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ABSTRACT

The field of prosody transfer in speech synthesis systems is rapidly advancing.
This research is focused on evaluating learning methods for adapting pre-trained
monolingual text-to-speech (TTS) models to multilingual conditions, i.e., Super-
vised Fine-Tuning (SFT) and Transfer Learning (TL). This comparison utilizes
three distinct metrics: Mean Opinion Score (MOS), Recognition Accuracy (RA),
and Mel Cepstral Distortion (MCD). Results demonstrate that, in comparison
to SFT, TL leads to significantly enhanced performance, with an average MOS
higher by 1.53 points, a 37.5% increase in RA, and approximately, a 7.8-point im-
provement in MCD. These findings are instrumental in helping build TTS models
for low-resource languages.

1 INTRODUCTION
Recent advancements in deep learning, as seen in systems such as fairseq-S2T (Wang et al., 2022),
SpeechT5 (Ao et al., 2022), and VITS (Kim et al., 2021) have significantly enhanced speech syn-
thesis, paving the way for our research on controllable Text-to-Speech (TTS) systems that trans-
fer both text and prosody to target audio. Our study focuses on multilingual prosody transfer
in TTS, particularly exploring models initially trained in English and then adapted to other lan-
guages. Adapting TTS for multilingual use involves various representation learning methods, in-
cluding semi-supervised and self-supervised learning (Saeki et al., 2023a). We assess two key ap-
proaches—supervised fine-tuning (SFT) on text-audio pairs and transfer learning (TL)—to evaluate
their effectiveness in generating high-quality audio and transferring prosody in multilingual con-
texts.
2 RELATED WORK
Prosody transfer and voice conversion in TTS systems have evolved from traditional HMMs, RNNs,
and CNNs to Transformer-based architectures like VTN (Vaswani et al., 2023; Huang et al., 2019).
Recent techniques include using 1) ASR for linguistic representation (Tian et al., 2019; Popov et al.,
2022), 2) speaker-dependent prosody capture (Zhang et al., 2020), 3) global cues like pitch and
loudness (Gururani et al., 2020), and 4) combining local and global prosodic features (Huang et al.,
2023). While Saeki et al. (2023b) explore semi-supervised learning for TTS in multilingual settings
and Shah et al. (2023) introduce a pre-trained TTS model for low-resource languages, the use of
speaker embeddings for prosody transfer and adapting pre-trained English TTS systems to multilin-
gual contexts remains less explored. Our study aims to fill this gap by investigating these methods.

3 DATASET
To conduct experiments in German, French, Spanish, and Dutch, we utilized segments from the
VoxPopuli dataset (Wang et al., 2021), comprising 282, 211, 166, and 53 hours of transcribed audio,
respectively. For Hindi and Tamil, we selected subsets from the Common Voice corpus (Ardila et al.,
2020), amounting to 20 and 200 hours of audio of each language. To address class imbalance, we
uniformly sampled data from each language to equalize dataset duration to approximately 20 hours.

4 METHODOLOGY
We aim to adapt pre-trained models for multilingual prosody preservation using Supervised Fine-
Tuning (SFT) and Transfer Learning (TL). Our experimental setups and methodologies are as below:
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Table 1: Comparative performance of SFT and TL on the synthesised speech quality

Language Supervised Fine-Tuning (SpeechT5) Transfer Learning (FreeVC)
MOS (↑)⋆ Recognition

Accuracy(↑)
MCD (↓) MOS (↑)⋆ Recognition

Accuracy(↑)
MCD (↓)

Spanish 2.73 ± 0.03 0.43 23.23 4.11 ± 0.12 0.81 15.83
French 2.85 ± 0.09 0.48 21.36 4.26 ± 0.09 0.83 12.54
German 3.01 ± 0.13 0.52 20.08 4.35 ± 0.01 0.88 13.41
Dutch 2.44 ± 0.05 0.45 24.74 4.15 ± 0.04 0.79 17.21
Hindi 2.32 ± 0.06 0.40 25.23 4.01 ± 0.17 0.82 16.28
Tamil 2.12 ± 0.24 0.37 26.21 3.85 ± 0.13 0.77 18.54

⋆mean±std

SFT: We selected SpeechT5 for SFT due to its encoder-decoder structure that generates mel-
spectrograms from text input. Its audio post-net can incorporate speaker embeddings for prosody
transfer (Ao et al., 2022). We utilized x-vector embedding (Snyder et al., 2018), known for captur-
ing emotional and gender characteristics in speech embedding. The choice of x-vectors is based on
experiments detailed in A.2. These embedding are integrated with the output of SpeechT5’s decoder
to preserve prosody. SpeechT5 is fine-tuned using supervised learning on (text, spectrogram) data
pairs aiming to minimise cross-entropy loss. The implementation details and plots are shown in A.3.
This technique adapts a pre-trained monolingual model to multilingual settings.

TL: To evaluate TL, we implemented the voice cloning method from Jia et al. (2019). This involved
a pre-trained speaker encoder designed for speaker identification, merged with a voice conversion
model. For speech synthesis from text, we used MMS TTS (Pratap et al., 2023) which is a pre-
trained multilingual model which does not preserve prosody. Concurrently, x-vector embedding
were derived using a pre-trained encoder (Ravanelli et al., 2021) from input audio. The synthesized
audio from MMS and the embedding from the encoder were fed into FreeVC’s pre-trained voice
conversion module (li et al., 2022) to produce prosody-preserving audio.

Our experiment involved regenerating input audio clips using the two described models. We assessed
the quality of these generated clips using MOS, RA, and MCD. MOS evaluates the naturalness,
quality, and prosody transfer of the generated speech, while RA assesses the respondents’ ability to
recognize the speaker in both the original and generated audio. MOS and RA are computed based
on feedback from 35 respondents1. Although MCD is not an ideal metric for speech quality, it is
useful in this context for measuring the distortion between the generated audio clip and the original,
thereby aiding in evaluating our experiment’s outcomes.

5 RESULTS

Table 1 shows the results of our experiments. Audio clips generated by SpeechT5-finetuned using
SFT are generally found to be noisy and have poor audio quality. This is further validated by the
MOS scores which are reported at a 95% confidence level. TL surpasses SFT by an average of
1.53 points over the six languages. Additionally, the recognition accuracy of the TL generated
audio exceeds that of SFT by more than 35% on average. These scores substantiate that Transfer
Learning is superior in retaining the unique characteristics of a voice. While adapting the model
to another language, SFT reduces the model’s ability to generate good quality speech, let alone
preserve prosody. MCD compares the mel-frequency cepstral coefficients (MFCC) of ground truth
and generated speech. We used dynamic time-warping to calculate MCD in order to account for
clips with varying lengths. TL yields lower MCD compared to SFT (indicating closer resemblance).
The distortion is lesser by an average of 35% on all the six languages.

6 CONCLUSION AND FUTURE WORK

Our findings highlight the superiority of transfer learning over supervised fine-tuning in adapting
pre-trained models for TTS applications. This insight is particularly crucial for developing TTS
models in low-resource environments, where supervised fine-tuning’s data-intensive nature can be
a significant challenge. Future research will aim to establish a framework for comparing different
learning methods in adapting pre-trained models to low-resource and multilingual contexts.

1Detailed calculation methodology and protocol are provided in Appendix A
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A APPENDIX

A.1 ACRONYMS USED

• TL : Transfer Learning

• SFT : Supervised-Fine Tuning

• MCD : Mel Cepstral Distortion

• MFCC : Mel-Frequency Cepstral Coefficients

• MOS : Mean Opinion Score

• ASR : Automated Speech Recognition

• TTS : Text to Speech

• HMM : Hidden Markov Models

• RNN : Recurrent Neural Networks

• CNN : Convolutional Neural Networks

• MMS : Massively Multilingual Speech (Pratap et al., 2023)

A.2 SPEAKER EMBEDDINGS

X-vector embeddings (Snyder et al., 2018), derived from deep neural networks, excel in capturing
intricate speaker characteristics such as emotion and gender. This makes them ideal for prosody
transfer tasks, allowing for the addition or alteration of emotional and gender nuances in synthesized
or altered speech, thereby improving its naturalness and expressiveness. Our study examines x-
vector’s efficacy in emotion and gender recognition using the CREMA-D dataset (Cao et al., 2014).
In gender identification, the pink and blue graphs (indicating female and male speakers, respectively)
show clear distinction.

After incorporating the x-vector embeddings, we utilized them to train a multi-layer perceptron
classifier. This classifier, has two hidden layers of size 128 and 64 respectively, and was trained on
80% of the data using the cross entropy loss. The ReLU activation function was used for each layer.
Testing was conducted for the gender and emotion classification task where X-vectors displayed the
highest accuracy.
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Pre-Trained Embedding Accuracy (Emotion) Accuracy (Gender)
MFCC (13) 38.04% 78.96%
Wav2Vec2 46.87% 76.29%
X-vector 61.72% 99.19%

ECAPA-TDNN 47.74% 97.65%
WavLM 53.27% 71.32%

Table 2: Results of pre-trained embeddings on emotion and gender recognition

Figure 1: Emotion Figure 2: Gender

Figure 3: t-SNE visualisation of x-vector embeddings

A.3 FINE-TUNING IMPLEMENTATION DETAILS AND PLOTS

The preprocessing details for the data is given as follows:

1. Firstly, the dataset is downloaded using an API and the audio files are extracted. Stan-
dard audio pre-processing is applied to remove noise and silence before generating speaker
embeddings (x-vectors)

2. Since speakers are annotated for the dataset, the audio clips belonging to speakers with
clips in the range of ∈ (100, 400) are only selected for fine-tuning.

3. For generating the text transcripts, transliteration is performed by phenome transformation
on symbols not existing in English. This is particularly important in Hindi and Tamil where
the lexical scripts are entirely different from English and need to be transliterated for fine-
tuning to happen.

This preprocessing prepares our dataset for fine-tuning on any English pre-trained TTS after which
we train the SpeechT5 model on text-spectrogram pairs. The following hyperparameters are set for
fine-tuning SpeechT5:

• Learning rate: 1e− 5

• Epochs: 10000
• Warmup steps: 500
• Train Batch Size: 4
• Val Batch Size: 4
• Gradient accumulation steps: 8
• fp16: True
• Evaluation Strategy: ”steps”

Figures 4 and 5 display the loss curves for training and validating SpeechT5 on VoxPopuli-French,
converging around 10000 epochs, showing effective model fine-tuning. Figures 6 and 7 present a
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Figure 4: Training Loss vs Epochs for French

Figure 5: Validation Loss vs Epochs for French

waveform and spectrogram generated by FreeVC and SpeechT5, respectively, using a random test
set audio clip, termed Reference Audio. This clip, processed for x-vector embeddings, is fed into
the fine-tuned SpeechT5, resulting in T5 Synthesised Audio, while FreeVC produces VC Synthesised
Audio. The spectrogram reveals that VC Synthesised Audio more accurately matches the original,
with a stable waveform, in contrast to the stretched, high-energy T5 Synthesised Audio, which
deviates significantly from the reference.

A.4 MOS AND RECOGNITION ACCURACY CALCULATION PROTOCOL

We conducted a survey where 35 candidates heard 10 sets of voice clip. One set included the ground
truth (original audio) and the corresponding generated audio.

MOS Score: Once they heard a pair, the candidates filled out a questionnaire with 5 questions on a
1-5 rating scale.

• Rate the naturalness of the clip (assessment of non-robotic voice)

Figure 6: Comparing Waveforms of the three
audio clips

Figure 7: Comparing Spectrograms of the three
audio clips
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• Rate the emphasis and intonation of spoken words
• Does the speaker of the two clips sound the same
• Evaluate rhythm and speech consistency
• Fluency of speech of the generated clip versus the input clip

Recognition Accuracy: This evaluates if the clips can be identified as the same user. Yes or no
response.
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