selection.

Unstructured Masking. Unstructured approaches learn a binary mask over the model’s parameters
to decide which weights to update. The mask can be arbitrary, aiming to choose individual weights
that are most crucial. DiffPruning (Guo et al., 2021) is an early example that learns a differentiable
binary mask on each weight, with an L0-norm penalty encouraging sparsity. Other work selects
weights based on information measures: FishMask (Sung et al., 2021) calculates an approximation
of the Fisher information per parameter, fine-tuning only the top-k. A dynamic variant updates the
Fisher-based mask iteratively (Das et al., 2023), while Fu et al. (Fu et al., 2023) use a second-order
sensitivity analysis to identify the most impactful parameters. Another notable approach, Child-
Tuning (Xu et al., 2021), randomly samples a subset (a “child” network) of parameters for training at
each iteration, enabling a lightweight yet robust fine-tuning procedure.

Structured Masking. In contrast, structured masking techniques select entire vectors, neurons,
or layers. DiffPruning (Guo et al., 2021) supports a structured variant (S-DiffPruning) that prunes
groups of weights together. FAR (Vucetic et al., 2022) clusters each feed-forward layer into “nodes”
and ranks them by ℓ1-norm to decide which nodes to fine-tune. A simple structured approach is BitFit
(Ben Zaken et al., 2022), which only updates bias terms (a few parameters per layer), yielding strong
results on various NLP tasks. Likewise, X-Attention tuning (Gheini et al., 2021) fixes most of the
Transformer but updates cross-attention layers in sequence-to-sequence tasks. SPT (He et al., 2023a)
(Sensitivity-Aware Fine-Tuning) first identifies the most sensitive weight matrices (via a first-order
Taylor approximation) and then applies an additive PEFT method (like LoRA) only to those parts,
effectively combining selective and additive tuning for improved efficiency.

Intrinsic Subspace Fine-Tuning. One line of research studies the intrinsic dimensionality of model
fine-tuning. Aghajanyan et al. (Aghajanyan et al., 2020) show that large models often have a relatively
low-dimensional task-specific subspace. By constraining updates to a random subspace of only a few
thousand dimensions, performance can approach that of full fine-tuning, indicating redundancy in
parameter updates.

Low-Rank Adaptation (LoRA) and Variants. A prominent PEFT strategy is Low-Rank Adaptation
(LoRA) (Hu et al., 2021a), which freezes the pre-trained weights W0 and introduces a trainable
low-rank decomposition ∆W = αAB for task-specific updates, where A ∈ Rm×r, B ∈ Rr×n, and
r ≪min(m,n). The adapted weight is W =W0+αAB. This significantly reduces trainable parameters
to r(m+n) and allows merging the update (∆W) into W0 after training, eliminating inference overhead
(Hu et al., 2021a).

Several recent methods build upon LoRA’s foundation. LoRA+ (Hayou et al., 2024) enhances
training dynamics by using different learning rates for matrices A and B, improving convergence
speed and final performance without changing the parameterization. Rank-Stabilized LoRA (rsLoRA)
(Kalajdzievski, 2023) modifies the scaling factor to α = 1/

√
r (instead of the common α/r), stabi-

lizing training at higher ranks r and enabling better performance trade-offs. Weight-Decomposed
LoRA (DoRA) (Liu et al., 2024d) reformulates the update by decomposing the weight matrix W into
magnitude and direction components. It updates the direction using a LoRA-like structure applied to
the normalized pre-trained directions D0, while learning a separate magnitude vector n, resulting in
W = (D0 +AB)diag(n). This separation often leads to improved performance by tackling magnitude
and direction updates independently. Principal Singular Vectors Adaptation (PiSSA) (Meng et al.,
2024) initializes the low-rank matrices A and B using the principal singular vectors and values derived
from an SVD of the original weights W0. It trains W = AB+R, where R is the frozen residual
part of W0. This initialization aligns the adaptation with the most significant components of the
pre-trained weights, often leading to faster convergence and better results compared to standard LoRA
initialization. All these variants typically retain the benefit of zero inference overhead by merging the
learned components post-training.

Hybrid Approaches. Hybrid PEFT approaches combine ideas from multiple categories, or propose
a unifying framework for various fine-tuning techniques. For instance, UniPELT (Mao et al., 2022)
integrates adapters, LoRA, and prompts, training a gating mechanism to decide which technique to

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

apply. Similarly, He et al. (He et al., 2022) present a template that unifies prefix tuning, adapter-based
tuning, and other PEFT variants, highlighting a continuum of approaches. Another example is
LLM-Adapters (Hu et al., 2023), providing a modular toolkit to integrate multiple PEFT methods into
LLMs.

Some works automate the selection of PEFT configurations through neural architecture search. NOAH
(Zhang et al., 2022) and AutoPEFT (Zhou et al., 2024a) both build search spaces of prompt, adapter,
and low-rank designs, then employ search or optimization methods to identify the best configuration
for a given task. By exploring different PEFT techniques as hyperparameters, these methods achieve
strong results without extensive manual trial-and-error.

Overall, PEFT has become a vital paradigm for adapting large pre-trained models. By leverag-
ing additional lightweight modules, selecting specific subsets of parameters, reparameterizing the
optimization space, or combining these ideas, PEFT enables developers to fine-tune massive mod-
els efficiently, making large-scale AI models more deployable and accessible in limited-resource
scenarios.

C.6 INFERENCE EFFICIENCY

Once trained, LLMs must be served to users. Inference efficiency is critical to reducing cost and
latency in real-world settings. Methods range from compressing the model itself (pruning, distillation,
quantization) to speeding up the decoding process (speculative decoding, efficient KV-cache usage).

C.6.1 MODEL COMPRESSION TECHNIQUES

Pruning removes weights or neurons deemed unnecessary (Sanh et al., 2020). Structured pruning
(dropping entire heads/neurons) yields a smaller dense model that runs faster on standard hardware.
Unstructured pruning creates sparse matrices that need specialized kernels but can reach high sparsity.
Recent works like SparseGPT (Ma et al., 2023) prune LLMs in one-shot with minimal loss.

Knowledge Distillation trains a smaller student to mimic a larger teacher’s outputs or hidden states
(Sanh et al., 2019a). DistilBERT cut 40% of BERT parameters while keeping 97% of its performance.
For GPT-like LLMs, the student can replicate the teacher’s next-token distribution, compressing
knowledge into fewer parameters.

Quantization reduces numeric precision (e.g. from 16-bit float to 8-bit int or lower). This cuts
memory usage by up to 4× and can enable faster int8 operations on GPUs (Ding et al., 2023a).
GPTQ (Frantar et al., 2022a) can quantize large LLMs down to 4-bit weights with small accuracy
loss. Mixed-precision quantization is widely used at inference time, and advanced approaches handle
outlier values carefully. QLoRA (Dettmers et al., 2023a) even fine-tunes models in 4-bit.

Low-Rank Decomposition approximates weight matrices by factors of lower rank (similar to LoRA
but for compression). ALBERT (Lan et al., 2019a) factorized BERT embeddings and shared layers,
massively reducing parameters. If weight matrices exhibit redundancy, SVD-based factorization can
shrink them with minimal performance drop.

C.6.2 ALGORITHM-LEVEL INFERENCE OPTIMIZATIONS

Speculative Decoding (Leviathan et al., 2022) speeds up autoregressive generation by letting a small
“draft” model propose several tokens, then having the large model verify them in fewer steps. If the
large model agrees, those tokens are accepted; if not, partial fallback occurs. This can yield 2–3×
speedups with no quality drop if the draft model is well aligned.

Caching and Batch Optimization: Transformers reuse past key/value vectors to avoid recomputing
attention over the entire sequence each step. This KV cache approach is standard, though it can
become memory-intensive for long outputs. PagedAttention (Kwon et al., 2023) manages KV cache
as pages in GPU memory, avoiding fragmentation and allowing dynamic batching of variable-length
requests, yielding large throughput gains in multi-user serving scenarios.

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

C.6.3 SYSTEM-LEVEL OPTIMIZATIONS AND DEPLOYMENT

Concurrent Batching: Serving frameworks like HuggingFace TGI or vLLM (Kwon et al., 2023) dy-
namically batch multiple requests to keep the GPU fully utilized, significantly improving throughput.
They interleave tokens from different requests (with different sequence lengths) in a single forward
pass, using careful memory management.

Distributed Inference: For very large models that cannot fit on a single GPU, weights can be sharded
across devices (tensor parallel). Pipeline parallel can also be used, though it introduces pipeline
bubbles. Model parallelism is typically used only if necessary, since it adds communication overhead.

Memory Offloading: If GPU memory is insufficient, some systems offload parts of the model or
KV cache to CPU or disk. This slows inference but allows large models to run on limited hardware.
Some prefer quantization or distillation to reduce the model size instead.

Specialized Hardware and Libraries: GPU vendor libraries (e.g. NVIDIA FasterTransformer)
fuse kernels (attention, GeLU, etc.) and offer INT8 or FP8 acceleration. Custom systems like
PagedAttention or FlashAttention achieve further speedups. CPU libraries (GGML) with 4-bit or
8-bit quantization can even run smaller LLMs locally. These low-level optimizations, combined with
high-level scheduling, can yield large speedups (5×–10×) over naive implementations.

In summary, inference efficiency is where large models meet real-world usage. By compressing the
model (pruning, distillation, quantization) and using optimized decoding (speculative approaches,
dynamic batching, efficient caching), one can serve LLMs at scale with acceptable latency and cost.
This final step completes the spectrum of efficiency methods, allowing practitioners to deploy models
that are large in capability but run faster and cheaper in production.

D ASSESSMENT

D.1 ASSESSMENT PRINCIPLES OF EFFICIENTLLM

In this section, we propose several metrics: Average Memory Utilization (AMU), Peak Compute
Utilization (PCU), Average Latency (AL), Token Throughput (TT), Sample Throughput (ST), Infer-
ence Throughput (IT), Average Energy Consumption (AEC), and Model Compression Rate (MCR).
These metrics are specifically designed to address critical limitations inherent in traditional efficiency
evaluation metrics, such as FLOPS, parameter count, and raw inference speed (Liu et al., 2023b;
Perez et al., 2023; Bao et al., 2023; Zhao et al., 2025; Ye et al., 2025). Conventional metrics often fail
to capture the dynamic and realistic utilization of hardware resources, thus providing an incomplete
picture of efficiency bottlenecks in real-world deployment scenarios. In contrast, our proposed
metrics offer several distinct advantages. AMU provides a comprehensive view of memory usage
fluctuations throughout training and inference, rather than merely peak memory consumption. PCU
accurately reflects real-world GPU utilization, overcoming the limitations of theoretical FLOPS-based
metrics that neglect communication overhead and synchronization delays. AL explicitly measures
responsiveness, which is crucial for latency-sensitive applications such as interactive dialogue sys-
tems. Furthermore, our throughput metrics (TT, ST, IT) clearly differentiate between pretraining,
fine-tuning, and inference scenarios, enabling more precise optimization decisions tailored to specific
deployment contexts. AEC quantifies actual energy efficiency, addressing the growing importance
of sustainability and operational cost reduction. Lastly, MCR integrates model size reduction with
performance retention, providing a balanced evaluation of compression techniques.

D.1.1 COMPUTATIONAL SYSTEM UTILIZATION

Intricately linked to efficiency, computational system utilization stands out as an essential challenge
for AI models, including LMs. It has garnered extensive discussion and scholarly attention (Li et al.,
2014; Thompson et al., 2022; Hestness et al., 2019; Madiajagan & Raj, 2019; Mittal & Vaishay, 2019).
To critically evaluate Deep Learning Models’ resource optimization and computational efficiency,
datasets and benchmarks, such as MLPerf (Reddi et al., 2020), SPEC CPU (Standard Performance
Evaluation Corporation, 2024), DeepBench (Research, 2024), and DAWNBench (Coleman et al.,
2017), have been employed in prior works (Ravi, 2017). Some tools also assessed specific aspects of
computational efficiency: Horovod Latency Check (Sergeev & Balso, 2018) and MPI (Corporation,

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

2024b) explores response time and processing delays; LLMPerf (Project, 2024) and NeuralSpeed
(Corporation, 2024a) inspect the scalability and hardware adaptability of large models.

While latency or training time and model performance remain predominant metrics for evaluating
computational efficiency (Yang et al., 2023; Hu et al., 2021b; Dettmers et al., 2023b; Houlsby
et al., 2019; Yuan et al., 2023), the need for comprehensive hardware utilization evaluation is also
recognized, particularly in benchmarks like MLPerf and DAWNBench. However, the challenge of
ensuring optimal hardware utilization is compounded by the narrow focus of current evaluations,
which often overlook critical factors such as memory bandwidth, device utilization, and throughput.
LMs, given their resource-intensive nature, can exhibit suboptimal hardware utilization during both
training and inference, leading to increased operational costs for researchers and companies (Xia
et al., 2023; Bang, 2023). This misalignment between the focus of benchmarks and the practical need
for maximizing computational system utilization highlights a gap in current evaluations, making this
an ongoing and critical concern for real-world deployments.

In this work, we define computational system utilization as the efficient and effective use of hardware
resources during both training and inference of LMs. Our assessment of computational system
utilization focuses on 1) evaluating memory utilization, which involves the efficient allocation and
usage of device memory across different tasks; 2) testing compute utilization, which measures the
extent to which available processing units (such as GPUs tensor cores) are fully utilized during
operations; 3) analyzing latency, the time taken to complete specific tasks, such as training iterations
or inference requests; and 4) examining throughput, evaluating how efficiently input data is moved
and processed through memory, storage, and network interfaces.

Memory Utilization. Limited device memory has become the bottleneck of LMs training, like
training of the long context LLM (Zhao et al., 2024b). Many operators in transformer (Vaswani et al.,
2023), such as frequent reshaping, element-wise addition, and normalization require huge memory
units (Liu et al., 2023c). we propose the Average Memory Utilization (AMU) as a key metric
for evaluating memory efficiency during model training and inference. The AMU is defined as the
ratio of the memory used by the model throughout the entire training process to the total available
memory on the device, averaged over time. This metric provides a holistic view of memory usage,
accounting for fluctuations in memory demand caused by operations like attention mechanisms and
normalization layers. The formal definition of AMU is:

AMU =
1
T

∫ T

0
Memory Used(t)dt (7)

Where T is the total training time, Memory Used(t) is the memory utilized by the model at time t.

A higher AMU indicates that the memory is being utilized efficiently across the entire training cycle,
avoiding periods of underutilization or memory wastage. In contrast, a lower AMU may suggest poor
memory management, frequent allocation and deallocation, or unnecessary memory overhead.

Compute Utilization. In large-scale deep learning training, GPU utilization directly impacts both
training efficiency and energy consumption. Traditional metrics such as theoretical FLOPS often fail
to capture real-world inefficiencies arising from communication overhead, synchronization delays,
memory bottlenecks, and suboptimal parallelization strategies. Therefore, we introduce the Peak
Compute Utilization (PCU) metric, defined as the ratio of actual GPU utilization to the theoretical
maximum GPU utilization, averaged over the training process. PCU provides a practical and realistic
measure of hardware efficiency, explicitly reflecting how effectively computational resources are
utilized during training. In our empirical experiments, we observed that GPU utilization consistently
remains above 99% during pretraining and within the narrow range of 80%-81% during inference,
indicating negligible variance in compute efficiency for these phases. Consequently, we limit our
PCU metric evaluation specifically to scenarios involving parameter-efficient fine-tuning, where
meaningful differences in GPU utilization are apparent and thus critical for efficiency analysis.

Achieving optimal compute utilization entails minimizing idle time for processing units, reducing
the load imbalance across compute cores, and maintaining high operational throughput across all
computational components. However, sustained utilization of this peak performance is a critical
challenge, especially when scaling to many-core systems. High compute utilization in large-scale
deep learning systems must be maintained across the entirety of a wide range of deep learning
networks (Oh et al., 2020; Balança et al., 2024). We propose the metric Peak Compute Utilization
(PCU), defined as the ratio of actual GPU utilization (measured as the percentage of GPU compute

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

resources actively engaged in computation) to the theoretical maximum GPU utilization, averaged
over the training process. The PCU metric is mathematically expressed as:

PCU =
1
T

∫ T

0

Actual GPU Utilization(t)
Peak GPU Utilization

dt (8)

Where T represents the total training time, Actual GPU Utilization(t) is the measured GPU utilization
percentage at time t, and Peak GPU Utilization refers to the theoretical maximum GPU utilization
(typically 100%).

Latency. Latency plays a crucial role in both training and inference efficiency, particularly when
dealing with large-scale deep learning models like LLMs. Latency refers to the time delay between
input and response, directly affecting the overall responsiveness of AI systems. In training, latency can
be influenced by factors such as model complexity, data transfer speed, and communication overhead
between distributed nodes. During inference, especially in real-time applications, high latency may
hinder performance and user experience, making it a vital metric for system optimization (Li et al.,
2014; Chen et al., 2018; Geng et al., 2019).

We propose the metric Average Latency (AL), defined as the mean time taken to complete a single
iteration of training or an inference request, averaged over the entire process. The formal definition
of AL is:

AL =
∑

N
i=1(Computation Timei +Communication Timei)

N
(9)

where N represents the total number of iterations or inference requests, Computation Timei is the
time taken to computation the ith iteration/request, and Communication Timei is the time spent in
data transfer or communication overhead during the ith iteration/request.

A lower AL reflects better system efficiency and responsiveness, indicating that the model and
hardware are optimized to reduce unnecessary delays in both computation and communication.
Higher latency, on the other hand, suggests potential bottlenecks in communication, I/O operations,
or inefficient computation scheduling (Li et al., 2023e; Agrawal et al., 2024).

Throughput. Throughput is a key metric for evaluating how efficiently data is processed during
training and inference. It refers to the rate at which data is transferred, processed, and output by the
system. High throughput ensures full utilization of computational resources and prevents delays from
inefficient data handling (Agrawal et al., 2024; Cui et al., 2019).

Throughput can vary significantly with model size and complexity. Larger models require more
computational resources for processing, making direct comparisons between models challenging. To
standardize throughput evaluation across different model sizes, we propose three distinct normalized
metrics:

Token Throughput (TT) for pretraining scenarios, defined as the number of tokens processed per
second per parameter. Formally:

TT =
∑

N
i=1

(
Tokens Processedi
Model Parameters

)
∑

N
i=1 Timei

(10)

where Tokens Processedi is the number of tokens processed in the ith iteration.

Sample Throughput (ST) for fine-tuning scenarios, defined as the number of samples processed per
second per parameter. Formally:

ST =
∑

N
i=1

(
Samples Processedi
Model Parameters

)
∑

N
i=1 Timei

(11)

where Samples Processedi is the number of samples or dialogues processed in the ith iteration.

Inference Throughput (IT) for inference scenarios, defined as the number of tokens generated per
second. Formally:

IT =
∑

N
i=1 Tokens Generatedi

∑
N
i=1 Timei

(12)

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2026

where Tokens Generatedi is the number of tokens generated by the model in the ith inference request.
Unlike training scenarios, inference throughput is measured directly in tokens per second (Token/s)
without normalization by model parameters, as inference efficiency primarily depends on the speed
of token generation rather than parameter count.

Higher values of TT, ST, and IT indicate more efficient data processing relative to model size or
inference speed, while lower values suggest potential inefficiencies or bottlenecks, particularly
noticeable in larger models or slower inference generation.

D.1.2 ENERGY CONSUMPTION

Energy consumption has become a crucial factor in evaluating the overall efficiency of AI mod-
els (Stojkovic et al., 2024; Hisaharo et al., 2024), particularly with the growing scale of deep learning
systems. In this context, energy consumption refers to the total amount of electrical energy consumed
by the hardware during training or inference, typically measured in Joules (or kilowatt-hours). Since
hardware power usage is generally measured in Watts (where 1 Watt = 1 Joule per second), integrating
power over time yields the total energy consumed.

To quantify energy efficiency, we propose the metric Average Energy Consumption (AEC). Let
P(t) denote the instantaneous power consumption (in Watts) of the system at time t. Then the total
energy consumed over a time period T (in seconds) is given by:

Etotal =
∫ T

0
P(t)dt (13)

The AEC metric is defined as the average power consumption over the entire duration:

AEC =
Etotal

T
=

1
T

∫ T

0
P(t)dt (14)

Where the T is the total training or inference time (in seconds), P(t) is the instantaneous power
consumption at time t, measured in Watts (i.e., Joules per second), and Etotal represents the total
energy consumed over time T , measured in Joules.

A lower AEC indicates that the system operates more efficiently in terms of energy usage, which is
critical not only for reducing operational costs but also for mitigating the environmental impact of
large-scale AI deployments.

D.1.3 MODEL COMPRESSION RATE

Model compression rate is a critical metric for evaluating the effectiveness of techniques aimed at
reducing the size of deep learning models while preserving their functionality (Zhu et al., 2024a;
Wang et al., 2024c; Deng et al., 2020; Haroush et al., 2020). This is particularly important for
deploying large models in resource-constrained environments, such as edge devices, or for reducing
latency and energy consumption during inference. A higher compression rate indicates a more
compact model representation, but it must be balanced against performance degradation.

We propose the metric Model Compression Rate (MCR), defined as the ratio of the original model
size to the compressed model size, adjusted for performance retention. The formal definition is:

MCR(Per f ormancec) =
Sizeoriginal

Sizecompressed
×

Performancecompressed

Performanceoriginal
(15)

where Sizeoriginal and Sizecompressed represent the model size in bytes before and after compres-
sion, respectively, and Performanceoriginal and Performancecompressed denote task-specific evaluation
metrics.

This formulation penalizes aggressive compression that significantly degrades model performance.
The metric enables cross-comparison of compression techniques by unifying size reduction and
performance trade-offs into a single value.

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2026

D.1.4 MODEL PERFORMANCE

LLMs are rigorously evaluated through specialized benchmarks designed to measure their reasoning,
coding, mathematical, and multilingual capabilities.

MMLU-Pro. MMLU-Pro (Wang et al., 2024d) enhances its predecessor by incorporating signif-
icantly more complex, graduate-level problems across disciplines that require multi-step logical
deduction, causal inference, and counterfactual reasoning. This benchmark effectively identifies
performance limitations in contemporary language models, highlighting substantial gaps between hu-
man expert performance and AI systems when addressing problems requiring specialized knowledge
integration.

BBH. Big-Bench Hard (BBH) (Suzgun et al., 2022) comprises 23 challenging tasks from the
border BIG-Bench (Srivastava et al., 2022), specifically targeting advanced reasoning capabilities
where previous models showed significant deficits. It encompasses diverse cognitive challenges,
including logical deduction, multi-step arithmetic, strategy QA, and counterfactual analysis. Models’
performance on BBH strongly correlates to real-world reasoning capabilities and novel problem-
solving beyond training distribution.

GPQA. Graduate-Level Google-Proof Q&A Benchmark (GPQA) (Rein et al., 2024) focuses on
expert-level reasoning ability across science, humanities, and logic of LLMs. Its dataset comprises
curated high-quality questions presented in multiple-choice or open-ended formats, with accuracy
(%) as the primary metric to assess deep understanding and multi-step problem-solving

IFEval. Instruction Following Evaluation (IFEval) (Zhou et al., 2023) assesses LLMs’ ability to
follow instructions through prompts containing atomic, verifiable directives. Each instruction can
be validated using simple, deterministic programs that objectively verify whether model responses
adhere to the specified requirements.

HumanEval. HumanEval (Chen et al., 2021a) evaluates programming proficiency using handcrafted
Python function completion tasks. Models generate code snippets based on problem descriptions, and
performance is measured via Pass@k (probability of valid solutions within k attempts), emphasizing
functional correctness.

HARDMath. HARDMath (Fan et al., 2024b) evaluates LLMs on asymptotic reasoning in applied
mathematics through 1,466 algorithmically generated graduate-level problems requiring approxima-
tion techniques. Unlike traditional benchmarks focusing on exact solutions, HARDMath addresses
real-world scientific and engineering problems involving algebraic equations, ODEs, and integrals
without closed-form solutions. Current LLMs perform poorly on these problems, highlighting
significant limitations in handling advanced applied mathematics requiring approximation methods.

MuSR. Multistep Soft Reasoning (MuSR)(Sprague et al., 2023) evaluates language models’ rea-
soning capabilities through complex natural language narratives. The dataset features free-text
narratives reflecting real-world reasoning domains, making it more challenging than typical synthetic
benchmarks while remaining solvable by human annotators. MuSR uniquely scales with LLM
advancement, enabling continuous assessment of reasoning capabilities across various models and
prompting techniques while identifying persistent gaps in robust multi-step reasoning performance.

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2026

Table 2: Overview of Evaluated Large Language Models.

Model Name Parameter Year Creator

LLaMA 3.1 8B 2024 Meta AI
LLaMA 3.2 1B 2024 Meta AI
LLaMA 3.2 3B 2024 Meta AI
LLaMA 3.3 70B 2024 Meta AI
DeepSeek-R1 Distill-Qwen-1.5B 1.5B 2024 DeepSeek
DeepSeek-R1 Distill-LLaMA-8B 8B 2024 DeepSeek
DeepSeek-R1 Distill-Qwen-14B 14B 2024 DeepSeek
Qwen 2.5 7B 2024 Alibaba Cloud
Qwen 2.5 14B 2024 Alibaba Cloud
Qwen 2.5 32B 2024 Alibaba Cloud
Phi-3.5-mini 3.5B 2023 Microsoft
Phi-4 14B 2024 Microsoft
Yi-34B 34B 2024 01.AI
Mistral 7B 7B 2023 Mistral AI
Mixtral 8×22B MoE 8×22B 2023 Mistral AI

D.2 PRELIMINARIES OF EFFICIENTLLM

D.2.1 CURATED LIST OF LLMS

LLaMA 3 Series. LLaMA is a family of open LLMs introduced by Meta AI to facilitate research
with high-performance yet smaller-scale LLMs. The latest generation, LLaMA 3, was trained on an
order-of-magnitude more data than LLaMA 2 and doubled the context window (up to 128k tokens),
while supporting multilinguality, coding, and tool use (Grattafiori et al., 2024; Naveed et al., 2023).
Architecturally, LLaMA models are decoder-only Transformers with pre-normalization and rotary
positional embeddings; LLaMA 3 adopts grouped-query attention to efficiently handle the extended
context length (Naveed et al., 2023). We use the LLaMA 3 series in our experiments, specifically the
LLaMA 3.1 (8B), LLaMA 3.2 (1B and 3B), and LLaMA 3.3 (70B) variants.

DeepSeek-R1. DeepSeek (Bi et al., 2024) is an open-source LLM project focused on aggressive
scaling of model size and data to push open-model performance. The flagship DeepSeek model has
67B parameters and was trained on 2 trillion tokens with techniques like grouped-query attention (in
the 67B model) to improve efficiency. The DeepSeek models underwent supervised fine-tuning and
Direct Preference Optimization to create aligned chat models, which reportedly outperform LLaMA
2 70B on reasoning and coding tasks. As part of the DeepSeek R1 release, distilled versions of larger
models were provided to explore efficiency: we evaluate the DeepSeek-R1 series (Guo et al., 2025),
including Distill-Qwen-1.5B, Distill-LLaMA-8B, and Distill-Qwen-14B.

Qwen 2.5 Series. Qwen (Alibaba Cloud, 2023–2024) (Bai et al., 2023) is a bilingual (Chinese-
English) LLM series originally released at 7B and 14B parameters. The second-generation Qwen
2 models (Yang et al., 2024) broadened the scale to 32B and 72B, including a mixture-of-experts
architecture in one variant, to attain greater efficiency at high parameter counts. Qwen models use a
Transformer decoder similar to LLaMA, with enhancements such as ALiBi/rotary positional encoding
and a long-context training scheme (Dual Chunk Attention and YARN scaling) to support inputs up
to 128k tokens. The Qwen series also features specialized instruction-tuned, code, and math versions
for improved tool-use and reasoning. We include the Qwen 2.5 models at 7B, 14B, 32B, and 72B in
our evaluation.

Phi Series. Phi (Abdin et al., 2024) is a line of “Small Language Models” by Microsoft (2023–2024)
aiming for maximal task performance at a fraction of conventional LLM sizes. Phi models are
Transformer decoders trained with a strong focus on data quality: e.g. Phi-1 (1.3B) was trained on
curated “textbook quality” data to excel in coding (Gunasekar et al., 2023). The latest release, Phi-4, is
a 14B-parameter model that leverages extensive synthetic data generation and distillation from GPT-4
to achieve performance on par with much larger models. Phi-4 uses essentially the same architecture

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2026

as its 3B-parameter predecessor but with scaled model size and a refined training curriculum, yielding
state-of-the-art reasoning and math capabilities among open models. We evaluate the Phi-3.5-mini
and Phi-4 (14B) models, which demonstrate the Phi approach to efficiency.

Yi. Yi (01.AI, 2024) (Young et al., 2024) is an open foundation model developed by Kai-Fu Lee’s
team, with the goal of matching GPT-3.5 level ability in a relatively compact model. Yi-34B is a
34-billion-parameter Transformer trained from scratch on 3.1 trillion tokens of carefully filtered
text (in English and Chinese), combined with a polished finetuning set for alignment. To maximize
efficiency, Yi employs Grouped-Query Attention (GQA) – splitting attention heads into shared
key/value groups – which reduces memory and compute overhead with minimal performance loss.
The designers chose 34B as a sweet spot for serving on single GPUs (with 4-bit quantization) while
retaining emergent abilities. We use the Yi-34B model in our experiments.

Mistral and Mixtral. Mistral 7B (Mistral AI, 2023) (Jiang et al., 2023) is a 7.3B-parameter open
LLM engineered for efficiency, known for outperforming larger models (e.g. LLaMA 2 13B) on
many benchmarks. It adopts grouped-query attention for faster inference and implements a sliding-
window attention mechanism to handle long sequences without expanding memory use. Building
on this, Mistral introduced Mixtral 8×7B (Jiang et al., 2024a), a sparse Mixture-of-Experts model
that combines 8 expert networks based on the Mistral architecture. In Mixtral 8×7B, at each layer a
router activates 2 out of 8 experts per token, so each token effectively utilizes 13B parameters (of a
47B total) during inference. This design allows Mixtral to achieve performance comparable to dense
70B models while maintaining higher throughput (it was trained up to 32k context length and excels
in math and coding tasks). We evaluate the Mistral 7B dense model as well as the Mixtral 8×7B and
a larger Mixtral 8×22B MoE model in our study.

D.2.2 EXPERIMENTAL DATASETS

Fineweb-Edu (350B). The FineWeb-Edu corpus (Lozhkov et al., 2024) is an educationally fo-
cused subset of the 15-trillion-token FineWeb crawl. Each Common-Crawl page is scored by a
RoBERTa-based “educational value” classifier; retaining documents with an integer score≥ 3 yields
a 1.3T-token collection of predominantly English lecture notes, textbook chapters, research ar-
ticles, and open-courseware transcripts, while a laxer score-2 variant preserves 5.4T tokens for
recall-oriented studies. For controlled ablations Hugging Face releases a stratified 350B-token
sample—tokenised with the GPT-2 scheme—which underpins the public 1.8B-parameter model
ablation-model-fineweb-edu. Pre-training on this 350B educational slice boosts zero-shot
accuracy by 3–6 pp on nine reasoning-centric benchmarks relative to models trained on generic
web data, highlighting the value of pedagogical sources for factual recall and multi-step reasoning.
All records are stored in Parquet with rich metadata (score, language_score, dump, token counts),
enabling reproducible sub-sampling, multilingual filtering, and safety audits. Nevertheless, residual
personally identifiable information and the English-centric bias inherited from web crawls necessitate
additional deduplication, redaction, and geographic balancing when employing FineWeb-Edu for
downstream instruction tuning and alignment research.

OpenO1-SFT. The OpenO1-SFT benchmark (Team, 2024a) serves to assess the proficiency of
LLMs in performing intricate text-based tasks that necessitate chain-of-thought processing after
undergoing supervised fine-tuning. The core task involves the generation of coherent and logical
sequences of intermediate thoughts that lead to a final answer, often within the context of question
answering. This benchmark is specifically designed to enhance the model’s capacity for multi-step
deductive processes and problem resolution, as highlighted by its emphasis on the explicit articulation
of thought processes alongside the conclusive output. The inclusion of both Chinese and English
records, totaling approximately 77,685 instances, broadens its applicability for cross-lingual studies
on deductive capabilities. Research utilizing this benchmark has demonstrated its effectiveness
in improving the self-consistency and accuracy of models in tasks demanding logical inference.
The structured format, employing Thought and Output tags, facilitates the model’s learning of
human-like thought patterns, which is particularly valuable in applications such as intelligent tutoring
systems and advanced question answering platforms. Studies have also explored the use of this
dataset to refine the technical approaches for developing large models capable of advanced deductive
abilities. However, investigations have indicated a potential correlation between enhanced deductive
capabilities achieved through fine-tuning on datasets like Open-o1 and a decrease in safety scores,
suggesting a complex interplay between model performance and safety considerations.

65

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2026

Medical-o1-reasoning-SFT. The medical-o1-reasoning-SFT benchmark (Chen et al., 2024a) is
crafted to evaluate the deductive abilities of language models within the specialized domain of
medicine following supervised fine-tuning. The tasks typically involve addressing medical inquiries,
formulating diagnoses based on provided patient details, or elucidating complex medical concepts.
A primary challenge in this context is to guarantee the precision, dependability, and safety of the
model’s deductions, given the critical implications of medical applications (Chew et al., 2023). The
benchmark employs curated medical datasets to train models for improved accuracy in this sensitive
field. The necessity for models to possess a deep understanding of intricate biological and clinical
information, coupled with the capacity to apply this knowledge in nuanced scenarios, distinguishes
this benchmark. It aims to go beyond mere pattern recognition, requiring models to engage in genuine
medical deductive processes.

66

3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

Under review as a conference paper at ICLR 2026

Table 3: Efficiency LLM Results for Attention Mechanisms.

Method Parameters Micro Batch Size PPL ↓ AMU (GB) ↓ AL (s/iter) ↓ TT (Tokens/param/s) ↑ AEC (W)↓ GPU Hours

MQA 0.5B 4 9.27 43.75 0.1118 2.98×10−01 633.59 19.02×48
1.5B 2 8.23 42.24 0.1298 8.57×10−02 646.62 33.14×48
3B 1 7.86 41.27 0.1458 3.81×10−02 661.38 77.05 ×48

GQA 0.5B 4 9.05 45.29 0.1127 2.94×10−01 644.26 21.06×48
1.5B 2 8.09 44.87 0.1283 8.64×10−02 652.74 38.03×48
3B 1 7.54 43.77 0.1464 3.79×10−02 667.34 86.80 ×48

MLA 0.5B 4 8.73 53.89 0.2082 1.59×10−01 607.58 30.44×48
1.5B 2 7.79 52.93 0.2537 5.08×10−02 608.17 75.20 ×48
3B 1 7.29 50.45 0.2997 2.62×10−02 605.46 178.84×48

NSA 0.5B 4 8.96 44.78 0.6839 4.89×10−02 594.23 101.38×48
1.5B 2 7.82 43.57 0.5962 1.09×10−02 598.15 176.72×48
3B 1 7.38 43.19 0.5024 1.26×10−02 600.27 280.92×48

D.3 ASSESSMENT OF ARCHITECTURE PRETRAINING EFFICIENCY

Architecture pretraining efficiency is a critical factor in determining the practical deployment and
scalability of LLMs (Jawahar et al., 2023; Kumar et al., 2023; Ding et al., 2023b; Alizadeh et al.,
2024; Xu et al., 2024b). A significant challenge limiting the widespread adoption of LLMs is their
computational intensity and memory requirements, particularly when processing long sequences
during the pretraining stage. These efficiency constraints can be attributed to the quadratic complexity
of the attention mechanism. Given that modern LLMs require substantial computational resources
for pretraining, optimizing architecture efficiency during pretraining has become a central research
focus. In this section, we assess the efficiency of LLM architectures during pretraining from the
following perspectives: attention optimization, positional encoding efficiency, parameter sharing, and
alternatives to traditional attention. These perspectives evaluate the ability of LLM architectures to
reduce computational complexity, minimize memory usage, enable longer context processing, and
maintain model performance while improving pretraining speed and efficiency.

Goal. In this section, we aim to examine the efficiency of various architectural improvements for
LLMs during pretraining. We pretrained three model sizes (0.5B, 1.5B, and 3B parameters for LLMs)
using the Qwen2.5 as our base model and fine-web edu (350B Tokens) dataset to systematically
evaluate four categories of efficiency techniques: Efficient Attention Mechanisms (MQA, GQA, MLA
and NSA), Efficient Positional Encoding methods (including relative position encodings, ALiBi,
and RoPE), Sparse Modeling techniques (Mixture-of-Experts and Conditional Computation), and
Attention-Free Alternatives (State-Space Models and RNNs). For each technique, we measure five
key metrics: Average Memory Utilization (AMU), Average Latency (AL), Tokens Throughput (TT),
Average Energy Consumption (AEC), and Perplexity (PPL), allowing us to identify which efficiency
techniques provide the optimal balance between computational efficiency and model performance
across different model scales.

Hardware and Training Framework. Our experiments were conducted on a large-scale distributed
computing infrastructure comprising 48 NVIDIA GH200 96GB GPUs. The GPUs were organized
into nodes, with each node containing 4 H100 GPUs paired with an NVIDIA Grace processor (288
cores, 288 threads). This high-performance CPU provided robust data preprocessing capabilities and
efficient inter-node communication. The system was interconnected with high-bandwidth NVLink for
intra-node GPU communication and InfiniBand networking for inter-node communication, ensuring
minimal latency during distributed training. For the software framework, we leveraged Megatron-
Core (Shoeybi et al., 2020), a powerful distributed training framework optimized for LLMs. Megatron-
Core’s tensor and pipeline parallelism capabilities were crucial for efficiently scaling our training
across multiple GPUs and nodes. We implemented 3D parallelism (data, tensor, and pipeline) to
maximize hardware utilization and training efficiency.

67

3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Under review as a conference paper at ICLR 2026

Table 4: Efficiency Results for LLM’s Efficient Positional Encoding.

Method Parameters Context length PPL ↓ AMU (GB) ↓ AL (s/iter) ↓ TT (Tokens/param/s) ↑ AEC (W)↓ GPU Hours

Rope 1.5B 8K 8.09 44.82 0.1280 8.64×10−02 652.79 38.03×48
Absoluate 1.5B 8K 8.32 46.71 0.1312 8.12×10−02 672.45 38.98×48
Learnable Absoluate 1.5B 8K 8.18 45.93 0.1296 8.37×10−02 662.44 38.51×48
Relate 1.5B 8K 8.29 43.94 0.1246 8.98×10−02 646.39 37.02×48
None 1.5B 8K 8.75 48.64 0.1378 7.68×10−02 692.37 40.94×48

D.3.1 ASSESSMENT OF EFFICIENT ATTENTION MECHANISMS

Attention mechanisms are central to the performance of modern LLMs (Guo et al., 2022; Ben-Artzy
& Schwartz, 2024; Tang et al., 2025; Yang et al., 2025; Lu et al., 2023). Yet, they remain a significant
computational bottleneck due to their quadratic complexity concerning sequence length (Soydaner,
2022; Hu, 2020; Brauwers & Frasincar, 2021; Ghojogh & Ghodsi, 2020; LIU et al., 2021) during
the pretraining stage. To address this challenge, we evaluated several efficient attention variants that
reduce computational and memory demands while preserving model capabilities during pretraining.
In our experimental framework, we systematically compared Multi-Query Attention (MQA), Grouped-
Query Attention (GQA), Multi-Head Latent Attention (MLA), Native Sparse Attention (NSA), and
Mixture of Block Attention (MoBA) across our three model scales (0.5B, 1.5B, and 3B parameters).
Our comprehensive evaluation measured how these architectural choices impact Average Memory
Utilization (AMU), Average Latency (AL), Tokens Throughput (TT), Average Energy Consumption
(AEC), and model performance as reflected in Perplexity (PPL).

Efficient Attention Mechanisms for LLMs. As shown in Table 3, attention mechanisms are
pivotal in the remarkable performance of modern LLMs; however, their quadratic complexity relative
to sequence length poses substantial computational and memory constraints. Efficient attention
mechanisms have thus become essential to scale LLMs practically, aiming to mitigate these resource
bottlenecks while preserving or enhancing performance. In our comprehensive evaluation, we
assessed several prominent efficient attention variants, including Multi-Query Attention (MQA),
Grouped-Query Attention (GQA), Multi-Head Latent Attention (MLA), and Native Sparse Attention
(NSA), across multiple model scales (0.5B, 1.5B, and 3B parameters). Our analysis reveals a spectrum
of trade-offs: MQA demonstrates superior efficiency with the lowest average memory utilization
(AMU = 42.24 GB) and competitive latency (AL = 0.1298 seconds per iteration), while MLA achieves
the best performance in terms of perplexity across all model sizes (PPL = 8.73, 7.79, and 7.29 for
0.5B, 1.5B, and 3B models, respectively). NSA excels in energy efficiency with the lowest average
energy consumption (AEC = 594.23 W). GQA offers a balanced middle ground, particularly at the
1.5B scale where it achieves the lowest latency. These findings underscore that the optimal attention
mechanism depends on specific deployment constraints, with MQA favored for memory-constrained
environments, MLA for performance-critical applications, and NSA for energy-efficient deployments.

D.3.2 ASSESSMENT OF EFFICIENT POSITIONAL ENCODING

Positional encoding plays an indispensable role in enabling LLMs to understand the order of tokens
within input sequences (Zhang et al., 2024b; Zhao et al., 2023a; Onan & Alhumyani, 2024), which is
crucial for maintaining semantic coherence and contextual relevance during the pretraining stage.
However, traditional positional encoding methods can incur substantial computational overhead (Chen
et al., 2021b; Ke et al., 2020; Kazemnejad et al., 2023; Wang et al., 2024a), particularly as the context
length increases. In our experiments, we systematically evaluated various efficient positional encoding
techniques, including Rotary Position Embeddings (RoPE), Absolute Positional Encoding (APE),
Learnable Absolute Positional Encoding (Learnable APE), Relative Positional Encoding (RPE), and
scenarios with no positional encoding (None), focusing on their impacts on computational efficiency
and model performance for LLMs.

Efficient Positional Encoding for LLMs. Our results (summarized in Table 4) demonstrated that
RoPE consistently offered the best balance between perplexity and model performance, achieving the
lowest perplexity score (PPL = 8.04). Meanwhile, Relate (RPE) demonstrated superior efficiency
metrics with the lowest average memory utilization (AMU = 43.94 GB), lowest average latency
(AL = 0.1246 seconds per iteration), highest attention throughput (TT = 8.98×10−02 TFloats), and
lowest attention energy consumption (AEC = 646.39 W). Learnable Absolute Positional Encoding

68

3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

Under review as a conference paper at ICLR 2026

Table 5: Efficiency Results for LLM’s MoE Mechanisms.

Method Parameters Top K PPL ↓ AMU (GB) ↓ AL (s/iter) ↓ TT (Tokens/param/s) ↑ AEC (W)↓ GPU Hours

Dense Model 1.5B – 8.09 44.82 0.1280 8.64×10−02 652.74 38.03×48
Dense Model 3B – 7.58 43.94 0.1246 8.98×10−02 647.34 86.80×48
MoE Model 0.5B×8 2 7.35 52.36 0.1315 1.05×10−01 667.33 39.07×48
MoE Model 1.5B×8 2 7.10 76.53 0.1420 1.25×10−01 692.45 84.19×48

showed moderate efficiency and performance (PPL = 8.18, AMU = 45.93 GB, AL = 0.1296 s/iter),
outperforming the standard Absolute Positional Encoding. In contrast, the absence of positional
encoding ("None") notably degraded model performance across all metrics (PPL = 8.75, AMU =
48.64 GB, AL = 0.1378 s/iter), emphasizing the necessity of positional information for effective
sequence modeling in LLMs.

Efficient Positional Encoding for LVMs. Regarding Large Vision Models (LVMs), positional
embeddings are fundamentally integrated within the patch embedding process inherent to architectures
like DiT. Altering or replacing positional encoding mechanisms in LVMs is not straightforward due
to their structural dependence on spatial locality and the fixed-grid architecture. Consequently,
experimentation with alternative positional encoding techniques is less applicable for LVMs, and thus
we omit detailed discussion and evaluation of positional encoding efficiency for LVM architectures in
this section.

D.3.3 ASSESSMENT OF SPARSE MODELING VIA MOE

Mixture of Experts (MoE) has emerged as a powerful paradigm for scaling neural networks efficiently
by introducing conditional computation (Song et al., 2024; Liu et al., 2024c; Du et al., 2024) during
the pretraining stage, where only a subset of model parameters is activated for each input token.
This sparse activation pattern enables models to increase their parameter count significantly while
maintaining reasonable computational requirements during both training and inference. In our
experimental framework, we systematically evaluated MoE architectures against traditional dense
models to quantify the efficiency-performance trade-offs across multiple model scales.

Sparse Modeling via MoE for LLMs. As shown in Table 5, our experiments with MoE architectures
revealed significant performance improvements over comparable dense models. The 1.5B×8 MoE
model with top-2 routing achieved a perplexity of 7.10, substantially outperforming both the 1.5B
dense model (PPL = 8.04) and even the larger 3B dense model (PPL = 7.58). Similarly, the 0.5B×8
MoE configuration delivered strong performance (PPL = 7.35) that exceeded the capabilities of
the 1.5B dense model while using fewer active parameters per token. This performance advantage
demonstrates the efficacy of sparse expert specialization, where different experts can focus on distinct
linguistic patterns and phenomena. However, these performance gains come with increased resource
requirements. MoE models exhibited higher memory utilization (AMU = 76.53 GB for 1.5B×8 and
52.36 GB for 0.5B×8) compared to dense models (AMU = 44.82 GB for 1.5B and 43.94 GB for
3B), reflecting the storage needs for the expanded parameter space. Similarly, we observed increased
latency (AL = 0.1420 s/iter for 1.5B×8 and 0.1315 s/iter for 0.5B×8) and energy consumption
(AEC = 405321.86 J for 1.5B×8 and 382647.23 J for 0.5B×8) compared to their dense counterparts.
Interestingly, despite these increased resource costs, MoE models demonstrated superior throughput
(TT = 1.25×10−01 TFloats for 1.5B×8 and 1.05×10−01 TFloats for 0.5B×8), suggesting efficient
parallelization across experts during computation.

D.3.4 ASSESSMENT OF ATTENTION-FREE ALTERNATIVES FOR SEQUENCE MODELING

While attention mechanisms have proven foundational to the success of modern LLMs, they remain
computationally intensive due to their quadratic scaling with sequence length during the pretraining
stage, prompting research into efficient attention-free architectures that maintain competitive perfor-
mance while reducing computational requirements. In our comprehensive evaluation, we assessed
several prominent attention-free alternatives, including State Space Models (Mamba), linear attention
mechanisms (Pythia), and recurrent architectures (RWKV), comparing them against our baseline
transformer architecture (Qwen2.5) across three model scales (0.5B, 1.5B, and 3B parameters). Our
analysis examined key efficiency metrics - Average Memory Utilization (AMU), Average Latency

69

3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

Under review as a conference paper at ICLR 2026

Table 6: Efficiency Results for Attention-Free Mechanisms. The best result is compared under the
same parameters.

Method Parameters Context Length PPL ↓ AMU (GB) ↓ AL (s/iter) ↓ TT (Tokens/param/s) ↑ AEC (W)↓

Qwen2.5 0.5B 8K 8.73 45.24 0.1129 2.94×10−01 644.23
1.5B 8K 8.09 44.82 0.1280 8.64×10−02 652.79
3B 8K 7.29 43.72 0.1467 3.79×10−02 667.38

Mamba 0.5B 8K 10.31 29.16 0.0954 2.21×10−01 498.37
1.5B 8K 9.48 30.25 0.1025 7.72×10−02 510.64
3B 8K 8.93 31.89 0.1136 3.25×10−02 525.12

Pythia 0.5B 8K 11.72 43.58 0.1074 2.57×10−01 630.84
1.5B 8K 10.35 43.11 0.1351 7.94×10−02 638.92
3B 8K 9.82 42.63 0.1534 3.46×10−02 651.27

RWKV 0.5B 8K 11.25 39.42 0.1062 2.36×10−01 576.51
1.5B 8K 10.13 40.18 0.1189 7.28×10−02 589.37
3B 8K 9.54 41.03 0.1319 3.12×10−02 604.85

(AL), Tokens Throughput (TT), and Average Energy Consumption (AEC) - alongside model perfor-
mance measured by perplexity (PPL), enabling us to quantify the efficiency-performance trade-offs
inherent to different architectural paradigms.

Attention-Free Modeling for LLMs. As shown in Table 6, our comparative analysis of attention-free
architectures revealed distinctive efficiency performance trade-offs across different model paradigms.
Mamba, a state-space model implementation, demonstrated remarkable efficiency advantages with
substantially lower memory utilization (AMU = 29.16 GB, 30.25 GB, and 31.89 GB for 0.5B, 1.5B,
and 3B parameter models, respectively) compared to the transformer baseline (AMU = 45.24 GB,
44.82 GB, and 43.72 GB). Mamba also improved energy efficiency, consuming approximately 22-25%
less power (AEC = 498.37 W, 510.64 W, and 525.12 W) than the transformer counterparts. At the
1.5B parameter scale, Mamba exhibited the lowest latency (AL = 0.1025 s/iter) among all models
tested. However, these efficiency gains came with a performance trade-off, as Mamba’s perplexity
scores (PPL = 10.31, 9.48, and 8.93) were consistently higher than the transformer baseline (PPL =
9.09, 8.04, and 7.58). RWKV, a recurrent architecture, offered moderate efficiency improvements
with lower memory usage and energy consumption than transformers. At the same time, Pythia
demonstrated competitive latency but with perplexity scores that were significantly higher than both
transformer and Mamba models. These findings suggest that while attention-free alternatives provide
compelling efficiency advantages, particularly for deployment scenarios with strict memory or energy
constraints, transformer-based architectures continue to deliver superior performance for tasks where
model quality is paramount.

70

3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833

Under review as a conference paper at ICLR 2026

D.4 ASSESSMENT OF TRAINING AND TUNING EFFICIENCY

Training and fine-tuning LLMs presents significant computational challenges that impact resource
requirements, development costs, and environmental footprint. As models grow in size and com-
plexity, optimizing training efficiency becomes increasingly critical for both research advancement
and practical deployment. This section examines various techniques and approaches for improving
training and tuning efficiency, including scalable training strategies (such as mixed precision, various
parallelism methods, and memory optimizations) and parameter-efficient fine-tuning methods that
enable adaptation with minimal computational overhead. Quantitative assessments across multiple
model architectures (ranging from 1B to 24B parameters) demonstrate the trade-offs between different
optimization approaches in terms of convergence quality (loss), memory utilization, computational
throughput, training latency, and energy consumption, providing practical insights for selecting
appropriate efficiency techniques based on available resources and desired performance targets.

Goal. In this section, we aim to evaluate the efficiency of various training and fine-tuning approaches
for LLMs. We conducted experiments across multiple model architectures ranging from 1B to
24B parameters (including Llama-3.2, Qwen-2.5, Mistral) to systematically assess seven different
optimization techniques: standard LoRA, LoRA-plus, RSLoRA, DoRA, PISSA, LoHa, LoKr, GLoRa,
parameter freezing, and full fine-tuning with DeepSpeed. For each method, we measured six key
metrics: Loss (model performance), Average Memory Utilization (AMU), Peak Compute Utiliza-
tion (PCU), Average Latency (AL), Samples Throughput (ST), and Average Energy Consumption
(AEC). This comprehensive evaluation allows us to identify the optimal balance between computa-
tional efficiency and model performance across different model scales, providing practical insights
for researchers and practitioners working with limited computational resources while maintaining
competitive model quality.

Hardware and Training Framework. Our experiments were conducted on a distributed computing
infrastructure comprising 8 NVIDIA H200 141B GPUs. The GPUs were organized into 1 nodes,
with each node containing 8 H200 GPUs paired with an Intel Xeon(R) Platinum 8558 processor
(48 cores, 96 threads). This high-performance CPU provided robust data preprocessing capabili-
ties and efficient inter-node communication. The system was interconnected with high-bandwidth
NVLink for intra-node GPU communication and InfiniBand networking for inter-node communica-
tion, ensuring minimal latency during distributed training. For the software framework, we leveraged
LlamaFactory’s, a flexible and efficient fine-tuning framework optimized for LLMs. LlamaFac-
tory’s implementation of parameter-efficient fine-tuning methods and optimization techniques was
crucial for efficiently executing our experiments across various model architectures and training
configurations.

O1-SFT Dataset. As shown in Table 7, our comprehensive evaluation of Parameter-Efficient Fine-
Tuning (PEFT) methods reveals distinct efficiency-performance trade-offs across model scales and
architectures. For smaller models (1-3B parameters), LoRA-plus consistently achieved superior
performance with the lowest loss metrics (0.7442 for Llama-3.2-1B and 0.5791 for Llama-3.2-3B),
while maintaining reasonable memory utilization (49.776 GB and 59.664 GB respectively). As model
size increased, RSLoRA demonstrated competitive performance, particularly for Qwen-2.5-14B (loss
= 0.4126) and Mistral-Small-24B (loss = 0.3818). Parameter freezing exhibited the lowest average
latency across all model scales (0.2542 s/iter for Llama-3.2-1B to 1.4815 s/iter for Mistral-Small-
24B), making it ideal for latency-sensitive applications, albeit sometimes at the cost of reduced model
performance. PISSA showed balanced performance in mid-sized models, achieving the lowest loss for
Llama-3.2-3B (0.5137). Full fine-tuning with DeepSpeed optimization delivered strong performance
for smaller models but demonstrated diminishing returns as model size increased, particularly for the
largest 24B parameter model where its loss (1.2805) substantially exceeded other methods. DoRA,
while computationally intensive with consistently higher latency (2.1505 s/iter to 6.0606 s/iter across
models), maintained competitive loss metrics in mid-sized models but performed poorly on the largest
24B model (loss = 1.2309). These findings suggest that optimal PEFT strategy selection should
be tailored to specific deployment constraints, with LoRA variants preferable for general-purpose
applications, parameter freezing for latency-critical scenarios, and specialized methods like RSLoRA
for larger models where fine-grained control of adaptation becomes increasingly important.

Medical-O1 Dataset. Table 9 illustrates clear efficiency-performance trade-offs among Parameter-
Efficient Fine-Tuning (PEFT) methods across varying scales of the Llama model architecture. For
the smaller Llama-3.2-1B model, parameter freezing notably achieved the lowest loss (1.3406),

71

3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887

Under review as a conference paper at ICLR 2026

Table 7: Assessment of Training and Tuning Efficiency for LLMs of O1-SFT Dataset (methods
marked with * use DeepSpeed). Because of the different batch size, full* are not included in the
comparisons. The best result is compared under the same model.

Model Method Loss↓ AMU (GB)↓ PCU↑ AL (s/iter)↓ ST (Samples/param/s)↑ AEC (W)↓

O1-SFT
Llama-3.2-1B lora 0.7562 50.088 0.9228 1.1669 8.22×10−08 549.23

lora-plus 0.7442 49.776 0.9195 1.1628 8.25×10−08 545.12
rslora 0.7454 49.920 0.9219 1.1655 8.23×10−08 563.01
dora 0.7547 52.760 0.9399 2.1505 4.46×10−08 568.64
pissa 0.7595 50.856 0.9312 1.1669 8.22×10−08 567.24
freeze 0.6425 48.696 0.9178 0.2542 1.26×10−07 508.16
full* 0.6788 36.840 0.9510 0.6993 9.15×10−08 584.00

Llama-3.2-3B lora 0.6019 49.152 0.9628 1.6077 1.33×10−08 589.91
lora-plus 0.5791 59.664 0.9408 2.6247 1.22×10−08 577.94

rslora 0.5866 58.536 0.9389 2.6247 1.22×10−08 593.93
dora 0.6006 59.616 0.9395 4.8544 6.59×10−09 601.98
pissa 0.5137 59.688 0.9339 2.6247 1.22×10−08 579.46
freeze 0.5000 51.848 0.9322 0.4252 2.51×10−08 556.43
full* 0.5310 49.152 0.9628 1.6077 1.33×10−08 589.91

Llama-3.1-8B lora 0.5137 74.360 0.9462 4.5872 2.98×10−09 605.81
lora-plus 0.4962 74.360 0.9462 4.5872 2.98×10−09 605.82

rslora 0.4986 75.152 0.9527 4.6083 2.97×10−09 605.82
dora 0.5124 77.376 0.9428 8.9286 1.53×10−09 620.48
pissa 0.5137 74.672 0.9442 4.5872 2.98×10−09 602.28
freeze 0.4514 70.424 0.9524 0.7369 6.20×10−09 564.89
full* 0.5553 56.144 0.9779 2.9851 3.06×10−09 610.42

Qwen-2.5-7B lora 0.4795 60.952 0.9121 2.7100 3.37×10−09 594.89
lora-plus 0.4621 62.112 0.9114 2.7248 3.36×10−09 590.69

rslora 0.4986 62.248 0.9114 2.5907 3.53×10−09 606.63
dora 0.4861 65.976 0.9258 5.6818 1.61×10−09 615.97
pissa 0.4773 62.744 0.9226 2.7174 3.36×10−09 597.34
freeze 0.3996 67.328 0.9305 0.6988 6.54×10−09 566.30
full* 0.4600 77.552 0.9779 2.6178 3.49×10−09 613.93

Qwen-2.5-14B lora 0.4795 77.472 0.8496 2.7855 8.19×10−10 560.48
lora-plus 0.4621 77.84 0.7108 3.3445 6.83×10−10 489.10

rslora 0.4126 77.376 0.8450 2.7855 8.21×10−10 556.16
dora 0.4861 78.376 0.8796 5.7471 3.99×10−10 572.18
pissa 0.4260 79.448 0.8562 2.7933 8.19×10−10 551.43
freeze 0.5547 73.400 0.8550 0.6227 5.51×10−09 493.11
full* 0.4582 71.920 0.9695 2.6178 7.77×10−10 576.94

Mistral-Small-24B lora 0.3757 64.84 0.8518 3.1847 4.19×10−10 591.98
lora-plus 0.4962 65.376 0.8553 3.3113 4.02×10−10 583.54

rslora 0.3818 65.584 0.8571 3.3333 4.00×10−10 587.68
dora 1.2309 69.984 0.8625 4.2017 9.71×10−10 562.76
pissa 0.3975 65.568 0.8580 3.3113 4.03×10−10 583.48

freeze* 0.6020 73.000 0.9664 1.4815 8.99×10−10 606.15
full* 1.2805 73.936 0.9827 3.7175 3.59×10−10 605.51

Mistral-7B lora 0.4639 35.688 0.9608 3.0211 3.03×10−09 614.54
lora-plus 0.5039 34.760 0.9481 3.0211 3.02×10−09 615.38

rslora 0.4626 36.280 0.9511 3.0211 3.03×10−09 617.19
dora 0.4614 37.216 0.9527 6.0606 1.51×10−09 618.09
pissa 0.4767 35.432 0.9531 3.0120 3.03×10−09 621.92
freeze 0.4718 55.024 0.9626 1.3123 6.96×10−09 628.90
full* 0.8564 40.152 0.9763 2.9155 3.13×10−09 634.36

72

3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941

Under review as a conference paper at ICLR 2026

Table 8: Verification of the model backbone dependency. (methods marked with * use DeepSpeed).

Model Method Loss↓ AMU (GB)↓ PCU↑ AL (s/iter)↓ ST (Samples/param/s)↑ AEC (W)↓

O1-SFT
gemma-7b-it lora 0.4682 36.512 0.9485 3.0456 2.98×10−9 612.45

lora-plus 0.4789 35.896 0.9472 3.0567 2.97×10−9 610.23
rslora 0.4591 36.784 0.9503 3.0345 3.00×10−9 615.67
dora 0.4723 37.912 0.9518 6.1234 1.48×10−9 619.12
pissa 0.4556 36.248 0.9524 3.0456 2.99×10−9 618.89
freeze 0.4127 56.128 0.9612 1.3456 6.78×10−9 625.34
full* 0.4985 41.256 0.9741 2.9567 3.08×10−9 630.12

Hunyuan-7B-Instruct lora 0.4721 37.124 0.9552 3.0789 2.95×10−9 608.76
lora-plus 0.4856 36.432 0.9539 3.0890 2.94×10−9 607.89

rslora 0.4634 37.456 0.9567 3.0678 2.97×10−9 611.23
dora 0.4789 38.512 0.9581 6.1567 1.46×10−9 614.56
pissa 0.4602 36.896 0.9588 3.0789 2.96×10−9 613.45
freeze 0.4189 56.784 0.9654 1.3678 6.65×10−9 622.67
full* 0.5023 41.896 0.9789 2.9890 3.05×10−9 627.89

Llama-2-7b lora 0.4653 35.976 0.9591 3.0123 3.01×10−9 616.78
lora-plus 0.4921 35.112 0.9468 3.0123 3.00×10−9 617.45

rslora 0.4618 36.512 0.9497 3.0123 3.01×10−9 619.01
dora 0.4632 37.456 0.9512 6.0246 1.50×10−9 620.34
pissa 0.4705 35.688 0.9519 3.0032 3.02×10−9 623.56
freeze 0.4254 55.678 0.9638 1.2987 7.02×10−9 630.12
full* 0.5456 39.876 0.9756 2.8901 3.15×10−9 635.67

DeepSeek-Ds-7B lora 0.4812 61.234 0.9105 2.7456 3.34×10−9 592.34
lora-plus 0.4689 62.456 0.9098 2.7567 3.33×10−9 588.12

rslora 0.5023 62.678 0.9098 2.6234 3.50×10−9 604.56
dora 0.4897 66.234 0.9242 5.7123 1.60×10−9 613.45
pissa 0.4791 63.012 0.9211 2.7456 3.34×10−9 595.67
freeze 0.4023 67.678 0.9289 0.7123 6.48×10−9 564.78
full* 0.4623 77.896 0.9763 2.6456 3.47×10−9 611.23

Qwen2-7B-Instruct lora 0.4825 61.012 0.9132 2.7345 3.35×10−9 596.78
lora-plus 0.4652 62.234 0.9125 2.7456 3.34×10−9 592.56

rslora 0.5001 62.456 0.9125 2.6123 3.51×10−9 608.90
dora 0.4879 66.012 0.9268 5.6789 1.61×10−9 617.01
pissa 0.4786 62.890 0.9237 2.7345 3.35×10−9 599.12
freeze 0.4012 67.456 0.9316 0.7012 6.52×10−9 568.90
full* 0.4615 77.678 0.9784 2.6345 3.48×10−9 615.67

73

3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995

Under review as a conference paper at ICLR 2026

Table 9: Assessment of Training and Tuning Efficiency for LLMs for Medical-O1 Dataset on
H200(141G) (methods marked with * use DeepSpeed). Because of the different batch size, full* are
not included in the comparisons. The best result is compared under the same model.

Model Methods Loss↓ AMU (GB)↓ PCU↑ AL (s/iter)↓ ST (Samples/param/s)↑ AEC (W)↓

Medical-O1
Llama-3.2-1B lora 1.7022 37.304 0.6745 0.3423 1.87×10−07 398.12

lora-plus 1.6473 37.136 0.6833 0.3398 1.88×10−07 545.12
rslora 1.6712 38.744 0.7397 0.3398 1.88×10−07 397.74
dora 1.6993 41.568 0.7588 0.6906 9.26×10−08 429.52
pissa 1.6825 41.192 0.6901 0.3389 1.89×10−07 397.86
freeze 1.3406 45.704 0.7145 0.2123 3.01×10−07 412.59
full* 1.4536 45.128 0.7799 0.3488 1.83×10−07 405.71

Llama-3.2-3B lora 1.5274 50.328 0.7451 0.7524 2.83×10−08 450.50
lora-plus 1.4463 49.376 0.7306 0.7530 2.82×10−08 449.78

rslora 1.4938 49.312 0.7267 0.7547 2.82×10−08 448.05
dora 1.5249 53.296 0.7847 1.5528 1.37×10−08 481.92
pissa 1.4999 50.536 0.7325 0.7524 2.83×10−08 449.13
freeze 1.2442 50.864 0.7018 0.3648 5.84×10−08 430.02
full* 1.2484 53.080 0.8189 0.7143 2.98×10−08 470.15

Llama-3.1-8B lora 1.4092 45.120 0.7726 1.2837 6.22×10−09 492.03
lora-plus 1.3285 44.672 0.7716 1.2821 6.23×10−09 505.74

rslora 1.3729 44.592 0.7535 1.2853 6.21×10−09 500.93
dora 1.4062 46.768 0.8131 2.8736 2.78×10−09 519.34
pissa 1.3832 46.944 0.8037 1.2903 6.19×10−09 509.37

freeze* 1.0120 46.848 0.7285 0.4632 9.23×10−09 503.63
full* 1.2900 64.456 0.8671 1.3387 5.97×10−09 527.66

74

3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049

Under review as a conference paper at ICLR 2026

Table 10: Comparison Efficiency and Performance of fine-tuning at Medical-O1 dataset on various
models on A100(80G) device.

Model Methods Loss↓ AMU (GB)↓ PCU↑ AL (s/iter)↓ ST (Samples/param/s)↑ AEC (W)↓

Medical-O1
Llama-3.2-1B lora 1.7091 37.204 0.6492 0.5135 1.10×10−7 239.00

lora-plus 1.6528 36.836 0.6687 0.5097 1.11×10−7 327.00
rslora 1.6665 38.644 0.7143 0.5097 1.11×10−7 238.50
dora 1.7047 41.268 0.7442 1.0359 5.45×10−8 258.00
pissa 1.6879 40.892 0.6755 0.5084 1.11×10−7 238.80
freeze 1.3459 45.604 0.6891 0.3185 1.77×10−7 247.50
full* 1.4589 44.828 0.7653 0.5232 1.08×10−7 243.50

Llama-3.2-3B lora 1.5327 50.228 0.7198 1.1286 1.67×10−8 270.30
lora-plus 1.4516 49.076 0.7160 1.1295 1.66×10−8 269.90

rslora 1.4991 49.012 0.7121 1.1321 1.66×10−8 268.80
dora 1.5302 53.196 0.7701 2.3292 8.06×10−9 289.20
pissa 1.5052 50.436 0.7072 1.1286 1.67×10−8 269.50
freeze 1.2495 50.764 0.6872 0.5472 3.44×10−8 258.00
full* 1.2537 52.780 0.8043 1.0715 1.75×10−8 282.10

Llama-3.1-8B lora 1.4145 45.020 0.7473 1.9256 3.66×10−9 295.20
lora-plus 1.3338 44.372 0.7570 1.9232 3.66×10−9 303.40

rslora 1.3782 44.292 0.7389 1.9280 3.65×10−9 300.60
dora 1.4115 46.468 0.7985 4.3104 1.64×10−9 311.60
pissa 1.3885 46.844 0.7784 1.9355 3.64×10−9 305.60

freeze* 1.0173 46.748 0.7032 0.6948 5.43×10−9 302.20
full* 1.2953 64.156 0.8525 2.0081 3.51×10−9 316.60

75

4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103

Under review as a conference paper at ICLR 2026

Table 11: Comparison Efficiency and Performance of different mix-precision training on various
models at Medical-O1 Dataset. The (W) represents the weight precision, and (T) represents the
training precision.

Model Precision Loss↓ AMU (GB)↓ PCU↑ AL (s/iter)↓ ST (Samples/param/s)↑ AEC (W)↓

Medical-O1
Llama-3.2-1B FP8(W)BF16(T) 1.4892 28.436 0.7234 0.2847 2.25×10−7 372.84

INT8(W)BF16(T) 1.5347 25.892 0.7458 0.2756 2.32×10−7 365.29
INT4(W)BF16(T) 1.6823 19.764 0.7812 0.2534 2.52×10−7 358.43
FP8(W)FP16(T) 1.4756 28.892 0.7189 0.2893 2.21×10−7 375.62

INT8(W)FP16(T) 1.5214 26.348 0.7392 0.2812 2.28×10−7 368.47
INT4(W)FP16(T) 1.6692 20.124 0.7756 0.2589 2.47×10−7 361.85

BF16 1.4536 45.128 0.7799 0.3488 1.83×10−7 405.71
Llama-3.2-3B FP8(W)BF16(T) 1.3124 38.456 0.7823 0.6234 3.41×10−8 418.36

INT8(W)BF16(T) 1.3589 34.892 0.8067 0.6089 3.49×10−8 409.74
INT4(W)BF16(T) 1.5234 26.348 0.8423 0.5678 3.75×10−8 398.62
FP8(W)FP16(T) 1.2987 39.124 0.7756 0.6345 3.35×10−8 422.58

INT8(W)FP16(T) 1.3456 35.568 0.7989 0.6198 3.43×10−8 413.92
INT4(W)FP16(T) 1.5098 26.892 0.8345 0.5789 3.68×10−8 402.47

BF16 1.2484 53.080 0.8189 0.7143 2.98×10−8 470.15
Llama-3.1-8B FP8(W)BF16(T) 1.1892 34.568 0.8234 1.0234 7.80×10−9 456.78

INT8(W)BF16(T) 1.2456 30.892 0.8489 0.9876 8.09×10−9 445.23
INT4(W)BF16(T) 1.4123 22.456 0.8823 0.9123 8.75×10−9 428.94
FP8(W)FP16(T) 1.1756 35.234 0.8156 1.0456 7.64×10−9 461.35

INT8(W)FP16(T) 1.2324 31.568 0.8398 1.0098 7.91×10−9 449.82
INT4(W)FP16(T) 1.3987 22.984 0.8734 0.9345 8.56×10−9 433.67

BF16 1.1290 64.456 0.8671 1.3387 5.97×10−9 527.66

with exceptional sample throughput (3.01×10−07 Samples/param/s) and low latency (0.2123 s/iter),
marking it as an ideal choice for latency-sensitive medical applications. LoRA-plus exhibited robust
efficiency, offering competitive loss (1.6473) and favorable energy consumption (545.12 W). Scaling
up to the Llama-3.2-3B model, parameter freezing again showed superior efficiency with the lowest
loss (1.2442) and notably reduced latency (0.3648 s/iter) relative to other methods, suggesting its
continued suitability for applications demanding rapid inference. Conversely, DoRA significantly
increased latency (1.5528 s/iter) and energy usage (481.92 W) while offering no clear performance
advantage. In the largest tested Llama-3.1-8B model, parameter freezing once more demonstrated
remarkable efficiency and performance, achieving the lowest loss (1.0120) and latency (0.4632
s/iter), underscoring its scalability and effectiveness in large-model scenarios. Full fine-tuning with
DeepSpeed, despite achieving relatively strong performance (loss = 1.2900), incurred the highest
memory usage (64.456 GB) and elevated energy consumption (527.66 W), indicating diminishing
returns as model size grows.

76

4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157

Under review as a conference paper at ICLR 2026

Table 12: Comparison Efficiency and Performance of different precision formats on various models.

Model Precision Avg Perf.↑ AMU↓ Sum AL↓ tokens/s↑ AEC↓ MCR

DeepSeek-R1-Distill-Qwen-1.5B bfloat16 0.2419 21.26 13024.35 39.68 144.39 1.0000
float16 0.2450 21.28 9858.30 37.70 158.96 1.0128

int8 0.2395 20.75 13245.67 40.12 149.87 1.9802
fp8 0.2500 21.34 9812.45 38.22 154.32 2.0670
int4 0.2341 19.49 15453.42 42.34 134.89 3.8710

DeepSeek-R1-Distill-Llama-8B bfloat16 0.3421 35.36 13541.46 37.79 208.21 1.0000
float16 0.3392 35.45 10926.70 35.90 222.76 0.9915

int8 0.3405 34.12 13678.90 36.45 211.56 1.9906
fp8 0.3450 35.22 11045.78 35.67 219.88 2.0170
int4 0.3116 34.07 15724.27 40.29 170.83 3.6434

DeepSeek-R1-Distill-Qwen-14B bfloat16 0.4719 51.83 18683.70 24.74 212.29 1.0000
float16 0.4712 52.64 14765.37 23.50 226.85 0.9985

int8 0.4710 50.45 19012.34 25.67 216.78 1.9962
fp8 0.4750 52.12 14987.56 24.89 231.45 2.0131
int4 0.4361 34.21 21529.09 26.40 191.05 3.6965

Qwen2.5-7B bfloat16 0.4448 35.33 13309.58 40.38 196.45 1.0000
float16 0.4467 35.35 13766.35 38.36 197.40 1.0043

int8 0.4478 36.78 13456.12 41.23 199.45 2.0135
fp8 0.4500 37.45 13890.67 39.12 201.34 2.0234
int4 0.4152 27.47 12912.91 43.10 168.73 3.7338

Qwen2.5-14B bfloat16 0.4691 51.83 24065.05 24.74 205.97 1.0000
float16 0.4691 52.66 24708.61 23.50 203.13 1.0000

int8 0.4705 52.34 24012.89 25.45 212.34 2.0060
fp8 0.4755 53.01 25045.23 24.67 207.89 2.0273
int4 0.4286 34.13 27865.30 25.89 187.40 3.6547

Qwen2.5-32B bfloat16 0.5523 71.33 26666.92 17.54 279.23 1.0000
float16 0.5505 71.86 27399.52 16.66 259.53 0.9967

int8 0.5525 70.45 27012.45 18.45 281.23 2.0007
fp8 0.5550 72.12 27567.89 17.89 276.45 2.0098
int4 0.5095 48.30 25140.95 19.20 214.57 3.6900

Phi-4 bfloat16 0.4035 48.19 6547.79 45.16 217.16 1.0000
float16 0.4006 49.02 6424.68 42.90 224.63 0.9928

int8 0.4025 48.67 6600.45 46.78 221.34 1.9950
fp8 0.4050 49.12 6400.78 44.56 226.78 2.0074
int4 0.3950 43.27 12202.10 48.19 319.11 3.9157

Phi-3.5-mini bfloat16 0.3683 41.19 8978.35 54.87 172.02 1.0000
float16 0.3652 41.54 8647.61 52.13 172.28 0.9916

int8 0.3702 42.34 9000.12 55.45 173.89 2.0103
fp8 0.3720 41.78 8700.34 53.12 179.45 2.0201
int4 0.3355 36.52 11761.00 58.54 159.15 3.6438

77

4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211

Under review as a conference paper at ICLR 2026

D.5 ASSESSMENT OF BIT-WIDTH QUANTIZATION INFERENCE EFFICIENCY

Inference efficiency plays a crucial role in the practical deployment of LLMs, vision-language
models (VLMs), and large vision models (LVMs). Optimizing inference efficiency is essential to
ensure low latency, minimal resource consumption, and effective energy utilization, enabling these
models to be deployed in diverse and resource-constrained environments. This section evaluates
the inference efficiency across various precision modes (bfloat16, float16, and int4 quantization)
and model architectures, highlighting trade-offs in performance metrics and computational resource
usage.

Note on Int8 Quantization. We did not include int8 quantization results in this section because
current inference support for int8 on NVIDIA Hopper architecture (GH200) is either incomplete or
exhibits instability due to backend kernel issues. During our initial tests, int8-based inference led
to runtime errors and inconsistent throughput behavior. We are actively investigating and working to
resolve these issues. Once the compatibility and reliability of int8 quantization are verified, we will
update our evaluation results accordingly.

Goal. In this section, we systematically assess inference efficiency across different model precisions
(bfloat16, float16, and int4) for a range of model architectures, including DeepSeek, Qwen, Phi, and
Yi models with parameter sizes from 1.5B to 34B. Specifically, we evaluate the impact of precision
and quantization on key metrics, including task-specific performance (MMLU-Pro, BBH, GPQA,
IFEval, MATH, MUSR), Average Memory Utilization (AMU), Average Latency (AL), Throughput
(tokens per second), Average Energy Consumption (AEC), and Model Compression Ratio (MCR).
This comprehensive analysis provides clear insights for selecting suitable inference strategies based
on targeted deployment scenarios.

Hardware and Inference Framework. The inference experiments were performed on an optimized
inference server infrastructure consisting of NVIDIA GH200 96GB GPUs. The infrastructure setup
comprised one node containing four H100 GPUs coupled with NVIDIA Grace processors (288 cores,
288 threads) to support efficient data processing and task scheduling. NVLink interconnects were
utilized for rapid GPU-to-GPU communication, ensuring low latency and efficient data transfer.

Evaluation Results. Table 12 presents the inference efficiency results across varying precisions
for multiple model architectures. In the DeepSeek-R1-Distill-Qwen-1.5B model, the int4 precision
significantly increased throughput (42.34 tokens/s) and reduced memory utilization (19.49 GB), albeit
at a marginal performance degradation (Avg Performance: 0.2341) compared to bfloat16 and float16.
Similarly, for larger models like Qwen2.5-32B and Yi-34B, int4 quantization substantially enhanced
throughput and memory efficiency, indicating its suitability for deployment scenarios prioritizing
computational efficiency over maximum performance. Models at bfloat16 precision typically showed
the highest performance metrics across architectures but at the cost of increased memory usage and
energy consumption. The Phi-4 model demonstrated particularly high throughput (45.16 tokens/s)
and acceptable performance (Avg Performance: 0.4035) at bfloat16, highlighting its efficacy for
scenarios demanding balanced performance and efficiency. Overall, int4 quantization emerges as a
robust option for resource-constrained deployment scenarios, while bfloat16 remains preferable for
applications requiring optimal performance metrics.

78

4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265

Under review as a conference paper at ICLR 2026

Table 13: Efficiency LVMs Results for Attention Mechanisms. The best result is compared under the
same model.

Method Model Training Steps FID ↓ AMU (GB) ↓ AL (s/iter) ↓ TT (Tokens/param/s) ↑ AEC (W)↓

MHA DiT-XL/2 400K 19.47 40.50 0.2873 1.3301×10−06 182.34
DiT-L/8 400K 118.87 23.49 0.1635 3.5591×10−06 75.35
DiT-B/4 250K 68.38 15.51 0.1423 1.3921×10−05 70.07

MQA DiT-XL/2 400K 8.93 43.78 0.2637 1.6033×10−06 172.61
DiT-L/8 400K 78.05 23.03 0.1818 3.3491×10−06 80.75
DiT-B/4 250K 55.29 16.13 0.1413 1.5484×10−05 67.76

GQA DiT-XL/2 400K 8.71 43.71 0.2696 1.5332×10−06 174.36
DiT-L/8 400K 81.90 22.65 0.1816 3.4302×10−06 78.81
DiT-B/4 250K 53.99 16.25 0.1438 1.4775×10−05 71.51

MLA DiT-XL/2 400K 116.93 45.84 0.3291 1.1743×10−06 174.36
DiT-L/8 400K 114.63 23.88 0.2048 2.7843×10−06 84.16
DiT-B/4 250K 73.88 16.26 0.2100 1.2096×10−05 71.09

NSA DiT-XL/2 400K 22.78 59.34 0.5771 3.2559×10−07 256.49
DiT-L/8 400K 89.98 24.77 0.3416 1.6209×10−06 107.32
DiT-B/4 250K 55.27 18.94 0.2543 8.4051×10−06 85.58

Table 14: Efficiency Results for LVM’s MoE Mechanisms.

Method Parameters Training Steps FID ↓ AMU (GB) ↓ AL (s/iter) ↓ TT (Tokens/param/s) ↑ AEC (J)↓

Dense Model 675M (DiT-XL/2) 400K 19.47 40.50 0.2873 1.3301×10−06 182.34
Dense Model 459M (DiT-L/8) 400K 118.87 23.49 0.1635 3.5591×10−06 75.35
Dense Model 130M (DiT-B/4) 250K 68.38 15.51 0.1423 1.3921×10−05 70.07
MoE Model 675M×8 (DiT-XL/2) 400K 16.35 47.82 0.2340 2.1568×10−06 231.07
MoE Model 459M×8 (DiT-L/8) 400K 76.41 29.76 0.1358 5.8724×10−06 105.49
MoE Model 130M×8 (DiT-B/4) 250K 45.62 18.95 0.1138 2.0882×10−05 89.69

E SCALABILITY OF EFFICIENTLLM BENCHMARK

The previous sections demonstrated how EfficientLLM quantifies architectural and training-time
trade-offs for purely textual LLMs. We now extend that investigation to vision and vision–language
settings, but with a deliberately tight scope: we evaluate only those acceleration strategies first
validated on LLMs that can be applied unchanged to their visual counterparts. Concretely, we
(i) insert efficient attention variants (MQA, GQA, MLA, NSA) into DiT-style diffusion trans-
formers, (ii) swap dense blocks for Mixture-of-Experts (MoE) layers in the same DiT back-
bones, and (iii) benchmark a palette of parameter-efficient fine-tuning (PEFT) methods—LoRA,
LoRA-plus, RSLoRA, DoRA, PISSA, LoHa, LoKr, and GLoRA—across large-scale LVMs and
VLMs (LLaVA-1.5, Qwen2.5-VL-7B, Intern-VL-38B, QvQ-Pre-72B, Wan 2.1, Stable Diffusion 3.5).
Because EfficientLLM’s metric collector is modality-agnostic, the same pipeline that logged AMU,
latency, throughput, energy, and perplexity for language now records the identical metrics alongside
vision-specific quality signals such as FID or loss. This unified view lets us ask a single question
throughout the remainder of the section: when an optimization accelerates text, does it still pay off
when the “tokens” are image patches or joint text–image embeddings?

E.1 EFFICIENCY FOR TRANSFORMER BASED LVMS ARCHITECTURE PRETRAINING

Efficient Attention Mechanisms for LVMs. As shown in Table 13, in the context of Large Vision
Models (LVMs), efficient attention mechanisms play a critical role by optimizing computational
resources, latency, and memory usage while maintaining high-quality outputs. Our evaluation
encompassed several attention variants, including standard Multi-Head Attention (MHA), Multi-
Query Attention (MQA), Grouped-Query Attention (GQA), Multi-Head Latent Attention (MLA), and
Native Sparse Attention (NSA), assessed across different DiT model architectures (DiT-XL/2, DiT-

79

4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319

Under review as a conference paper at ICLR 2026

FID↑ AMU↑ AL↑ TT↑ AEC↑

MHA

MQA

GQA

MLA

NSA

DiT-XL/2 DiT-L/8 DiT-B/4

FID↑ AMU↑ AL↑ TT↑ AEC↑ FID↑ AMU↑ AL↑ TT↑ AEC↑

0

1

●FID↑ ●AMU↑ ●AL↑ ●AEC↑ ●TT↑

MoE Model (DiT-B/4-130Mx8)

MoE Model (DiT-L/8-459Mx8)

MoE Model (DiT-XL/2-675Mx8)

Dense Model (DiT-B/4-130M)

Dense Model (DiT-L/8-459M)

Dense Model (DiT-XL/2-675M)

a

b

LlaVa-1.5B Qwen2.5-VL-7B Intern-VL-38B QvQ-Pre-
72B

0

0.5

1

1.5

0.5

0

1

●lora ●lora-plus ●rslora ●dora ●pissa ●full*

Ef
fic
ie
nc
y
sc
or
e↑

Lo
ss
↓

c
0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 7: Scalability analysis of EfficientLLM for LVM and VLM optimization. (a) Normalized
efficiency scores across five metrics (FID↑, AMU↑, AL↑, TT↑, AEC↑) for attention variants (MHA,
MQA, GQA, MLA, NSA) in three DiT-based LVM architectures (DiT-XL/2, L/8, B/4). All metrics are
min-max normalized to [0,1] and higher values indicate better efficiency. (b) MoE vs. dense models
across identical DiT backbones. MoE-based architectures consistently outperform dense counterparts
in throughput and FID while incurring moderate AMU and AEC overhead. (c) Comparison of
Parameter-Efficient Fine-Tuning (PEFT) methods (e.g., LoRA, RSLoRA, PISSA, DoRA) on various
VLMs. Bars indicate normalized Efficiency score (top, higher is better) and Loss (bottom, lower is
better). Methods marked with * indicate full fine-tuning using DeepSpeed.

80

4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373

Under review as a conference paper at ICLR 2026

L/8, and DiT-B/4). Results indicated that GQA and MQA consistently achieved superior performance
in terms of Fréchet Inception Distance (FID), with GQA exhibiting the lowest FID scores in DiT-XL/2
(FID = 8.71) and DiT-B/4 (FID = 53.99). MQA closely followed, providing balanced efficiency and
performance, notably in DiT-XL/2 (FID = 8.93) with the lowest latency (AL = 0.2637 s/iter) and high
throughput (TT = 1.6033×10−06 TFloats). MLA, although generally less efficient, demonstrated
substantial performance in DiT-B/4 scenarios, indicating its suitability for specific parameter and
architecture configurations. NSA showed its strengths primarily in memory-intensive tasks despite
higher latency, underscoring its potential for specific deployment environments with particular
resource constraints. These findings highlight the importance of selecting an attention mechanism
aligned with both the performance goals and the computational resources available for large-scale
vision tasks.

Sparse Modeling via MoE for LVMs. As shown in Table 14, our experiments with Mixture of
Experts (MoE) architectures for Large Vision Models revealed consistent performance improvements
across all model scales. The 675M×8 MoE configuration (DiT-XL/2) achieved a significantly
lower FID score of 16.35 compared to its dense counterpart (FID = 19.47), indicating superior
image generation quality. Similarly, the 459M×8 (DiT-L/8) and 130M×8 (DiT-B/4) MoE models
demonstrated substantial improvements with FID scores of 76.41 and 45.62, outperforming their
dense equivalents which scored 118.87 and 68.38 respectively. These performance gains, however,
come with increased resource requirements. MoE configurations showed higher memory utilization
across all scales, with the 675M×8 model requiring 47.82 GB compared to 40.50 GB for the dense
version. Interestingly, despite the expanded parameter space, MoE models exhibited improved
computational efficiency with lower average latency (AL = 0.2340 s/iter for 675M×8 versus 0.2873
s/iter for the dense equivalent) and substantially higher throughput (TT = 2.1568×10−06 TFloats
versus 1.3301×10−06 TFloats). This pattern was consistent across smaller model scales as well,
with the 130M×8 (DiT-B/4) MoE model achieving approximately 50% higher throughput than its
dense counterpart while delivering significantly better generation quality. These results suggest that
sparse modeling via MoE provides a compelling approach for scaling vision models, enabling more
effective parameter utilization through conditional computation where specialized experts can focus
on different visual patterns and representations.

E.2 ASSESSMENT OF PEFT ON LVMS

Disney Organized Dataset. Table 9 demonstrates distinct efficiency-performance trade-offs among
PEFT methods for the Wan 2.1-1.5B model. The full fine-tuning approach achieved the lowest loss
(0.104) with optimal sample throughput (1.61×10−10 Samples/param/s) and competitive latency
(33.2042 s/iter), although with the highest memory usage (78.44 GB). GLORA provided a good
balance, showing competitive loss (0.143) with high throughput (1.61×10−10 Samples/param/s) and
reduced latency (33.1298 s/iter).

WikiArt Sargent Dataset. In the case of the Stable Diffusion 3.5 Medium model, full fine-tuning
achieved the best loss performance (0.204) and highest throughput (8.50×10−10 Samples/param/s),
despite significantly elevated memory usage (82.48 GB). LoHA and GLORA methods also performed
well, maintaining low losses (0.215 and 0.217 respectively) and balanced latency around 4.6 s/iter,
highlighting their suitability for applications demanding high computational efficiency without
sacrificing performance.

Overall, while full fine-tuning provides superior performance, it demands greater computational
resources. Alternative methods such as GLORA and LoHA offer compelling trade-offs suitable for
various deployment environments.

E.3 ASSESSMENT OF PEFT ON VLMS

ChatQA Dataset. Table 9 highlights the efficiency-performance trade-offs of various Parameter-
Efficient Fine-Tuning (PEFT) methods across different visual-language models. For the 7B-parameter
LLaVA-1.5 model, LoRA-plus achieved the lowest loss (0.9716), demonstrating balanced efficiency
with reasonable latency (7.1028 s/iter) and moderate energy consumption (541.45 W). Parameter
freezing methods were not reported for this model. In the case of the Qwen2.5-VL-7B model,
PISSA exhibited superior performance with the lowest loss (0.3156) while maintaining competitive
latency (8.9645 s/iter) and energy efficiency (405.08 W). Notably, full fine-tuning with DeepSpeed

81

4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427

Under review as a conference paper at ICLR 2026

Table 15: Assessment of Training and Tuning Efficiency for VLMs of ChatQA Dataset (methods
marked with * use DeepSpeed). Because of the different batch size, full* are not included in the
comparisons. The best result is compared under the same model.

Model Methods Loss↓ AMU (GB)↓ PCU↑ AL (s/iter)↓ ST (Samples/param/s)↑ AEC (W)↓

ChatQA
LLaVA-1.5 lora 1.2796 20.064 0.8942 7.794051 1.2838×10−10 512.27

lora-plus 0.9716 45.216 0.9853 7.102787 1.4084×10−10 541.45
rslora 1.1541 45.6576 0.9891 6.987395 1.4292×10−10 522.86
dora 1.0015 59.7728 0.9894 11.977185 8.3514×10−11 548.88
pissa 1.0549 45.4176 0.9894 6.952982 1.4358×10−10 524.85
full* 1.1889 61.6992 0.9374 9.784834 1.0218×10−10 484.52

Qwen2.5-VL-7B lora 0.5672 46.3008 0.9918 9.270629 1.2246×10−10 403.29
lora-plus 0.5672 45.84 0.9889 8.918348 1.2729×10−10 403.70

rslora 0.4363 45.6384 0.9888 8.82855 1.2855×10−10 419.00
dora 0.5170 61.4496 0.9956 13.039291 8.7712×10−11 548.59
pissa 0.3156 45.696 0.9957 8.964483 1.2712×10−10 405.08
full* 0.6576 25.344 0.8297 16.7143 1.5995×10−11 354.44

Intern-VL-3-38B lora 0.5943 42.4704 0.9825 15.710554 1.3611×10−11 530.84
lora-plus 0.5943 42.5184 0.9881 15.742757 1.3584×10−11 523.62

rslora 0.4760 43.0272 0.9854 15.461066 1.3844×10−11 533.49
dora 0.4409 60.6144 0.989 20.866331 1.0206×10−11 551.23
pissa 0.3635 42.0192 0.9877 15.848549 1.3335×10−11 526.92
full* 0.5274 69.2448 0.9753 18.485439 1.1426×10−11 478.33

QvQ-Pre-72B lora 0.3548 36.624 0.268 5.84746 1.9225×10−11 374.27
lora-plus 0.6311 35.0464 0.8207 35.525615 3.1557×10−12 348.08

rslora 0.1434 40.1024 0.8732 8.44855 1.3350×10−11 381.33
dora 0.3554 58.6512 0.2573 8.394302 1.3434×10−11 330.30
pissa 0.2143 42.6688 0.8956 8.6275 1.3048×10−11 369.51
full* 0.3980 61.7088 0.7895 12.3575 9.0245×10−12 352.67

Table 16: Assessment of Training and Tuning Efficiency for LVMs of Disney Organized and WikiArt
Sargent Datasets (methods marked with * use DeepSpeed). Because of the different batch size, full*
are not included in the comparisons.

Model Methods Loss↓ AMU (GB)↓ PCU↑ AL (s/iter)↓ ST (Samples/param/s)↑ AEC (W)↓

Disney Organized
Wan 2.1-1.5B lora 0.136 50.22 0.8942 44.342308 1.20×10−10 512.27

loha 0.125 48.69 0.5824 42.430697 1.26×10−10 566.11
lokr 0.139 58.02 0.9940 45.551551 1.17×10−10 648.91
glora 0.143 51.01 0.8213 33.129847 1.61×10−10 593.23
full* 0.104 78.44 0.9027 33.204205 1.61×10−10 518.80

WikiArt Sargent
Stable Diffusion 3.5 Medium lora 0.225 15.30 0.9536 4.008191 7.68×10−10 607.12

loha 0.215 15.42 0.7207 4.673482 6.58×10−10 556.32
lokr 0.229 17.26 0.9556 4.820688 6.38×10−10 567.50
glora 0.217 17.92 0.7484 4.632438 6.64×10−10 553.25
full* 0.204 82.48 0.8439 3.618949 8.50×10−10 462.18

82

4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481

Under review as a conference paper at ICLR 2026

had significantly reduced memory utilization (25.344 GB) but incurred substantially higher latency
(16.7143 s/iter), reflecting a critical efficiency-performance trade-off. For the larger Intern-VL-3-38B
model, PISSA again delivered strong results, showing the lowest loss (0.3635) among the evaluated
methods, albeit with increased latency (15.8485 s/iter). DoRA presented higher latency (20.8663
s/iter) and elevated memory usage (60.6144 GB), limiting its practicality in latency-sensitive scenarios.
With the largest model QvQ-Pre-72B, RSLoRA outperformed other methods with the lowest loss
(0.1434) and reasonable latency (8.4486 s/iter), suggesting it as a highly effective approach for tuning
extremely large models. Despite low AMU (35.0464 GB), LoRA-plus showed significantly higher
latency (35.5256 s/iter), making it less favorable for latency-sensitive applications. Overall, LoRA
variants, especially LoRA-plus and PISSA, consistently offer balanced efficiency-performance trade-
offs suitable for diverse applications. RSLoRA emerges as particularly advantageous for large-scale
model tuning, while computationally intensive approaches like DoRA and full fine-tuning require
careful consideration based on specific deployment scenarios.

83

4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535

Under review as a conference paper at ICLR 2026

F RELATED WORK

A wide range of efforts have emerged to improve the efficiency of large language models (LLMs)
across their lifecycle (Hu et al., 2021a; Dettmers et al., 2022; Sanh et al., 2019b; Zhao et al., 2024a;
Frantar et al., 2022b; Liu et al., 2023d). In this work we concentrate on three facets – architecture-
level pretraining optimizations, parameter-efficient fine-tuning, and inference-time quantization –
because these correspond to major efficiency challenges at different stages of an LLM’s development
and deployment. Each aspect addresses the needs of different stakeholders in practice: architecture
and pretraining improvements guide model designers in building and training new LLMs under
limited compute budgets; parameter-efficient fine-tuning (PEFT) methods help practitioners adapt
big models to downstream tasks without retraining entire networks; and low bit-width quantization
techniques assist deployment engineers in reducing serving costs and latency without requiring
additional retraining. Below, we will highlight other important efficiency strategies not covered in
detail (e.g. systems-level optimizations, alignment via RLHF, and test-time acceleration techniques),
mainly clarify why they fall outside the scope of our study.

Distributed Training and System-Level Optimizations. Training giant models efficiently at scale
is as much a systems engineering challenge as an algorithmic one. A rich body of work exists
on optimizing the infrastructure and parallelization for large-scale training. Approaches like data-
parallel and model-parallel training (and hybrids thereof) allow spreading computation across many
GPUs or TPUs. For example, Google’s GPipe introduced generic pipeline parallelism to partition a
model across accelerators and achieved almost linear speedups when scaling an MLP and a 6-billion
Transformer across devices (Huang et al., 2019). NVIDIA’s Megatron-LM (Shoeybi et al., 2019b)
and Google’s Mesh-TensorFlow (Shazeer et al., 2018) further refined tensor-slicing model-parallel
approaches to train models with up to 100+ billion parameters (like the original GPT-3 (Brown
et al., 2020)). In addition, the DeepSpeed library from Microsoft introduced the Zero Redundancy
Optimizer (ZeRO) (Rajbhandari et al., 2020) which eliminates memory duplication of optimizer
states and gradients across data-parallel workers. By offloading and partitioning states, ZeRO allows
training models with hundreds of billions of parameters with high efficiency, even enabling 100+
billion models to be trained on modest GPU clusters with super-linear speedup. These system-
level advances – including optimized kernels (e.g. FlashAttention (Dao et al., 2022a)), scheduling
algorithms, and memory management techniques – are crucial for making the training of cutting-edge
LLMs possible at all. We do not explicitly benchmark these in our study because they often require
specialized hardware setups or custom distributed training implementations beyond our end-to-end
evaluation scope. In essence, our focus was on algorithmic techniques that a single-team researcher
or practitioner could apply within a given infrastructure, whereas system-level optimizations involve
entire training pipeline re-design and are orthogonal to the model-internal methods we examined. We
refer interested readers to comprehensive system papers (e.g. PipeDream (Harlap et al., 2018) and
ZeRO (Rajbhandari et al., 2020)) for further details on this topic.

Alignment and RLHF Efficiency. Large language models are typically fine-tuned after pretraining
to better align with human preferences, follow instructions, and produce safe outputs. The dominant
approach for this is Reinforcement Learning from Human Feedback (RLHF), exemplified by the
InstructGPT and ChatGPT series (Ouyang et al., 2022). InstructGPT showed that a 1.3B parameter
model fine-tuned with human preference data outperformed a 175B GPT-3 on helpfulness and
truthfulness. This highlights an “efficiency” of a different sort – alignment work can make smaller
models behave as usefully as much larger ones, by optimizing for the right objective. However,
RLHF itself is resource-intensive: it involves training a reward model (often a large network) and
running many steps of policy optimization (e.g. PPO (Schulman et al., 2017)) for the LLM, which
can be as costly as regular fine-tuning. Recent research has proposed more sample-efficient or proxy
methods for alignment, such as using AI feedback or distilled preference models, but these are still
emerging (Tunstall et al., 2023; Hong et al., 2023; Lee et al., 2023; Zhu et al., 2024b; Fisch et al.,
2024). We did not focus on RLHF in our benchmark because it targets output quality and safety more
than runtime or training efficiency per se. Moreover, evaluating alignment quality requires human
judgment or specialized metrics, which is outside our predominantly system performance–oriented
evaluation criteria. In short, RLHF and other alignment techniques are critical in practice, but they
involve a distinct stage of the model lifecycle with goals (ethical and behavioral alignment) different
from the core efficiency measures we target. Incorporating alignment efficiency (e.g. measuring the
compute required for RLHF and how to reduce it) is an interesting direction for future work, though

84

4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589

Under review as a conference paper at ICLR 2026

it likely requires an end-to-end infrastructure and human-in-the-loop setup beyond the scope of our
current study.

Inference-Time Acceleration Strategies. A number of techniques aim to speed up inference
beyond just lowering bit precision. One such category is test-time optimizations that exploit the
prediction process of LLMs. For example, speculative decoding has emerged as a powerful approach
to accelerate autoregressive generation (Leviathan et al., 2023; Chen et al., 2023a). OpenAI has
reported 2−3× speedups in GPT-3 using speculative decoding with a smaller GPT-2 as the draft
model (Xia et al., 2024). Another technique is early exiting in the model’s forward pass (Xu et al.,
2025; Chen et al., 2023d). If intermediate layers of a Transformer are equipped with prediction heads
or confidence estimators, the model can choose to stop computation once it is sufficiently confident,
instead of always running all N layers. Elhoushi et al. combine this with a form of self-speculative
decoding in a system called LayerSkip (Elhoushi et al., 2024). By training LLaMA models with
progressively higher dropout in later layers and a shared early-exit classifier, they enable the model to
exit at an earlier layer for “easy” inputs and only use the full depth for “hard” cases. This yielded up
to 2.0˘2.2× speedups on tasks like summarization and code generation, with negligible performance
loss. These dynamic inference methods are highly relevant to efficiency – they essentially adapt the
compute on the fly to match the input’s complexity or the model’s own confidence. We consider
them complementary to our quantization and architecture-focused evaluations. In our study, we kept
inference routines fixed (all models generate with the same decoder strategy) to ensure a controlled
comparison of techniques like quantization. Integrating speculative decoding or early-exit requires
building additional components and policies around the model, which was beyond our current scope.

Dynamic Routing and Model Cascades. A related idea is deploying model cascades or multi-scale
models at inference (Kolawole et al., 2024; Mamou et al., 2022). For instance, one might use a small
model to handle simple queries and only invoke a large model for more complex queries (a form of
dynamic routing at the whole-model level). Similarly, mixture-of-experts (discussed above) can be
viewed as dynamic routing within a single forward pass – experts are activated only as needed (Huang
et al., 2024a; Wang et al., 2020b). These approaches can yield huge savings when there is variability
in input difficulty or when many requests do not require the full capacity of the largest model. The
challenge is designing reliable routing mechanisms that know when the big model is needed, without
introducing too much overhead or too many errors. While our work did not explore such conditional
computation at inference time, we acknowledge it as an important research frontier. Successfully
deploying conditional LLM inference (whether via cascades, early-exits, or MoE gating) could
drastically improve real-world efficiency by ensuring we pay the cost of a 100B+ model only when
necessary.

In summary, beyond the specific techniques evaluated in our study, the literature offers a spectrum
of strategies to tackle LLM efficiency from multiple angles. Training-time system optimizations,
alignment-focused fine-tuning, and clever decoding-time methods all contribute to the overall goal
of making LLMs more practical and sustainable. We focused on architecture, fine-tuning, and
quantization as representative axes that span the model’s lifecycle and are widely applicable under
uniform evaluation settings. The insi·ghts from our benchmark can thus be seen as one piece of the
puzzle, complementing the above lines of work. Future research will hopefully integrate these layers
– for example, applying system optimizations to efficiently train models with new architectures, or
combining PEFT and quantization with speculative decoding for maximum inference speed-up. Such
holistic exploration will be vital as the community continues to push the limits of large language
model capabilities under real-world resource constraints.

Although we strive to present a representative overview of efficient LLM re-
search, our discussion is by no means comprehensive. The landscape of efficiency
techniques—spanning algorithmic, system-level, and application-specific innova-
tions—is vast and rapidly evolving. Due to space and scope constraints, we have
selected the dimensions that are most relevant to our empirical evaluation. As many
promising techniques and insights are beyond the scope of this paper, readers refer
to this work as a focused discussion rather than a comprehensive survey.

85

4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643

Under review as a conference paper at ICLR 2026

G DISCUSSION

While our study provides a comprehensive empirical evaluation of efficiency techniques across
multiple dimensions, achieving truly compute-aware large-model design and deployment remains an
open challenge. In this section, we first acknowledge several limitations of our current work and then
articulate key open challenges and promising future research directions.

G.1 LIMITATIONS

Our empirical benchmark and analysis have several limitations that should be considered when
interpreting the results:

• Limited Coverage of Efficiency Techniques. Although we extensively evaluated multiple effi-
ciency strategies, our analysis does not encompass all existing techniques. For instance, we have
not explicitly considered optimizations related to sequence length management, such as efficient
handling of ultra-long-context models, KV-cache optimizations, and strategies for reducing mem-
ory overhead in attention mechanisms. These techniques can significantly impact computational
efficiency, especially in scenarios involving extremely long input sequences during pretraining and
inference.

• Hardware and Infrastructure Constraints. Our experiments were conducted primarily on a
specific GPU cluster configuration (48×GH200 + 8×H200 GPUs). Different hardware setups,
such as TPU-based systems, CPU-only clusters, or heterogeneous computing environments, may
yield different efficiency trade-offs, particularly during large-scale pretraining. Thus, our findings
may not fully generalize to all possible deployment scenarios.

• Limited Scope of Models and Tasks. Although we evaluated a diverse set of models across
language, vision, and multimodal domains, our selection does not cover all existing architectures
and tasks. Certain specialized models or niche application scenarios may exhibit unique efficiency
characteristics not captured in our current evaluation, especially during the pretraining phase.

• Static Evaluation Metrics. Our proposed metrics, while comprehensive, are primarily static and
averaged over training or inference processes. Dynamic or adaptive metrics that capture real-time
fluctuations in resource utilization, latency spikes, or transient bottlenecks could provide additional
insights into efficiency optimization.

• Absence of Economic Analysis. Our evaluation focuses on computational and energy efficiency
metrics without explicitly considering economic factors such as hardware acquisition costs, opera-
tional expenses, or cloud computing pricing models. Incorporating these economic dimensions
could further enhance the practical relevance of our efficiency assessments.

G.2 OPEN CHALLENGES AND FUTURE DIRECTIONS

Beyond the limitations above, we highlight several critical open challenges and promising research
directions for future work:

• Multi-objective Scaling Laws. Classic scaling laws (e.g., Chinchilla) minimize cross-entropy
loss under a scalar compute constraint, implicitly assuming FLOPs as the sole budget. Real-world
deployments require balancing multiple orthogonal objectives such as latency, memory, energy,
and carbon emissions. Developing vector-valued scaling laws that map parameters and tokens onto
an efficiency Pareto frontier remains unexplored.

• Heterogeneous-quality Corpora. At trillion-token scales, datasets contain diverse quality levels,
from curated books to noisy web text. Current heuristics ignore fine-grained variance. Efficient
token-level entropy estimators and dynamic importance sampling methods are needed to optimize
training efficiency and quality simultaneously.

• Curriculum Design for Long-context Pretraining. Models with extremely long contexts
(32k–128k tokens) require principled curriculum strategies beyond simple heuristics. Addressing
memory bandwidth constraints, positional encoding dynamics, gradient staleness, and downstream
coherence remains challenging.

86

4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697

Under review as a conference paper at ICLR 2026

• Sparse Routing under Hard Memory Ceilings. Mixture-of-Experts (MoE) architectures reduce
FLOPs but increase KV-cache memory usage. Developing unified theoretical frameworks and
memory-aware routing mechanisms that dynamically balance compute and memory remains an
open frontier.

• Efficient Optimization of Non-Transformer Backbones. Alternative architectures (e.g., Mamba,
RWKV) promise sub-quadratic scaling but lack optimized kernels and adaptive optimizers. Estab-
lishing standardized benchmarks for fair comparisons against Transformers is essential.

• PEFT for Multi-modal and Tool-augmented LLMs. Parameter-efficient fine-tuning (PEFT)
methods like LoRA perform well in pure language settings but struggle across modalities. Designing
unified adapters that generalize across vision, audio, and code modalities remains challenging.

• Robust Post-training Quantization for Ultra-long Contexts. Current quantization schemes (e.g.,
int4) degrade significantly with activation outliers in long sequences. Developing robust joint
weight–activation quantizers and comprehensive error-propagation theories is critical.

• Holistic, End-to-end Efficiency Evaluation. Existing benchmarks often cherry-pick metrics and
hardware setups. A reproducible, standardized efficiency benchmarking framework capturing
latency, throughput, energy, and memory across diverse hardware and software configurations is
urgently needed.

• Continual and Federated Pretraining under Privacy Constraints. Regulatory requirements
increasingly demand on-premises data handling. Balancing compute-optimal token budgets with
privacy guarantees (e.g., differential privacy) through federated learning or secure aggregation
remains challenging.

• Hardware-aware Training Schedules. Heterogeneous GPU clusters complicate manual schedul-
ing. Developing auto-schedulers that dynamically optimize parallelism strategies (data, tensor,
pipeline, expert) across diverse hardware configurations is an active research area.

Solving these interlocking challenges demands a concerted effort that spans theory,
optimization, systems, and hardware co-design. Only then will we unlock the next
order-of-magnitude leap in large-model efficiency.

87

4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751

Under review as a conference paper at ICLR 2026

H OTHER SUPPLEMENTARY

H.1 VLMS AND LVMS BACKGROUND

Large Vision Models (LVMs). Large Vision Models (LVMs) have emerged as a significant advance-
ment in the field of artificial intelligence, particularly within the domain of generative models. These
models are primarily designed for image and video generation tasks, demonstrating robust multimodal
integration capabilities that enable them to comprehend and process relationships between text and
images. By leveraging such capabilities, LVMs can effectively transform textual descriptions into
visual representations. Most state-of-the-art vision generation models employ diffusion model archi-
tectures, which progressively denoise random noise to reconstruct high-quality images. Additionally,
these models extensively utilize self-attention and cross-attention mechanisms to capture long-range
dependencies within images and effectively align textual and visual features.

Among the representative models, Stable Diffusion, developed by Stability AI, is an open-source
image generation model based on a latent diffusion architecture, which performs the diffusion process
in latent space rather than pixel space, significantly reducing computational complexity. DALL-
E (Ramesh et al., 2021; 2022), developed by OpenAI, represents the forefront of text-to-image
generation, offering strong text comprehension capabilities and highly realistic image synthesis.
Midjourney (mid) focuses on artistic-style image generation and provides an intuitive yet powerful
parameter control system. More recently, OpenAI’s Sora (Liu et al., 2024e) has marked a major
breakthrough in video generation, capable of producing high-quality, coherent videos of up to one
minute in length. By incorporating spatiotemporal consistency constraints, Sora ensures continuity
across complex scenes and dynamic actions (Liu et al., 2024e).

LVMs face unique computational challenges due to their need to process high-dimensional image
and video data. A single high-resolution color image may contain millions of pixels, with multiple
channels of information per pixel. To efficiently handle such large-scale visual data, LVMs typically
rely on parallel computing architectures such as GPUs or TPUs, leveraging parallel computing
frameworks like CUDA to accelerate matrix operations. Additionally, batch processing techniques
and mixed-precision training are employed to balance computational efficiency and accuracy. LVMs
also exhibit high memory intensity, particularly due to the quadratic computational complexity of
self-attention mechanisms with respect to sequence length, which results in substantial memory
requirements when dealing with high-dimensional image and video data.

From an efficiency perspective, one of the primary challenges for vision generative models is
computational complexity. Diffusion models generally require tens to hundreds of iterative de-
noising steps, each involving a complete forward pass through the network. The computational
burden becomes even more pronounced in video generation, where an additional temporal dimen-
sion exponentially increases processing demands. To address these challenges, researchers have
proposed various optimization strategies, including accelerated sampling techniques, knowledge
distillation, model quantization, and sparse attention mechanisms. Furthermore, LVMs impose
stringent hardware requirements, necessitating high-capacity memory, high-bandwidth data transfer,
and specialized accelerators. Despite these advancements, real-time vision generation remains a
formidable challenge—high-quality image synthesis often requires several seconds to tens of seconds,
while video generation is even more time-intensive. Additionally, deploying LVMs on edge devices
is constrained by limited computational resources and energy efficiency considerations.

Large Vision Language Models (VLMs). Vision-Language Models (VLMs) represent a crucial
frontier in artificial intelligence, embodying advancements in multimodal intelligence. These models
are designed to simultaneously process and understand both visual and linguistic information, enabling
cross-modal knowledge representation and reasoning. Unlike traditional unimodal models, VLMs
bridge the semantic gap between vision and language, allowing machines to perceive the world
through a synergistic integration of textual and visual inputs. This capability has led to remarkable
progress in tasks such as image captioning, visual question answering, and cross-modal retrieval,
offering a more natural and intuitive approach to human-computer interaction.

Several representative VLMs have emerged as milestones in this domain. CLIP (Contrastive
Language-Image Pre-training) (Radford et al., 2021), developed by OpenAI, leverages contrastive
learning to jointly train text and image encoders, mapping features from both modalities into a shared
semantic space. Pretrained on vast amounts of internet data, CLIP demonstrates exceptional zero-shot

88

4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805

Under review as a conference paper at ICLR 2026

transferability, enabling recognition of novel visual concepts solely based on textual descriptions (Rad-
ford et al., 2021; Zhao et al., 2023b). GPT-4V (OpenAI et al., 2023) extends the capabilities of LLMs
to the visual domain, allowing for image-based text generation and question answering. This model
not only comprehends image content but also performs complex reasoning, such as interpreting
charts, analyzing scene relationships, and extracting key information from documents. Other notable
models, including BLIP (Li et al., 2022), Flamingo (Alayrac et al., 2022), and LLaVA (Liu et al.,
2023a), have adopted distinct architectural designs and training strategies to achieve state-of-the-art
performance in vision-language understanding and generation tasks (Zhang et al., 2024a).

Architecturally, VLMs incorporate specialized components for processing different modalities,
alongside mechanisms for multimodal fusion. A typical VLM architecture consists of a vision
encoder (e.g., ViT (Dosovitskiy et al., 2020), ResNet (He et al., 2016)), a language encoder (e.g.,
BERT (Kenton & Toutanova, 2019), GPT (Radford et al., 2018; 2019; Brown et al., 2020; OpenAI
et al., 2023)), and a fusion module to integrate multimodal representations. The fusion process is a
fundamental challenge in VLMs and is commonly addressed through three strategies: early fusion
(concatenating raw inputs), intermediate fusion (interacting after feature extraction), and late fusion
(maintaining independent processing until the final decision stage). Among these, cross-modal fusion
based on attention mechanisms is the most widely adopted, allowing the model to dynamically align
relevant information across modalities. The complexity of such architectures imposes substantial
computational demands, requiring efficient processing of high-dimensional visual data, large-scale
language modeling, and real-time multimodal interactions.

Efficiency remains a significant challenge for VLMs, as multimodal processing inherently entails
higher computational complexity compared to unimodal models. Vision encoders must process high-
resolution images containing millions of pixels, while language encoders must capture intricate seman-
tic structures. Moreover, attention-based fusion mechanisms—particularly cross-attention—exhibit
quadratic complexity with respect to sequence length, leading to increased memory consumption and
inference latency. The vast parameter scale of VLMs, such as GPT-4V, which may contain hundreds
of billions of parameters, exacerbates memory constraints and computational overhead, limiting their
deployment on resource-constrained devices and affecting real-time interaction performance.

To address these efficiency challenges, researchers have explored various optimization strategies.
Architectural optimizations include parameter sharing, knowledge distillation, and model quanti-
zation to reduce computational and memory requirements. For inference acceleration, techniques
such as sparse attention, progressive decoding, and caching mechanisms have been developed to
enhance processing speed. Hardware-oriented optimizations are also critical, involving the design of
specialized accelerators, optimized memory access patterns, and distributed computing frameworks.
Furthermore, task-specific multimodal optimizations, such as dynamic modality selection (activating
only the necessary modality processing components based on task demands) and adaptive compu-
tation (adjusting computational resource allocation based on input complexity), show promising
potential in improving the efficiency and scalability of VLMs.

H.2 LLM AND VLM FRAMEWORK CAPABILITIES

Table 17: LLM and VLM frameworks.

Framework Pre-train Fine-tune Inference
Colossal-AI ✓ ✓ ✓
Composer ✓ ✓ ✓
DeepSpeed ✓ ✓ ✓
FairScale ✓ ✓ ✓

LLM Foundry ✗ ✓ ✓
MegaBlocks ✓ ✓ ✓

Megatron ✓ ✓ ✓
Nanotron ✓ ✓ ✓

OpenLLM ✗ ✓ ✓
Pax ✓ ✓ ✓

RayLLM ✗ ✗ ✓
Sax ✗ ✗ ✓

Text Generation Inference ✗ ✗ ✓
vLLM ✗ ✗ ✓

89

4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859

Under review as a conference paper at ICLR 2026

Table 18: Overview of Evaluated Large Vision Models and Large Vision Language Models.

Model Name Parameter Year Creator

LVMs
Stable Diffusion 3.5 Medium 2.5B 2024 Stability AI
Wan 2.1 T2V-1.3B 1.3B 2025 Alibaba
VLMs
Qwen2.5-VL (7B) 7B 2023 Alibaba
QVQ-72B 72B 2024 Alibaba
LLaVA 1.5 7B 2023 LLaVA
InternVL 3 (38B) 38B 2025 OpenGVLab

H.3 OTHER MODELS LIST

H.3.1 LARGE VISION MODELS (LVMS)

Stable Diffusion 3.5. Stable Diffusion 3.5 (Stability AI, 2024) (Podell et al., 2023) is the latest
text-to-image diffusion model in the Stable Diffusion series, which are latent diffusion models that
generate images in a compressed latent space for efficiency. Version 3.5 introduced two main variants:
a Large 8.1B-parameter model capable of producing 1024×1024 images with high fidelity, and a
Medium 2.5B-parameter model (with an improved “MMDiT-X” architecture) designed to run on
consumer GPUs while still achieving up to 0.5–2 MP output resolution. Both models use a modular
UNet Transformer with cross-attention to a T5 text encoder, and they support fast “Large Turbo”
decoding via a distilled 4-step sampler for quicker image generation. We use the Stable Diffusion 3.5
Large and Medium models as our text-to-image baselines.

Wan 2.1 Video Models. Wan 2.1 (Alibaba, 2025) (Team, 2025) is a suite of open text-to-video
and image-to-video generative models that achieve high-quality 480p–720p video synthesis with
relatively moderate model sizes. The series includes a 14B-parameter text-to-video model and a
14B image-to-video model (trained for 720p and 480p outputs respectively), as well as a smaller
1.3B text-to-video model for efficiency. The 14B Wan 2.1 T2V model excels in complex “high
motion” scenes, producing realistic physics and dynamics in its outputs, while the 1.3B variant offers
a favorable trade-off, generating 480p videos in only a few minutes on standard hardware. Wan 2.1
models use a diffusion-based architecture with dual encoders for text and image inputs, and they were
released under an open Apache 2.0 license to stimulate community development. We evaluate Wan
2.1’s T2V-14B, T2V-1.3B, and I2V-14B models in our benchmark.

H.3.2 VISION LANGUAGE MODELS (VLMS)

Qwen2.5-VL. Qwen-VL (Alibaba, 2023) (Bai et al., 2023) is a series of vision-language models
built upon the Qwen LLM, endowed with visual understanding via a pretrained image encoder.
The initial Qwen-VL (7B) introduced a carefully designed visual input module and a three-stage
training pipeline to handle image-text alignment, enabling capabilities such as image captioning,
visual question answering, grounding, and OCR reading. Its successor, Qwen-VL 2, further improved
multimodal performance and introduced instruction-tuned variants (Qwen-VL-Chat). In the latest
generation Qwen-VL 2.5, the model scaling is increased up to 72B parameters (dubbed Qwen-VL-
Max) to further boost visual reasoning capacity. The Qwen-VL 2.5 family (3B, 7B, and 72B) achieves
state-of-the-art results on a broad range of image understanding benchmarks, while remaining fully
open-source.

LLaVA 1.5. LLaVA 1.5 (2023) (Liu et al., 2024b) is an open vision-language assistant model
that connects a vision encoder with a LLaMA-based language model for interactive multimodal
conversations. LLaVA uses a CLIP ViT encoder to encode images and feeds the resulting embeddings
into a LLaMA chatbot, which has been fine-tuned on visual instruction data. Version 1.5 of LLaVA
improved the fine-tuning procedure and dataset quality, resulting in more accurate visual understand-
ing and more coherent dialogue responses. We use LLaVA 1.5 as a representative chat-oriented
VLM, noting its efficiency: it leverages a fixed image encoder and an approximately 13B-parameter
language model, avoiding the need to train a massive end-to-end multimodal model.

90

4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913

Under review as a conference paper at ICLR 2026

QVQ-72B. QVQ-72B (2024) (Team, 2024b) is an upcoming 72B-parameter multimodal model from
Alibaba, for which only a preview is available at the moment. It is expected to combine the visual
prowess of Qwen-VL-Max with the advanced reasoning of QwQ, in a model that handles both vision
and language at a very large scale (72B). Due to limited official documentation, we use a placeholder
description for QVQ: it is anticipated to support extremely long context multimodal inputs and serve
as a testbed for scaling laws in VLM efficiency. (We will treat QVQ-72B-Preview as an experimental
entry in our evaluations.)

InternVL 3 (38B). InternVL 3 (OpenGVLab, 2025) (Chen et al., 2024c;d;e; Zhu et al., 2025a)s the
latest model in the InternVL series that adopts a native multimodal pretraining paradigm. Unlike con-
ventional approaches that adapt a text-only LLM to multimodal settings, InternVL3 is trained jointly
on both pure-text and diverse vision-language data from scratch. This unified training eliminates
post-hoc alignment issues and enhances multimodal grounding. InternVL3 incorporates variable
visual position encoding (V2PE) to support extended visual contexts, along with advanced post-
training techniques such as supervised fine-tuning (SFT) and mixed preference optimization (MPO).
Test-time scaling and a highly optimized training infrastructure further improve its performance.
InternVL3-78B achieves state-of-the-art results among open-source MLLMs, scoring 72.2 on the
MMMU benchmark, and shows competitive performance against proprietary models like GPT-4o and
Claude 3.5. Notably, both model weights and training data are planned for public release to promote
open research.

H.4 INFERENCE BENCHMARK PERFORMANCE

Analysis of Inference Benchmark Performance. Table 19 summarizes the inference performance
of various models across multiple precision formats (bfloat16, float16, and int4) on six
representative benchmarks: MMLU-Pro, BBH, GPQA, IFEval, MATH, and MUSR. Several key
observations emerge from these results:

• Impact of Model Scale. Larger models consistently outperform smaller ones across nearly all
benchmarks. For instance, Qwen2.5-32B achieves significantly higher scores compared to its
smaller counterparts (7B and 14B), highlighting the effectiveness of scaling model parameters for
improved inference performance.

• Precision Trade-offs. Lower-precision quantization (int4) generally introduces a modest per-
formance degradation compared to higher-precision formats (bfloat16 and float16). For
example, DeepSeek-R1-Distill-Qwen-14B shows a slight drop in performance when quantized to
int4, with MMLU-Pro decreasing from 0.4639 (bfloat16) to 0.4456 (int4). However, this
degradation is relatively small, suggesting that int4 quantization provides a favorable trade-off
between computational efficiency and inference accuracy.

• Task-specific Variability. Different models exhibit varying strengths across benchmarks, indicating
task-specific suitability. For instance, Phi-4 demonstrates strong performance on BBH and GPQA
benchmarks but significantly underperforms on IFEval. Conversely, Qwen2.5 models consistently
achieve high scores on IFEval, suggesting their suitability for tasks evaluated by this benchmark.

• Consistency between bfloat16 and float16. Across most models and benchmarks, perfor-
mance differences between bfloat16 and float16 are minimal, indicating that both formats
are viable for inference on modern hardware. However, given the known hardware-level advantages
of bfloat16 on recent GPU architectures (e.g., Hopper GPUs), it remains the recommended
precision format for optimal efficiency.

• Quantization Sensitivity. Certain benchmarks, particularly MATH, exhibit higher sensitivity to
quantization. For example, Qwen2.5-14B’s performance on MATH drops significantly from 0.1700
(bfloat16) to 0.0529 (int4), indicating that mathematical reasoning tasks may require higher
precision to maintain accuracy.

Overall, these results underscore the importance of carefully selecting model scale and numerical
precision based on specific inference tasks and efficiency constraints. Practitioners should balance the
trade-offs between computational efficiency and task-specific accuracy requirements when deploying
large generative models in practical scenarios.

91

4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967

Under review as a conference paper at ICLR 2026

Table 19: Evaluation Results Across Precisions - Performance Metrics.

Model Precision MMLU-Pro BBH GPQA IFEval MATH MUSR

DeepSeek-R1-Distill-Qwen-1.5B bfloat16 0.1656 0.3471 0.269 0.1955 0.1192 0.3553
float16 0.1668 0.3505 0.2754 0.1995 0.1213 0.3567

int4 0.1496 0.3337 0.2529 0.1937 0.1043 0.3702
DeepSeek-R1-Distill-Llama-8B bfloat16 0.2739 0.4173 0.2974 0.3666 0.3146 0.3829

float16 0.2740 0.4149 0.2948 0.3675 0.3023 0.3815
int4 0.2381 0.4203 0.2641 0.351 0.2215 0.3747

DeepSeek-R1-Distill-Qwen-14B bfloat16 0.4639 0.5891 0.3907 0.4774 0.3751 0.5353
float16 0.4651 0.5877 0.3916 0.4707 0.3784 0.5340

int4 0.4456 0.5766 0.3688 0.4166 0.2764 0.5327
Qwen2.5-7B bfloat16 0.4468 0.5555 0.3281 0.6619 0.2499 0.4264

float16 0.4461 0.5545 0.3307 0.6626 0.2574 0.4290
int4 0.4187 0.5451 0.3413 0.6134 0.1501 0.4227

Qwen2.5-14B bfloat16 0.5386 0.6501 0.3737 0.6079 0.1700 0.4744
float16 0.5379 0.6495 0.3722 0.6266 0.1591 0.4691

int4 0.5180 0.6202 0.3578 0.5878 0.0529 0.4348
Qwen2.5-32B bfloat16 0.5905 0.7038 0.3818 0.7350 0.4021 0.5008

float16 0.5911 0.7039 0.3798 0.7295 0.3953 0.5034
int4 0.5691 0.6801 0.3828 0.7100 0.2190 0.4959

Phi-4 bfloat16 0.5284 0.6705 0.4081 0.0549 0.2554 0.5034
float16 0.5295 0.6710 0.4009 0.0503 0.2497 0.5021

int4 0.5276 0.6679 0.3953 0.0651 0.2385 0.4756
Phi-3.5-mini bfloat16 0.3834 0.5365 0.3060 0.4231 0.1167 0.4438

float16 0.3828 0.5377 0.3054 0.4051 0.1216 0.4385
int4 0.3382 0.5062 0.3118 0.3742 0.0482 0.4343

Yi-34B bfloat16 0.4427 0.5482 0.3455 0.2950 0.0443 0.4145
float16 0.4456 0.5447 0.3417 0.3003 0.0435 0.4132

int4 0.4230 0.5137 0.3329 0.3198 0.0373 0.4053

92

4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021

Under review as a conference paper at ICLR 2026

H.5 HYPERPARAMETER SETTINGS

To ensure reproducibility and provide a comprehensive reference for practitioners, this section details
the hyperparameter configurations used across our experiments. These settings were carefully selected
to balance performance and efficiency considerations while maintaining consistency across different
model architectures and efficiency techniques.

Architecture Efficiency of Models Hyperparameter. For each Transformer’s Model:

• 0.5B model: 24 layers, hidden dimension 896, 14 attention heads, intermediate size 4864, 2 key-
value heads, maximum position embeddings 32768, extra vocabulary size 293, RMS normalization
epsilon 1e-6.

• 1.5B model: 28 layers, hidden dimension 1536, 12 attention heads, intermediate size 8960, 2 key-
value heads, maximum position embeddings 32768, extra vocabulary size 293, RMS normalization
epsilon 1e-6.

• 3B model: 36 layers, hidden dimension 2048, 16 attention heads, intermediate size 11008, 2 key-
value heads, maximum position embeddings 32768, extra vocabulary size 293, RMS normalization
epsilon 1e-6.

H.6 NORMALIZATION METHOD FOR DRAWING FIGURES

H.6.1 NORMALIZATION METHODOLOGY FOR EFFICIENCY METRICS

To facilitate intuitive comparisons across various model architectures and optimization methods, we
employed normalization techniques to standardize the diverse efficiency metrics presented in Figures 3
and 5. Specifically, all raw metrics, including Perplexity (PPL), Average Memory Utilization (AMU),
Average Latency (AL), Tokens Throughput (TT), and Average Energy Consumption (AEC), are
converted into normalized values ranging from 0.1 to 1.0.

For metrics where lower values denote better performance (such as PPL, AMU, AL, and AEC), we
applied the following normalization formula:

Normalized Value = 0.1+0.9× Maximum Value−Current Value
Maximum Value−Minimum Value

(16)

Conversely, for metrics where higher values are preferable (e.g., Tokens Throughput, TT), the
normalization was performed using:

Normalized Value = 0.1+0.9× Current Value−Minimum Value
Maximum Value−Minimum Value

(17)

This systematic normalization ensures consistency in the interpretation of efficiency metrics across
models and methods, allowing for clearer insights into the trade-offs between performance and
computational resources as illustrated in Figures 3 and 5.

H.6.2 EFFICIENCY SCORE COMPUTATION

The Efficiency Score shown in Figure 4 is calculated using a weighted harmonic combination of
normalized resource metrics. Specifically, the Efficiency Score integrates Average Memory Utilization
(AMU), Peak Computational Utilization (PCU), Average Latency (AL), Sample Throughput (ST),
and Average Energy Consumption (AEC) through the following formula:

Efficiency Score= 0.2· min(AMU)

AMU
+0.2· min(PCU)

PCU
+0.2· AL

min(AL)
+0.2· min(ST)

ST
+0.2· min(AEC)

AEC
(18)

This balanced combination of metrics ensures a comprehensive assessment of computational and
training efficiency, emphasizing optimal use of resources and performance trade-offs.

93

5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075

Under review as a conference paper at ICLR 2026

I USE OF LLMS

In the preparation of this manuscript, we employed large language models (LLMs), specifically
GPT-5 and GPT-4o, solely for the purpose of polishing and refining the writing. These models
assisted in improving readability, grammar, and stylistic clarity of the text. Importantly, they were
not involved in the design, construction, implementation, or evaluation of the proposed methods and
experiments. All conceptual contributions, dataset construction, algorithmic design, and experimental
analyses were carried out independently by the authors.

94

	Introduction
	New Insights
	Road Map

	EfficientLLM: A Framework for Evaluating the LLMs Efficiency
	Experimental Devices
	Models and Datasets.
	Assessment Principles of EfficientLLM
	Computational System Utilization
	Energy Consumption
	Model Compression Rate
	Model Performance

	Main Results
	Architecture Pretraining
	Training and Tuning Efficiency
	PEFT Methods
	Mixed Precision Training

	Bit-Width Quantization Inference Efficiency
	Scalability of EfficientLLM

	Conclusion
	Observations and Insights
	Overall Observations
	Novel Insights Derived from the EfficientLLM Benchmark

	Background
	Large Language Models (LLMs)
	Approaches to Enhancing Efficiency in LLMs
	Hardware Innovations
	Software Optimizations
	Algorithmic Improvements

	Techniques for Improving LLM Efficiency
	Dimensions of LLM Efficiency
	Budget Efficiency: Scaling Laws
	Scaling Behavior and Power Laws
	Compute-Optimal Model Scaling (Chinchilla vs. Gopher)
	Data Constraints and Quality
	Open Problems in Scaling

	Data Efficiency
	Importance of Data Quality and Filtering
	Curriculum Learning
	Data Augmentation and Synthetic Data

	Architecture Efficiency
	Motivation: Rethinking the Transformer for Efficiency
	Efficient Attention Mechanisms
	Efficient Positional Encoding
	Sparse Modeling via Mixture-of-Experts
	Attention-Free Alternatives for Sequence Modeling

	Training and Tuning Efficiency
	Scalable Training Strategies
	Parameter-Efficient Fine-Tuning (PEFT)

	Inference Efficiency
	Model Compression Techniques
	Algorithm-Level Inference Optimizations
	System-Level Optimizations and Deployment

	Assessment
	Assessment Principles of EfficientLLM
	Computational System Utilization
	Energy Consumption
	Model Compression Rate
	Model Performance

	Preliminaries of EfficientLLM
	Curated List of LLMs
	Experimental Datasets

	Assessment of Architecture Pretraining Efficiency
	Assessment of Efficient Attention Mechanisms
	Assessment of Efficient Positional Encoding
	Assessment of Sparse Modeling via MoE
	Assessment of Attention-Free Alternatives for Sequence Modeling

	Assessment of Training and Tuning Efficiency
	Assessment of Bit-Width Quantization Inference Efficiency

	Scalability of EfficientLLM Benchmark
	Efficiency for Transformer Based LVMs Architecture Pretraining
	Assessment of PEFT on LVMs
	Assessment of PEFT on VLMs

	Related Work
	Discussion
	Limitations
	Open Challenges and Future Directions

	Other Supplementary
	VLMs and LVMs Background
	LLM and VLM Framework Capabilities
	Other Models List
	Large Vision Models (LVMs)
	Vision Language Models (VLMs)

	Inference benchmark Performance
	Hyperparameter Settings
	Normalization Method for Drawing Figures
	Normalization Methodology for Efficiency Metrics
	Efficiency Score Computation

	Use of LLMs

