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ABSTRACT

The influence function, a robust statistics technique, is an effective post-hoc method
that measures the impact of modifying or removing training data on model parame-
ters, offering valuable insights into model interpretability without requiring costly
retraining. It would provide extensions like increasing model performance, improv-
ing model generalization, and offering interpretability. Recently, Multivariate Time
Series (MTS) analysis has become an important yet challenging task, attracting
significant attention. However, there is no preceding research on the influence
functions of MTS to shed light on the effects of modifying the channel of MTS.
Given that each channel in an MTS plays a crucial role in its analysis, it is essential
to characterize the influence of different channels. To fill this gap, we propose a
channel-wise influence function, which is the first method that can estimate the in-
fluence of different channels in MTS, utilizing a first-order gradient approximation.
Additionally, we demonstrate how this influence function can be used to estimate
the influence of a channel in MTS. Finally, we validated the accuracy and effective-
ness of our influence estimation function in critical MTS analysis tasks, such as
MTS anomaly detection and MTS forecasting. According to abundant experiments
on real-world datasets, the original influence function performs worse than our
method and even fails for the channel pruning problem, which demonstrates the
superiority and necessity of the channel-wise influence function in MTS analysis.

1 INTRODUCTION

Multivariate time series (MTS) plays an important role in a wide variety of domains, including internet
services (Dai et al.,[2021) , industrial devices (Finn et al.,[2016; /Oh et al.,[2015) , health care (Cho1
et al.| 2016bga)), finance (Maeda et al.,[2019; |Gu et al.,|2020) , and so on. Thus, MTS modeling is
crucial across a wide array of applications, including disease forecasting, traffic forecasting, anomaly
detection, and action recognition. In recent years, researchers have focused on deep learning-based
MTS analysis methods (Zhou et al.| [2021} [Tuli et al.l [2022; |Xu et al., 2023} [Liu et al.l [2024; | Xu
et al.| 2021} Wu et al, 2022). Due to the large number of different channels in MTS, numerous
studies aim to analyze the importance of these channels (Liu et al., 2024} [Zhang & Yan, |[2022; Nie
et al.,2022; Wang et al.| 2024). Some of them concentrate on using graph or attention structure to
capture the channel dependencies (Liu et al.,|2024; Deng & Hooi,|2021)), while some of them try to
use Channel Independence to enhance the generalization ability on different channels of time series
model (Nie et al., [2022; Zeng et al.| 2023). Although these deep learning methods have achieved
state-of-the-art performance, most of these methods focus on understanding the MTS by refining the
model architecture to improve their models’ performance.

Different from previous work, we try to better understand MTS from a data-centric perspective-
influence function (Hampel, [1974; Koh & Liang} 2017). The influence function is proposed to
study the counterfactual effect between training data and model performance. For independent and
identically distributed (i.i.d.) data, influence functions estimate the model’s change when there is
an infinitesimal perturbation added to the training distribution, e.g., a reweighing on some training
instances and dataset pruning, which has been widely used in computer vision and natural language
processing tasks, achieving promising results (Yang et al., [2023; |Tan et al., [2024; [Thakkar et al.,
2023}; |Cohen et al. [2020; |Chen et al., 2020; |Pruthi et al., 2020). Considering that, it is essential
to develop an appropriate influence function for MTS. It would provide extensions like increasing
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model performance, improving model generalization, and offering interpretability of the interactions
between the channels and the time series models.

To the best of our knowledge, the influence of MTS in deep learning has not been studied, and
it is nontrivial to apply the original influence function in |Koh & Liang| (2017) to this scenario.
Since different channels of MTS usually include different kinds of information and have various
relationships (Wu et al., 20205 [Liu et al.| [2024)), the original influence function can not distinguish the
influence of different channels in MTS because it is designed for a whole data sample, according
to the definition of the original influence function. In addition, our experiments also demonstrate
that the original influence function does not support anomaly detection effectively and fails to solve
the forecasting generalization problem in MTS, while it performs well on computer vision and
natural language process tasks (Yang et al.,[2023}; [Thakkar et al.,[2023)). Thus, how to estimate the
influence of different channels in MTS is a critical problem. Considering a well-designed influence
function should be able to distinguish the influence between different channels, we propose a channel-
wise influence function, a first-order gradient approximation (Pruthi et al., [2020), to characterize
the influence of different channels. Then, we introduce how to use this function in MTS anomaly
detection (Saquib Sarfraz et al.| 2024)) and MTS forecasting (Liu et al.|[2024)) tasks effectively. Finally,
we use various kinds of experiments on real-world datasets to demonstrate the characteristics of our
novel influence function and prove it can be widely used in the MTS analysis tasks.

The main contributions of our work are summarized as follows:

* We developed a novel channel-wise influence function, a first-order gradient approximation,
which is the first of its kind to effectively estimate the channel-wise influence of MTS.

* We designed two channel-wise influence function-based algorithms for MTS anomaly
detection and MTS forecasting tasks, and validated its superiority and necessity.

* We discovered that the original functions do not perform well on MTS anomaly detection
tasks and cannot solve the forecasting generalization problem.

» Experiments on various real-world datasets illustrate the superiority of our method on the
MTS anomaly detection and forecasting tasks compared with original influence function.
Specifically, our influence-based methods rank top-1 among all methods for comparison.

2 RELATED WORK

2.1 BACKGROUND OF INFLUENCE FUNCTIONS

Influence functions estimate the effect of a given training example, z’, on a test example, z, for
a pre-trained model. Specifically, the influence function approximates the change in loss for a
given test example z when a given training example 2z’ is removed from the training data and the
model is retrained. Koh & Liang| (2017) derive the aforementioned influence to be I (2, z) :=
VoL (2;0)" H,'VgL(z;0), where Hy is the loss Hessian for the pre-trained model: Hy :=
1/n>"" | V3 L(2;0), evaluated at the pre-trained model’s final parameter checkpoint. The loss
Hessian is typically estimated with a random mini-batch of data. The main challenge in computing
influence is that it is impractical to explicitly form Hpy unless the model is small, or if one only
considers parameters in a few layers. TracIn (Pruthi et al., 2020) address this problem by utilizing
a first-order gradient approximation: TracIn (2/,z) := VgL (2;0) ' VeL(z;0), which has been
proved effectively in various tasks (Thakkar et al., 2023} |Yang et al., 2023} |Tan et al., [2024).

2.2 BACKGROUND OF MULTIVARIATE TIME SERIES

There are various types of MTS analysis tasks. In this paper, we mainly focus on unsupervised
anomaly detection and preliminarily explore the value of our method in MTS forecasting.

MTS Anomaly detection: MTS anomaly detection has been extensively studied, including complex
deep learning models (Su et al.,|2021; Tuli et al.| 2022;|Deng & Hooi} 2021; Xu et al.,[2022). These
models are trained to forecast or reconstruct presumed normal system states and then deployed to
detect anomalies in unseen test datasets. The anomaly score, defined as the magnitude of predic-
tion or reconstruction errors, serves as an indicator of abnormality at each timestamp. However,
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Saquib Sarfraz et al.|(2024) have demonstrated that these methods create an illusion of progress due
to flaws in the datasets (Wu & Keoghl [2021)) and evaluation metrics (Kim et al., [2022), and they
provide a more fair and reliable benchmark.

MTS Forecasting: In MTS forecasting, many methods try to model the temporal dynamics
and channel dependencies effectively. An important issue in MTS forecasting is how to better
generalize to unseen channels with a limited number of channels (Liu et al., 2024)). This places high
demands on the model architecture, as the model must capture representative information across
different channels and effectively utilize this information. There are two popular state-of-the-art
methods to achieve this. One is iTransformer (Liu et al.| 2024), which uses attention mechanisms to
capture channel correlations. The other is PatchTST (Nie et al.| 2022)), which enhances the model’s
generalization ability by sharing the same model parameters across different channels through a
Channel-Independence strategy. However, both of these methods are model-centric methods, which
cannot identify the most informative channels in the training data for the model.

Although MTS forecasting and anomaly detection are two different kinds of tasks, both of their
state-of-the-art methods have fully utilized the channel information in the MTS through model-centric
methods. Different from previous model-centric methods, we propose a data-centric method to
improve the model’s performance on MTS downstream tasks and identify practical techniques to
improve the analysis of the training data by leveraging channel-wise information.

3 CHANNEL-WISE INFLUENCE FUNCTION

The influence function (Koh & Liang|, [2017) requires the inversion of a Hessian matrix, which is
quadratic in the number of model parameters. Additionally, the representer point method necessitates
a complex, memory-intensive line search or the use of a second-order solver such as LBFGS.
Fortunately, the original influence function can be accelerated and approximated by TracIn (Pruthi
et al.} 2020) effectively. TracIn is inspired by the fundamental theorem of calculus. The fundamental
theorem of calculus decomposes the difference between a function at two points using the gradients
along the path between the two points. Analogously, TracIn decomposes the difference between the
loss of the test point at the end of training versus at the beginning of training along the path taken by
the training process. The specific definition can be derived as follows:

Trachn (2, 2) = L (2;0) — L(2;0') ~ VoL (2:0)" VoL(z;0) ()

where 2’ is the training example, z is the testing example, 6 is the model parameter, 6’ is the updated
parameter after training with 2/, L(-) is the loss function and 7 is the learning rate during the training
process, which defines the influence of training 2’ on z.

However, in the MTS analysis, the data sample z, 2z’ are MTS, which means TracIn can only calculate
the whole influence of all channels. In other words, it fails to characterize the difference between
different channels. To fill this gap we derive a new channel-wise influence function, using a derivation
method similar to TracIn. Thus, we obtain Theorem [3.1] which formulates the channel-wise influence
matrix, and the proof can be found in Appendix [6]

Theorem 3.1. (Channel-wise Influence function) Assuming the c;, c; is the i-th channel and j-th
channel from the data sample z', z respectively, 0 is the well-trained parameter of the model, L(-) is
the loss function and 1 is the learning rate during the training process. The first-order approximation
of the original influence function can be derived at the channel-wise level as follows:

N N
Tracln (2', z) = Z Z nVeL (c}; 6)" VoL (c;;0) 2)

i=1 j=1

Given the result, we define a channel-wise influence matrix Mcr, ¢ and each element a; ; in it can be
described as a; ; :==nVeL (cj; 6)" - VoL (¢;;0). Thus, according to the theorem , the original
Tracln can be treated as a sum of these elements in the channel-wise influence matrix Mcynf,
failing to utilize the channel-wise information in the matrix specifically. Considering that, the final
channel-wise influence function can be defined as follows:

CIF (c}, c;) :==nVeL (c};0) - VoL (c;;0) 3)
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method for the Score is detailed in Algorithms|T|and 2}
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where ¢;, c;- is the i-th channel and j-th channel from the data sample z, 2’ respectively, 0 is the
well-trained parameter of the model and 7 is the learning rate during the training process. This

channel-wise influence function describes the influence between different channels among MTS.

Remark 3.2. (Characteristics of Channel-wise Influence Matrix) The channel-wise influence
matrix reflects the relationships between different channels in a specific model. Specifically, each
element a; ;j in the matrix My, 5 represents how much training with channel i helps reduce the loss
for channel j, which means similar channels usually have high influence score. Each model has its
unique channel influence matrix, reflecting the model’s way of utilizing channel information in MTS.
Therefore, we can use Mcry 5 for post-hoc interpretable analysis of the model.

4  APPLICATION IN MTS ANALYSIS

In this section, we focus on two important tasks in MTS analysis: MTS anomaly detection and MTS
forecasting. We discuss the relationship between our channel-wise influence function and these tasks,
and then explain how to apply our method to these critical problems.

4.1 MTS ANOMALY DETECTION

Problem Definition: Defining the training MTS as @ = {x1, 2, ..., 7}, where T is the duration of
a and the observation at time ¢, ; € RY, is a N dimensional vector where N denotes the number
of channels, thus & € R7*¥ The training data only contains non-anomalous timestep. The test set,
' = {x},x}, ...,x’} contains both normal and anomalous timestamps and ¥y’ = [y}, Y5, ..., Y;] €
{0, 1} represents their labels, where y; = 0 denotes a normal and y; = 1 an anomalous timestamp
t. Then the task of anomaly detection is to select a function fg : X — R such that fo(x;) = y;
estimates the anomaly score. When it is larger than the threshold, the data is predicted anomaly.

Relationship between self-influence and anomaly score: According to the conclusion in Section 4.1
of (Pruthi et al.| 2020), influence can be an effective way to detect the anomaly sample. Specifically,
the idea is to measure self-influence, i.e., the influence of a training point on its own loss, i.e., the
training point 2’ and the test point z in Tracln are identical. From an intuitive perspective, self-
influence reflects how much a model can reduce the loss during testing by training on sample 2’ itself.
Therefore, anomalous samples, due to their distribution being inconsistent with normal training data,
tend to reduce more loss, resulting in a greater self-influence. Therefore, when we sort test examples
by decreasing self-influence, an effective influence computation method would tend to rank anomaly
samples at the beginning of the ranking.

Apply in MTS anomaly detection: Based on these premises, we propose to derive an anomaly
score based on the channel-wise influence function [3|for MTS. Consider a test sample &’ for which
we wish to assess whether it is an anomaly. We can compute the channel-wise influence matrix
M,y at first and then get the diagonal elements of the M, ¢ to indicate the anomaly score of
each channel. Since, according to the Remark @] and the nature of self-influence, the diagonal
elements reflect the channel-wise self-influence, it is an effective method to reflect the anomaly level
of each channel. Consistent with previous anomaly detection methods, we use the maximum anomaly
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Algorithm 1 Channel-wise influence based MTS anomaly detection

Require: test dataset Dyes+; a well-trained network 8; loss function L(-); threshold A
empty anomaly score dictionary — ADscore[]; empty prediction dictionary — ADPredict[]
for x € Dicst do
ADscore [x] = maz(nVeL (c};0)" - VoL (c};0))
end for
Normalize ADScore[] ; /* RAnomaly score normalization. x/
if ADscore [x] > h then
ADPredict [z] =1; /* Anomaly sample. */
else
ADPredict [x] =0; /* Normal sample. x/
end if
return anomaly detection result AD Predict [-].

score across different channels as the anomaly score of MTS x’ at time ¢ as:

Score () := max(nVeL (c};0)" - VoL (c|;0)) )
where cg is the i-th channel of the MTS sample :c; 0 is the trained parameter of the model, and
7 is the learning rate during the training process. To ensure a fair comparison, we adopt the same
anomaly score normalization and threshold selection strategy as outlined in |Saquib Sarfraz et al.
(2024) for detecting anomalies. Details regarding this methodology can be found in Appendix [B| The
comprehensive process for MTS anomaly detection is further elaborated in Algorithm [T]and Fig. [T}

4.2 MTS FORECASTING

Forecasting Generalization Problem Definition: Defining the MTS as * = {z1,xs,...,x1},
where T is the duration of = and the observation at time ¢, x; € RY /, is a N’ dimensional vector
where N’ denotes the number of channels used in the training process, thus z € RT*Y ". The aim
of multivariate time series forecasting generalization is to predict the future value of 7 1.7477 1,
where T” is the number of time steps in the future and the observation at time ¢/, x4 € RN, isa N
dimensional vector where NN is the number of whole channels which is large than N”.

Motivation: Considering the excellent performance of the influence function in dataset pruning
tasks (Tan et al.| 2024; |Yang et al., 2023) and the generalization issues faced in MTS forecasting
mentioned in Section 2, we propose a new task suitable for MTS to validate the effectiveness of our
channel-wise influence function named channel pruning. With the help of channel pruning, we can
accurately identify the subset of channels that are most representative for the model’s training without
retraining the model, resulting in helping the model better generalize to unknown channels with a
limited number of channels. The definition of the task is described in the following paragraph.

Channel Pruning Problem Definition: Given an MTS « = {¢i,...,en},y = {¢], ..., )y} con-
taining N channels where ¢; € R”, x is the input space and y is the label space. The goal of channel
pruning is to identify a set of representative channel samples from x as few as possible to reduce
the training cost and find the relationship between model and channels. The identified representative
subset, D= {é1,...,¢n} and DcC D, should have a maximal impact on the learned model, i.e. the
test performances of the models learned on the training sets before and after pruning should be very
close, as described below:

Ecvpp)L(c,0) =~ Ecvopp)L (C’ 015) ®)

where P(D) is the data distribution, L(-) is the loss function, and 6 and 6 are the empiri-
cal risk minimizers on the training set D before and after pruning D, respectively, i.e., 8 =
arg mingeg % ZcieD L (c;,0) and 6 = argmingceo % Zcieﬁ L(e;,0).

Apply in channel pruning: Considering the channel pruning problem, our proposed channel-wise
self-influence method can effectively address this issue. According to the Remark[3.2] our approach
can use Mcy,s to represent the characteristics of each channel by calculating the influence of
different channels. Then, We use a concise approach to obtain a representative subset of channels.
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Algorithm 2 Channel-wise influence based MTS channel pruning

Require: val dataset D,q;; a well-trained network ; loss function L(-); sample interval ¢
empty channel set D — {} ; empty channel score dictionary — CScorel[]
for x € D,,; do
for c; € x do
CScore[ci)+ =nVeL (ci;0)" - VoL (ci;0)
end for
end for
Sort(CScore) ; /+ Sort the influence scores in ascending order. =/
i=0
while i < N do
if i ==t then
addc; to D ; /* Sample at regular intervals. «*/
end if
i+ =1
end while .
return pruned channel set D.

Specifically, we can rank the diagonal elements of Mcy,y, i.e., the channel-wise self-influence,
and select the subset of channels at regular intervals for a certain model. Since similar channels
have a similar self-influence, we can adopt regular sampling on the original channel set D based
on the channel-wise self-influence to acquire a representative subset of channels D for a certain
model and dataset, which is typically much smaller than the original dataset. The detailed process
of channel pruning is shown in Algorithm[2]and Fig[I] Consequently, we can train or fine-tune the
model with a limited set of data efficiently. Additionally, it can serve as an explainable method to
reflect the channel-modeling ability of different approaches. Specifically, the smaller the size of the
representative subset D fora method, the fewer channels’ information it uses for predictions, and
vice versa. In other words, a good MTS modeling method should have a large size of D.

5 EXPERIMENTS

In this section, we mainly discuss the performance of our method in MTS anomaly detection and
explore the value and feasibility of our method in MTS forecasting tasks. All the datasets used in our
experiments are real-world and open-source MTS datasets.

5.1 MUTIVARIATE TIME SERIES ANOMALY DETECTION
5.1.1 BASELINES AND EXPERIMENTAL SETTINGS

We conduct model comparisons across
five widely-used anomaly detection
datasets: SMD(Su et al., |2019), MSL Dataset | Sensors(traces)  Train Test Anomalies

Table 1: The detailed dataset information.

(Hundman et al; 2018), SMAP (Hund; gy, 51 47520 44991  4589(12.2%)
man et al., 2018), SWaT (Mathur & Tip;  WADI 127 118750 17280  1633(9.45%)
penhauer, [2016), and WADI (Deng &  SMD 38(28) 25300 25300  1050(4.21%)
Hooi, [2021)), encompassing applications ~ SMAP 25(54) 2555 8070  1034(12.42%)

in service monitoring, space/earth explo- MSL (27 2159 2730 286(11.97%)

ration, and water treatment. Since SMD,

SMAP, and MSL datasets contain traces with various lengths in both the training and test sets, we
report the average length of traces and the average number of anomalies among all traces per dataset.
The detailed information of the datasets can be found in Table. [1]

Given the point-adjustment evaluation metric is proved not reasonable (Saquib Sarfraz et al.| 2024}
Kim et al.| 2022), we use the standard precision, recall and F1 score to measure the performance,
which aligns with (Saquib Sarfraz et al., |2024). Moreover, due to the flaws in the previous methods,
Saquib Sarfraz et al.|(2024)) provide a more fair benchmark, including many simple but effective
methods, such as GCN-LSTM, PCA ERROR and so on, labeled as Simple baseline in the Table
Thus, for a fair comparison, we follow the same data preprocessing procedures as described in
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Saquib Sarfraz et al.|(2024) and use the results cited from their paper or reproduced with their code
as strong baselines. Considering iTransformer (Liu et al., [2024) is an effective time series model that
can capture the channel dependencies with attention block adaptively, we also add iTransformer as a
new baseline. The summary of training details is provided in Appendix [B]

Table 2: Experimental results for SWaT, SMD, MSL, SMAP, and WADI datasets. The bold and
underlined marks are the best and second-best value. F1: the standard F1 score; P: Precision; R:
Recall. For all metrics, higher values indicate better performance.

| Datasets
Method | SWAT SMD SMAP MSL WADI

|Fl P R |FI P R |FL P R |Fl P R |F P R
DAGMM (Zong et al.|[2018) 770 99.1 63.0 | 435 564 49.7 | 333 395 56.0 | 384 40.1 596|279 993 16.2
OmniAnomaly (Su et al.[[2019) 773 99.0 634|415 56.6 464 | 351 372 625|387 407 615|281 100 163
USAD (Audibert et al.||2020) 772 988 634|426 546 474|319 365 402|386 402 611|279 993 162
GDN|Deng & Hooi|(2021) 81.0 98.7 68.6 | 526 59.7 565|429 482 63.1 442 386 624|347 643 237
TranAD (Tuli et al.||2022} 80.0 99.0 67.1 | 45.7 579 481 | 358 37.8 525|381 40.1 597|340 293 404
Anomaly Transformer (Xu et al.|[2022) 765 943 643 | 426 419 528 |31.1 423 604 | 338 313 59.8|209 122 743
PCA ERROR (Simple baseline) ‘ 833 965 733 ‘ 572 61.1 584 ‘ 392 434 655 ‘ 426 396 635 ‘ 50.1 884 35.0
1-Layer MLP (Simple baseline) 77.1 98.1 635|514 59.8 574|323 432 587|373 342 648|267 834 159
Single block MLPMixer (Simple baseline) 780 854 718 | 512 60.8 554|363 451 612|397 341 628|275 862 163
Single Transformer block (Simple baseline) | 78.7 86.8 72.0 | 489 589 53.6 | 36.6 424 629 | 402 427 569 | 289 90.8 172

Using Channel-wise Influence (Ours) 829 980 718|588 635 622 |48.0 543 596 | 471 41.1 676 | 472 545 416

Inverted Transformer (Liu et al.}[2024} ‘837 96.3 74.1 ‘ 559 650 570 ‘ 39.6 49.7 60.8 ‘ 455 448 66.6 ‘ 488 642 394

Using Channel-wise Influence (Ours) 84.0 964 744|591 63.6 638|463 529 613|461 419 684|505 587 442

1-Layer GCN-LSTM (Simple baseline) 829 982 718 ‘ 55.0 627 599 | 426 469 61.6 ‘ 463 456 582 ‘ 439 744 31.1

5.1.2 MAIN RESULTS

In this experiment, we compare our channel-wise self-influence method with other model-centric
methods. Apparently, Table [2| showcases the superior performance of our method, achieving the
highest F1 score among the previous state-of-the-art (SOTA) methods. The above results demonstrate
the effectiveness of our channel-wise influence function and channel-wise self-influence-based
anomaly detection method. Specifically, the use of model gradient information in self-influence
highlights that the gradient information across different layers of the model enables the identification
of anomalous information, contributing to good performance in anomaly detection.

5.1.3 ADDITIONAL ANALYSIS

In this section, we conduct several experiments to validate the effectiveness of the channel-wise
influence function and explore the characteristics of the channel-wise influence function.

Ablation Study: In our method, the most important part is the design of channel-wise influence
and replacing the reconstructed or predicted error with our channel-wise self-influence to detect the
anomalies. We conduct ablation studies on different datasets and models. Fig[2a]and Fig [2b]show
that the channel-wise influence is better than the original influence function and the original influence
function is worse than the reconstructed error. It is because that the original influence function fails
to distinguish which channel is abnormal more specifically. Additionally, both figures demonstrate
that our method achieves strong performance across different model architectures, underscoring the
effectiveness and generalization capability of our data-centric approach. Given the superiority of
our channel-wise influence function over the original influence function, the design of a dedicated
channel-wise influence function becomes essential.

Generalization Analysis: To demonstrate the generalizability of our method, we applied our channel-
wise influence function to various model architectures and presented the results in the following
table [3| As clearly shown in the table, our method consistently exhibited superior performance
across different model architectures. Therefore, we can conclude that our method is suitable for
different types of models, proving that it is a qualified data-centric approach. The full results of the
generalization analysis can be found in Table.[/|in the Appendix.

Parameter Analysis: According to the formula Eq.[3] we need to compute the model’s gradient.
Considering computational efficiency, we use the gradients of a subset of the model’s parame-
ters to calculate influence. Therefore, we tested the relationship between the number of param-
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Table 3: The generalization ability of our method is evaluated in combination with different model
architectures on various datasets. Bold marks indicate the best results.

Method | 1-Layer MLP | Single block MLPMixer | Single Transformer block
Dataset \ F1 P R \ F1 P R \ F1 P R
SMD Reconstruct Error 514 59.8 574|512 60.8 55.4 489 589 53.6
Channel-wise Influence | 55.9 63.1 60.6 | 55.5 64.8 58.3 52.1 629 58.2
SMAP Reconstruct Error 323 432 587 | 363 45.1 61.2 36.6 424 62.9
Channel-wise Influence | 47.0 54.5 60.9 | 48.0 57.5 58.9 48.5 54.1 64.6
MSL Reconstruct Error 373 342 648 | 39.7 34.1 62.8 40.2 427 56.9
Channel-wise Influence | 45.8 422 654 | 46.2 44.6 57.1 477 428 64.9
o8 [z iTrans+base infl o8 1 GCN-+base infl
07 = maneroua | o7 T ochrous | 050
1 iTrans =1 GeN -
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Figure 2: (a)-(b): The ablation study of channel-wise influence function for iTransformer and GCN-
LSTM on SMAP and SMD dataset. (c): The relationship between the number of parameters used to
calculate gradients and the anomaly detection performance on different datasets.

eters used and the anomaly detection performance, with the results shown in Fig. Specifi-
cally, we use the GCN-LSTM model as an example. The GCN-LSTM model has an MLP de-
coder, which contains two linear layers, each with weight and bias parameters. Therefore, we
can identify four layers of parameters to calculate the gradient and use these four parameters to
test the effect of the number of parameters used. The results in Fig. [2c|indicate that our method
is not sensitive to the choice of parameters. Hence, using only the gradients of the last layer
of the network is sufficient to achieve excellent performance in approximating the influence.

Visualization of Anomaly Score: To highlight
the differences between our channel-wise self- ..

influence method and traditional reconstruction-
based methods, we visualized the anomaly =%

scores obtained from the SMAP dataset. Ap- =

parently, as indicated by the red box in Fig. 3] ' vencd S
the reconstruction error fails to fully capture —_—
the anomalies, making it difficult to distinguish
some normal samples from the anomalies, as — e

their anomaly scores are similar to the thresh- 0
old. The results show that our method can de- ReconsetErer

tect true anomalies more accurately compared  Figure 3: Visual illustration of the anomaly score
to reconstruction-based methods, demonstrating  of different methods.

the advantage of channel-wise influence.

5.2 MULTIVARIATE TIME SERIES FORECASTING

5.2.1 CHANNEL PRUNING EXPERIMENT

Set Up: To demonstrate the effectiveness of our method, we designed a channel pruning experiment.
In this experiment, we selected three datasets with a large number of channels for testing: Electricity
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with 321 channels, Solar-Energy with 137 channels, and Traffic with 821 channels. The detailed
information of these datasets can be found in the Table 4]

According to Eq[5] the specific aim of

the experiment was to determine how to Table 4: The detailed dataset information.
retain only N% of the channels while

maximizing the model’s generalization Dataset ‘ Dim Prediction Length Datasize Frequency
oy o Electricity | 321 9% (18317, 2633,5261)  Hourly

ability across all channels. In addition ¢ "rros |75 % (36601, 3161, 10417)  10min

to our proposed method, we compared Traffic 862 96 (12185,1757,3509)  Hourly

it with some naive baseline methods, in-
cluding training with the first N% of the channels and randomly selecting N % of the channels for
training. N is changed to demonstrate the channel-pruning ability of these methods.

Table 5: Variate generalization experimental results for Electricity, Solar Energy, and Traffic datasets.
We use the MSE metric to reflect the performance of different methods. The bold marks are the
best. The predicted length is 96. The red markers indicate the proportion of channels that need to be
retained to achieve the original prediction performance.

Dataset | ECL | Solar | Traffic
Proportion of variables retained ‘ 5% 10% 15%  20%  50% ‘ 5% 10% 15%  20%  50% ‘ 5% 10% 15%  20%  30%
Continuous selection | 0.208 0.188 0.181 0.178 0.176 | 0.241 0.228 0.225 0.224 0.215 | 0.470 0437 0.409 0.406 0.404
iTransformer Random selection 0.205 0.182 0.177 0.175 0.165 | 0.240 0229 0.225 0223 0.217 | 0450 0415 0.404 0404 0.403
i Influence selection | 0.187 0.174 0.170 0.165 0.150 | 0.229 0.224 0.220 0.219 0.210 | 0.419 0.405 0.398 0.397 0.395

| Full variates | 0.148 | 0.206 | 0.395
Proportion of variables retained \ 5% 10%  15% 20%  45% \ 5% 10% 15%  20%  20% \ 5% 10%  15% 20%  20%
Continuous selection | 0.304 0222 0.206 0.202 0.203 | 0.250 0.244 0.240 0.230 0.230 | 0.501 0478 0474 0476 0.476
PatchTST Random selection 0.230 0.208 0.202 0.196 0.186 | 0.242 0.240 0.235 0.230 0.230 | 0.495 0478 0467 0.464 0.464
Influence selection | 0.205 0.191 0.190 0.186 0.176 | 0.228 0.226 0.226 0.223 0.223 | 0.483 0.470 0.456 0.452 0.452

| Full variates | 0.176 | 0.224 | 0.454

Results Analysis: The bold mark results in the TableE] indicate that, when retaining the same
proportion of channels, our method significantly outperforms the other two methods. Besides, the red
mark results in the table also show that our method can maintain the original prediction performance
while using no more than half of the channels, significantly outperforming other baseline methods.
These results prove the effectiveness of our method in selecting the representative subsets of channels.
Considering our selection strategy is different from conventional wisdom, such as selecting the most
influence samples, we add new experiments in Appendix [C.I} The results prove that the conventional
way to utilize channel-wise influence function cannot work well in channel pruning problem.

In addition to the superior performance shown in the table, our experiment highlights a certain
relationship between the model and the channels. Specifically, since iTransformer (Liu et al., 2024)
needs to capture channel correlations, it requires a higher retention ratio to achieve the original
prediction performance. In contrast, PatchTST (Nie et al., |2022) employs a Channel-Independence
strategy, meaning all channels share the same parameters, and therefore, fewer variables are needed
to achieve the original prediction performance. This also explains why its predictive performance is
not as good as that of iTransformer, as it does not fully learn information from more channels.

Outlook: Based on the above results, we believe that in addition to using the channel-wise influence
function for channel pruning to improve the efficiency of model training and fine-tuning, another
important application is its use as a post-hoc interpretable method to evaluate a model’s quality. As
our experimental results demonstrate, a good model should be able to fully utilize the information
between different channels. Therefore, to achieve the original performance, such a method would
require retaining a higher proportion of channels.

5.2.2 COMPARING DATA PRUNING WITH CHANNEL PRUNING

Set up: To further demonstrate the superiority of channel pruning, we conducted a comparative
experiment between data pruning and channel pruning. Specifically, we reduced the data using
two pruning strategies: for data pruning, we applied MoSo (Tan et al., [2024), an effective data
pruning approach, alongside random data pruning, which involved randomly selecting data samples
for pruning. For channel pruning, we utilized our channel-wise influence function. In this experiment,
we compared each pruning method at the same remaining ratio. For example, when the horizontal
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Figure 4: (a)-(c): The comparison experiment between data pruning and channel pruning on different
datasets. From left to right are the Electricity dataset, the Solar Energy dataset, and the Traffic
dataset. The evaluation metric used is mean squared error (MSE), with lower values indicating better
performance. The horizontal axis means the remaining ratio of the dataset.

axis in Fig. d|indicates that 50% is retained, it means the size of the entire dataset is reduced to half
of its original size. In the case of data pruning, half of the training samples will be discarded; whereas
in channel pruning, half of the channels will be discarded.

Result Analysis: As shown in Fig.|4| our channel pruning method achieved better performance while
retaining the same proportion of data on all settings. This suggests that channel pruning is a more
suitable method for reducing MTS data than data pruning. Additionally, we previously highlighted
the value of channel pruning as a post-hoc method for analyzing MTS models. Therefore, we believe
that channel pruning holds greater exploratory value in MTS tasks.

Furthermore, we found that the performance of the MoSo-based pruning method was not as effective
as that of the random pruning method. We believe this may be due to the traditional influence method
underlying MoSo, which assumes that each data sample is calculated in isolation. However, the
samples in time series forecasting usually have strong temporal dependencies, thus resulting in the
failure of the MoSo method. Therefore, we consider designing an effective data pruning method
specifically for time series forecasting to be a noteworthy open problem.

6 CONCLUSIONS

In this paper, we propose a novel influence function that is the first influence function that can estimate
the influence of each channel in MTS, which is a concise data-centric method, distinguishing it
from previously proposed model-centric methods. In addition, according to abundant experiments
on real-world datasets, the original influence function performs worse than our method in anomaly
detection and cannot solve the channel pruning problem. This limitation arises from its inability to
differentiate the influence across various channels. In contrast, our channel-wise influence function
serves as a more universal and effective tool for addressing a wide range of MTS analysis tasks. In
conclusion, we believe that our method has significant potential for application and can serve as an
effective post-hoc approach for MTS analysis, helping us to better understand the characteristics of
MTS and helping us develop more effective MTS models.

Limitation: While we have successfully applied our method to two fundamental MTS tasks and
demonstrated its effectiveness, there remains a vast landscape of MTS-related tasks that are yet to
be explored and understood. Looking ahead, a primary focus of our research will be the further
application of the channel-wise influence function. We believe that delving deeper into this area will
yield valuable insights and contribute significantly to advancing the field.

Broader Impact: Our model is well-suited for multivariate time series analysis tasks, offering
practical and positive impacts across various domains, including disease forecasting, traffic prediction,
internet services, content delivery networks, wearable devices, and action recognition. However, we
emphatically discourage its application in activities related to financial crimes or any other endeavors
that could lead to negative societal consequences.

10
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A PROOF OF THEOREM

Proof. The proof of channel-wise influence function:
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where the first equation is the original definition of TracIn; we rectify the equation and derive the
second equation, indicating the sum of the loss of each channel. The third equation is calculated by the
first approximation of the loss function and then we replace (6’ — @) with nV L (z’; 0). Therefore, we
can derive the final equation which demonstrates the original Influence function at the channel-wise
level.

The proof is complete.

B DETAILS OF EXPERIMENTS

B.1 TRAINING DETAILS

All experiments were implemented using PyTorch and conducted on a single NVIDIA GeForce RTX
3090 24GB GPU.

For anomaly detection: Models were trained using the SGD optimizer with Mean Squared Error
(MSE) loss. For both of them, when trained in reconstructing mode, we used a time window of size
10.

For channel pruning: Models were trained using the Adam optimizer with Mean Squared Error
(MSE) loss. The input length is 96 and the predicted length is 96.

B.2 ANOMALY SCORE NORMALIZATION

Anomaly detection methods for multivariate datasets often employ normalization and smoothing
techniques to address abrupt changes in prediction scores that are not accurately predicted. In this
paper, we mainly use two normalization methods, mean-standard deviation and median-IQR, which
aligns with [Saquib Sarfraz et al.|(2024). The details are as follows:

Si — 1
or

)

S; =
For median-IQR: The jz and & are the median and inter-quartile range (IQR2) across time ticks of

the anomaly score values respectively.

For mean-standard deviation: The 1 and & are the mean and standard across time ticks of the
anomaly score values respectively.

For a fair comparison, we select the best results of the two normalization methods as the final result,
which aligns with |Saquib Sarfraz et al.|(2024)).

14
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B.3 THRESHOLD SELECTION

Typically, the threshold which yields the best F1 score on the training or validation data is selected.
This selection strategy aligns with |Saquib Sarfraz et al.|(2024), for a fair comparison.

C ADDITIONAL MODEL ANALYSIS

C.1 UTILIZATION OF CHANNEL-WISE INFLUENCE

We conducted new experiments comparing different selecting strategy based on channel-wise in-
fluence. The results, shown in the table, indicate that our equidistant sampling approach is more
effective than selecting the most influence samples. This is because it covers a broader range of
channels, allowing the model to learn more general time-series patterns during training.

Table 6: Variate generalization experimental results for Electricity, Solar Energy, and Traffic datasets.
We use the MSE metric to reflect the performance of different methods. The bold marks are the
best. The predicted length is 96. The red markers indicate the proportion of channels that need to be
retained to achieve the original prediction performance.

Dataset | ECL | Solar | Traffic
Proportion of variables retained | 5% 10%  15%  20% 50% | 5% 10% 15%  20% 50% | 5% 10% 15% 20% 30%
Most influence sample | 0.360 0.224 0.181 0.176 0.160 | 0.351 0241 0.237 0.236 0.220 | 0.461 0.421 0.407 0401 0.399
o Ours 0.187 0.174 0.170 0.165 0.150 | 0.229 0.224 0.220 0.219 0.210 | 0.419 0405 0.398 0.397 0.395
iTransformer
| Fullvariaes | 0.148 | 0.206 | 0.395

C.2 GENERALIZATION RESULTS

To demonstrate the generalizability of our method, we applied our channel-wise influence function to
various model architectures and presented the results in the following table[7} As clearly shown in the
table, our method consistently exhibited superior performance across different model architectures.
Therefore, we can conclude that our method is suitable for different types of models, proving that it
is a qualified data-centric approach.

Table 7: Full results of the generalization ability experiment.

Method | 1-Layer MLP | Single block MLPMixer | Single Transformer block
Dataset \ F1 P R \ F1 P R \ F1 P R

SMD Reconstruct Error 514 598 574|512 60.8 55.4 489 589 53.6
Channel-wise Influence | 559 63.1 60.6 | 555 64.8 58.3 521 629 58.2
SMAP Reconstruct Error 323 432 587 | 363 45.1 61.2 36.6 424 62.9
Channel-wise Influence | 47.0 54.5 60.9 | 48.0 57.5 58.9 48.5 54.1 64.6
MSL Reconstruct Error 373 342 648 | 39.7 34.1 62.8 402 427 56.9
Channel-wise Influence | 45.8 422 654 | 46.2 44.6 57.1 477 42.8 64.9
SWAT Reconstruct Error 77.1 98.1 635 | 78.0 854 71.8 78.7 86.8 72.0
Channel-wise Influence | 80.1 87.7 73.7 | 80.6 97.6 68.6 819 97.7 70.6
WADI Reconstruct Error 26.7 834 159 | 275 86.2 16.3 28.9 90.8 17.2
Channel-wise Influence | 44.3 84.6 30.0 | 46.6 83.0 324 475 713 35.6

C.3 ADDITIONAL DATASET AND BASELINE RESULTS
To demonstrate the effectiveness of our approach, we validated our channel-pruning method on new

datasets. Additionally, we incorporated a new baseline, DLinear, a time series forecasting method
based on a channel-independence strategy. The specific results are shown below:
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New dataset analysis:

Since the original number of channels in ETTh1 and ETTm1 is only 7, the horizontal axis in the table
directly represents the number of retained channels.

Table 8: The additional dataset results of the channel-pruning experiment.

Dataset \ ETThl \ ETTml
number of channels retained |7 3 2 | 7 3 2

Continuous selection | 0.396 0.502 0.573 | 0.332 0.756 0.826
iTransformer Random selection 0396 0428 0434 | 0.332 0.362 0.372
Influence selection 0.396 0.403 0.420 | 0.332 0.333 0.355

Continuous selection | 0.400 0.460 0.491 | 0.330 0.539 0.687
PatchTST Random selection 0.400 0415 0424 | 0.330 0.352 0.364
Influence selection 0.400 0.400 0.405 | 0.330 0.336 0.347

The results in the table demonstrate the effectiveness of channel pruning based on the channel-wise
influence function, highlighting that PatchTST and iTransformer exhibit comparable utilization of
channel information on the ETTh1 and ETTm1 datasets.

New forecasting length analysis:

We have added experimental results for the prediction length of 192. The detailed results are as
follows:

Table 9: The 192 forecasting length of the channel-pruning experiment.

Method | Dataset | ECL | Solar | Traffic |
Proportion of variables retained | 5% 10%  15%  20% 50% | 100% | 5%  10% 15% 20% 50% | 100% | 5%  10% 15% 20% 30% | 100%
Transf Continuous selection 0212 0.193 0.189 0.8 0.182 0270 0260 0.256 0251 0.249 0486 0456 0427 0426 0425
Hransiormer Random selection 0203 0.189 0183 0.179 0.172 | 0.164 | 0266 0.258 0260 0.249 0248 | 0.240 | 0.476 0436 0425 0421 0420 | 0.413
Influence selection 0.191 0.181 0.173 0.171 0.165 0259 0256 0254 0244 0242 0460 0430 0422 0416 0413
Proportion of variables retained | 5%  10% _ 15% _ 20% _ 40% | 100% | 5% _ 10% 15% 20%  50% | 100% | 5% _ 10% _ 15% _20% _ 20% | 100%
PatchTST Continuous selection 0272 0216 0201 0200 0.199 0282 0270 0.265 0264 0.260 0501 0488 0480 0479 0479
k Random selection 0210 0206 0.198 0.194 0.191 | 0.186 | 0274 0270 0.266 0.263 0260 | 0.260 | 0.496 0.485 0480 0474 0474 | 0.465
Influence selection 0200 0.197 0195 0.190 0.186 0267 0264 0262 0260 0.260 0485 0475 0470 0465 0.465

From the results shown in the table, it can be observed that channel-pruning based on channel-
wise influence is more effective. Additionally, iTransformer still exhibits a larger core subset,
demonstrating its superior ability to model channel dependency.

New baseline analysis:

Table 10: The channel-pruning experiment results of DLinear model.

Dataset | | ECL | Solar | Traffic
Proportion of variables retained | | 5% 10% 15% 20% 50% | 100% | 5% 10% 15% 20% 50% | 100% | 5% 10% 15% 20% 30% | 100% |
DLinear | Continuous selection | 02010200 0.198 0.197 0.196 | [ 0311 0309 0307 0301 0301 | 10649 0647 0645 0645 0645 |
| Random selection | 0200 0.198_0.19 0.19 0.9 | 0.196 [ 0.306 0304 0303 0.30] 0301 | 0.301 [0.649 0.648 0.645 0.645 0645 | 0.645
[ Tafluence sefection | 0.197 0.19 0.19 0.19 0.19 | [0301 0301 0301 0301 0301 | [0646 0645 0645 0645 0645 |

The experimental results in the table show that the core channel subset of DLinear is less than 5%,
which highlights the limited ability of simple linear models to utilize information from different
channels effectively.

C.4 ADDITIONAL COMPLEXITY ANALYSIS RESULTS
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To illustrate the complexity of our method, we added complexity analysis experiments in both time
series anomaly detection and forecasting tasks. In these experiments, we measured the time required
to compute the influence of all channels of a single multivariate time series data sample.

Anomaly detection:

We have added an experiment measuring the time required for detection at each time point to
demonstrate the complexity of our approach, as shown in the table below:

Table 11: The time required for our method on different time series model.

Dataset \ GCN_Istm+ours iTransformer+ours
SWAT | 1.4ms 1.5ms
WADI | 6.4ms 6.5ms

The results in the table indicate that our detection speed is at the millisecond level, which is acceptable
for real-world scenarios.

Channel-pruning:

By measuring the time required for calculating single-instance influence, we demonstrated how the
computational time scales with the number of channels.

Table 12: The time required for channel-pruning method on different time series datasets.

| ETTml  Solar-Energy  Electricity traffic
iTransformer+ours \ 0.0025s 0.023s 0.071s 0.18s

From the table, it can be observed that the computational complexity approximately increases linearly
with the number of channels.

C.5 COMPARING WITH OTHER CHANNEL PRUNING METHOD

To better highlight the effectiveness of our method, we compared it with the approach proposed in
the paper(Gu et al.,|2021)), referred to as NFS. The specific results are as follows:

Table 13: The comparing of different channel-pruning methods.

Dataset ECL Solar Traffic
Proportion of variables retained 5% 10% 15% 20% 50% 100% 5% 10% 15% 20% 50% 100% 5% 10% 15% 20% 30% 100%
0201 0.185 0.180 0.177 0.167 0.148 0260 0248 0227 0222 0214 0206 0428 0408 0402 0399 0397 0.395
Infl selection | 0.187 0.174 0.170 0.165 0.150 0.148 0229 0224 0220 0.219 0210 0.206 0419 0405 0.398 0.397 0395 0.395

iTransformer

From the results shown in the table, it is evident that our method is more effective. According to
the method described in the paper (Gu et al., 2021)), this approach introduces additional network
parameters to evaluate the importance of different channels. Furthermore, the number of additional
parameters required by this method scales with the number of channels, significantly increasing its
computational time. Specifically, while the original iTransformer takes only 17 seconds to train one
epoch on the ECL dataset, this method increases the time to 32 seconds per epoch.
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