
Published as a workshop paper at the SSL-RL Workshop at ICLR 2021

RESOLVING CAUSAL CONFUSION IN REINFORCEMENT
LEARNING VIA ROBUST EXPLORATION

Clare Lyle∗∗,1, Amy Zhang∗,2,3,4, Minqi Jiang3,5, Joelle Pineau2,3,4, Yarin Gal1

ABSTRACT

A reinforcement learning agent must distinguish between spurious correlations
and causal relationships in its environment in order to robustly achieve its goals.
Causal confusion has been defined and studied in various constrained settings, like
imitation learning and the partial observability setting with latent confounders.
We now show that causal confusion can also occur in online reinforcement learn-
ing (RL) settings. We formalize the problem of identifying causal structure in a
Markov Decision Process and highlight the central role played by the data col-
lection policy in identifying and avoiding spurious correlations. We find that un-
der insufficient exploration, many RL algorithms, including those with PAC-MDP
guarantees, fall prey to causal confusion under insufficient exploration policies.
To address this, we present a robust exploration strategy which enables causal
hypothesis-testing by interaction with the environment. Our method outperforms
existing state-of-the-art approaches at avoiding causal confusion, improving ro-
bustness and generalization in a range of tasks.

1 INTRODUCTION

Models that depend on spurious correlations in their training data are vulnerable to catastrophic
failure under even mild forms of distribution shift (de Haan et al., 2019). This has motivated the
search for causal approaches in machine learning which enable systems to identify relationships in
the environment that will remain invariant under changes to the data-generating distribution. The
reinforcement learning (RL) setting provides the opportunity for an agent attempting to learn cause
from effect: unlike supervised learning from observational data, the agent can interact with its envi-
ronment to test hypotheses as part of the learning process. In this sense, RL agents have the capacity
to perform hypothesis testing autonomously, and to some extent it can be argued that algorithms like
policy iteration implicitly do this already by acting so as to maximize the predicted reward in the
environment.

However, the extent to which standard RL algorithms allow an agent to infer causal structure in its
environment remains up for debate. Fedus et al. (2020) provide several examples of catastrophic
failure when generalizing to unseen states, suggesting that RL algorithms are prone to memorizing
their training data. Failure to generalize is a particular concern in the offline and imitation learning
settings. Indeed, de Haan et al. (2019) show that agents trained by imitation learning can learn
policies that depend on spurious correlations in their training data, correlations that are not present
under the state visitation distribution of the learned behaviour policy. For example, a self-driving car
policy can learn to attend only to the brake lights of a car in front of it, rather than a red traffic light,
if the training data is not diverse enough. This phenomenon is known as causal confusion. To the
extent that generalization in RL can be thought of as an outcome of causal structure identification,
this highlights the necessity of explicitly taking causal relationships into account to obtain algorithms
that can successfully generalize to new environments and observations.

Existing works at the intersection of RL and causality have focused principally on restricted settings
like the imitation learning setting (Zhang et al., 2020b; de Haan et al., 2019), batch learning set-
ting (Bannon et al., 2020), and partial observability setting (Kallus and Zhou, 2018; Forney et al.,
2017). These settings share the property that that the source of confounding in the training data

∗1OATML Group, University of Oxford, 2 MILA 3Facebook AI Research 4 McGill University 5University
College London. Correspondence to clare.lyle@cs.ox.ac.uk

1

Published as a workshop paper at the SSL-RL Workshop at ICLR 2021

is outside of the control of the agent. We show that causal confusion can also occur in the online
RL setting. This is apparent in the limited data regime, but can also occur with unlimited data
in a multi-environment setting. We believe we are the first to pinpoint and address this issue in
model-free algorithms trained in the online, fully observable setting.

This observation leads to the motivating question of this paper: how can we design RL algorithms
that allow agents to identify sources of spurious correlations in their environment? To answer this
question, we first characterize what it means to learn the relevant causal structure of the environment,
and under what conditions an RL agent may fail to identify this structure. Our analysis highlights
the central role played by the agent’s data collection policy in identifying and avoiding spurious
correlations. This motivates our second contribution: a novel perspective on robust exploration for
control with theory-backed guarantees. Our method can be straightforwardly incorporated into ex-
isting training procedures to improve the robustness of an agent’s value function to certain forms of
distribution shift. We specifically focus on environments where the agent is capable of performing
any intervention necessary for causal discovery. Of course, there are environments where uncontrol-
lable factors may change, but those settings are intractable as the agent is incapable of staging the
intervention necessary to break a spurious correlation. We demonstrate that this method avoids the
pitfalls of existing approaches in identifying sources of causal confusion in a range of environments,
and improves on the state of the art in generalizing to new levels in the ProcGen suite (Cobbe et al.,
2019).

2 RELATED WORK

The failure of deep RL agents to generalize to new observations or new regions of state space has
been observed in several independent works (Zhang et al., 2018b;a; Kenton et al., 2019; Song et al.,
2020). Our approach to this problem builds on a rich existing literature applying causal inference
to RL. Though we do not explicitly model causal structure, our approach bears some similarity to
optimal intervention design, a well-studied problem in both the bandit (Lee and Bareinboim, 2018;
Bareinboim et al., 2015; Lattimore et al., 2016) and RL settings (Mozifian et al., 2020; Volodin et al.,
2020). Also in the RL setting, Zhang et al. (2019) and Zhang et al. (2020a) both focus on learning
state abstractions which remove sources of spurious correlations in the environment but assuming
that all the necessary interventions are naturally collected by the agent and in the replay buffer or
provided as separate environments. Causal inference methods have also been applied extensively to
the offline and imitation learning settings, where confounding is more likely to occur (Wang et al.,
2020; de Haan et al., 2019), but these works do not consider the fully observable, online setting.
Additionally, Jaques et al. (2019) use causal inference to provide sources of intrinsic motivation in
the multi-agent RL setting.

We also build on existing work on exploration in reinforcement learning (Thrun and Möller, 1992;
Dayan and Sejnowski, 1996), drawing lessons from the principle of optimism under uncertainty
(Auer, 2002; Chen et al., 2017) and the PAC-MDP literature (Strehl et al., 2006; Jiang et al., 2017).
However, we will show that these exploration methods do not guarantee correct causal discovery.
Recent approaches to uncertainty-guided exploration in deep RL have used exploration bonuses
(O’Donoghue et al., 2018; Janz et al., 2019; Bellemare et al., 2016) and Thompson sampling ap-
proximations (Lu and Van Roy, 2017; Osband et al., 2016; Osband and Van Roy, 2017) which make
use of deep ensembles (Lakshminarayanan et al., 2017). However, these methods combine explo-
ration and exploitation into a single reward signal whereas we propose a novel explore-then-exploit
approach that we show guarantees the necessary interventions for causal discovery. Ensembles
are also used by Buckman et al. (2018) to estimate model uncertainty in order to improve sample
efficiency in model-based RL and by Chua et al. (2018) to disentangle aleatoric and epistemic un-
certainty but they do not use them for exploration or causal discovery. Some additional existing
exploration strategies aim to maximize information gain, but this is done with respect to the envi-
ronment dynamics model rather than the value function (Pathak et al., 2019; Shyam et al., 2019).
Şimşek and Barto (2004) additionally use a notion of state novelty to construct options to reach
unexplored parts of the state space, but also do not leverage them for causal discovery.

2

Published as a workshop paper at the SSL-RL Workshop at ICLR 2021

3 BACKGROUND & PROBLEM SETTING

We begin by introducing core concepts from reinforcement learning and causal inference (CI) and
formulating the problem setting that this work addresses.

3.1 BACKGROUND

Reinforcement Learning. The reinforcement learning problem consists of an agent acting in an
environment so as to maximize its cumulative reward (Sutton and Barto, 2018). We formalize the
environment as a finite Markov Decision Process (MDP), defined as a tuple 〈S,A,R,P, γ, p0〉,
where S denotes the states, A the action set, R : S × A → R a reward function, P a transition
kernel, γ a discount factor, and p0 ∈ P(S) is an initial state distribution. In a fully observable MDP,
the agent has direct access to the states s. In a partially observable MDP (POMDP), the MDP is
augmented with a stochastic observation function o : S → P(O) which maps the state space to a
distribution over an observation space O, and the agent has access only to these observations. RL
agents interact with the environment by taking actions. A policy π : S → A determines the action
taken by an agent as a function of the state. The value of a state-action pair under a policy π is
defined as the expected sum of discounted rewards

Qπ(s, a) = E(st,at)∼Pπ [

∞∑
t=0

γtR(st, at)|s0, a0 = s, a] . (1)

Causal discovery concerns itself with identifying causal relationships from data (Pearl, 2009). The
central object of study is a Structural Causal Model (SCM), which characterizes the data generating
distribution as a set of functions on observed and hidden variables.
Definition 1 ((Pearl, 2009)). A SCM is a tuple (U,V,F , P), where U is a set of exogenous vari-
ables (e.g. the unobserved source of stochasticity in the environment) drawn from the distribution p,
V is a set of endogenous variables (e.g. the observed state s, the reward r, and the action a in RL),
and F is the set of functions fV : PaV ×U → V with PaV ⊂ V, which determine the value of
endogenous variable V for each V ∈ V.

SCMs are best visualized via a causal graph, a directed acyclic graph whose nodes are variables in
the SCM and whose arrows indicate causal relationships. We provide an example of a causal graph
corresponding to an MDP in Figure 1. Causal models enable reasoning about how changes to the
data-generating process, called interventions, affect the resulting distribution over variables.
Definition 2 (Do-Intervention). A do-intervention on a variable V do(V = v) in a causal model S =
(U,V,F , P) induces a new SCM S′ = (U,V,F ′, P), where F ′ = {fW ∈ F|W 6= V } ∪ {fV=v}
and fV=v(p,u) = v∀p ∈ PaV ,u ∈ U .

Predicting the effect of a do-intervention requires identifying the direction of the edges in the causal
graph, a process known as causal discovery. In many prediction problems, it is desirable to design
predictors which depend only on causal ancestors of the target, as these predictors will generally be
more robust to distribution shift. Such predictors are called causal predictors, and the phenomenon
of a predictor depending on a causal descendant of its target is known as causal confusion.

3.2 PROBLEM SETTING

Various works identify the problem of causal confusion in the imitation learning, batch learning,
and partial observability settings when spurious correlations are present in the demonstration data
that disappear in the online environment (Zhang et al., 2020b; de Haan et al., 2019; Bannon et al.,
2020; Kallus and Zhou, 2018; Forney et al., 2017). Nominally, it appears that these issues disap-
pear when we focus on the online setting with full observability, where there are no latent con-
founders. However, causal confusion can still arise in two scenarios: the limited data regime of the
single environment setting, and in both limited and unlimited data regimes of the multi-environment
setting. We explore each of these settings in this work, using the following formalism. Given
a set of training environments Etrain = {Ei|i ∈ 1, . . . Ntrain} and a set of testing environments
Etest = {Ei|i = 1, . . . , Ntest}, we seek to find a function Q̂ : S × A → R which minimizes the
worst-case approximation error to the optimal value function Q∗ over all environments.

min
Q̂

max
E∈Etest

Es0∼E [max
a
|Q∗(s0, a)− Q̂(s0, a)|] . (2)

3

Published as a workshop paper at the SSL-RL Workshop at ICLR 2021

Figure 1: Visualizations of the structural causal model for an MDP under different sets of assump-
tions.

Limited data in the single-environment setting. In the language of Equation (2), the single-
environment formulation of this problem sets the test environments to be identical to the singleton
training environment, with the exception of their initial-state distribution. Causal confusion can
occur when the agent has a limited number of interactions with the environment. As established
in Peters et al. (2016), if the agent does not explore sufficiently to intervene on each node of the
underlying SCM of the environment, it can learn spurious correlations that do not generalize to
distribution shifts at test-time, or changes from the data sampling distribution at train-time.

The multi-environment setting. In the multi-environment setting, we are limited by the number
of environments available at training time. We are specifically interested in the setting where there
are many, potentially infinitely many, tasks that fall under a family of MDPs with consistent causal
dynamics. Procedurally generated environments are an example of this scenario, where an agent
can have an unlimited amount of data from each task, but still incorrectly generalize to new unseen
environments from the same family (Cobbe et al., 2019). However, we assume the test environments
are consistent with the training environments, i.e. whenever an observation o exists in both the
training and test environments, it has the same Q-value for every action a.

4 CAUSAL CONFUSION IN RL

RL and causal inference present complementary approaches to modeling the effect of an agent’s
interaction with the world. In CI, an experiment designer interacts with the environment, represented
by a causal model, by intervening on the values of variables and then observing the effect of this
intervention on the resulting distribution. In RL, an agent interacts with the environment, represented
as an MDP, by selecting actions and then observing a reward and next state. Many approaches which
apply causal inference to RL do so by assuming the experiment designer and agent are separate
entities (Zhang et al., 2020b); in contrast, we will focus on settings in which it is possible for
the agent to identify a causally correct value function by performing interventions autonomously,
removing the need for exogenous manipulation of the environment.

4.1 INTERVENTIONS

Structural causal models and MDPs. We consider the standard formulation of an MDP as a
Bayesian network (Kappen et al., 2012), and construct an SCM on variables St, At, Zt, Rt, St+1,
where Zt is a set of hidden or noise variables responsible for the stochasticity in the environment (for
example, the random number generator in a simulator) as shown in the example SCM in Figure 1.
While the conditional distributions of St, Zt, Rt, St+1 are given by the MDP transition dynamics,
the distribution of At is defined by the agent’s policy π; thus each policy π induces a distinct SCM
Gπ , on which we can cast policy evaluation as one of two inference problems:

Qπ(s, a) =

∞∑
t=0

γtEGπ [Rt|S0 = s,A0 = a], Qπ(s, do(a)) =

∞∑
t=0

γtEGπ [Rt|S0 = s, do(A0 = a)].

In the standard reinforcement learning setting, where π is stationary and the environment is fully
observable, we obtain equality between the observational and interventional values: Qπ(s, a) =
Qπ(s, do(a)), and therefore will not distinguish between these two queries. While this might intu-
itively suggest that in fully-observable environments, naive value-function approximation methods
are sufficient to eliminate spurious correlations, the robustness of these methods depends heavily on
the coverage of the data-generating policy used to train them. We provide an example to demonstrate
this in Appendix A, to which we will also defer proofs of the theoretical results to come.

A more interesting class of interventions is that of changes to the state St, for example changing
the location from which an autonomous vehicle begins its route, or varying the level in which a

4

Published as a workshop paper at the SSL-RL Workshop at ICLR 2021

game-playing agent is spawned. Such interventions are of particular interest when the state S0 can
be decomposed into causally meaningful variables S0 = (X1

0 , . . . , X
k
0), and when the values of a

subset of these variables are fixed to specific values. In such settings, we will define a do-intervention
specifically on state variables by modelling the initial state as being drawn from some underlying
distribution P(X1

0 , . . . , X
k
0), and then fixing some subset of the variables in the sampled state to the

specified values.

Definition 3 (Do-interventions on initial states). Let S = (X1, . . . , Xk). Given a distribution
P(X1

0 , . . . , X
k
0), we define the interventional distribution Pdo(Xi=xi)(S0) on the initial state S0 =

S as follows.
P (S = s|do(Xi = xi)) = P (X−i = x−i)δXi=xi (3)

This definition is consistent with the standard definition of a do-intervention when the initial state
is modeled as a function of some hidden noise variable Z0, such that Xi

0 ⊥ Xj
0 |Z0. We provide a

more detailed discussion of the semantics of interventions in an MDP is in Appendix B. We draw
inspiration from the characterization proposed by Peters et al. (2016) of a causally correct predictor,
under which a predictor is deemed causally correct if it is robust to interventions, to propose an
analogous notion of causal correctness for value functions in an MDP.

Definition 4 (Causal correctness). A value function Q on an MDP M is ε-causally correct if for
any intervention do(XI = xI), the following holds

ES0∼P (S0|do(XI=xI)[max
a
|Q(S0, a)−Q∗(S0, a)|] < ε. (4)

A value function Q on a family of MDPs is causally correct if the above holds for every environment
M∈ Etest.

Our primary goal in this section is to show that the agent can implement a semantically meaningful
notion of an intervention on the MDP by itself, without help from an external entity. Under the
definitions provided so far, we still require such an entity to intervene on the initial state distribution.
We bridge this gap by leveraging the options framework (Sutton et al., 1999), in which the agent can
follow a policy and then terminate when a specific condition is satisfied. For example, an option
might take an agent from one room of a house to another, and then hand over execution to a different
policy. In stationary MDPs, the result of executing this room-navigating option and then executing
the behaviour policy to collect data from time t = τ is identical to starting the agent from the
target room at time t = 0 and immediately executing the behaviour policy. Given an interventional
distribution on the initial state as in Definition 3, we therefore seek to find a set of options which
induce this distribution upon termination.

Definition 5 (Targeting Options). Let S ⊆ S, S0 denote the support of the initial state distribu-
tion, and πS denote the optimal goal-reaching policy for S, i.e. the policy which minimizes the
expected number of steps to reach S from any state s. Then we define a targeting option as the tuple
(S0, πS, δS). A targeting option oS induces the termination distribution ηS.

In ergodic MDPs it is always possible to construct a set of options inducing the same distribution at
termination as the distribution P (S0|do(Xi = xi)). We then obtain the following result.

Theorem 1. Let Etrain = {M} forM = (S, A,R, P, γ, p0), and Etest = {(S, A,R, P, γ, pS)|S ⊆
S}. Let ΠS = {π{s}|s ∈ S}. Then ifM is fully connected

min
Q

max
Etest

E[max
a
|Q∗(s0, a)−Q(s0, a)|]] = min

Q
max
πS∈ΠS

Es0∼πS
[max
a
|Q∗(s0, a)−Q(s0, a)|].

In other words, learning a causally correct value function is equivalent to learning a value function
which is accurate over the distribution of states induced by a particular set of options.

4.2 OPTIMALITY AND EXPLORATION

The notion of causal correctness described previously requires that the learned Q-function be ap-
proximately equal to Q∗ for all state-action pairs. This requires a different approach to exploration
from that required by the regret minimization framework, where inaccuracy on states that are not
visited by the optimal value function is not penalized. As a result, it is possible to construct ex-
amples where a PAC-MDP algorithm, which obtains provable guarantees with respect to a single
environment, fails to satisfy our robustness criterion.

5

Published as a workshop paper at the SSL-RL Workshop at ICLR 2021

Observation 1. For any rmax ∈ R, there exists an MDP M with rewards bounded in [−rmax, rmax]
and an initial distribution ptrain, ptest such that with probability p > 0, for all timesteps t, the policy
followed by Delayed Q-learning (Strehl et al., 2006) run from initial state distribution ptrain attains
regret rmax/2 under the initial state distribution ptest.

We provide a construction of this family of hard MDPs in Appendix A.

Effective exploration is therefore crucial for an agent to learn a value function which is robust to
interventions on the initial state of the MDP. Borrowing from the language of causal effect inference,
we observe that an exploration strategy which induces two criteria in the data it generates will
guarantee identifiability of the optimal value function: overlap, i.e. full state-action coverage, and
unconfoundedness, i.e. the data collected yields an unbiased estimate of the value function. While
many exploration strategies such as epsilon-greedy exploration satisfy these criteria in the limit of
infinite data, sample-efficiency is a more challenging problem.

The following theorem is illustrative of how a notion of targeting states to obtain sufficient coverage
followed by executing the policy whose value we seek to approximate can be used to collect data
that guarantees convergence to the correct value function in the linear approximation setting.

Theorem 2. Let Xt, X′t ∈ Rt×d with kth rows xk, x′k respectively, and rt ∈ Rt denote a collection
of sampled transitions from an MDPM = (X ,A, R, P, γ). Assume each xk is sampled from some
distribution η(X) and x′k is obtained by sampling an action from the policy π(x) and observing the
induced transition in the MDP. Assume the realizable setting: i.e. there exists some wT ∈ Rd such
that V π(x) = 〈x,wT 〉. Then if the sampling distribution η is such that Ex∼η[(x>v)2] > 0 for all
unit vectors v, we will have

wt = [Xt(Xt − γX′t)>]−1[Xtrt]
t→∞−→ wT (5)

Although the conditions required to learn a robust policy are satisfied in the limit of infinite training
time by ε-greedy exploration in a fully observable MDP, this approach can lead to sub-optimal
policies in finite time. The next section presents a robust exploration strategy to efficiently gather
the necessary data to identify cause and effect in the environment.

5 ROBUST EXPLORATION TO COMBAT CAUSAL CONFUSION

Having established the importance of a sufficiently broad state coverage distribution to learn a
causally correct value function, we now turn our attention to the implementation of an exploration
strategy which can provide this data. Our goal is to construct a relatively generic strategy that can
be slotted into existing algorithms to improve the coverage of the data-generating policy, improving
robustness to causal confusion at minimal data cost.

5.1 TARGET-THEN-EXECUTE

	𝑠!

𝜋"

	𝑠′#

	𝑠#Target

Exploit𝜋$

𝜋%

High uncertainty state

Figure 2: Target-then-execute strategy.
st is a state of high uncertainty, which
our exploration agent πH targets. From
st, we can now exploit with any ensem-
ble member such as πi or πj .

Whereas in the standard RL framework we evaluate poli-
cies by measuring their return, this approach may fail to
identify the robust policies sought by our problem set-
ting, as a policy may not visit states at which it attains
low value. Recalling the autonomous vehicle example, a
policy which stops at red lights and a policy that stops
when the car in front of it stops will appear identical if
evaluated only when the agent is driving behind another
car. To address this failing, we present a straightforward
exploration strategy which aims to efficiently guarantee
the conditions put forth in Section 4.2 consisting of two
distinct steps: a target step and an execution step.

As shown in Figure 2, the target step identifies states
which have not been visited frequently or about which
the agent is uncertain, and follows a policy which aims to maximize the probability of visiting these
states. Once such a state is reached, the execute step follows the hypothesized optimal policy for
the remainder of the episode. In practice, to compute uncertainty we use an ensemble of exploit-

6

Published as a workshop paper at the SSL-RL Workshop at ICLR 2021

ing agents and measure uncertainty as the normalized variance over those agents (Lu and Van Roy,
2017). The data collected may then be used to train an optimal value function in the online setting,
or to ‘score’ the ensemble member in the setting of model selection on agents trained offline.

Algorithm 1: Target-then-execute exploration for the single-environment setting.
Initialize value functions Q1, . . . , QK , QH , replay buffers D1, . . . , DK ;
while Forever do

st ∼ P (s0), π ← πH , at ∼ π(a|s0), i ∼ {1, . . . ,K}, stop← False;
while not stop do

stop, s ∼ T (st, at), Di = Di ∪ {(st, at, s)} ;

Update(Q1, . . . Qk); Update(QH) with reward σ2({Q1,...,Qk})
µ({Q1,...,Qk}) ;

if QH(s) < ε then π ← πi ;
st ← s, at ← π(s) ;

This generic exploration strategy can be used in conjunction with a number of different learning
algorithms for training the ensemble members, for both learning and model selection problems.
We show in Section 6 that our approach outperforms existing exploration strategies to identify and
overcome causal confusion in environments where informative states may be difficult to reach. Our
implementation of Algorithm 1 uses an ensemble of Q-functions to model uncertainty, and samples
from this ensemble to perform execution. We use the normalized empirical variance of the pre-
dicted Q-values as the reward for the targeting policy, which acts greedily with respect to this value
function. Finally, we parameterize the method with a threshold ε and switch between the targeting
and execution policies when the uncertainty bonus exceeds this threshold. We provide additional
implementation details in Appendix C.

5.2 THEORETICAL MOTIVATION

To motivate the target-then-execute approach, we consider an idealized learning algorithm acting in
an episodic MDP which has access to an expert policy oracle, along with an expert goal-reaching
oracle. The agent deploys the goal-reaching oracle to reach a state s, then the expert policy generates
the trajectory τ = ((s0 = s, a0, r0), . . . , (sn, an, rn)). It then updates its estimate of Q∗(s, ·) based
on the Monte Carlo return from this trajectory. We demonstrate in Appendix A that this procedure
is sufficient to give unbiased estimates of the value of any state-action pair.

Rather than a point estimator of Q∗(s, a), we will be interested in a posterior P (Q(s, a)) which
is updated based on the Monte Carlo return obtained by following the optimal policy oracle from
a given state-action pair. We assume the posterior is computed from a Gaussian prior distribution
with diagonal covariance, along with a Gaussian likelihood with fixed noise variance σ2. At the
start of each episode, we set the target state and action s∗, a∗ to be the maximizer of HP [Q(s∗, a∗)],
i.e. the entropy of the posterior over Q-values, and follow the intervention policy πs∗ until s∗ is
reached, at which point the action optimal policy oracle π∗ is invoked. The resulting trajectory τ is
truncated to start from the first visitation of (s∗, a∗), and the Monte Carlo return from this trajectory
is used to update the posterior P . Under this setting, it is easy to show that an analogue of the
target-then-execute policy provides the maximum information gain from any trajectory. We define
the information gain (Houlsby et al., 2011) of an expert oracle query from a state-action pair (s, a)
as follows:

IG(P, s, a) = Eτ∼(π∗,s,a)HP (Q|D)− E[HP (Q|D, τ)] . (6)

Theorem 3. Let s∗, a∗ be a state action pair selected by target-then-execute at episode h. Let Ph
denote the posterior over Q-functions at episode h obtained by a Bayesian model with Gaussian
prior and likelihood. Then

(s∗, a∗) ∈ arg maxs,aIG(Ph, s, a) . (7)

6 EXPERIMENTS

In this section, we show that the target-then-execute exploration strategy is robustly useful across a
range of tasks. First, we demonstrate that target-then-execute resolves causal confusion in a setting

7

Published as a workshop paper at the SSL-RL Workshop at ICLR 2021

Figure 3: Causal correctness of the state abstrac-
tion inferred by baseline (left) and our (right) ex-
ploration strategy from a fixed initial state.

Figure 4: Value function learned in a multi-objective
gridworld. Target-then-execute is the only exploration
strategy which correctly identifies the value function
over the entire state space.

Steps PSRL ε = 0.01 ε = 0.2 Targeting
500 0.3 ± 0.47 0.3 ± 0.47 0.00. ± 0 4.7 ± 3.3
1500 3.0 ± 0.82 1.7 ± 0.94 3.0± 0.82 9.7 ± 3.3
5000 7.0 ± 0.82 3.7 ± 1.2 9.0 ± 2.2 23.3 ± 7.1

Figure 5: Left: An example of the agent running the virtual red light in the MiniGrid-Traffic environment. The
agent is the red triangle, the goal state is the green square, and the other cars are marked by blue squares. Right:
Frequency of red light crossings by evaluation time for different exploration strategies. The standard deviation
shown is taken over 3 random seeds.

where the approach of de Haan et al. (2019) fails. We then show that this approach accelerates
learning in online RL agents faced with hard exploration problems, outperforming Thompson sam-
pling and epsilon-greedy exploration in a sparse-reward gridworld. Finally, we demonstrate that
our approach scales to rich observations in the multi-environment setting. Additional details for all
experiment settings are provided in Appendix C.

6.1 RESOLVING CAUSAL CONFUSION

We now show that target-then-execute exploration can effectively collect data which allows the agent
to identify sources of causal confusion in its policy. We first consider the confounded imitation learn-
ing setting of de Haan et al. (2019), whose approach to eliminating causal confusion presents the
state of the art: using the OpenAI Gym (Brockman et al., 2016) MountainCar implementation, we
modify the 2-dimensional state consisting of position x and velocity ẋ to also include the previous
action taken. Because the optimal policy takes several identical actions consecutively to solve the
task, this additional input is highly predictive of an expert’s next action.

We then train an imitation learner on trajectories generated by an expert, following the procedure
of de Haan et al. (2019). The imitation policy π takes as input the state (x, ẋ, a), along with a
mask φs with s ⊂ {x, ẋ, a} which sets the variables in s to zero, giving s s an interpretation as
a candidate causal graph. To identify the optimal mask φs, the policy π(·, φs) is evaluated on the
environment for each subset s, and the Monte Carlo return collected during evaluation is used to
update the agent’s posterior belief that a particular variable is a causal parent of the optimal policy.
We say that a posterior is ‘correct’ if it assigns lower probability to a being a causal parent of the
next action than ·x. We visualize the correctness of the inferred feature set as a function of initial
state in Figure 3, demonstrating that our approach avoids the pitfalls of the existing state-of-the-art
in environments with uninformative initialization states.

6.2 SINGLE-ENVIRONMENT GENERALIZATION

Efficient exploration from offline data. Recall the autonomous driving setting discussed previ-
ously in which an agent frequently drives through a rail crossing on a busy road, but whose training
data contains no or very few examples of the car directly in front of the rail crossing when the light
is red. We simulate this example using a rich-observation gridworld based on the Gym-Minigrid
environment (Chevalier-Boisvert et al., 2018). See ?? for a visualization. We train an ensemble of
value functions on training data collected from an optimal policy offline, and then deploy the agent
in the evaluation environment to collect additional data to fine-tune this learned policy. We measure
the quality of the agent’s exploration by the number of times that its exploration strategy takes it
to a red light in Figure 5. We compare target-then-execute against approximate posterior sampling

8

Published as a workshop paper at the SSL-RL Workshop at ICLR 2021

0 10M 20M0

5

10

bigfish

0 10M 20M
0

2

5

7

bossfight

0 10M 20M2

3

4

5

6

caveflyer

0 10M 20M
0

10

20

fruitbot

0 10M 20M
2

4

6

8
leaper

0 10M 20M0

10

20

starpilot

StepsM
ea

n
te

st
 e

pi
so

de
 re

tu
rn

Figure 6: Target-then-execute in multi-environment, rich-observation setting (top). Averaged over
10 seeds, with 1 standard error shaded. Example environments (bottom).

(PSRL), which randomly samples an agent from the ensemble and follows the agent’s greedy pol-
icy, and ε-greedy exploration, two approaches that are widely used in practice and which require
little hyper-parameter tuning. We find that our approach outperforms both baselines in finding these
informative training examples.

Identifying a robust value function. We then consider a gridworld with two goal states (Figure 4)
to evaluate whether our approach is able to identify the optimal policy over the entire state space. In
this environment, the optimal policy depends on the distance to the nearest goal from the state the
agent is currently in. We find that the two baseline methods, ε-greedy exploration with a random
initialisation and optimism in the face of uncertainty, identify the correct value function for one of
the goal states, but learn a policy which ignores the other goal state. In contrast, target-then-execute
identifies both goal states and learns a policy which can effectively reach the nearest goal from any
state in the environment, i.e. a policy which is robust to changes in the initial state distribution.

6.3 SCALING TO RICH OBSERVATIONS

We now address the multi-environment setting as specified in Section 3.2. OpenAI ProcGen (Cobbe
et al., 2019) was proposed as a way to test generalization capabilities of RL agents, where agents
train on a set of levels and are tested on a held out set of levels. All levels obey the same underlying
SCM. We show that we can use our method to improve generalization to these unseen levels when
the agent can choose which level it sees next. This setting was initially introduced in Jiang et al.
(2021) and exploited with a form of automatic curriculum generation using L1 value loss as a scoring
function. We show that performance can be improved with our target-then-execute strategy in this
multi-environment setting. In ProcGen, we do not need a parameterized exploration agent because
we are in the bandit setting where any level can be reached in a single step.

In Figure 6 we see a comparison across our method with the exploiting policy in Prioritized Level
Replay (PLR, Jiang et al. (2021)), selecting levels by greatest L1 value loss, and a random policy,
which is the default ProcGen setting over 6 environments with significant differences, full results
in the appendix. PLR performs much better than random in many environments, showing that ex-
ploitation of level control with an automatic curriculum works well. However, we see that Random
performs better than PLR in most environments in early stages of training, perhaps because PLR ex-
ploits too much early on. Our method, target-then-execute, is able to match Random in early stage
training, and PLR in late stage (or even surpass PLR in some cases), achieving a more robust learner
across the agent’s training timeline.

7 CONCLUSIONS

In this work, we highlight the issue of causal confusion in online RL under two scenarios: the
limited data regime for the single-environment setting and the unlimited data regime for the multi-
environment setting. We provide theoretical results showing the equivalence of performing causal
discovery and learning an optimal value function on the entire state space, highlighting the impor-
tance of exploration for learning a robust value function. Finally, we provide a novel exploration
algorithm that efficiently gathers data necessary to learn a causally correct policy that effectively
generalizes in both single- and multi-environment settings.

9

Published as a workshop paper at the SSL-RL Workshop at ICLR 2021

REFERENCES

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397–422, 2002.

James Bannon, Brad Windsor, Wenbo Song, and Tao Li. Causality and batch reinforcement learning:
Complementary approaches to planning in unknown domains, 2020.

Elias Bareinboim, Andrew Forney, and Judea Pearl. Bandits with unobserved confounders: A causal
approach. Advances in Neural Information Processing Systems, 28:1342–1350, 2015.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In Advances in neural information
processing systems, pages 1471–1479, 2016.

Steven J Bradtke and Andrew G Barto. Linear least-squares algorithms for temporal difference
learning. Machine learning, 22(1):33–57, 1996.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. Sample-
efficient reinforcement learning with stochastic ensemble value expansion. In Advances in Neural
Information Processing Systems, volume 31, pages 8224–8234, 2018.

Richard Y. Chen, Szymon Sidor, Pieter Abbeel, and John Schulman. UCB Exploration via Q-
Ensembles. arXiv:1706.01502, November 2017.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for openai gym. https://github.com/maximecb/gym-minigrid, 2018.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. In Advances in Neural Information
Processing Systems, pages 4754–4765, 2018.

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural genera-
tion to benchmark reinforcement learning. arXiv preprint arXiv:1912.01588, 2019.

Özgür Şimşek and Andrew G. Barto. Using relative novelty to identify useful temporal abstractions
in reinforcement learning. Association for Computing Machinery, 2004. ISBN 1581138385.

Peter Dayan and Terrence J Sejnowski. Exploration bonuses and dual control. Machine Learning,
25(1):5–22, 1996.

Pim de Haan, Dinesh Jayaraman, and Sergey Levine. Causal confusion in imitation learning. In
Advances in Neural Information Processing Systems, pages 11698–11709, 2019.

William Fedus, Dibya Ghosh, John D. Martin, Marc G. Bellemare, Yoshua Bengio, and Hugo
Larochelle. On catastrophic interference in atari 2600 games, 2020.

Andrew Forney, Judea Pearl, and Elias Bareinboim. Counterfactual data-fusion for online reinforce-
ment learners. In Proceedings of the 34th International Conference on Machine Learning, pages
1156–1164, 2017.

Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian active learning for
classification and preference learning, 2011.

David Janz, Jiri Hron, Przemysł aw Mazur, Katja Hofmann, José Miguel Hernández-Lobato, and Se-
bastian Tschiatschek. Successor uncertainties: Exploration and uncertainty in temporal difference
learning. In Advances in Neural Information Processing Systems, volume 32, 2019.

Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro Ortega, DJ Strouse,
Joel Z Leibo, and Nando De Freitas. Social influence as intrinsic motivation for multi-agent deep
reinforcement learning. In International Conference on Machine Learning, pages 3040–3049.
PMLR, 2019.

Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized level replay, 2021.
Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E. Schapire. Con-

textual decision processes with low Bellman rank are PAC-learnable. In Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pages 1704–1713. PMLR, 2017.

10

https://github.com/maximecb/gym-minigrid

Published as a workshop paper at the SSL-RL Workshop at ICLR 2021

Nathan Kallus and Angela Zhou. Confounding-robust policy improvement. In S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

Hilbert J Kappen, Vicenç Gómez, and Manfred Opper. Optimal control as a graphical model infer-
ence problem. Machine learning, 87(2):159–182, 2012.

Z. Kenton, A. Filos, O. Evans, and Y. Gal. Generalizing from a few environments in safety-critical
reinforcement learning. arXiv e-prints, July 2019.

Michail G Lagoudakis and Ronald Parr. Least-squares policy iteration. The Journal of Machine
Learning Research, 4:1107–1149, 2003.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, pages 6405–6416, 2017.

Finnian Lattimore, Tor Lattimore, and Mark D Reid. Causal bandits: learning good interventions
via causal inference. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, pages 1189–1197, 2016.

Sanghack Lee and Elias Bareinboim. Structural causal bandits: where to intervene? Advances in
Neural Information Processing Systems 31, 31, 2018.

Xiuyuan Lu and Benjamin Van Roy. Ensemble sampling. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 30, pages 3258–3266. Curran Associates, Inc., 2017.

Melissa Mozifian, Amy Zhang, Joelle Pineau, and David Meger. Intervention design for effective
sim2real transfer, 2020.

Ian Osband and Benjamin Van Roy. Why is posterior sampling better than optimism for reinforce-
ment learning? In Proceedings of the 34th International Conference on Machine Learning, pages
2701–2710, 2017.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. In Advances in neural information processing systems, pages 4026–4034,
2016.

Brendan O’Donoghue, Ian Osband, Remi Munos, and Volodymyr Mnih. The uncertainty bellman
equation and exploration. In International Conference on Machine Learning, pages 3836–3845,
2018.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement.
In ICML, 2019.

Judea Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, New York,
NY, USA, 2nd edition, 2009. ISBN 052189560X, 9780521895606.

J. Peters, P. Bühlmann, and N. Meinshausen. Causal inference using invariant prediction: identifica-
tion and confidence intervals. Journal of the Royal Statistical Society, Series B (with discussion),
78(5):947–1012, 2016.

Pranav Shyam, Wojciech Jaśkowski, and Faustino Gomez. Model-based active exploration. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, pages 5779–5788, Long Beach, California, USA, 09–15 Jun
2019. PMLR.

Xingyou Song, Yiding Jiang, Stephen Tu, Yilun Du, and Behnam Neyshabur. Observational overfit-
ting in reinforcement learning. In International Conference on Learning Representations, 2020.

Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L Littman. Pac model-
free reinforcement learning. In Proceedings of the 23rd international conference on Machine
learning, pages 881–888. ACM, 2006.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. 2018.
Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-

work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

Sebastian B. Thrun and Knut Möller. Active exploration in dynamic environments. In J. Moody,
S. Hanson, and R. P. Lippmann, editors, Advances in Neural Information Processing Systems,

11

Published as a workshop paper at the SSL-RL Workshop at ICLR 2021

volume 4, pages 531–538. Morgan-Kaufmann, 1992.
Sergei Volodin, Nevan Wichers, and Jeremy Nixon. Resolving spurious correlations in causal mod-

els of environments via interventions. arXiv preprint arXiv:2002.05217, 2020.
Lingxiao Wang, Zhuoran Yang, and Zhaoran Wang. Provably efficient causal reinforcement learning

with confounded observational data. arXiv preprint arXiv:2006.12311, 2020.
Amy Zhang, Nicolas Ballas, and Joelle Pineau. A dissection of overfitting and generalization in

continuous reinforcement learning. CoRR, abs/1806.07937, 2018a.
Amy Zhang, Zachary C. Lipton, Luis Pineda, Kamyar Azizzadenesheli, Anima Anandkumar, Lau-

rent Itti, Joelle Pineau, and Tommaso Furlanello. Learning causal state representations of partially
observable environments. CoRR, abs/1906.10437, 2019.

Amy Zhang, Clare Lyle, Shagun Sodhani, Angelos Filos, Marta Kwiatkowska, Joelle Pineau, Yarin
Gal, and Doina Precup. Invariant causal prediction for block mdps. In Proceedings of Machine
Learning and Systems 2020, pages 7623–7633. 2020a.

Chiyuan Zhang, Oriol Vinyals, Rémi Munos, and Samy Bengio. A study on overfitting in deep
reinforcement learning. CoRR, abs/1804.06893, 2018b.

Junzhe Zhang, Daniel Kumor, and Elias Bareinboim. Causal imitation learning with unobserved
confounders. In Advances in Neural Information Processing Systems, 2020b.

12

Published as a workshop paper at the SSL-RL Workshop at ICLR 2021

A PROOFS

Observation 2. LetM be an MDP with state space X ⊂ Rd and π a policy inducing stationary
distribution ηπ over X . Let wt be such that V π(x) = w>T x for all x ∈ X . Then if ∃v ∈ Rd
Ex∼ηπ(X)[(v

>x)2] = 0, we have for any real number M ∈ R, there exists vector w ∈ Rd such that
Ex∼ηπ(X)[|V π(x)−w>x|] = 0 and max

x∈X
[|V π(x)]−w>x|] > M . (8)

Proof. The condition of this observation requires that the dimension of the support of ηπ be strictly
less than d. We then note that for any w attaining zero linear approximation error on the support
of ηπ , we can construct a new vector also attaining zero error of the form wα = w + αv for any
α ∈ R. Let β = w>T v. Take any x ∈ X : x>v = γ 6= 0. Then given M ∈ R, it suffices to set
α = M

γ ± β to obtain in wα a linear predictor with zero error on ηπ and error at least M on some
state in X .

Theorem 1. Let Etrain = {M} forM = (S, A,R, P, γ, p0), and Etest = {(S, A,R, P, γ, pS)|S ⊆
S}. Let ΠS = {π{s}|s ∈ S}. Then ifM is fully connected

min
Q

max
Etest

E[max
a
|Q∗(s0, a)−Q(s0, a)|]] = min

Q
max
πS∈ΠS

Es0∼πS
[max
a
|Q∗(s0, a)−Q(s0, a)|].

Proof. The proof follows straightforwardly from the observation that for any initial state distribution
p0, it is possible to construct an intervention which induces this state distribution at its termination.
When p0 = δs, this is trivial: we simply pick select the targeting intervention πs, which determinis-
tically returns the state s. The p0 =

∑
αsδs, then we construct a policy over options µ of the form

µ(πs|s0) = αs for s0 in the training MDP’s initial state distribution. There is therefore a one-to-one
correspondence between initial state distributions and distributions over states output by the inter-
vention policies, and so the set over which the maximization problem occurs is the same in both the
left hand side and the right hand side of the above equation, which means the optimization problems
have the same set of solutions.

Theorem 2. Let Xt, X′t ∈ Rt×d with kth rows xk, x′k respectively, and rt ∈ Rt denote a collection
of sampled transitions from an MDPM = (X ,A, R, P, γ). Assume each xk is sampled from some
distribution η(X) and x′k is obtained by sampling an action from the policy π(x) and observing the
induced transition in the MDP. Assume the realizable setting: i.e. there exists some wT ∈ Rd such
that V π(x) = 〈x,wT 〉. Then if the sampling distribution η is such that Ex∼η[(x>v)2] > 0 for all
unit vectors v, we will have

wt = [Xt(Xt − γX′t)>]−1[Xtrt]
t→∞−→ wT (5)

Theorem 2 highlights that in the function approximation regime it is not necessary to visit all states
in the MDP in order to find a robust value function. Rather, it is only necessary to follow a policy
which visits a sufficiently informative set of states so as to enable interpolation at evaluation time,
at least in the realizable setting.

The proof of this result is simplified by the following Lemma from Bradtke and Barto (1996) show-
ing convergence of the LS TD algorithm. While the LS TD algorithm approximates the state-value
function, it is straightforward to generalize to the state-action values following the approach of
Lagoudakis and Parr (2003) by considering instead of the state encoding x, a state-action encoding
φ(x, a). For simplicity of exposition, we focus on the value approximation case. We will use the
notation r̄ to denote the vector of expected rewards, where r̄x denotes the expected reward at state
x. We let P be the matrix such that PX = E[Xt+1|Xt = X], where X is the matrix of states in X .

Given a sample of t transitions (Xt, rt, X′t) drawn by following a policy π in an MDPM (i.e. by
following transitions in a Markov chain), the LS TD algorithm outputs the following linear function
approximator

wt = [
1

t

t∑
k=1

xt(xt − γx′t)>]−1[
1

t

t∑
k=1

xtrt] . (9)

Lemma 1 ((Bradtke and Barto, 1996)). For any Markov chain, when (1) θt is found using the
algorithm LS TD; (2) each state x ∈ X is visited infinitely often; (3) each state x ∈ X is visited in

13

Published as a workshop paper at the SSL-RL Workshop at ICLR 2021

the long run with probability 1 in proportion to πx; and (4) [X>Π(I − γP)X] is invertible, and Π
is the diagonal matrix diag(π), then:

wLSTD = [X>Π(I − γP)X]−1[X>Πr̄] (10)

Proof. Because we assume the realizable setting, i.e. that there exists a regressor wT which attains
zero value approximation error, and that the dimension of the state space visited during training
is equal to d, we have the existence and uniqueness of an optimal value function approximator.
Further, under any stationary state visitation distribution π with full support on the state space, with
Π = diag(π), we have

[X>Π(I − γP)X]−1[X>Πr̄] = [X>(I − γP)X]−1[X>r̄] .

The principal difference between the conditions of our result and the conditions of Lemma 1 is that
we do not assume that the policy used by the agent to reach the states X is the same as the policy
used by the agent in generating the transition x, r,x′. Instead, our assumption on η requires that it
visit each dimension of the state space with some nonzero probability.

In particular, we have [
X>Πη(I − γPπ)X

]−1

[X>Πη r̄

]
= wT .

We can then apply the mechanics of the proof of Lemma 1 as follows.

lim
t→∞

wt = lim
t→∞

[
1

t

∑
xk(xk − γx′k)>

]−1[
1

t

∑
xkr)k

]
=

[
lim
t→∞

1

t

∑
xk(xk − γx′k)>

]−1[
lim
t→∞

1

t

∑
xkr)k

]
=

[∑
ηx
∑

P (x,x′)x(x− γx′)
]−1

[∑
ηxx

∑
x′

P (x,x′)r(x,x′)

]

=

[∑
ηx
∑

P (x,x′)x(x− γx′)
]−1[∑

ηxx
∑
x′

r̄(x)

]

=

[
X>Πη(I − γPπ)X

]−1

[X>Πη r̄

]
= wT

Observation 3. Let s ∈ S , and let τ = (si, ai, ri)
N
i=1 be a trajectory collected from the target-

then-execute policy π∗ ◦ πs. Let t denote the first timestep such that st = s. Let the termination
probability of the MDP be stationary, and let the data-collection procedure throw away trajectories
in which the episode terminates before the target policy is deployed. Then

Eτ∼π∗◦πs [
T∑
k=t

γk−tRk] = E[Q∗(s0, a
∗)|p(s0) = δs]. (11)

Proof. The result follows immediately from the assumption of full observability. In particular, the
expected return from a state s is independent of the trajectory taken to reach s. Thus, letting T
be the random variable denoting the termination time of the episode (and assuming the termination
probability is constant), we obtain

ERk,T [

T∑
k=0

γkRk|s0 = s] = ERk,T [

T∑
k=t

γk−tRk|st = s|T ≥ t] . (12)

Theorem 3. Let s∗, a∗ be a state action pair selected by target-then-execute at episode h. Let Ph
denote the posterior over Q-functions at episode h obtained by a Bayesian model with Gaussian
prior and likelihood. Then

(s∗, a∗) ∈ arg maxs,aIG(Ph, s, a) . (7)

14

Published as a workshop paper at the SSL-RL Workshop at ICLR 2021

Figure 7: Hard MDP in Proof of Observation 2. Green states yield positive reward, red states yield
negative reward, and grey states give zero reward. A single arrow coming out of a state indicates
both a1 and a2 deterministically take the agent to the next state.

A note on the modelling assumptions. The above result assumes that the agent is only interested in
the mean value of the return from the state-action pair, and is not also modelling its variance. If the
agent is modelling both mean and variance (for example, in distributional reinforcement learning),
then the above result needs to be modified to disentangle the agent’s epistemic and aleatoric uncer-
tainties. For simplicity, we do not consider this case but note that it is straightforward to modify the
proof below to apply to this setting.

Proof. To simplify notation, we let the random variable R be the return from the trajectory τ
obtained as described in Secion 4.2. To show the result, we need to show that H[Q(s, a)] =
H[Q|D] − ER̂∼PQ [H[Q|D, R]. Doing so is a straightforward manipulation of known informa-
tion quantities, leveraging the shared likelihood P (R(s, a)|Q(s, a) = q) = N (q, σ2)∀s, a between
states and the Gaussian prior N (µ0, σ0). We let the posterior distribution over Q-values at timestep
h be denoted by Q(s, a) ∼ N (µh(s, a), σ2

h(s, a)).
arg maxs,aIG(Ph, s, a) = H[Q|D]− E[H[Q|D, R]

= log cσ2
h(s, a)− log cσ2

h,R(s, a)

= arg maxs,a log σ2
h(s, a)− log(σh(s, a) + σr)

Because log(x)− log(x+ a) is monotone with respect to x, we get
= arg maxs,a log σ2

h(s, a)

= arg maxs,aHP [Qh(s, a)]

Observation 1. For any rmax ∈ R, there exists an MDP M with rewards bounded in [−rmax, rmax]
and an initial distribution ptrain, ptest such that with probability p > 0, for all timesteps t, the policy
followed by Delayed Q-learning (Strehl et al., 2006) run from initial state distribution ptrain attains
regret rmax/2 under the initial state distribution ptest.

Proof. The family of MDPs we construct to demonstrate this result is visualized in Figure 7. For
each k ∈ N, we construct an MDPMk consisting of 2k+3 states and two actions. At the initial state
S0, the agent can choose between the MDP’s two actions: a1 and a2. Action a1 deterministically
generates reward rmax, and transitions to a state which also deterministically generates reward rmax
and then transitions back to state S0, providing reward rmax again. This is the Good branch of the
MDP, as cycling between S0 and the green state provides the maximal possible value. Taking action
a2 from S0 deterministically takes the agent to a state with reward−rmax. This state deterministically
transitions to the root of the Maze component, a branching binary tree of height k in which a1 takes
the agent to a node’s left child, and a2 to the node’s right child, and whose leaves all deterministically
transition to Send independent of the action taken. In one of the 2k−1 leaves of the binary tree sl, the
agent receives a reward rmax. The only way to reach this state, however, requires correctly following
a sequence of k actions. Finally, the MDP deterministically transitions back to Send, which returns

15

Published as a workshop paper at the SSL-RL Workshop at ICLR 2021

it to S0. We set the initial state distributions ptrain = δS0
and ptest = δsp , where sp is the parent of

the rewarding leaf sl.

The optimal policy starting from the state S0 is to take action a1 and receive the reward of rmax.
However, if the agent is placed at the root node of the Maze component of the MDP, then the
optimal policy requires navigating the binary tree. The probability of reaching the rewarding state
after a single random traversal of the Maze is 2−(k−1).

Delayed Q-learning follows a greedy exploration policy with respect to an optimistically initialized
value function. The algorithm updates state-action pairs after they have been visited sufficiently of-
ten so as to provide tight confidence intervals on the estimated value. Being a PAC-MDP algorithm,
Delayed Q-learning takes as input a confidence parameter δ and an accuracy parameter ε. We then
let ε1 = ε(1− γ)/9, κ = 1

(1−γ)ε1
and m := ln(3SA(1−SAκ)/δ

2ε21(1−γ)2
.

In particular, for fixed ε, γ, A, and δ, m grows as O(ln(S)). We additionally observe that in any
given traversal of the Maze before any Q-value is updated, the agent has probability 1

2k−1 ≈ 1
S of

visiting any given leaf.

We first observe that the maze is traversed at mostm times, as afterm traversals the agent will update
the state-action value Q(S0, a2), after which it will forever choose action a1. We now consider the
simple regret of the policy followed by Delayed Q-learning at timestep t when initialized to the
parent in the binary tree of sl, denoted sp (i.e. the robust performance). We suppose without loss of
generality that sl is a left child of sp and so obtain the difference Q∗(sp, a1)−Q∗(sp, a2) = rmax.
Thus if the policy is uniform at sp, it will attain simple regret rmax

2 . The probability of this occurring
is equal to the probability that the agent updated the valueQ(sp, a2) in itsmth traversal of the maze.
An update to Q(sp, a2) occurs only if (sp, a2) has been visited m times, previously. Assuming a
random tiebreak rule, this event occurs independently on each trajectory with probability 1

2k−1 ≈ 1
S

and so P (πt(sp) = a1) ≈ 1
|S|

m
< 1
|S| .

Let T denote the timestep whenQ(S0, a2) is updated. For t < T +k, we have that πt acts randomly
on sp and so attains simple regret at least r2 with probability 1 . For t ≥ T + k, we have that πt
acts randomly with probability at least 1− 1

2k−1 . Thus, for any fixed probability 0 < p < 1, setting
k ≥ 1− log(1− p) yields

P (EMk,p0=δsp
[R(π∗)−R(πt)] >

rmax

2
) ≥ p . (13)

B INTERVENTIONS

There is some difficulty in translating the notion of an intervention in an MDP, where we typically
are interested in series of actions that lead to some property holding, to the notion of causal graph
manipulation used by Pearl (2009), and so we provide some discussion of and motivation for this
distinction. Do-interventions require direct manipulations to variables in the causal graph, corre-
spnoding to a model of the world in which the agent can fix variables to specific values without
changing anything else in the data-generating process. While this is practical in some scenarios
such as treatment decisions in medical trials, it is problematic when we translate this notion to the
RL setting. Indeed, a do-intervention on the SCM described by Figure 1 would entail setting the
value of a state variable at a specific timestep to take a specific value while leaving both the agent’s
policy and the remaining environment dynamics unchanged. While such an intervention may be
desirable (for example, if a developer intervenes on the game state of a chess-playing agent to see
how it will respond to a piece being taken off the board), it is by definition not something that can
be performed by the agent.

Instead, our notion of agent-centric notion of interventions considers only how changes to the agent’s
policy affect the data-generating process of the MDP – i.e. we do not assume that there is some om-
nipotent entity that can arbitrarily modify variables in the world, but rather that changes to these vari-
ables must occur through the actions of the agent. This is equivalent to performing a do-intervention
on a subset of the action variables At:t+k in the MDP’s graphical model in the traditional language
of interventions on a causal graph. However, we cannot directly translate this change in the agent’s

16

Published as a workshop paper at the SSL-RL Workshop at ICLR 2021

policy to a do-intervention of the form do(Xi = xi), where Xi is some dimension of the state. In
particular, this means that while the agent can act in such a way that Xt

i = xti for some timestep t,
the sequence of actions it takes to achieve this outcome may change the distribution over states such
that the distribution over the remaining components of the state (Xt

j)j 6=i differs from what would be
obtained by the agent following its default policy. Indeed, there may be many interventional policies
the agent can follow which lead to the outcomeXt

i = xi for some t, and each of these interventional
policies may induce a different distribution over the state (Xt

j)j 6=i.

In ergodic environments, it is always possible to construct an option with policy πdo(Xi=x) which
induces the distribution p0(X|do(Xi = x)) in the state space on termination. This can be
achieved by an appropriate weighting of the goal-reaching policies πx for each x in the support
of p0(X|do(Xi = x)). In non-ergodic environments, however, this may be impossible as some
states may be unreachable by the agent. As an illustrative example, consider the problem of a robot
exploring a room with a timer on the wall. Because it takes time for the robot to reach a given
state, it is impossible to follow a policy which replicates the distribution induced by the intervention
do(X,Y = x, y) which sets the agent to a particular (x, y)-position. This problem also arises in any
attempt to replicate the distribution do(Xt

i = x) for a specific timestep t: while in an ergodic MDP
for sufficiently large t (i.e. greater than the mixing time of the induced Markov chain) there may
exist an intervention policy which induces the same distribution over states as the evaluation policy,
this will not in general hold for small t or for non-ergodic environments.

Given the impossibility of constructing such policies, along with the fact that the set of interventional
distributions which maximize the value approximation error of a given estimated value function
contains at least one Dirac delta distribution, we conclude that the class of agent-interventions we
consider is both a realistic model of agent interaction with the world, and sufficient to identify
sources of causal confusion.

C EXPERIMENT DETAILS

C.1 MOUNTAINCAR

We follow the experimental procedure described by de Haan et al. (2019) with respect to the training
data and the policy model, basing our implementation on the open-source code provided by the
authors. Because the expert policy is deterministic and so the imitation learning dataset does not
cover the joint state-action space, we pretrain the exploration policy online in the environment for
100 episodes before deploying it for evaluation. Because the ensemble is given by a set of policies
rather than value functions, we apply an unnormalized version of the disagreement bonus given in
Algorithm 1 to the probability distributions output by the ensemble heads. We additionally modify
the environment for evaluation so that we can deterministically initialize the environment to a given
initial state. We evaluate our method, target-then-execute, and the approach of de Haan et al. (2019)
on a range of these initial states, running the policy induced by each possible feature mask for 10
random seeds from each state and performing the posterior weight updating based on the average
return of this policy. We determine whether the agent has correctly inferred the causal structure
based on whether the posterior weight assigned to the spurious previous action variable is equal to
the weight assigned to the position and velocity.

C.2 MINIGRID

To simulate the motivating autonomous vehicle example, we construct a MiniGrid environment in
which the agent must pass through a bottleneck square in order to reach its goal state. The bottleneck
square (i.e. the rail crossing) can be passed through normally when the marker on this square is
green, but terminates the episode and yields a reward of -1 if the square is red. The agent must
also avoid colliding with other cars, modelled as blue circles. In the training environment, the rail
crossing is green at initialization, and at any given timestep has probability of switching color from
green to red or vice versa is equal to 0.1. In most instances when the color switches to red, the agent
is behind one of the obstacles, mimicking the setting where an autonomous vehicle never or almost-
never sees a red rail crossing during training. Additionally, the agent in this setting is initialized to be
behind the obstacles. In the validation environment, we change the initialization distribution so that
now the agent is at the front of the line of cars. Otherwise, the environment parameters are identical

17

Published as a workshop paper at the SSL-RL Workshop at ICLR 2021

to the environment used for offline data collection. This setup means that some fraction of the time,
the agent will find itself at the red light purely by chance, though this fraction will be quite small.
We observe qualitatively that the uncertainty value obtained by the agent at this state is large relative
to when the agent is in front of the green light. We pretrain the exploration policy to maximize the
expected sum of discounted uncertainty bonuses on the offline data used to train the ensemble, and
allow the exploration policy to continue updating during the validation phase. The expert data used
to train the ensemble and exploration policy is generated by a pretrained model which following an
ε-greedy policy for ε = 0.2.

C.3 GRIDWORLD

We use a 15×15 gridworld in which the agent is initialized in position (1, 1). We place goal states in
locations (1, h−1) and (w, 1). The agent receives reward +1 upon reaching a goal state, terminating
the episode, and zero reward otherwise. The episode terminates after 128 steps if the goal has not
been reached. To evaluate the Q-learning agents, we run ε-greedy exploration with ε = 0.1. The
‘random’ initialization is sampled from a normal distribution with mean zero and variance 1

|S| for
each state-action pair, while the optimistic initialization is fixed at 1. We use γ = 0.99, and train
each agent for 200 episodes.

C.4 PROCGEN

The target-then-execute method is implemented as an additional ε-greedy addition to PLR (Jiang
et al., 2021). We took the original best hyperparameters from PLR and tuned just three hyperparam-
eters for our target-then-execute method, shown in Table 1. Staleness refers to the type of prioriti-
zation used in the original PLR method. The default prioritization method is “staleness-aware,” or
how long ago a specific level was sampled. The sampling distribution is defined as a mixture of two
distributions based on the level scores PS and how long ago each level was last sampled PC :

Preplay = (1− ρ) · PS + ρ · PC .

Parameter name Value
Exploration parameter ε 0.05
Temperature parameter β 0.08
Staleness coefficient ρ 0.05

Table 1: A complete overview of used hyper-parameters.

Results over all 16 environments are shown in Figure 8.

We also provide results of our sweeps in Figure 9, Figure 10, and Figure 11. We see that performance
across most environments is quite robust to changes to these hyperparameters, with the exception of
bigfish and heist.

18

Published as a workshop paper at the SSL-RL Workshop at ICLR 2021

Figure 8: Method in multi-environment, rich-observation setting. Blue is target-then-execute. Aver-
aged over 10 seeds, with 1 standard error shaded.

19

Published as a workshop paper at the SSL-RL Workshop at ICLR 2021

0

10

bigfish

0

5

10
bossfight

0

5

caveflyer

2

5

7

chaser

2

5

7

climber

5

10
coinrun

1

2

dodgeball

0

20

fruitbot

2

4

heist

2

4

6

jumper

5

10
leaper

2

4

6

maze

0 10M 20M

5

10
miner

0 10M 20M

2

5

7
ninja

0 10M 20M

5

10
plunder

0 10M 20M0

20

starpilot

Steps

M
ea

n
te

st
 e

pi
so

de
 re

tu
rn

Epsilon 0.01 Staleness 0.05 Staleness 0.1

Figure 9: Sweep on exploration parameter ε for ProcGen.

20

Published as a workshop paper at the SSL-RL Workshop at ICLR 2021

0

10

bigfish

0

5

10
bossfight

2

5

7
caveflyer

2

5

7

chaser

2

5

7

climber

2

5

7

coinrun

0

1

2

dodgeball

0

20

fruitbot

2

4

heist

2

5

7
jumper

0

5

leaper

2

5

maze

0 10M 20M0

5

10

miner

0 10M 20M

2

5

7

ninja

0 10M 20M

5

10

plunder

0 10M 20M0

20

starpilot

Steps

M
ea

n
te

st
 e

pi
so

de
 re

tu
rn

Staleness 0.05 Staleness 0.08 Staleness 0.1

Figure 10: Sweep on staleness coefficient ρ for ProcGen.

21

Published as a workshop paper at the SSL-RL Workshop at ICLR 2021

0

10

bigfish

0

5

10

bossfight

0

5

caveflyer

2

5

7

chaser

0

5

climber

5

10
coinrun

0

2

dodgeball

0

20

fruitbot

2

4

heist

2

4

6

jumper

5

10
leaper

2

4

6

maze

0 10M 20M0

5

10
miner

0 10M 20M

2

5

7
ninja

0 10M 20M

5

10

plunder

0 10M 20M0

20

starpilot

Steps

M
ea

n
te

st
 e

pi
so

de
 re

tu
rn

Temperature 0.05 Temperature 0.08 Temperature 0.1

Figure 11: Sweep on temperature parameter β for ProcGen.

22

Published as a workshop paper at the SSL-RL Workshop at ICLR 2021

Figure 12: Return from train and test phases in a 14×14 Gridworld. Stochasticity in returns comes
from randomness in the initialized Q-functions. Results are averaged over 10 ensemble initializa-
tions.

D ADDITIONAL GRIDWORLD EVALUATIONS

In addition to the results in the main body, we show that target-then-execute can be used in conjunc-
tion with online RL to encourage state coverage during training in hard-exploration environments,
even in the tabular setting where spurious correlations cannot exist. In this experiment, shown in
Figure 12 ,we consider a large gridworld with a single goal state. The agent is initialized in the top
left corner of the grid, and the goal state is in the bottom right corner. We evaluate ensemble PSRL,
epsilon-greedy, and target-then-execute, and find that target-then-execute consistently outperforms
both on average, producing agents that consistently find the goal state in a limited-data setting.
Our approach exhibits less dependence on the value function initialization than its competitors, and
attains higher performance in the medium-data regime.

23

	Introduction
	Related Work
	Background & Problem Setting
	Background
	Problem Setting

	Causal Confusion in RL
	Interventions
	Optimality and Exploration

	Robust Exploration to Combat Causal Confusion
	Target-then-Execute
	Theoretical Motivation

	Experiments
	Resolving Causal Confusion
	Single-Environment Generalization
	Scaling to Rich Observations

	Conclusions
	Proofs
	Interventions
	Experiment Details
	MountainCar
	MiniGrid
	Gridworld
	ProcGen

	Additional Gridworld Evaluations

