
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CHANNEL-WISE INFLUENCE: ESTIMATING DATA IN-
FLUENCE FOR MULTIVARIATE TIME SERIES

Anonymous authors
Paper under double-blind review

ABSTRACT

The influence function, a robust statistics technique, is an effective post-hoc method
that measures the impact of modifying or removing training data on model parame-
ters, offering valuable insights into model interpretability without requiring costly
retraining. It would provide extensions like increasing model performance, improv-
ing model generalization, and offering interpretability. Recently, Multivariate Time
Series (MTS) analysis has become an important yet challenging task, attracting
significant attention. However, there is no preceding research on the influence
functions of MTS to shed light on the effects of modifying the channel of MTS.
Given that each channel in an MTS plays a crucial role in its analysis, it is essential
to characterize the influence of different channels. To fill this gap, we propose a
channel-wise influence function, which is the first method that can estimate the in-
fluence of different channels in MTS, utilizing a first-order gradient approximation.
Additionally, we demonstrate how this influence function can be used to estimate
the influence of a channel in MTS. Finally, we validated the accuracy and effective-
ness of our influence estimation function in critical MTS analysis tasks, such as
MTS anomaly detection and MTS forecasting. According to abundant experiments
on real-world datasets, the original influence function performs worse than our
method and even fails for the channel pruning problem, which demonstrates the
superiority and necessity of the channel-wise influence function in MTS analysis.

1 INTRODUCTION

Multivariate time series (MTS) plays an important role in a wide variety of domains, including internet
services (Dai et al., 2021) , industrial devices (Finn et al., 2016; Oh et al., 2015) , health care (Choi
et al., 2016b;a), finance (Maeda et al., 2019; Gu et al., 2020) , and so on. Thus, MTS modeling is
crucial across a wide array of applications, including disease forecasting, traffic forecasting, anomaly
detection, and action recognition. In recent years, researchers have focused on deep learning-based
MTS analysis methods (Zhou et al., 2021; Tuli et al., 2022; Xu et al., 2023; Liu et al., 2024; Xu
et al., 2021; Wu et al., 2022). Due to the large number of different channels in MTS, numerous
studies aim to analyze the importance of these channels (Liu et al., 2024; Zhang & Yan, 2022; Nie
et al., 2022; Wang et al., 2024). Some of them concentrate on using graph or attention structure to
capture the channel dependencies (Liu et al., 2024; Deng & Hooi, 2021), while some of them try to
use Channel Independence to enhance the generalization ability on different channels of time series
model (Nie et al., 2022; Zeng et al., 2023). Although these deep learning methods have achieved
state-of-the-art performance, most of these methods focus on understanding the MTS by refining the
model architecture to improve their models’ performance.

Different from previous work, we try to better understand MTS from a data-centric perspective-
influence function (Hampel, 1974; Koh & Liang, 2017). The influence function is proposed to
study the counterfactual effect between training data and model performance. For independent and
identically distributed (i.i.d.) data, influence functions estimate the model’s change when there is
an infinitesimal perturbation added to the training distribution, e.g., a reweighing on some training
instances and dataset pruning, which has been widely used in computer vision and natural language
processing tasks, achieving promising results (Yang et al., 2023; Tan et al., 2024; Thakkar et al.,
2023; Cohen et al., 2020; Chen et al., 2020; Pruthi et al., 2020). Considering that, it is essential
to develop an appropriate influence function for MTS. It would provide extensions like increasing

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

model performance, improving model generalization, and offering interpretability of the interactions
between the channels and the time series models.

To the best of our knowledge, the influence of MTS in deep learning has not been studied, and
it is nontrivial to apply the original influence function in Koh & Liang (2017) to this scenario.
Since different channels of MTS usually include different kinds of information and have various
relationships (Wu et al., 2020; Liu et al., 2024), the original influence function can not distinguish the
influence of different channels in MTS because it is designed for a whole data sample, according
to the definition of the original influence function. In addition, our experiments also demonstrate
that the original influence function does not support anomaly detection effectively and fails to solve
the forecasting generalization problem in MTS, while it performs well on computer vision and
natural language process tasks (Yang et al., 2023; Thakkar et al., 2023). Thus, how to estimate the
influence of different channels in MTS is a critical problem. Considering a well-designed influence
function should be able to distinguish the influence between different channels, we propose a channel-
wise influence function, a first-order gradient approximation (Pruthi et al., 2020), to characterize
the influence of different channels. Then, we introduce how to use this function in MTS anomaly
detection (Saquib Sarfraz et al., 2024) and MTS forecasting (Liu et al., 2024) tasks effectively. Finally,
we use various kinds of experiments on real-world datasets to demonstrate the characteristics of our
novel influence function and prove it can be widely used in the MTS analysis tasks.

The main contributions of our work are summarized as follows:

• We developed a novel channel-wise influence function, a first-order gradient approximation,
which is the first of its kind to effectively estimate the channel-wise influence of MTS.

• We designed two channel-wise influence function-based algorithms for MTS anomaly
detection and MTS forecasting tasks, and validated its superiority and necessity.

• We discovered that the original functions do not perform well on MTS anomaly detection
tasks and cannot solve the forecasting generalization problem.

• Experiments on various real-world datasets illustrate the superiority of our method on the
MTS anomaly detection and forecasting tasks compared with original influence function.
Specifically, our influence-based methods rank top-1 among all methods for comparison.

2 RELATED WORK

2.1 BACKGROUND OF INFLUENCE FUNCTIONS

Influence functions estimate the effect of a given training example, z′, on a test example, z, for
a pre-trained model. Specifically, the influence function approximates the change in loss for a
given test example z when a given training example z′ is removed from the training data and the
model is retrained. Koh & Liang (2017) derive the aforementioned influence to be I (z′, z) :=

∇θL (z′; θ)
⊤
H−1

θ ∇θL(z;θ), where Hθ is the loss Hessian for the pre-trained model: Hθ :=
1/n

∑n
i=1 ∇2

θL(z;θ), evaluated at the pre-trained model’s final parameter checkpoint. The loss
Hessian is typically estimated with a random mini-batch of data. The main challenge in computing
influence is that it is impractical to explicitly form Hθ unless the model is small, or if one only
considers parameters in a few layers. TracIn (Pruthi et al., 2020) address this problem by utilizing
a first-order gradient approximation: TracIn (z′, z) := ∇θL (z′;θ)

⊤ ∇θL(z;θ), which has been
proved effectively in various tasks (Thakkar et al., 2023; Yang et al., 2023; Tan et al., 2024).

2.2 BACKGROUND OF MULTIVARIATE TIME SERIES

There are various types of MTS analysis tasks. In this paper, we mainly focus on unsupervised
anomaly detection and preliminarily explore the value of our method in MTS forecasting.

MTS Anomaly detection: MTS anomaly detection has been extensively studied, including complex
deep learning models (Su et al., 2021; Tuli et al., 2022; Deng & Hooi, 2021; Xu et al., 2022). These
models are trained to forecast or reconstruct presumed normal system states and then deployed to
detect anomalies in unseen test datasets. The anomaly score, defined as the magnitude of predic-
tion or reconstruction errors, serves as an indicator of abnormality at each timestamp. However,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Saquib Sarfraz et al. (2024) have demonstrated that these methods create an illusion of progress due
to flaws in the datasets (Wu & Keogh, 2021) and evaluation metrics (Kim et al., 2022), and they
provide a more fair and reliable benchmark.

MTS Forecasting: In MTS forecasting, many methods try to model the temporal dynamics
and channel dependencies effectively. An important issue in MTS forecasting is how to better
generalize to unseen channels with a limited number of channels (Liu et al., 2024). This places high
demands on the model architecture, as the model must capture representative information across
different channels and effectively utilize this information. There are two popular state-of-the-art
methods to achieve this. One is iTransformer (Liu et al., 2024), which uses attention mechanisms to
capture channel correlations. The other is PatchTST (Nie et al., 2022), which enhances the model’s
generalization ability by sharing the same model parameters across different channels through a
Channel-Independence strategy. However, both of these methods are model-centric methods, which
cannot identify the most informative channels in the training data for the model.

Although MTS forecasting and anomaly detection are two different kinds of tasks, both of their
state-of-the-art methods have fully utilized the channel information in the MTS through model-centric
methods. Different from previous model-centric methods, we propose a data-centric method to
improve the model’s performance on MTS downstream tasks and identify practical techniques to
improve the analysis of the training data by leveraging channel-wise information.

3 CHANNEL-WISE INFLUENCE FUNCTION

The influence function (Koh & Liang, 2017) requires the inversion of a Hessian matrix, which is
quadratic in the number of model parameters. Additionally, the representer point method necessitates
a complex, memory-intensive line search or the use of a second-order solver such as LBFGS.
Fortunately, the original influence function can be accelerated and approximated by TracIn (Pruthi
et al., 2020) effectively. TracIn is inspired by the fundamental theorem of calculus. The fundamental
theorem of calculus decomposes the difference between a function at two points using the gradients
along the path between the two points. Analogously, TracIn decomposes the difference between the
loss of the test point at the end of training versus at the beginning of training along the path taken by
the training process. The specific definition can be derived as follows:

TracIn (z′, z) = L (z;θ)− L(z;θ′) ≈ η∇θL (z′;θ)
⊤ ∇θL(z;θ) (1)

where z′ is the training example, z is the testing example, θ is the model parameter, θ′ is the updated
parameter after training with z′, L(·) is the loss function and η is the learning rate during the training
process, which defines the influence of training z′ on z.

However, in the MTS analysis, the data sample z, z′ are MTS, which means TracIn can only calculate
the whole influence of all channels. In other words, it fails to characterize the difference between
different channels. To fill this gap we derive a new channel-wise influence function, using a derivation
method similar to TracIn. Thus, we obtain Theorem 3.1 which formulates the channel-wise influence
matrix, and the proof can be found in Appendix 6.

Theorem 3.1. (Channel-wise Influence function) Assuming the c′i, cj is the i-th channel and j-th
channel from the data sample z′, z respectively, θ is the well-trained parameter of the model, L(·) is
the loss function and η is the learning rate during the training process. The first-order approximation
of the original influence function can be derived at the channel-wise level as follows:

TracIn (z′, z) =

N∑
i=1

N∑
j=1

η∇θL (c′i;θ)
⊤ · ∇θL (cj ;θ) (2)

Given the result, we define a channel-wise influence matrix MCInf and each element ai,j in it can be
described as ai,j := η∇θL (c′i;θ)

⊤ · ∇θL (cj ;θ). Thus, according to the theorem 3.1, the original
TracIn can be treated as a sum of these elements in the channel-wise influence matrix MCInf ,
failing to utilize the channel-wise information in the matrix specifically. Considering that, the final
channel-wise influence function can be defined as follows:

CIF (c′i, cj) := η∇θL (c′i;θ)
⊤ · ∇θL (cj ;θ) (3)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025



well-trained

model

Channel-wise

Self-influence

From

high

to

low

Apply

Score

Representative 

subset

Anomaly score

Anomaly detection

Channel Pruning

Score( )tx

Input data tx

Figure 1: The framework of applying channel-wise influence function. The specific calculation
method for the Score is detailed in Algorithms 1 and 2.

where ci, c
′
j is the i-th channel and j-th channel from the data sample z, z′ respectively, θ is the

well-trained parameter of the model and η is the learning rate during the training process. This
channel-wise influence function describes the influence between different channels among MTS.
Remark 3.2. (Characteristics of Channel-wise Influence Matrix) The channel-wise influence
matrix reflects the relationships between different channels in a specific model. Specifically, each
element ai,j in the matrix MCInf represents how much training with channel i helps reduce the loss
for channel j, which means similar channels usually have high influence score. Each model has its
unique channel influence matrix, reflecting the model’s way of utilizing channel information in MTS.
Therefore, we can use MCInf for post-hoc interpretable analysis of the model.

4 APPLICATION IN MTS ANALYSIS

In this section, we focus on two important tasks in MTS analysis: MTS anomaly detection and MTS
forecasting. We discuss the relationship between our channel-wise influence function and these tasks,
and then explain how to apply our method to these critical problems.

4.1 MTS ANOMALY DETECTION

Problem Definition: Defining the training MTS as x = {x1,x2, ...,xT }, where T is the duration of
x and the observation at time t, xt ∈ RN , is a N dimensional vector where N denotes the number
of channels, thus x ∈ RT×N .The training data only contains non-anomalous timestep. The test set,
x′ = {x′

1,x
′
2, ...,x

′
T } contains both normal and anomalous timestamps and y′ = [y′

1,y
′
2, ...,y

′
T ] ∈

{0, 1} represents their labels, where y′
t = 0 denotes a normal and y′

t = 1 an anomalous timestamp
t. Then the task of anomaly detection is to select a function fθ : X → R such that fθ(xt) = yt

estimates the anomaly score. When it is larger than the threshold, the data is predicted anomaly.

Relationship between self-influence and anomaly score: According to the conclusion in Section 4.1
of (Pruthi et al., 2020), influence can be an effective way to detect the anomaly sample. Specifically,
the idea is to measure self-influence, i.e., the influence of a training point on its own loss, i.e., the
training point z′ and the test point z in TracIn are identical. From an intuitive perspective, self-
influence reflects how much a model can reduce the loss during testing by training on sample z′ itself.
Therefore, anomalous samples, due to their distribution being inconsistent with normal training data,
tend to reduce more loss, resulting in a greater self-influence. Therefore, when we sort test examples
by decreasing self-influence, an effective influence computation method would tend to rank anomaly
samples at the beginning of the ranking.

Apply in MTS anomaly detection: Based on these premises, we propose to derive an anomaly
score based on the channel-wise influence function 3 for MTS. Consider a test sample x′ for which
we wish to assess whether it is an anomaly. We can compute the channel-wise influence matrix
MCInf at first and then get the diagonal elements of the MCInf to indicate the anomaly score of
each channel. Since, according to the Remark 3.2 and the nature of self-influence, the diagonal
elements reflect the channel-wise self-influence, it is an effective method to reflect the anomaly level
of each channel. Consistent with previous anomaly detection methods, we use the maximum anomaly

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Channel-wise influence based MTS anomaly detection

Require: test dataset Dtest; a well-trained network θ; loss function L(·); threshold h
empty anomaly score dictionary → ADscore[]; empty prediction dictionary → ADPredict[]
for x ∈ Dtest do

ADscore [x] = max
i

(η∇θL (c′i;θ)
⊤ · ∇θL (c′i;θ))

end for
Normalize ADScore[·] ; /* Anomaly score normalization. */
if ADscore [x] > h then

ADPredict [x] = 1 ; /* Anomaly sample. */
else

ADPredict [x] = 0 ; /* Normal sample. */
end if
return anomaly detection result ADPredict [·].

score across different channels as the anomaly score of MTS x′ at time t as:

Score (x′
t) := max

i
(η∇θL (c′i;θ)

⊤ · ∇θL (c′i;θ)) (4)

where c′i is the i-th channel of the MTS sample x′
t, θ is the trained parameter of the model, and

η is the learning rate during the training process. To ensure a fair comparison, we adopt the same
anomaly score normalization and threshold selection strategy as outlined in Saquib Sarfraz et al.
(2024) for detecting anomalies. Details regarding this methodology can be found in Appendix B. The
comprehensive process for MTS anomaly detection is further elaborated in Algorithm 1 and Fig. 1.

4.2 MTS FORECASTING

Forecasting Generalization Problem Definition: Defining the MTS as x = {x1,x2, ...,xT },
where T is the duration of x and the observation at time t, xt ∈ RN ′

, is a N ′ dimensional vector
where N ′ denotes the number of channels used in the training process, thus x ∈ RT×N ′

. The aim
of multivariate time series forecasting generalization is to predict the future value of xT+1:T+T ′,n,
where T ′ is the number of time steps in the future and the observation at time t′, xt′ ∈ RN , is a N
dimensional vector where N is the number of whole channels which is large than N ′.

Motivation: Considering the excellent performance of the influence function in dataset pruning
tasks (Tan et al., 2024; Yang et al., 2023) and the generalization issues faced in MTS forecasting
mentioned in Section 2, we propose a new task suitable for MTS to validate the effectiveness of our
channel-wise influence function named channel pruning. With the help of channel pruning, we can
accurately identify the subset of channels that are most representative for the model’s training without
retraining the model, resulting in helping the model better generalize to unknown channels with a
limited number of channels. The definition of the task is described in the following paragraph.

Channel Pruning Problem Definition: Given an MTS x = {c1, ..., cN} ,y = {c′1, ..., c′N} con-
taining N channels where ci ∈ RT , x is the input space and y is the label space. The goal of channel
pruning is to identify a set of representative channel samples from x as few as possible to reduce
the training cost and find the relationship between model and channels. The identified representative
subset, D̂ = {ĉ1, ..., ĉm} and D̂ ⊂ D, should have a maximal impact on the learned model, i.e. the
test performances of the models learned on the training sets before and after pruning should be very
close, as described below:

Ec∼P (D)L(c, θ) ≃ Ec∼P (D)L
(
c, θD̂

)
(5)

where P (D) is the data distribution, L(·) is the loss function, and θ and θD̂ are the empiri-
cal risk minimizers on the training set D before and after pruning D̂, respectively, i.e., θ =
argminθ∈Θ

1
n

∑
ci∈D L (ci,θ) and θD̂ = argminθ∈Θ

1
m

∑
ci∈D̂ L (ci,θ).

Apply in channel pruning: Considering the channel pruning problem, our proposed channel-wise
self-influence method can effectively address this issue. According to the Remark 3.2, our approach
can use MCInf to represent the characteristics of each channel by calculating the influence of
different channels. Then, We use a concise approach to obtain a representative subset of channels.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 2 Channel-wise influence based MTS channel pruning

Require: val dataset Dval; a well-trained network θ; loss function L(·); sample interval t
empty channel set D̂ → {} ; empty channel score dictionary → CScore[]
for x ∈ Dval do

for ci ∈ x do
CScore [ci] + = η∇θL (ci;θ)

⊤ · ∇θL (ci;θ)
end for

end for
Sort(CScore) ; /* Sort the influence scores in ascending order. */
i=0
while i < N do

if i == t then
add ci to D̂ ; /* Sample at regular intervals. */

end if
i+ = 1

end while
return pruned channel set D̂.

Specifically, we can rank the diagonal elements of MCInf , i.e., the channel-wise self-influence,
and select the subset of channels at regular intervals for a certain model. Since similar channels
have a similar self-influence, we can adopt regular sampling on the original channel set D based
on the channel-wise self-influence to acquire a representative subset of channels D̂ for a certain
model and dataset, which is typically much smaller than the original dataset. The detailed process
of channel pruning is shown in Algorithm 2 and Fig.1. Consequently, we can train or fine-tune the
model with a limited set of data efficiently. Additionally, it can serve as an explainable method to
reflect the channel-modeling ability of different approaches. Specifically, the smaller the size of the
representative subset D̂ for a method, the fewer channels’ information it uses for predictions, and
vice versa. In other words, a good MTS modeling method should have a large size of D̂.

5 EXPERIMENTS

In this section, we mainly discuss the performance of our method in MTS anomaly detection and
explore the value and feasibility of our method in MTS forecasting tasks. All the datasets used in our
experiments are real-world and open-source MTS datasets.

5.1 MUTIVARIATE TIME SERIES ANOMALY DETECTION

5.1.1 BASELINES AND EXPERIMENTAL SETTINGS

Table 1: The detailed dataset information.

Dataset Sensors(traces) Train Test Anomalies

SWaT 51 47520 44991 4589(12.2%)
WADI 127 118750 17280 1633(9.45%)
SMD 38(28) 25300 25300 1050(4.21%)

SMAP 25(54) 2555 8070 1034(12.42%)
MSL 55(27) 2159 2730 286(11.97%)

We conduct model comparisons across
five widely-used anomaly detection
datasets: SMD(Su et al., 2019), MSL
(Hundman et al., 2018), SMAP (Hund-
man et al., 2018), SWaT (Mathur & Tip-
penhauer, 2016), and WADI (Deng &
Hooi, 2021), encompassing applications
in service monitoring, space/earth explo-
ration, and water treatment. Since SMD,
SMAP, and MSL datasets contain traces with various lengths in both the training and test sets, we
report the average length of traces and the average number of anomalies among all traces per dataset.
The detailed information of the datasets can be found in Table. 1.

Given the point-adjustment evaluation metric is proved not reasonable (Saquib Sarfraz et al., 2024;
Kim et al., 2022), we use the standard precision, recall and F1 score to measure the performance,
which aligns with (Saquib Sarfraz et al., 2024). Moreover, due to the flaws in the previous methods,
Saquib Sarfraz et al. (2024) provide a more fair benchmark, including many simple but effective
methods, such as GCN-LSTM, PCA ERROR and so on, labeled as Simple baseline in the Table 2.
Thus, for a fair comparison, we follow the same data preprocessing procedures as described in

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Saquib Sarfraz et al. (2024) and use the results cited from their paper or reproduced with their code
as strong baselines. Considering iTransformer (Liu et al., 2024) is an effective time series model that
can capture the channel dependencies with attention block adaptively, we also add iTransformer as a
new baseline. The summary of training details is provided in Appendix B.

Table 2: Experimental results for SWaT, SMD, MSL, SMAP, and WADI datasets. The bold and
underlined marks are the best and second-best value. F1: the standard F1 score; P: Precision; R:
Recall. For all metrics, higher values indicate better performance.

Method
Datasets

SWAT SMD SMAP MSL WADI

F1 P R F1 P R F1 P R F1 P R F1 P R

DAGMM (Zong et al., 2018) 77.0 99.1 63.0 43.5 56.4 49.7 33.3 39.5 56.0 38.4 40.1 59.6 27.9 99.3 16.2
OmniAnomaly (Su et al., 2019) 77.3 99.0 63.4 41.5 56.6 46.4 35.1 37.2 62.5 38.7 40.7 61.5 28.1 100 16.3
USAD (Audibert et al., 2020) 77.2 98.8 63.4 42.6 54.6 47.4 31.9 36.5 40.2 38.6 40.2 61.1 27.9 99.3 16.2
GDN Deng & Hooi (2021) 81.0 98.7 68.6 52.6 59.7 56.5 42.9 48.2 63.1 44.2 38.6 62.4 34.7 64.3 23.7
TranAD (Tuli et al., 2022) 80.0 99.0 67.1 45.7 57.9 48.1 35.8 37.8 52.5 38.1 40.1 59.7 34.0 29.3 40.4
AnomalyTransformer (Xu et al., 2022) 76.5 94.3 64.3 42.6 41.9 52.8 31.1 42.3 60.4 33.8 31.3 59.8 20.9 12.2 74.3

PCA ERROR (Simple baseline) 83.3 96.5 73.3 57.2 61.1 58.4 39.2 43.4 65.5 42.6 39.6 63.5 50.1 88.4 35.0

1-Layer MLP (Simple baseline) 77.1 98.1 63.5 51.4 59.8 57.4 32.3 43.2 58.7 37.3 34.2 64.8 26.7 83.4 15.9
Single block MLPMixer (Simple baseline) 78.0 85.4 71.8 51.2 60.8 55.4 36.3 45.1 61.2 39.7 34.1 62.8 27.5 86.2 16.3
Single Transformer block (Simple baseline) 78.7 86.8 72.0 48.9 58.9 53.6 36.6 42.4 62.9 40.2 42.7 56.9 28.9 90.8 17.2

1-Layer GCN-LSTM (Simple baseline) 82.9 98.2 71.8 55.0 62.7 59.9 42.6 46.9 61.6 46.3 45.6 58.2 43.9 74.4 31.1
Using Channel-wise Influence (Ours) 82.9 98.0 71.8 58.8 63.5 62.2 48.0 54.3 59.6 47.1 41.1 67.6 47.2 54.5 41.6

Inverted Transformer (Liu et al., 2024) 83.7 96.3 74.1 55.9 65.0 57.0 39.6 49.7 60.8 45.5 44.8 66.6 48.8 64.2 39.4
Using Channel-wise Influence (Ours) 84.0 96.4 74.4 59.1 63.6 63.8 46.3 52.9 61.3 46.1 41.9 68.4 50.5 58.7 44.2

5.1.2 MAIN RESULTS

In this experiment, we compare our channel-wise self-influence method with other model-centric
methods. Apparently, Table 2 showcases the superior performance of our method, achieving the
highest F1 score among the previous state-of-the-art (SOTA) methods. The above results demonstrate
the effectiveness of our channel-wise influence function and channel-wise self-influence-based
anomaly detection method. Specifically, the use of model gradient information in self-influence
highlights that the gradient information across different layers of the model enables the identification
of anomalous information, contributing to good performance in anomaly detection.

5.1.3 ADDITIONAL ANALYSIS

In this section, we conduct several experiments to validate the effectiveness of the channel-wise
influence function and explore the characteristics of the channel-wise influence function.

Ablation Study: In our method, the most important part is the design of channel-wise influence
and replacing the reconstructed or predicted error with our channel-wise self-influence to detect the
anomalies. We conduct ablation studies on different datasets and models. Fig 2a and Fig 2b show
that the channel-wise influence is better than the original influence function and the original influence
function is worse than the reconstructed error. It is because that the original influence function fails
to distinguish which channel is abnormal more specifically. Additionally, both figures demonstrate
that our method achieves strong performance across different model architectures, underscoring the
effectiveness and generalization capability of our data-centric approach. Given the superiority of
our channel-wise influence function over the original influence function, the design of a dedicated
channel-wise influence function becomes essential.

Generalization Analysis: To demonstrate the generalizability of our method, we applied our channel-
wise influence function to various model architectures and presented the results in the following
table 3. As clearly shown in the table, our method consistently exhibited superior performance
across different model architectures. Therefore, we can conclude that our method is suitable for
different types of models, proving that it is a qualified data-centric approach. The full results of the
generalization analysis can be found in Table. 7 in the Appendix.

Parameter Analysis: According to the formula Eq. 3, we need to compute the model’s gradient.
Considering computational efficiency, we use the gradients of a subset of the model’s parame-
ters to calculate influence. Therefore, we tested the relationship between the number of param-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: The generalization ability of our method is evaluated in combination with different model
architectures on various datasets. Bold marks indicate the best results.

Method 1-Layer MLP Single block MLPMixer Single Transformer block

Dataset F1 P R F1 P R F1 P R

SMD Reconstruct Error 51.4 59.8 57.4 51.2 60.8 55.4 48.9 58.9 53.6
Channel-wise Influence 55.9 63.1 60.6 55.5 64.8 58.3 52.1 62.9 58.2

SMAP Reconstruct Error 32.3 43.2 58.7 36.3 45.1 61.2 36.6 42.4 62.9
Channel-wise Influence 47.0 54.5 60.9 48.0 57.5 58.9 48.5 54.1 64.6

MSL Reconstruct Error 37.3 34.2 64.8 39.7 34.1 62.8 40.2 42.7 56.9
Channel-wise Influence 45.8 42.2 65.4 46.2 44.6 57.1 47.7 42.8 64.9

SMAP SMD
Dataset

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F1

iTrans+base influence
iTrans+ours
iTrans

(a)

SMAP SMD
Dataset

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
F1

GCN+base influence
GCN+ours
GCN

(b)

1 2 3 4
Layer

0.40

0.42

0.44

0.46

0.48

0.50

F1

WADI
MSL
SMAP

(c)

Figure 2: (a)-(b): The ablation study of channel-wise influence function for iTransformer and GCN-
LSTM on SMAP and SMD dataset. (c): The relationship between the number of parameters used to
calculate gradients and the anomaly detection performance on different datasets.

eters used and the anomaly detection performance, with the results shown in Fig. 2c. Specifi-
cally, we use the GCN-LSTM model as an example. The GCN-LSTM model has an MLP de-
coder, which contains two linear layers, each with weight and bias parameters. Therefore, we
can identify four layers of parameters to calculate the gradient and use these four parameters to
test the effect of the number of parameters used. The results in Fig. 2c indicate that our method
is not sensitive to the choice of parameters. Hence, using only the gradients of the last layer
of the network is sufficient to achieve excellent performance in approximating the influence.

Influence Score

Reconstruct Error

Threshold
Groundtruth

Threshold
Groundtruth

Figure 3: Visual illustration of the anomaly score
of different methods.

Visualization of Anomaly Score: To highlight
the differences between our channel-wise self-
influence method and traditional reconstruction-
based methods, we visualized the anomaly
scores obtained from the SMAP dataset. Ap-
parently, as indicated by the red box in Fig. 3,
the reconstruction error fails to fully capture
the anomalies, making it difficult to distinguish
some normal samples from the anomalies, as
their anomaly scores are similar to the thresh-
old. The results show that our method can de-
tect true anomalies more accurately compared
to reconstruction-based methods, demonstrating
the advantage of channel-wise influence.

5.2 MULTIVARIATE TIME SERIES FORECASTING

5.2.1 CHANNEL PRUNING EXPERIMENT

Set Up: To demonstrate the effectiveness of our method, we designed a channel pruning experiment.
In this experiment, we selected three datasets with a large number of channels for testing: Electricity

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

with 321 channels, Solar-Energy with 137 channels, and Traffic with 821 channels. The detailed
information of these datasets can be found in the Table 4.

Table 4: The detailed dataset information.

Dataset Dim Prediction Length Datasize Frequency

Electricity 321 96 (18317, 2633, 5261) Hourly
Solar-Energy 137 96 (36601, 5161, 10417) 10min

Traffic 862 96 (12185, 1757, 3509) Hourly

According to Eq.5, the specific aim of
the experiment was to determine how to
retain only N% of the channels while
maximizing the model’s generalization
ability across all channels. In addition
to our proposed method, we compared
it with some naive baseline methods, in-
cluding training with the first N% of the channels and randomly selecting N% of the channels for
training. N is changed to demonstrate the channel-pruning ability of these methods.

Table 5: Variate generalization experimental results for Electricity, Solar Energy, and Traffic datasets.
We use the MSE metric to reflect the performance of different methods. The bold marks are the
best. The predicted length is 96. The red markers indicate the proportion of channels that need to be
retained to achieve the original prediction performance.

Dataset ECL Solar Traffic

Proportion of variables retained 5% 10% 15% 20% 50% 5% 10% 15% 20% 50% 5% 10% 15% 20% 30%

iTransformer

Continuous selection 0.208 0.188 0.181 0.178 0.176 0.241 0.228 0.225 0.224 0.215 0.470 0.437 0.409 0.406 0.404
Random selection 0.205 0.182 0.177 0.175 0.165 0.240 0.229 0.225 0.223 0.217 0.450 0.415 0.404 0.404 0.403
Influence selection 0.187 0.174 0.170 0.165 0.150 0.229 0.224 0.220 0.219 0.210 0.419 0.405 0.398 0.397 0.395

Full variates 0.148 0.206 0.395

Proportion of variables retained 5% 10% 15% 20% 45% 5% 10% 15% 20% 20% 5% 10% 15% 20% 20%

PatchTST

Continuous selection 0.304 0.222 0.206 0.202 0.203 0.250 0.244 0.240 0.230 0.230 0.501 0.478 0.474 0.476 0.476
Random selection 0.230 0.208 0.202 0.196 0.186 0.242 0.240 0.235 0.230 0.230 0.495 0.478 0.467 0.464 0.464
Influence selection 0.205 0.191 0.190 0.186 0.176 0.228 0.226 0.226 0.223 0.223 0.483 0.470 0.456 0.452 0.452

Full variates 0.176 0.224 0.454

Results Analysis: The bold mark results in the Table.5 indicate that, when retaining the same
proportion of channels, our method significantly outperforms the other two methods. Besides, the red
mark results in the table also show that our method can maintain the original prediction performance
while using no more than half of the channels, significantly outperforming other baseline methods.
These results prove the effectiveness of our method in selecting the representative subsets of channels.
Considering our selection strategy is different from conventional wisdom, such as selecting the most
influence samples, we add new experiments in Appendix C.1. The results prove that the conventional
way to utilize channel-wise influence function cannot work well in channel pruning problem.

In addition to the superior performance shown in the table, our experiment highlights a certain
relationship between the model and the channels. Specifically, since iTransformer (Liu et al., 2024)
needs to capture channel correlations, it requires a higher retention ratio to achieve the original
prediction performance. In contrast, PatchTST (Nie et al., 2022) employs a Channel-Independence
strategy, meaning all channels share the same parameters, and therefore, fewer variables are needed
to achieve the original prediction performance. This also explains why its predictive performance is
not as good as that of iTransformer, as it does not fully learn information from more channels.

Outlook: Based on the above results, we believe that in addition to using the channel-wise influence
function for channel pruning to improve the efficiency of model training and fine-tuning, another
important application is its use as a post-hoc interpretable method to evaluate a model’s quality. As
our experimental results demonstrate, a good model should be able to fully utilize the information
between different channels. Therefore, to achieve the original performance, such a method would
require retaining a higher proportion of channels.

5.2.2 COMPARING DATA PRUNING WITH CHANNEL PRUNING

Set up: To further demonstrate the superiority of channel pruning, we conducted a comparative
experiment between data pruning and channel pruning. Specifically, we reduced the data using
two pruning strategies: for data pruning, we applied MoSo (Tan et al., 2024), an effective data
pruning approach, alongside random data pruning, which involved randomly selecting data samples
for pruning. For channel pruning, we utilized our channel-wise influence function. In this experiment,
we compared each pruning method at the same remaining ratio. For example, when the horizontal

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.05 0.1 0.15 0.2 0.5
Data Remaining Ratio

0.16

0.18

0.20

0.22

0.24
M

SE

Channel-Pruning
MoSo Data-Pruning
Random Data-Pruning

(a)

0.05 0.1 0.15 0.2 0.5
Data Remaining Ratio

0.225

0.250

0.275

0.300

0.325

0.350

0.375

M
SE

Channel-Pruning
MoSo Data-Pruning
Random Data-Pruning

(b)

0.05 0.1 0.15 0.2 0.3
Data Remaining Ratio

0.4

0.5

0.6

0.7

0.8

0.9

M
SE

Channel-Pruning
MoSo Data-Pruning
Random Data-Pruning

(c)

Figure 4: (a)-(c): The comparison experiment between data pruning and channel pruning on different
datasets. From left to right are the Electricity dataset, the Solar Energy dataset, and the Traffic
dataset. The evaluation metric used is mean squared error (MSE), with lower values indicating better
performance. The horizontal axis means the remaining ratio of the dataset.

axis in Fig. 4 indicates that 50% is retained, it means the size of the entire dataset is reduced to half
of its original size. In the case of data pruning, half of the training samples will be discarded; whereas
in channel pruning, half of the channels will be discarded.

Result Analysis: As shown in Fig. 4, our channel pruning method achieved better performance while
retaining the same proportion of data on all settings. This suggests that channel pruning is a more
suitable method for reducing MTS data than data pruning. Additionally, we previously highlighted
the value of channel pruning as a post-hoc method for analyzing MTS models. Therefore, we believe
that channel pruning holds greater exploratory value in MTS tasks.

Furthermore, we found that the performance of the MoSo-based pruning method was not as effective
as that of the random pruning method. We believe this may be due to the traditional influence method
underlying MoSo, which assumes that each data sample is calculated in isolation. However, the
samples in time series forecasting usually have strong temporal dependencies, thus resulting in the
failure of the MoSo method. Therefore, we consider designing an effective data pruning method
specifically for time series forecasting to be a noteworthy open problem.

6 CONCLUSIONS

In this paper, we propose a novel influence function that is the first influence function that can estimate
the influence of each channel in MTS, which is a concise data-centric method, distinguishing it
from previously proposed model-centric methods. In addition, according to abundant experiments
on real-world datasets, the original influence function performs worse than our method in anomaly
detection and cannot solve the channel pruning problem. This limitation arises from its inability to
differentiate the influence across various channels. In contrast, our channel-wise influence function
serves as a more universal and effective tool for addressing a wide range of MTS analysis tasks. In
conclusion, we believe that our method has significant potential for application and can serve as an
effective post-hoc approach for MTS analysis, helping us to better understand the characteristics of
MTS and helping us develop more effective MTS models.

Limitation: While we have successfully applied our method to two fundamental MTS tasks and
demonstrated its effectiveness, there remains a vast landscape of MTS-related tasks that are yet to
be explored and understood. Looking ahead, a primary focus of our research will be the further
application of the channel-wise influence function. We believe that delving deeper into this area will
yield valuable insights and contribute significantly to advancing the field.

Broader Impact: Our model is well-suited for multivariate time series analysis tasks, offering
practical and positive impacts across various domains, including disease forecasting, traffic prediction,
internet services, content delivery networks, wearable devices, and action recognition. However, we
emphatically discourage its application in activities related to financial crimes or any other endeavors
that could lead to negative societal consequences.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A. Zuluaga. USAD:
unsupervised anomaly detection on multivariate time series. in ACM SIGKDD, pp. 3395–3404,
2020.

Hongge Chen, Si Si, Yang Li, Ciprian Chelba, Sanjiv Kumar, Duane Boning, and Cho-Jui Hsieh.
Multi-stage influence function. Advances in Neural Information Processing Systems, 33:12732–
12742, 2020.

Edward Choi, Mohammad Taha Bahadori, Andy Schuetz, Walter F Stewart, and Jimeng Sun. Doctor
ai: Predicting clinical events via recurrent neural networks. pp. 301–318, 2016a.

Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua Kulas, Andy Schuetz, and Walter
Stewart. Retain: An interpretable predictive model for healthcare using reverse time attention
mechanism. in NeurIPS, 29, 2016b.

Gilad Cohen, Guillermo Sapiro, and Raja Giryes. Detecting adversarial samples using influence
functions and nearest neighbors. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 14453–14462, 2020.

Liang Dai, Tao Lin, Chang Liu, Bo Jiang, Yanwei Liu, Zhen Xu, and Zhi-Li Zhang. Sdfvae: Static and
dynamic factorized vae for anomaly detection of multivariate cdn kpis. in WWW, pp. 3076–3086,
2021.

Ailin Deng and Bryan Hooi. Graph neural network-based anomaly detection in multivariate time
series. in AAAI, 35(5):4027–4035, 2021.

Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical interaction
through video prediction. in NeurIPS, 29, 2016.

Kang Gu, Soroush Vosoughi, and Temiloluwa Prioleau. Feature selection for multivariate time series
via network pruning. In 2021 International Conference on Data Mining Workshops (ICDMW), pp.
1017–1024. IEEE, 2021.

Yuechun Gu, Da Yan, Sibo Yan, and Zhe Jiang. Price forecast with high-frequency finance data: An
autoregressive recurrent neural network model with technical indicators. pp. 2485–2492, 2020.

Frank R Hampel. The influence curve and its role in robust estimation. Journal of the american
statistical association, 69(346):383–393, 1974.

Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Soderstrom. De-
tecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In Proceedings
of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
387–395, 2018.

Siwon Kim, Kukjin Choi, Hyun-Soo Choi, Byunghan Lee, and Sungroh Yoon. Towards a rigorous
evaluation of time-series anomaly detection. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 7194–7201, 2022.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pp. 1885–1894. PMLR, 2017.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=JePfAI8fah.

Iwao Maeda, Hiroyasu Matsushima, Hiroki Sakaji, Kiyoshi Izumi, David deGraw, Atsuo Kato, and
Michiharu Kitano. Effectiveness of uncertainty consideration in neural-network-based financial
forecasting. in AAAI, pp. 673–678, 2019.

Aditya P Mathur and Nils Ole Tippenhauer. Swat: A water treatment testbed for research and training
on ics security. In 2016 international workshop on cyber-physical systems for smart water networks
(CySWater), pp. 31–36. IEEE, 2016.

11

https://openreview.net/forum?id=JePfAI8fah
https://openreview.net/forum?id=JePfAI8fah


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022.

Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L Lewis, and Satinder Singh. Action-conditional
video prediction using deep networks in atari games. in NeurIPS, 28, 2015.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
influence by tracing gradient descent. Advances in Neural Information Processing Systems, 33:
19920–19930, 2020.

M Saquib Sarfraz, Mei-Yen Chen, Lukas Layer, Kunyu Peng, and Marios Koulakis. Position paper:
Quo vadis, unsupervised time series anomaly detection? arXiv e-prints, pp. arXiv–2405, 2024.

Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly detection for
multivariate time series through stochastic recurrent neural network. in SIGKDD, pp. 2828–2837,
2019.

Ya Su, Youjian Zhao, Ming Sun, Shenglin Zhang, Xidao Wen, Yongsu Zhang, Xian Liu, Xiaozhou
Liu, Junliang Tang, Wenfei Wu, and Dan Pei. Detecting outlier machine instances through gaussian
mixture variational autoencoder with one dimensional cnn. IEEE Transactions on Computers, pp.
1–1, 2021.

Haoru Tan, Sitong Wu, Fei Du, Yukang Chen, Zhibin Wang, Fan Wang, and Xiaojuan Qi. Data
pruning via moving-one-sample-out. Advances in Neural Information Processing Systems, 36,
2024.

Megh Thakkar, Tolga Bolukbasi, Sriram Ganapathy, Shikhar Vashishth, Sarath Chandar, and Partha
Talukdar. Self-influence guided data reweighting for language model pre-training. arXiv preprint
arXiv:2311.00913, 2023.

Shreshth Tuli, Giuliano Casale, and Nicholas R Jennings. Tranad: Deep transformer networks for
anomaly detection in multivariate time series data. in VLDB, 2022.

Xue Wang, Tian Zhou, Qingsong Wen, Jinyang Gao, Bolin Ding, and Rong Jin. Card: Channel aligned
robust blend transformer for time series forecasting. In The Twelfth International Conference on
Learning Representations, 2024.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. arXiv preprint arXiv:2210.02186,
2022.

Renjie Wu and Eamonn J Keogh. Current time series anomaly detection benchmarks are flawed and
are creating the illusion of progress. IEEE transactions on knowledge and data engineering, 35(3):
2421–2429, 2021.

Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, and C. Zhang. Connecting the dots: Multivariate time
series forecasting with graph neural networks. ACM, 2020.

Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly transformer: Time series
anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642, 2021.

Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly transformer: Time series
anomaly detection with association discrepancy. in ICLR, 2022.

Zhijian Xu, Ailing Zeng, and Qiang Xu. Fits: Modeling time series with 10k parameters. arXiv
preprint arXiv:2307.03756, 2023.

Shuo Yang, Zeke Xie, Hanyu Peng, Min Xu, Mingming Sun, and Ping Li. Dataset pruning: Reduc-
ing training data by examining generalization influence. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
4wZiAXD29TQ.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
11121–11128, 2023.

12

https://openreview.net/forum?id=4wZiAXD29TQ
https://openreview.net/forum?id=4wZiAXD29TQ


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The Eleventh International Conference on Learning
Representations, 2022.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. in AAAI, 2021.

Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng
Chen. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In
International conference on learning representations, 2018.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROOF OF THEOREM

Proof. The proof of channel-wise influence function:

TracIn (z′, z) = L (z;θ)− L(z;θ′)

=

N∑
i=1

L (ci;θ)−
N∑
j=1

L(cj ;θ
′)

=

N∑
i=1

(
∇L (ci;θ) · (θ′ − θ) +O

(
∥θ′ − θ∥2

))
≈

N∑
i=1

∇L (ci;θ) · η∇L (z′;θ)

=

N∑
i=1

N∑
j=1

η∇L (ci;θ) · ∇L
(
c′j ;θ

)

(6)

where the first equation is the original definition of TracIn; we rectify the equation and derive the
second equation, indicating the sum of the loss of each channel. The third equation is calculated by the
first approximation of the loss function and then we replace (θ′−θ) with η∇L (z′;θ). Therefore, we
can derive the final equation which demonstrates the original Influence function at the channel-wise
level.

The proof is complete.

B DETAILS OF EXPERIMENTS

B.1 TRAINING DETAILS

All experiments were implemented using PyTorch and conducted on a single NVIDIA GeForce RTX
3090 24GB GPU.

For anomaly detection: Models were trained using the SGD optimizer with Mean Squared Error
(MSE) loss. For both of them, when trained in reconstructing mode, we used a time window of size
10.

For channel pruning: Models were trained using the Adam optimizer with Mean Squared Error
(MSE) loss. The input length is 96 and the predicted length is 96.

B.2 ANOMALY SCORE NORMALIZATION

Anomaly detection methods for multivariate datasets often employ normalization and smoothing
techniques to address abrupt changes in prediction scores that are not accurately predicted. In this
paper, we mainly use two normalization methods, mean-standard deviation and median-IQR, which
aligns with Saquib Sarfraz et al. (2024). The details are as follows:

si =
Si −µ̃i

σ̃i
(7)

For median-IQR: The µ̃ and σ̃ are the median and inter-quartile range (IQR2) across time ticks of
the anomaly score values respectively.

For mean-standard deviation: The µ̃ and σ̃ are the mean and standard across time ticks of the
anomaly score values respectively.

For a fair comparison, we select the best results of the two normalization methods as the final result,
which aligns with Saquib Sarfraz et al. (2024).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B.3 THRESHOLD SELECTION

Typically, the threshold which yields the best F1 score on the training or validation data is selected.
This selection strategy aligns with Saquib Sarfraz et al. (2024), for a fair comparison.

C ADDITIONAL MODEL ANALYSIS

C.1 UTILIZATION OF CHANNEL-WISE INFLUENCE

We conducted new experiments comparing different selecting strategy based on channel-wise in-
fluence. The results, shown in the table, indicate that our equidistant sampling approach is more
effective than selecting the most influence samples. This is because it covers a broader range of
channels, allowing the model to learn more general time-series patterns during training.

Table 6: Variate generalization experimental results for Electricity, Solar Energy, and Traffic datasets.
We use the MSE metric to reflect the performance of different methods. The bold marks are the
best. The predicted length is 96. The red markers indicate the proportion of channels that need to be
retained to achieve the original prediction performance.

Dataset ECL Solar Traffic

Proportion of variables retained 5% 10% 15% 20% 50% 5% 10% 15% 20% 50% 5% 10% 15% 20% 30%

iTransformer

Most influence sample 0.360 0.224 0.181 0.176 0.160 0.351 0.241 0.237 0.236 0.220 0.461 0.421 0.407 0.401 0.399
Ours 0.187 0.174 0.170 0.165 0.150 0.229 0.224 0.220 0.219 0.210 0.419 0.405 0.398 0.397 0.395

Full variates 0.148 0.206 0.395

C.2 GENERALIZATION RESULTS

To demonstrate the generalizability of our method, we applied our channel-wise influence function to
various model architectures and presented the results in the following table 7. As clearly shown in the
table, our method consistently exhibited superior performance across different model architectures.
Therefore, we can conclude that our method is suitable for different types of models, proving that it
is a qualified data-centric approach.

Table 7: Full results of the generalization ability experiment.

Method 1-Layer MLP Single block MLPMixer Single Transformer block

Dataset F1 P R F1 P R F1 P R

SMD Reconstruct Error 51.4 59.8 57.4 51.2 60.8 55.4 48.9 58.9 53.6
Channel-wise Influence 55.9 63.1 60.6 55.5 64.8 58.3 52.1 62.9 58.2

SMAP Reconstruct Error 32.3 43.2 58.7 36.3 45.1 61.2 36.6 42.4 62.9
Channel-wise Influence 47.0 54.5 60.9 48.0 57.5 58.9 48.5 54.1 64.6

MSL Reconstruct Error 37.3 34.2 64.8 39.7 34.1 62.8 40.2 42.7 56.9
Channel-wise Influence 45.8 42.2 65.4 46.2 44.6 57.1 47.7 42.8 64.9

SWAT Reconstruct Error 77.1 98.1 63.5 78.0 85.4 71.8 78.7 86.8 72.0
Channel-wise Influence 80.1 87.7 73.7 80.6 97.6 68.6 81.9 97.7 70.6

WADI Reconstruct Error 26.7 83.4 15.9 27.5 86.2 16.3 28.9 90.8 17.2
Channel-wise Influence 44.3 84.6 30.0 46.6 83.0 32.4 47.5 71.3 35.6

C.3 ADDITIONAL DATASET AND BASELINE RESULTS

To demonstrate the effectiveness of our approach, we validated our channel-pruning method on new
datasets. Additionally, we incorporated a new baseline, DLinear, a time series forecasting method
based on a channel-independence strategy. The specific results are shown below:

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

New dataset analysis:

Since the original number of channels in ETTh1 and ETTm1 is only 7, the horizontal axis in the table
directly represents the number of retained channels.

Table 8: The additional dataset results of the channel-pruning experiment.

Dataset ETTh1 ETTm1

number of channels retained 7 3 2 7 3 2

iTransformer
Continuous selection 0.396 0.502 0.573 0.332 0.756 0.826

Random selection 0.396 0.428 0.434 0.332 0.362 0.372
Influence selection 0.396 0.403 0.420 0.332 0.333 0.355

PatchTST
Continuous selection 0.400 0.460 0.491 0.330 0.539 0.687

Random selection 0.400 0.415 0.424 0.330 0.352 0.364
Influence selection 0.400 0.400 0.405 0.330 0.336 0.347

The results in the table demonstrate the effectiveness of channel pruning based on the channel-wise
influence function, highlighting that PatchTST and iTransformer exhibit comparable utilization of
channel information on the ETTh1 and ETTm1 datasets.

New forecasting length analysis:

We have added experimental results for the prediction length of 192. The detailed results are as
follows:

Table 9: The 192 forecasting length of the channel-pruning experiment.

Method Dataset ECL Solar Traffic

iTransformer

Proportion of variables retained 5% 10% 15% 20% 50% 100% 5% 10% 15% 20% 50% 100% 5% 10% 15% 20% 30% 100%
Continuous selection 0.212 0.193 0.189 0.186 0.182

0.164
0.270 0.260 0.256 0.251 0.249

0.240
0.486 0.456 0.427 0.426 0.425

0.413Random selection 0.203 0.189 0.183 0.179 0.172 0.266 0.258 0.260 0.249 0.248 0.476 0.436 0.425 0.421 0.420
Influence selection 0.191 0.181 0.173 0.171 0.165 0.259 0.256 0.254 0.244 0.242 0.460 0.430 0.422 0.416 0.413

PatchTST

Proportion of variables retained 5% 10% 15% 20% 40% 100% 5% 10% 15% 20% 50% 100% 5% 10% 15% 20% 20% 100%
Continuous selection 0.272 0.216 0.201 0.200 0.199

0.186
0.282 0.270 0.265 0.264 0.260

0.260
0.501 0.488 0.480 0.479 0.479

0.465Random selection 0.210 0.206 0.198 0.194 0.191 0.274 0.270 0.266 0.263 0.260 0.496 0.485 0.480 0.474 0.474
Influence selection 0.200 0.197 0.195 0.190 0.186 0.267 0.264 0.262 0.260 0.260 0.485 0.475 0.470 0.465 0.465

From the results shown in the table, it can be observed that channel-pruning based on channel-
wise influence is more effective. Additionally, iTransformer still exhibits a larger core subset,
demonstrating its superior ability to model channel dependency.

New baseline analysis:

Table 10: The channel-pruning experiment results of DLinear model.

Dataset ECL Solar Traffic

Proportion of variables retained 5% 10% 15% 20% 50% 100% 5% 10% 15% 20% 50% 100% 5% 10% 15% 20% 30% 100%

DLinear Continuous selection 0.201 0.200 0.198 0.197 0.196
0.196

0.311 0.309 0.307 0.301 0.301
0.301

0.649 0.647 0.645 0.645 0.645
0.645Random selection 0.200 0.198 0.196 0.196 0.196 0.306 0.304 0.303 0.301 0.301 0.649 0.648 0.645 0.645 0.645

Influence selection 0.197 0.196 0.196 0.196 0.196 0.301 0.301 0.301 0.301 0.301 0.646 0.645 0.645 0.645 0.645

The experimental results in the table show that the core channel subset of DLinear is less than 5%,
which highlights the limited ability of simple linear models to utilize information from different
channels effectively.

C.4 ADDITIONAL COMPLEXITY ANALYSIS RESULTS

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

To illustrate the complexity of our method, we added complexity analysis experiments in both time
series anomaly detection and forecasting tasks. In these experiments, we measured the time required
to compute the influence of all channels of a single multivariate time series data sample.

Anomaly detection:

We have added an experiment measuring the time required for detection at each time point to
demonstrate the complexity of our approach, as shown in the table below:

Table 11: The time required for our method on different time series model.

Dataset GCN lstm+ours iTransformer+ours

SWAT 1.4ms 1.5ms

WADI 6.4ms 6.5ms

The results in the table indicate that our detection speed is at the millisecond level, which is acceptable
for real-world scenarios.

Channel-pruning:

By measuring the time required for calculating single-instance influence, we demonstrated how the
computational time scales with the number of channels.

Table 12: The time required for channel-pruning method on different time series datasets.

ETTm1 Solar-Energy Electricity traffic

iTransformer+ours 0.0025s 0.023s 0.071s 0.18s

From the table, it can be observed that the computational complexity approximately increases linearly
with the number of channels.

C.5 COMPARING WITH OTHER CHANNEL PRUNING METHOD

To better highlight the effectiveness of our method, we compared it with the approach proposed in
the paper(Gu et al., 2021), referred to as NFS. The specific results are as follows:

Table 13: The comparing of different channel-pruning methods.

Dataset ECL Solar Traffic
Proportion of variables retained 5% 10% 15% 20% 50% 100% 5% 10% 15% 20% 50% 100% 5% 10% 15% 20% 30% 100%

iTransformer NFS 0.201 0.185 0.180 0.177 0.167 0.148 0.260 0.248 0.227 0.222 0.214 0.206 0.428 0.408 0.402 0.399 0.397 0.395
Influence selection 0.187 0.174 0.170 0.165 0.150 0.148 0.229 0.224 0.220 0.219 0.210 0.206 0.419 0.405 0.398 0.397 0.395 0.395

From the results shown in the table, it is evident that our method is more effective. According to
the method described in the paper (Gu et al., 2021), this approach introduces additional network
parameters to evaluate the importance of different channels. Furthermore, the number of additional
parameters required by this method scales with the number of channels, significantly increasing its
computational time. Specifically, while the original iTransformer takes only 17 seconds to train one
epoch on the ECL dataset, this method increases the time to 32 seconds per epoch.

17


	Introduction
	Related Work
	Background of Influence Functions
	Background of Multivariate Time Series

	Channel-wise Influence Function
	Application in MTS Analysis
	MTS Anomaly Detection
	MTS Forecasting

	Experiments
	Mutivariate Time Series Anomaly Detection
	Baselines and Experimental Settings
	Main Results
	Additional Analysis

	Multivariate Time Series Forecasting
	Channel Pruning Experiment
	Comparing Data Pruning with Channel Pruning


	Conclusions
	proof of theorem
	Details of Experiments
	Training Details
	Anomaly Score Normalization
	Threshold Selection

	Additional model Analysis
	Utilization of Channel-Wise Influence
	Generalization results
	Additional Dataset and Baseline results
	Additional Complexity analysis results
	Comparing with other channel pruning method


