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Abstract
Among various acquisition functions (AFs) in
Bayesian optimization (BO), Gaussian process up-
per confidence bound (GP-UCB) and Thompson
sampling (TS) are well-known options with estab-
lished theoretical properties regarding Bayesian
cumulative regret (BCR). Recently, it has been
shown that a randomized variant of GP-UCB
achieves a tighter BCR bound compared with GP-
UCB, which we call the tighter BCR bound for
brevity. Inspired by this study, this paper first
shows that TS achieves the tighter BCR bound.
On the other hand, GP-UCB and TS often practi-
cally suffer from manual hyperparameter tuning
and over-exploration issues, respectively. There-
fore, we analyze yet another AF called a prob-
ability of improvement from the maximum of a
sample path (PIMS). We show that PIMS achieves
the tighter BCR bound and avoids the hyperpa-
rameter tuning, unlike GP-UCB. Furthermore, we
demonstrate a wide range of experiments, focus-
ing on the effectiveness of PIMS that mitigates
the practical issues of GP-UCB and TS.

1. Introduction
Bayesian optimization (BO) (Mockus et al., 1978) has be-
come a popular tool for an expensive-to-evaluate black-box
function optimization problem. BO aims to optimize with
fewer function evaluations by adaptively evaluating the ob-
jective function based on the Bayesian model and acquisi-
tion functions (AF). Due to its effectiveness, BO has been
applied to a wide range of problems, including drug dis-
covery (Korovina et al., 2020), AutoML (Klein et al., 2017;
Falkner et al., 2018), and materials informatics (Ueno et al.,
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2016).

Gaussian process upper confidence bound (GP-UCB) (Kush-
ner, 1962; Srinivas et al., 2010) is a seminal work of the
regret analysis in BO literature. GP-UCB achieves sub-
linear Bayesian cumulative regret (BCR) bounds by sequen-
tially evaluating the maximizer of the UCB, whose width
is controlled by the confidence parameter βt. However,
the theoretical choice of the confidence parameter can be
huge. Therefore, GP-UCB practically requires manually
tuning the confidence parameter, which strongly affects the
optimization performance. Furthermore, GP-UCB with a
manually tuned confidence parameter is no longer theoreti-
cally guaranteed.

Another well-known theoretically guaranteed BO method is
Thompson sampling (TS) (Thompson, 1933), whose same
BCR bound as that of GP-UCB has been shown (Russo &
Van Roy, 2014). TS is a randomized algorithm that sequen-
tially evaluates the optimal solution of a sample path from
a posterior. Therefore, TS does not have hyperparameters
like the confidence parameter for the AF, except for those
for GPs. Hence, TS does not require any manual hyper-
parameter tuning regarding AF. However, it is frequently
discussed that TS suffers from over-exploration, particularly
in higher-dimensional optimization problem (e.g., Shahriari
et al., 2016; Takeno et al., 2023).

Recently, Takeno et al. (2023) showed improved random-
ized GP-UCB (IRGP-UCB) achieves tighter BCR bounds
for a finite input domain compared with TS and GP-UCB.
In particular, it is shown that there is no need to increase the
confidence parameter in proportion to the iterations. How-
ever, the theoretical confidence parameter still depends on
the cardinality of the finite input domain. Since the car-
dinality of the finite input domain can be huge, manual
tuning of the confidence parameter can be required even in
IRGP-UCB.

This study provides the same BCR bound of TS as IRGP-
UCB, inspired by the analysis of IRGP-UCB, in which ran-
domness plays a key role. Furthermore, against the practical
issues of GP-UCB-based methods and TS, we analyze a
probability of improvement from a maximum of sample-path
(PIMS). PIMS, as the name suggests, is a randomized algo-
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GP-UCB IRGP-UCB TS PIMS
BCR for |X | <∞ O(

√
TγT log(|X |T )) O(

√
TγT log |X |) * O(

√
TγT log |X |) * O(

√
TγT log |X |)

BCR for X ⊂ [0, r]d O(
√
TγT log T ) O(

√
TγT log T ) * O(

√
TγT log T ) * O(

√
TγT log T )

Table 1. Summary of BCR bounds. The first and second rows show the BCR bounds for the finite and infinite input domains, respectively,
where γT is the maximum information gain(Srinivas et al., 2010), X is the input domain, d > 0 is the input dimension, and r > 0 is a
constant. The BCR bounds of GP-UCB and IRGP-UCB are shown in Theorem B.1 and Theorems 4.2 and 4.3 in Takeno et al. (2023),
respectively. Stars mean our results.

rithm based on the PI from the maximum of a sample path
generated from the posterior. We prove that PIMS achieves
the same BCR bound as IRGP-UCB and TS. In addition, we
empirically show that PIMS alleviates the over-exploration
problem of TS, although PIMS inherits the benefits of TS
having no hyperparameter of AF.

One technical challenge to showing the tighter BCR bounds
of TS and PIMS is handling their nature of posterior
sampling-based randomization. In the regret analyses of
TS and PIMS, we consider the randomized confidence pa-
rameters, which are the same as IRGP-UCB, as a formality.
However, given the randomized confidence parameters and
training dataset, although the next evaluation point xt in
IRGP-UCB becomes constant, the next evaluation points
xt in TS and PIMS are still random variables. Therefore,
we will show how to deal with these additional random
quantities in the regret analyses.

One of the benefits of TS and PIMS is being hyperparameter-
free. Most existing analyses (e.g., Srinivas et al., 2010;
Takeno et al., 2023) have used discretization-based proofs
in the BCR analysis for the continuous input domain. Note
that their discretization is only for theoretical proofs, and the
algorithms can still select the next point from the original
continuous space. For TS and PIMS, to directly use a similar
theoretical proof, the discretization is required not only in
the proof but also in their algorithms (i.e., optimizing the
sample path over finite discretized points). However, the
cardinality of the discretization must be tuned manually
(e.g., through the number of grid points), which means that
the AFs are no longer hyperparameter-free. Therefore, we
present an additional analysis for the BCR bound of TS and
PIMS that does not require the discretization procedure in
the algorithm; nevertheless, the proof is still based on the
discretization.

Our contributions are summarized as follows:

1. We show the sub-linear BCR bounds of TS. For the
finite input domain, the BCR bound is tightened com-
pared with the known result (Russo & Van Roy, 2014).
For the infinite input domain, we show the proof with-
out the discretization in the algorithm.

2. We show the sub-linear BCR bounds of a BO method
called PIMS, which is the PI from the maximum

of the sample path from the posterior. PIMS is
hyperparameter-free and easy to implement, as with
TS. For the finite input domain, PIMS achieves the
tighter BCR bound as with TS and IRGP-UCB. For the
infinite input domain, we analyze PIMS without the
discretization in the algorithm.

Theoretical results are summarized in Table 1. Finally, we
show broad experiments, particularly focusing on the practi-
cal effectiveness of PIMS compared with TS and GP-UCB-
based methods.

2. Background
2.1. Problem Statement

We consider an optimization of an unknown expensive-to-
evaluate objective function f , which is formalized as x∗ =
argmaxx∈X f(x) using an input domain X ⊂ Rd and
an input dimension d. BO aims to optimize with fewer
function evaluations by adaptively observing the function
value. Thus, at each iteration t, we sequentially query xt

based on the Bayesian model and AF. We assume that the
observation yt = f(xt) + ϵt is contaminated by a Gaussian
noise ϵt ∼ N (0, σ2) with a positive variance σ2 > 0.

We assume the Bayesian setting, i.e., f is a sample path
from a GP (Rasmussen & Williams, 2005) with a zero mean
and a stationary kernel function k : X ×X → R denoted as
f ∼ GP(0, k). We denote a dataset at the beginning of t-th
iteration as Dt−1 := {(xi, yi)}nt−1

i=1 with nt−1 > 0. Then,
the posterior distribution p(f | Dt−1) is again a GP, whose
posterior mean and variance are derived as follows:

µt−1(x) = kt−1(x)
⊤(K + σ2Int−1

)−1
yt−1,

σ2
t−1(x) = k(x,x)− kt−1(x)

⊤(K + σ2Int−1

)−1
kt−1(x),

where kt−1(x) :=
(
k(x,x1), . . . , k(x,xnt−1)

)⊤ ∈
Rnt−1 , K ∈ Rnt−1×nt−1 is the kernel matrix whose (i, j)-
element is k(xi,xj), Int−1

∈ Rnt−1×nt−1 is the identity
matrix, and ynt−1

:= (y1, . . . , ynt−1
)⊤ ∈ Rnt−1 . Here-

after, we denote that a probability density function (PDF)
p(·|Dt−1) = pt(·), a probability Pr(·|Dt−1) = Prt(·), and
an expectation E[·|Dt−1] = Et[·] for brevity.
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2.2. Performance Mesuare

This paper analyzes the Bayesian regret (Russo & Van Roy,
2014) of BO algorithms. The BCR and Bayesian simple
regret (BSR) are defined as follows:

BCRT := E

[
T∑

t=1

f(x∗)− f(xt)

]
,

BSRT := E
[
f(x∗)−max

t≤T
f(xt)

]
,

where the expectation is defined via all the randomness, i.e.,
f, {ϵt}t≥1, and the randomness of BO algorithms. Since
argmaxt≤T f(xt) is unknown in practice, the modified
BSR with the recommendation, for example BSRT :=
E [f(x∗)− f(x̂T )], where x̂T = argmaxx∈X µT−1(x),
is often also analyzed (Appendix A in Takeno et al., 2023).

The following lemma shows the property of BSR.

Lemma 2.1. BSR can be bounded from above as BSRT ≤∑T
t=1 BSRt/T ≤ BCRT /T and BSRT ≤ BCRT /T .

The proof is shown in Appendix D. Thus, we mainly focus
on showing that BCR is sub-linear since it implies BSR con-
verges to 0. In addition, for continuous input domain, we use
BSRT ≤

∑T
t=1 BSRt/T to show the modified BSR bound

of PIMS, which is tighter than the direct consequence of
BCR bound. Furthermore, as discussed in Russo & Van Roy
(2014); Takeno et al. (2023), although the rate regarding the
probability δ becomes worse, the BCR bound implies high
probability bounds as a direct consequence of Markov’s
inequality. Thus, although tighter regret bounds regarding
δ is an important future work, we mainly discuss the BCR
upper bound in this paper.

For BCR analysis, we use the following widely used as-
sumption for the continuous X (e.g., Srinivas et al., 2010;
Kandasamy et al., 2018; Takeno et al., 2023):

Assumption 2.1. Let X ⊂ [0, r]d be a compact and convex
set, where r > 0. Assume that the kernel k satisfies the
following condition on the derivatives of a sample path f .
There exists the constants a ≥ 1 and b > 0 such that,

Pr

(
sup
x∈X

∣∣∣∣ ∂f∂xj

∣∣∣∣ > L

)
≤ a exp

(
−
(
L

b

)2
)
, for j ∈ [d],

where [d] = {1, . . . , d}.

Further, we define maximum information gain (MIG) (Srini-
vas et al., 2010; Vakili et al., 2021):

Definition 2.1 (Maximum information gain). Let f ∼
GP(0, k) over X ⊂ [0, r]d. Let A = {ai}Ti=1 ⊂ X . Let
fA =

(
f(ai)

)T
i=1

, ϵA =
(
ϵi
)T
i=1

, where ∀i, ϵi ∼ N (0, σ2),
and yA = fA + ϵA ∈ RT . Then, MIG γT is defined as

follows:

γT := max
A⊂X ;|A|=T

I(yA;fA),

where I is the Shanon mutual information.

It is known that MIG is sub-linear for commonly used kernel
functions, e.g., γT = O

(
(log T )d+1

)
for RBF kernels and

γT = O
(
T

d
2ν+d (log T )

2ν
2ν+d

)
for Matèrn-ν kernels (Srini-

vas et al., 2010; Vakili et al., 2021).

2.3. Related Work

Many AFs for BO, such as expected improvement (EI)
(Mockus et al., 1978), entropy search (ES) (Hennig &
Schuler, 2012; Villemonteix et al., 2009), predictive ES
(PES)(Hernández-Lobato et al., 2014), and knowledge gra-
dients (KG)(Frazier et al., 2009), have been proposed. In
these AFs, only the regret analysis of EI in the noiseless
setting is provided (Bull, 2011). Therefore, particularly in
the general case that noises contaminate observations, these
AFs are heuristics without regret analysis. Furthermore,
although the practical effectiveness of ES, PES, and KG has
been reported, they are computationally expensive and hard
to implement due to cumbersome approximations.

Max-value entropy search (MES) (Wang & Jegelka, 2017)
is a variant of ES based on the entropy of optimal value in
contrast to the optimal solution used in ES and PES. MES is
easier to compute than ES and PES and empirically shows
high practical performance. Wang & Jegelka (2017) claimed
that the special case of MES, in which only one Monte Carlo
(MC) sample is used, achieves a high-probability simple
regret bound. PIMS is equivalent to this variant of MES with
one MC sample, as shown in Lemma 3.1 in Wang & Jegelka
(2017). However, several technical issues for the proof have
been pointed out (Takeno et al., 2022). In addition, since
using only one MC sample is hard to interpret in the sense
of MC estimation, most experiments in Wang & Jegelka
(2017) were performed with 100 MC samples. In contrast,
we provide analyses depending on the randomness of the
algorithm, which implies that using only one sample is more
promising. Furthermore, MES with many MC samples
requires heavy computational time.

Probability of improvement (PI) (Kushner, 1962; 1964) is
also a well-known BO method, which evaluates the probabil-
ity that the next evaluated function value improves the best
observation at iteration t. To the best of our knowledge, only
Wang et al. (2018) have provided the high-probability bound
of simple regret for PI. However, the regret analysis in Wang
et al. (2018) is based on a strong assumption that the up-
per bound of the black-box objective function f̂∗ ≥ f(x∗)
is known beforehand. Although GP estimation (GP-EST)
(Wang et al., 2016) can also be seen as a PI with adap-
tively estimated f̂∗, its estimation guaranteeing f̂∗ ≥ f(x∗)
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is not obvious, as discussed in Takeno et al. (2023). If
we admit Theorem 2 in Wang et al. (2018), it only im-
plies that f(x∗)−maxt≤T f(xt) = O(

√
γT /T + σ2), i.e.,

T
(
f(x∗)−maxt≤T f(xt)

)
= O(

√
TγT + T 2σ2), which

is linear with respect to T . On the other hand, the cumulative
regret

∑
t≤T f(x∗)−f(xt) ≥ T

(
f(x∗)−maxt≤T f(xt)

)
.

Hence, Theorem 2 in Wang et al. (2018) does not show a
sub-linear cumulative regret bound. Thus, we believe that
deriving the sub-linear cumulative regret upper bound of
PI-type AFs is still an open problem.

In contrast, several kinds of research represented by GP-
UCB (Srinivas et al., 2010) and TS (Russo & Van Roy,
2014) achieve the sub-linear regret upper bounds. The as-
sumptions of the regret analysis in BO are two-fold: fre-
quentists and Bayesian settings. In the frequentist setting
(e.g., Srinivas et al., 2010; Janz et al., 2020; Chowdhury
& Gopalan, 2017), f is assumed to be an element of repro-
ducing kernel Hilbert space (RKHS) specified by a kernel
function for GP. In the Bayesian setting (e.g., Srinivas et al.,
2010; Russo & Van Roy, 2014; Kandasamy et al., 2018), f
is assumed to be a sample path from the GP. For TS, Russo
& Van Roy (2014); Kandasamy et al. (2018) and Chowd-
hury & Gopalan (2017) provided the regret analysis in the
Bayesian and frequentists settings, respectively. Although
the regret analysis of TS and PIMS in the frequentist setting
is an important research direction, this paper concentrates
on the Bayesian setting.

Although GP-UCB achieves the sub-linear BCR bound, the
theoretical βt ∝ log

(
|X |t

)
can be huge. Thus, manually

tuning confidence parameter βt can be a practically crucial
problem. On the other hand, Takeno et al. (2023) shows
IRGP-UCB, which uses two-parameter exponential random
variables {ζt}t≥1 instead of βt, achieves the tighter BCR
bound and E[ζt] ∝ log(|X |), in which increasing E[ζt] is
not required. However, log(|X |) can be large depending on
the problem. Thus, although the problem of a too-large con-
fidence parameter is alleviated in IRGP-UCB, hyperparame-
ter tuning is still required. PIMS can also be interpreted as
a randomized variant of GP-UCB, in which the confidence
parameter is defined via the maximum of the sample path
from the posterior. See Sec. 4.2 for details.

3. Tighter BCR Bounds for TS
AF of TS is the sample path from the posterior. Algorithm 1
shows an algorithm of TS.

3.1. Regret Analysis

We use the following lemma in Takeno et al. (2023), which
is a modified lemma from Srinivas et al. (2010):

Lemma 3.1 (Lemma 4.1 in (Takeno et al., 2023)). Suppose
that f is a sample path from a GP with zero mean and a

Algorithm 1 TS

Require: Input space X , GP prior µ = 0 and k, and initial
dataset D0

1: for t = 1, . . . do
2: Fit GP to Dt−1

3: Generate a sample path gt ∼ p(f |Dt−1)
4: xt ← argmaxx∈X gt(x)
5: Observe yt = f(xt)+ϵt andDt ← Dt−1∪(xt, yt)
6: end for

stationary kernel k and X is finite. Pick δ ∈ (0, 1) and
t ≥ 1. Then, for any given Dt−1,

Prt

(
f(x) ≤ µt−1(x) + β

1/2
δ σt−1(x),∀x ∈ X

)
≥ 1− δ,

where βδ = 2 log(|X |/(2δ)).

From Lemma 3.1, we show the following lemma:

Lemma 3.2. Let f ∼ GP(0, k), where k is a station-
ary kernel and k(x,x) = 1, and X be finite. Let
ηt := gt(xt)−µt−1(xt)

σt−1(xt)
, where gt ∼ p(f |Dt−1) and xt =

argmaxx∈X gt(x). Then, for all t ≥ 1, the following in-
equality holds:

E
[
η2t 1{ηt ≥ 0}

]
≤ 2 + 2 log

(
|X |/2

)
,

where 1{ηt ≥ 0} = 1 if ηt ≥ 0, and otherwise 0.

See Appendix B for the proof. Note that f(x∗) and ηt do
not follow Gaussian distribution since x∗ is chosen as the
maximizer.

By using Lemma 3.2, we can obtain a tighter BCR bound,
in which

√
log T factor is removed compared with Proposi-

tion 5 in Russo & Van Roy (2014):

Theorem 3.1. Let f ∼ GP(0, k), where k is a stationary
kernel and k(x,x) = 1, and X be finite. Then, by running
TS, BCR can be bounded as follows:

BCRT ≤
√

C1C2TγT ,

where C1 := 2/ log(1+ σ−2) and C2 := 2+ 2 log
(
|X |/2

)
.

short proof. For all t ≥ 1, the following holds:

Et [f(x
∗)− f(xt)] = Et [gt(xt)− f(xt)]

= Et

[
gt(xt)− µt−1(xt)

σt−1(xt)
σt−1(xt)

]
≤ Et [ηt1{ηt ≥ 0}σt−1(xt)] ,

where ηt =
gt(xt)−µt−1(xt)

σt−1(xt)
. Then, applying the Cauchy–

Schwartz and Jensen inequalities and
∑

t≤T σ2
t−1(xt) ≤
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C1γT (Srinivas et al., 2010) to the summation for all t ≤ T ,
we can obtain

BCRT ≤
√∑

t≤T

E [η2t 1{ηt ≥ 0}]
√
C1γT

≤
√
C1C2TγT ,

where we use Lemma 3.2 in the second inequality.

See Appendix B.1 for the details. Theorem 3.1 shows that
TS achieves the same BCR bounds as IRGP-UCB.

Next, we consider the continuous X . In the proof for the
continuous X , the discretization of X denoted as Xt is
commonly used (e.g., Srinivas et al., 2010). We describe
the nearst point in Xt of x as [x]t.

If we modify TS so that [xt]t is evaluated instead of xt,
the same BCR upper bound of TS as that of IRGP-UCB
can be obtained similarly to the existing analysis (Takeno
et al., 2023) (See Appendix B.3 for details.). However, the
theoretical discretization depends on the generally unknown
parameters, such as a and b in Assumption 2.1. Thus, dis-
cretization fineness must be set manually in the algorithm.
Hence, the benefit of TS having no hyperparameters is lost.
Therefore, the regret analysis without the discretization in
the algorithm is also important.

Kandasamy et al. (2018) have shown the BCR bound of TS
without the discretization for the continuous X . However,
in Eq. (8) of Kandasamy et al. (2018), non-obvious result
that the

∑
t≤T σ2

t ([xt]t) is bounded from above by MIG
γT is used without the proof1. Since we cannot show this
non-obvious result, we show a more explicit analysis by
using the following useful result (Theorem E.4 in Kusakawa
et al., 2022).

Lemma 3.3 (Lipschitz constants for posterior standard de-
viation). Let k(x,x′) : Rd ×Rd → R be Linear, Gaussian,
or Matérn kernel and k(x,x) = 1. Moreover, assume that a
noise variance σ2 is positive. Then, for any t ≥ 1 andDt−1,
the posterior standard deviation σt−1(x) satisfies that

∀x,x′ ∈ Rd, |σt−1(x)− σt−1(x
′)| ≤ Lσ∥x− x′∥1,

where Lσ is a positive constant given by

Lσ =


1 if k(x,x′) is the linear kernel,√

2
ℓ if k(x,x′) is the Gaussian kernel,

√
2
ℓ

√
ν

ν−1 if k(x,x′) is the Matérn kernel,

where ℓ is length scale parameters in Gaussian and Matérn
kernels, and ν is a degree of freedom with ν > 1.

1Lemma 7 in (Kandasamy et al., 2018) only implies that∑
t≤T σ2

t (xt) ≤ C1γT without the discretization.

For completeness, a more detailed version of this lemma is
provided in Appendix B.2. Then, Lemma 3.3 derives the
upper bound of σt([xt]t):

σt([xt]t) ≤ σt(xt) + Lσ∥xt − [xt]t∥1.

Thus, appropriately refining Xt, we can obtain the following
BCR bounds for continuous X without the discretization in
the algorithm:

Theorem 3.2. Let f ∼ GP(0, k), where k is a stationary
kernel, k(x,x) = 1, and Assumption 2.1 holds. Let L =
max

{
Lσ, b

(√
log(ad) +

√
π/2

)}
, where Lσ is defined as

in Lemma 3.3. Then, by running TS, BCR can be bounded
as follows:

BCRT ≤
π2

3
+

π2

6

√
sT +

√
C1γTTsT ,

where C1 := 2/ log(1 + σ−2) and st = 2 − 2 log 2 +
2d log(⌈drLt2⌉).

See Appendix B.2 for the proof. Main differences from
Kandasamy et al. (2018) are (i) constant factors in st
are essentially tightened as log(|Xt|) from log(|Xt|t2) us-
ing Lemma 3.2 (ii) the rate regarding a is improved as
log
(
log a

)
from log a using Lemma H.1 of Takeno et al.

(2023) (iii) the discretization error regarding posterior stan-
dard deviation is considered as discussed earlier.

4. Tighter Bayesian Regret Bounds for PIMS
AF of PIMS is the PI from the maximum of the sample path
from the posterior:

xt = argmax
x∈X

{
1− Φ

(
g∗t − µt−1(x)

σt−1(x)

)}
,

where g∗t = maxx∈X gt(x), gt ∼ p(f |Dt−1), and Φ is
the cumulative distribution function of a standard Gaussian
distribution. From the monotonicity of Φ, we can rewrite as
follows:

xt = argmin
x∈X

g∗t − µt−1(x)

σt−1(x)
.

We employ this equivalent expression due to its simplicity.
Algorithm 2 shows an algorithm of PIMS.

Usual PI is based on the current best observation
maxi≤t−1 yi instead of g∗t and is known to result in over-
exploitation frequently. In the small noise variance regime,
g∗t is often larger than maxi≤t−1 yi and randomly generated.
Thus, PIMS explores appropriately compared with the usual
PI since the AF of PI tends to explore when the base value
(i.e., maxi≤t−1 yi or g∗t ) is large.

5



Posterior Sampling-Based Bayesian Optimization with Tighter Bayesian Regret Bounds

Algorithm 2 PIMS

Require: Input space X , GP prior µ = 0 and k, and initial
dataset D0

1: for t = 1, . . . do
2: Fit GP to Dt−1

3: Generate a sample path gt ∼ p(f |Dt−1)
4: g∗t ← maxx∈X gt
5: xt ← argminx∈X

g∗
t −µt−1(x)
σt−1(x)

6: Observe yt = f(xt)+ϵt andDt ← Dt−1∪(xt, yt)
7: end for

4.1. Regret Analysis

First, we show a similar lemma as Lemma 3.2 as follows:
Lemma 4.1. Assume the same condition as in Lemma 3.2.
Let ξt := minx∈X

g∗
t −µt−1(x)
σt−1(x)

. Then, the following inequal-
ity holds:

E
[
ξ2t 1{ξt ≥ 0}

]
≤ 2 + 2 log

(
|X |/2

)
,

for all t ≥ 1.

See Appendix C.1 for the proof.

Using Lemma 4.1, we can obtain the following BCR bound
for the finite input domain:
Theorem 4.1. Assume the same condition as in Theorem 3.1.
Then, by running PIMS, BCR can be bounded as follows:

BCRT ≤
√
C1C2TγT ,

where C1 := 2/ log(1+ σ−2) and C2 := 2+ 2 log
(
|X |/2

)
.

See Appendix C.1 for the proof. Therefore, PIMS achieves
the same BCR bound as TS and IRGP-UCB.

Next, we consider the continuous X . As with TS, if we
modify PIMS so that g̃∗t := maxx∈Xt

gt(x) is used instead
of g∗t , the proof of the sub-linear BCR bound of PIMS is
relatively easy (See Appendix C.3 for details). However, for
the same reason as TS, the theoretical discretization in the
algorithm is not preferable. Therefore, we show the BCR
bound using g∗t without the discretization in the algorithm.

On the other hand, the same proof as TS does not provide
the BCR bound of PIMS. This is because xt can be far
away from argminx∈X

(
g̃∗t − µt−1(x)

)
/σt−1(x) in con-

trast to TS. Thus, instead of Lipshitz continuity of σt−1(x)
(Lemma 3.3), we use the following lemma, which is re-
peatedly used in the literature (e.g., Lemma 13 in Mutny &
Krause, 2018; Wang & de Freitas, 2014):
Lemma 4.2. Let k be a kernel s.t. k(x,x) = 1. Then, the
posterior variance is bounded from below as,

σ2
t (x) ≥

σ2

σ2 + nt
,

for all x ∈ X and for all t ≥ 0, where nt = |Dt|.

For completeness, the proof is shown in Appendix D.

Then, we can obtain the following BCR bound:

Theorem 4.2. Let f ∼ GP(0, k), where k is a stationary
kernel, k(x,x) = 1, and Assumption 2.1 holds. Then, by
running PIMS, BCR can be bounded as follows:

BCRT ≤
π2

6
+
√

C1TγTmT ,

where C1 := 2/ log(1 + σ−2) and mt :=

2d log
(⌈
t2bdr

(
log(ad) +

√
π/2

)√
(σ2 + nt)/σ2

⌉)
−

2 log 2 + 2.

See Appendix C.2 for the proof. Since mt = O(log t),
BCRT = O(

√
TγT log T ), which is the same rate as the

existing results of GP-UCB, IRGP-UCB, and TS.

As discussed in Sec. 2, our BCR bound directly implies
that BSR converges to 0. On the other hand, for the mod-
ified BSR, we can avoid the use of Lemma 4.2 using the
inequality BSRT ≤

∑T
t=1 BSRt/T in Lemma 2.1:

Theorem 4.3. Assume the same condition as in Theorem 4.2.
Then, by running PIMS, BSR can be bounded as follows:

BSRT ≤
π2

6T
+

√
C1γTmT

T
,

where C1 := 2/ log(1 + σ−2) and mt :=
2d log

(⌈
t2bdr

(
log(ad) +

√
π/2

)⌉)
− 2 log 2 + 2.

See Appendix C.2 for the proof. Therefore, we can remove
the term log((σ2 + nt)/σ

2) in mt.

4.2. Relationship with GP-UCB

Wang & Jegelka (2017) have also shown the equivalence
between PIMS and GP-UCB with β

1/2
t = ξt defined in

Lemma 4.1. (We employ this definition of ξt since ξt can
be negative.) Details are shown in Appendix A. Therefore,
PIMS can also be interpreted as a random variant of GP-
UCB, whose confidence parameter is determined via g∗t .
Thus, we can expect that PIMS defines the more practical
confidence parameter ξt based on the GP model in contrast
to GP-UCB and IRGP-UCB, whose theoretical confidence
parameters are defined by the worst-case analysis and are
too conservative. We will show this important benefit of
PIMS compared with GP-UCB and IRGP-UCB in Sec. 5.

5. Experiments
We demonstrate the experiments on synthetic functions gen-
erated from GP, benchmark functions, and emulators de-
rived from real-world datasets. We performed the existing

6



Posterior Sampling-Based Bayesian Optimization with Tighter Bayesian Regret Bounds

0 50 100 150 200
Iteration

0.0

0.5

1.0

1.5

2.0
Si

m
pl

e 
re

gr
et

Synthetic (||=104, ℓ =0.2)
PIMS
IRGPUCB
GPUCB
TS

EI
MES
JES

0 50 100 150 200
Iteration

0.0

2.5

5.0

Co
nf

id
en

ce
 p

ar
am

et
er Synthetic (||=104, ℓ =0.2)

PIMS IRGPUCB GPUCB

(a) Default setting.

0 50 100 150 200
Iteration

0.0

0.5

1.0

1.5

2.0

Si
m

pl
e 

re
gr

et

Synthetic (||=204, ℓ =0.2)

0 50 100 150 200
Iteration

0.0

2.5

5.0
Co

nf
id

en
ce

 p
ar

am
et

er Synthetic (||=204, ℓ =0.2)

(b) Large |X | = 204.

0 50 100 150 200
Iteration

0.5

1.0

1.5

2.0

Si
m

pl
e 

re
gr

et

Synthetic (||=104, ℓ =0.1)

0 50 100 150 200
Iteration

0.0

2.5

5.0

Co
nf

id
en

ce
 p

ar
am

et
er Synthetic (||=104, ℓ =0.1)

(c) Small ℓ = 0.1.

Figure 1. The results on synthetic function experiments. The top row shows the average and standard error of the simple regret. In all
the settings (a-c), we can confirm that several BO methods, including PIMS (blue), achieve the best convergence. In contrast, other
theoretically guaranteed methods (GP-UCB, IRGP-UCB, TS) deteriorated in a certain setting. Therefore, we can observe that PIMS
flexibly deals with various problem settings while keeping the theoretical guarantee and has superior or comparable performance compared
with baselines, including heuristic methods without the theoretical guarantee, such as EI, MES, and JES. The bottom row represents the
expectation and quantiles of β1/2

t , ζ1/2t , and ξt.

BO methods, EI(Mockus et al., 1978), GP-UCB(Srinivas
et al., 2010), IRGP-UCB(Takeno et al., 2023), TS(Russo
& Van Roy, 2014), MES(Wang & Jegelka, 2017), joint en-
tropy search (JES) (Hvarfner et al., 2022) as baselines. We
generated 5 inputs for the initial dataset using the Latin
hypercube sampling(Loh, 1996). We fixed the noise vari-
ance σ2 = 10−6 and used the RBF kernel k(x,x′) =
exp

(
−∥x− x′∥22/(2ℓ2)

)
, where ℓ is hyperparameter. For

the posterior sampling in TS, PIMS, MES, and JES, we
used the random Fourier feature (RFF) (Rahimi & Recht,
2008). For MC estimation in MES and JES, we gen-
erated 10 MC samples. Unless otherwise noted, we re-
port the average and standard errors of the simple regret
rt := f(x∗)−maxt≤T f(xt) over 20 random trials.

Overall, we focus on the effectiveness of theoretical BO
methods with regret analysis. In synthetic function ex-
periments, we consider the purely theoretical setting, in
which we set hyperparameter ℓ as one used to generate
the objective function. We aim to demonstrate that PIMS
shows at least comparable performance to baselines includ-
ing not theoretically guaranteed methods, in contrast to
that GP-UCB-based methods and TS are degraded by over-
exploration. In benchmark function and real-world emulator
experiments, we performed marginal likelihood maximiza-
tion (Rasmussen & Williams, 2005) every 5 iteration. Fur-
thermore, in these experiments, we use the manually tuned

confidence parameters for GP-UCB-based methods since
theoretical confidence parameters contain unknown parame-
ters such as a and b. Thus, GP-UCB-based methods are no
longer theoretically guaranteed. Hence, only TS and PIMS
match the theoretical algorithm.

5.1. Experiments on Synthetic Functions

We performed the experiments for the GP-derived synthetic
function and the finite input domain X . Note that the ob-
jective function is also randomly generated for all 20 trials.
We show the results of changing the length scale parameter
ℓ and the cardinality of X . In particular, note that small ℓ
implies that the objective function and the GP model are
more complex. The input domain is set as {0.1, 0.2, . . . , 1}4
when |X | = 104 and {0.05, 0.1, . . . , 1}4 when |X | = 204,
respectively. For this experiment, we used the theoretical
confidence parameters, βt = 2 log

(
|X |t2/

√
2π
)

for GP-
UCB and ζt ∼ Exp (2 log (|X |/2) , 1/2) for IRGP-UCB.

The top row of Fig. 1 shows the simple regret. In this exper-
iment, we performed PI (Kushner, 1964), by which we can
confirm the over-exploitation tendency of the usual PI. In
contrast, we see that PIMS shows the best or comparable
performance in all the plots of Fig. 1 compared with the
baselines, including the heuristic methods without theoret-
ical guarantees, such as EI, MES, and JES. Consequently,
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Table 2. Average and standard deviation of the mean of evalu-
ated posterior standard deviation

∑
t≤T σt−1(xt)/T for synthetic

function experiments.
Fig. 1a Fig. 1b Fig. 1c

PIMS 0.27 ± 0.14 0.26 ± 0.13 0.71 ± 0.13
TS 0.36 ± 0.14 0.36 ± 0.14 0.92 ± 0.09

the effectiveness of PIMS under different |X | and ℓ can be
confirmed.

GP-UCB-based methods deteriorated due to the over-
exploration, particularly in Fig. 1b with |X | = 204, since
the confidence parameters of GP-UCB and IRGP-UCB de-
pend on X as log |X |. This can also be confirmed by the
plot of the confidence parameters shown in the bottom row
of Fig. 1. Note that PIMS can be interpreted as GP-UCB
using ξt instead of β

1/2
t as discussed in Sec. 4.2. Then,

we can observe that ξt is substantially smaller than β
1/2
t

and ζ
1/2
t , which is conservatively set via |X |. In addition,

comparing Figs. 1a and 1c, we can see that ξt becomes large
(exploration is emphasized) when ℓ is small (the objective
function has many local maxima). These results suggest that
PIMS can use more practical confidence parameters based
on the posterior sampling.

TS shows poor performance in Fig. 1c with small ℓ. We
conjecture that this poor performance is caused by over-
exploration. Thus, we show the average and standard de-
viation of the evaluated posterior standard deviation mean∑

t≤T σt−1(xt)/T for PIMS and TS in Table 2. We can
observe that TS evaluates the input whose posterior variance
is larger than that of PIMS, particularly in Fig. 1c. There-
fore, we can confirm that TS results in over-exploration.
It is worth noting that ℓ = 0.1 is ideal in the sense that
ℓ = 0.1 is used to generate the objective function. Con-
sidering the existing studies (e.g., Shahriari et al., 2016),
in which TS deteriorated in the higher-dimensional prob-
lem, TS is empirically sensitive to the complexity of the GP
model depending on the parameters such as d and ℓ.

5.2. Experiments on Benchmark Functions

Figure 2 shows the results on the benchmark functions
called Ackley and Shekel functions in https://www.
sfu.ca/~ssurjano/optimization.html. In this
experiment, we employed the heuristic confidence param-
eters for GP-UCB and IRGP-UCB as βt = 0.2d log (2t)
(Kandasamy et al., 2015) and ζt ∼ Exp (2/d, 1/2) (Takeno
et al., 2023). TS is inferior to other methods due to the
over-exploration since a small ℓ is required to represent both
functions, which have many local maxima. On the other
hand, PIMS shows comparable or superior performance in
both functions compared with all the baselines, including
heuristics such as EI, MES, and JES. In particular, in the
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Figure 2. Average and standard error of the simple regret in bench-
mark function experiments.

Shekel function, PIMS shows faster convergence compared
with GP-UCB-based methods with the heuristic confidence
parameters. Thus, we conclude that PIMS appropriately
controls the exploitation and exploration trade-off via the
posterior sampling in this experiment.

5.3. Experiments on Real-World Emulators

We performed the experiments on the real-world data em-
ulators (Häse et al., 2021). The alkox dataset (Häse et al.,
2021) is the measurement of alkoxylation reaction with
respect to 4 parameters: catalase, horseradish peroxidase,
alcohol oxidase, and pH. The Fullerenes dataset (Walker
et al., 2017) is the mole fraction of the desired products
regarding o-xylenyl adducts of Buckminsterfullerenes with
respect to 3 parameters: temperature, reaction time, and
the ratio of sultine to C60. We optimized the Bayes neural
network trained by each dataset as proposed by Häse et al.
(2021). Details are shown in Häse et al. (2021).

Figure 3 shows the best observed value since the optimal
value is unknown. Note that GP-UCB-based methods are
based on the heuristic confidence parameters as with the
benchmark function experiments. We can confirm that EI,
JES, and TS are inferior to others in both emulators. In
contrast, GP-UCB-based methods and PIMS show superior
performance. Thus, we can confirm the effectiveness of
PIMS in both emulators derived from the real-world dataset
without heuristic tunings, unlike GP-UCB-based methods.

6. Conclusion
First, we derived the tighter BCR bounds of TS. Further-
more, we analyze the randomized variant of PI called PIMS,
which alleviates the practical issues of GP-UCB-based meth-
ods and TS. We showed the BCR bounds of PIMS, whose
rate is the same as TS and IRGP-UCB. Finally, we demon-
strated the effectiveness of PIMS, particularly focusing on
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Figure 3. Average and standard error of the obtained best value in
real-world emulator experiments.

the comparison of PIMS, TS, and GP-UCB-based methods.

Limitations and Future Works Although the hyperpa-
rameters of AF do not exist, the hyperparameter tuning of
GP is crucial. Furthermore, the posterior sampling must be
approximated by RFF for continuous X . Therefore, regret
analysis incorporating the uncertainty of GP hyperparame-
ters (Berkenkamp et al., 2019; Bogunovic & Krause, 2021)
and the RFF approximation error (Mutny & Krause, 2018)
are important future directions. Moreover, as discussed in
Sec. 2.3, the regret analysis for the RKHS setting is also
intriguing. On the other hand, various extensions for, e.g.,
multi-fidelity (Kandasamy et al., 2016), constrained (Gard-
ner et al., 2014), and multi-objective (Paria et al., 2020) op-
timization, are practically important. In addition, EI based
on the posterior sampling may be motivated as with PIMS.
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A. Equivalence between PIMS and Existing Methods
Wang et al. (2016); Wang & Jegelka (2017) claimed the following lemma:

Lemma A.1. The following methods are equivalent:

1. PIMS

2. MES with only one MC sample

3. (randomized) GP-UCB that maximize µt−1(x) + ξtσt−1(x), where ξt = minx∈X
{(

g∗t − µt−1(x)
)
/σt−1(x)

}
.

4. (GP-EST using g∗t instead of m̂ defined in Wang et al. (2016))

First, the equivalence between PIMS and MES with only one MC sample is shown in Lemma 3.1 in Wang & Jegelka (2017).
This equivalence is obvious from the monotonicity of MES’s AF when the MC sample size is one. Then, for the equivalence
between PIMS and GP-UCB, Wang et al. (2016) provided the proof in Lemma 2.1. However, since this proof is slightly
ambiguous, we provide the proof for completeness.

Let xUCB and xPIMS be the selected points by GP-UCB and PIMS, i.e.,

xUCB ∈ argmax
x∈X

{µt−1(x) + ξtσt−1(x)} ,

xPIMS ∈ argmin
x∈X

{
g∗t − µt−1(x)

σt−1(x)

}
.

Fix g∗t ∈ R. From the definitions of GP-UCB, PIMS, and ξt, the following holds:

µt−1(xUCB) + ξtσt−1(xUCB) ≥ µt−1(xPIMS) + ξtσt−1(xPIMS)

= µt−1(xPIMS) +
g∗t − µt−1(xPIMS)

σt−1(xPIMS)
σt−1(xPIMS)

= g∗t .

Then, if µt−1(xUCB) + ξtσt−1(xUCB) > g∗t , we can see that

ξt >
g∗t − µt−1(xUCB)

σt−1(xUCB)
.

This clearly contradicts the definition of ξt. Therefore,

µt−1(xUCB) + ξtσt−1(xUCB) = µt−1(xPIMS) + ξtσt−1(xPIMS)

= g∗t .

In addition, we can transform the inequality as follows:

g∗t − µt−1(xUCB)

σt−1(xUCB)
=

g∗t − µt−1(xPIMS)

σt−1(xPIMS)

= ξt.

Consequently, since the above equalities hold for all g∗t ∈ R, we can obtain

xUCB,xPIMS ∈ argmax
x∈X

{µt−1(x) + ξtσt−1(x)} ,

xUCB,xPIMS ∈ argmin
x∈X

{
g∗t − µt−1(x)

σt−1(x)

}
.

12
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B. Proof regarding TS
First, we show the proof of the following lemma:

Lemma 3.2. Let f ∼ GP(0, k), where k is a stationary kernel and k(x,x) = 1, and X be finite. Let ηt :=
gt(xt)−µt−1(xt)

σt−1(xt)
,

where gt ∼ p(f |Dt−1) and xt = argmaxx∈X gt(x). Then, for all t ≥ 1, the following inequality holds:

E
[
η2t 1{ηt ≥ 0}

]
≤ 2 + 2 log

(
|X |/2

)
,

where 1{ηt ≥ 0} = 1 if ηt ≥ 0, and otherwise 0.

Proof. It suffices to show that, for an arbitrary Dt−1,

Et

[
η2t 1{ηt ≥ 0}

]
≤ 2 + 2 log

(
|X |/2

)
.

Then, fix the dataset Dt−1 and δ ∈ (0, 1). From Lemma 3.1, we can see that

Prt

(
f(x∗) ≤ µt−1(x

∗) + β
1/2
δ σt−1(x

∗)
)
≥ Prt

(
∀x ∈ X , f(x) ≤ µt−1(x) + β

1/2
δ σt−1(x)

)
≥ 1− δ.

where βδ = 2 log(|X |/(2δ)). Then, since gt,xt | Dt−1
d
= f,x∗ | Dt−1, where d

= implies the equality in distribution, we
can arrange the probability as follows:

Prt

(
f(x∗) ≤ µt−1(x

∗) + β
1/2
δ σt−1(x

∗)
)
= Prt

(
f(x∗)− µt−1(x

∗)

σt−1(x∗)
≤ β

1/2
δ

) (
∵ σt−1(x

∗) > 0
)

= Prt

(
ηt ≤ β

1/2
δ

) (
∵ gt,xt | Dt−1

d
= f,x∗ | Dt−1

)
= Prt

(
ηt1{ηt ≥ 0} ≤ β

1/2
δ

) (
∵ β

1/2
δ > 0

)
.

Therefore, we obtain

Prt
(
η2t 1{ηt ≥ 0} ≤ βδ

)
≥ 1− δ.

Using the cumulative distribution function Ft(·) := Prt(η
2
t 1{ηt ≥ 0} ≤ ·) and its generalized inverse function F−1

t

(“generalized” is required since η2t 1{ηt ≥ 0} is not an absolute continuous random variable), we can rewrite

Ft (βδ) ≥ 1− δ ⇐⇒ βδ ≥ F−1
t (1− δ),

since F−1
t is a monotone non-decreasing function. Since δ ∈ (0, 1) is arbitrary, we can substitute U ∼ Uni(0, 1) as,

βU ≥ F−1
t (1− U).

By taking the expectation with respect to U , we can obtain,

EU [βU ] ≥ EU

[
F−1
t (1− U)

]
= EU

[
F−1
t (U)

]
,

where we use the fact that 1− U also follows Uni(0, 1). Since F−1
t (U) and η2t 1{ηt ≥ 0}|Dt−1 are identically distributed

as with the inverse transform sampling, we obtain

Et

[
η2t 1{ηt ≥ 0}

]
≤ EU [βU ] = 2 + 2 log

(
|X |/2

)
,

which concludes the proof.

13
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B.1. Discrete Domain

Theorem 3.1. Let f ∼ GP(0, k), where k is a stationary kernel and k(x,x) = 1, and X be finite. Then, by running TS,
BCR can be bounded as follows:

BCRT ≤
√
C1C2TγT ,

where C1 := 2/ log(1 + σ−2) and C2 := 2 + 2 log
(
|X |/2

)
.

Proof. We can obtain the following upper bound:

BCRT =

T∑
t=1

E [f(x∗)− gt(xt) + gt(xt)− f(xt)]

=

T∑
t=1

EDt−1
[Et [f(x

∗)− gt(xt)]] +

T∑
t=1

E [gt(xt)− f(xt)]

=

T∑
t=1

E [gt(xt)− f(xt)]

=

T∑
t=1

EDt−1 [Et [gt(xt)− f(xt)]]

=

T∑
t=1

E [gt(xt)− µt−1(xt)] .

Then, we apply Lemma 3.2 to ηt :=
gt(xt)−µt−1(xt)

σt−1(xt)
. Therefore, we obtain

BCRT =

T∑
t=1

E [gt(xt)− µt−1(xt)]

=

T∑
t=1

E [ηtσt−1(xt)]

≤
T∑

t=1

E [ηt1{ηt ≥ 0}σt−1(xt)]

≤ E


√√√√ T∑

t=1

η2t 1{ηt ≥ 0}
T∑

t=1

σ2
t−1(xt)

 (
∵ Cauchy–Schwarz inequality

)

≤ E


√√√√ T∑

t=1

η2t 1{ηt ≥ 0}

√C1γT
(
∵ Lemma 5.4 in (Srinivas et al., 2010)

)

≤

√√√√E

[
T∑

t=1

η2t 1{ηt ≥ 0}

]√
C1γT

(
∵ Jensen inequality

)
≤
√
C1C2TγT

(
∵ Lemma 3.2

)
,

where C2 := 2 + 2 log
(
|X |/2

)
.

B.2. Continuous Domain with Continuous Sample Path

First, we provide the rigorous version of Lemma 3.3:

Lemma B.1 (Theorem E.4 in (Kusakawa et al., 2022), Lipschitz constants for posterior standard deviation). Let k(x,x′) :
Rd × Rd → R be one of the following kernel functions:

14
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Linear kernel: k(x,x′) = σ2
fx

⊤x′, where σf is a positive parameter.

Gaussian kernel: k(x,x′) = σ2
f exp(−∥x− x′∥2/(2ℓ2)), where σf and ℓ are positive parameters.

Matérn kernel:
k(x,x′) = σ2

f

21−ν

Γ(ν)

(√
2ν
∥x− x′∥

ℓ

)ν

Kν

(√
2ν
∥x− x′∥

ℓ

)
,

where σf and ℓ are positive parameters, ν is a degree of freedom with ν > 1, Γ is the gamma function, and Kν is the
modified Bessel function of the second kind.

Moreover, assume that a noise variance σ2 is positive. Then, for any t ≥ 1 and Dt−1, the posterior standard deviation
σt−1(x) satisfies that

∀x,x′ ∈ Rd, |σt−1(x)− σt−1(x
′)| ≤ Lσ∥x− x′∥1,

where Lσ is a positive constant given by

Lσ =


σf if k(x,x′) is the linear kernel,√

2σf

ℓ if k(x,x′) is the Gaussian kernel,√
2σf

ℓ

√
ν

ν−1 if k(x,x′) is the Matérn kernel,

Next, we show the following BCR bounds of TS:

Theorem 3.2. Let f ∼ GP(0, k), where k is a stationary kernel, k(x,x) = 1, and Assumption 2.1 holds. Let L =
max

{
Lσ, b

(√
log(ad) +

√
π/2

)}
, where Lσ is defined as in Lemma 3.3. Then, by running TS, BCR can be bounded as

follows:

BCRT ≤
π2

3
+

π2

6

√
sT +

√
C1γTTsT ,

where C1 := 2/ log(1 + σ−2) and st = 2− 2 log 2 + 2d log(⌈drLt2⌉).

Proof. For the sake of analysis, we used a set of discretization Xt ⊂ X for t ≥ 1. For any t ≥ 1, let Xt ⊂ X be a finite set
with each dimension equally divided into τt = ⌈drLt2⌉. Thus, |Xt| = τdt . In addition, we define [x]t as the nearest point in
Xt of x ∈ X .

Then, we decompose BCR as follows:

BCRT =

T∑
t=1

E

[
f(x∗)− f([x∗]t) + f([x∗]t)− gt([xt]t) + gt([xt]t)− f([xt]t) + f([xt]t)− f(xt)

]

= E

[
T∑

t=1

f(x∗)− f([x∗]t)

]
︸ ︷︷ ︸

A1

+E

[
T∑

t=1

f([x∗]t)− gt([xt]t)

]
︸ ︷︷ ︸

A2

+ E

[
T∑

t=1

gt([xt]t)− f([xt]t)

]
︸ ︷︷ ︸

A3

+E

[
T∑

t=1

f([xt]t)− f(xt)

]
︸ ︷︷ ︸

A4

.

Then, using Lemma D.3, terms A1 and A4 can be bounded above by π2/6, respectively. Furthermore, from the definition,
gt([xt]t)|Dt−1 and f([x∗]t)|Dt−1 are identically distributed. Hence, we can see that

A2 =

T∑
t=1

EDt−1

[
Et

[
f([x∗]t)− gt([xt]t)

]]
= 0.
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Finally, we need to bound A3. As with Lemma 3.2, for all t ≥ 0, we can obtain

E
[
η2t 1{ηt ≥ 0}

]
≤ 2 + 2 log

(
|Xt|/2

)
,

where ηt := gt([xt]t)−µt−1([xt]t)
σt−1([xt]t)

. Note that the proof for Lemma 3.2 can apply to any distribution over Xt including
Prt([xt]t), not only Prt(xt). Therefore, we can obtain

A3 = E

[
T∑

t=1

ηtσt−1([xt]t)

]

≤ E

[
T∑

t=1

ηt1{ηt ≥ 0}σt−1([xt]t)

]

≤ E

[
T∑

t=1

ηt1{ηt ≥ 0}σt−1(xt)

]
︸ ︷︷ ︸

A5

+E

[
T∑

t=1

ηt1{ηt ≥ 0}|σt−1([xt]t)− σt−1(xt)|

]
︸ ︷︷ ︸

A6

.

Then, as with Theorem 3.1, we can see that

A5 ≤ E


√√√√ T∑

t=1

η2t 1{ηt ≥ 0}
T∑

t=1

σ2
t−1(xt)

 ≤√C1γTTsT ,

where sT = 2 + 2 log (|Xt|/2) = 2− log 2 + 2d log(⌈drLt2⌉). Furthermore, we can obtain

A6 ≤ E

[
T∑

t=1

ηt1{ηt ≥ 0} 1
t2

] (
∵ Lemma D.4 based on Lemma B.1

)
=

T∑
t=1

E[ηt1{ηt ≥ 0}] 1
t2

≤
T∑

t=1

√
E[η2t 1{ηt ≥ 0}] 1

t2
(
∵ Jensen’s inequality

)
≤

T∑
t=1

√
2 + 2 log

(
|Xt|/2

) 1
t2

≤
√
2 + 2 log

(
|XT |/2

) T∑
t=1

1

t2
(
∵ |Xt| is monotonically increasing

)
≤ π2

6

√
sT

which concludes the proof.

B.3. Continuous Domain with Discretized Sample Path

If we modify TS so that [xt]t is evaluated, the following theorem holds:

Theorem B.1. Let f ∼ GP(0, k), where k is a stationary kernel, k(x,x) = 1, and Assumption 2.1 holds. Let L =
b
(√

log(ad) +
√
π/2

)
. Then, by running modified TS that evaluates [xt]t, BCR can be bounded as follows:

BCRT ≤
π2

6
+
√
C1γTTsT ,

where C1 := 2/ log(1 + σ−2) and st = 2− 2 log 2 + 2d log(⌈drLt2⌉).
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Proof. We can decompose BCR as follows:

BCRT =

T∑
t=1

E

[
f(x∗)− f([x∗]t) + f([x∗]t)− gt([xt]t) + gt([xt]t)− f([xt]t)

]

= E

[
T∑

t=1

f(x∗)− f([x∗]t)

]
︸ ︷︷ ︸

A1

+E

[
T∑

t=1

f([x∗]t)− gt([xt]t)

]
︸ ︷︷ ︸

A2

+E

[
T∑

t=1

gt([xt]t)− f([xt]t)

]
︸ ︷︷ ︸

A3

.

Then, as with the proof of Theorem 3.2, we can obtain A1 ≤ π2

6 and A2 = 0. Furthermore, we can obtain

A3 ≤ E

[
T∑

t=1

ηt1{ηt ≥ 0}σt−1([xt]t)

]
.

Since modified TS evaluates [xt]t, we can directly bound A3 using MIG and L = b
(√

log(ad) +
√
π/2

)
, i.e.,

A3 ≤
√
C1γTTsT .

C. Proof regarding PIMS
First, we show the following lemma:

Lemma 4.1. Let f ∼ GP(0, k), where k is a stationary kernel and k(x,x) = 1, and X be finite. Let ξt :=

minx∈X
g∗
t −µt−1(x)
σt−1(x)

. Then, the following inequality holds:

E
[
ξ2t 1{ξt ≥ 0}

]
≤ 2 + 2 log

(
|X |/2

)
,

for all t ≥ 1.

Proof. From the property of non-negative random variable,

E
[
ξ2t 1{ξt ≥ 0}

]
=

∫ ∞

0

Pr
(
ξ2t 1{ξt ≥ 0} > c

)
dc. (1)

Using Lemmas D.1, D.5, and union bound, for all Dt−1 and c ≥ 0,

Prt

(
ξ2t 1{ξt ≥ 0} > c

)
= Prt

(
ξt >

√
c
)

= Prt
(
g∗t > max

x∈X

{
µt−1(x) +

√
cσt−1(x)

}) (
∵ Lemma D.5

)
= Prt

(
∃x, gt(x) > max

x∈X

{
µt−1(x) +

√
cσt−1(x)

})
= Prt

(
∃x, f(x) > max

x∈X

{
µt−1(x) +

√
cσt−1(x)

})
≤ Prt

(
∃x, f(x) > µt−1(x) +

√
cσt−1(x)

)
≤
∑
x∈X

Prt
(
f(x) > µt−1(x) +

√
cσt−1(x)

) (
∵ union bound

)
≤ |X |

2
e−c/2.

(
∵ Lemma D.1

)
Therefore, we obtain

Pr(ξ2t 1{ξt ≥ 0} > c) = EDt−1

[
Prt(ξ

2
t 1{ξt ≥ 0} > c)

]
≤ |X |

2
e−c/2.
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Since Pr
(
ξ2t 1{ξt ≥ 0} > c

)
≤ min{1, |X |

2 e−c/2} due to Pr
(
ξ2t 1{ξt ≥ 0} > c

)
≤ 1, we obtain

(1) ≤
∫ 2 log(|X |/2)

0

1dc+

∫ ∞

2 log(|X |/2)

|X |
2

e−c/2dc

= 2 log(|X |/2) + |X |
2

∫ ∞

0

e−(c+2 log(|X |/2))/2dc

= 2 log(|X |/2) +
∫ ∞

0

e−c/2dc

= 2 log(|X |/2) + 2,

which concludes the proof.

C.1. Discrete Domain

For the discrete input domain, using Lemma 4.1, we show the following theorem:

Theorem 4.1. Let f ∼ GP(0, k), where k is a stationary kernel and k(x,x) = 1, and X be finite. Then, by running PIMS,
BCR can be bounded as follows:

BCRT ≤
√
C1C2TγT ,

where C1 := 2/ log(1 + σ−2) and C2 := 2 + 2 log
(
|X |/2

)
.

Proof. Since xt⊥⊥ f |Dt−1 and xt|Dt−1 depends on only g∗t , we can transform BCR as follows:

BCRT =

T∑
t=1

EDt−1

[
Et

[
f(x∗)− f(xt)

]]

=

T∑
t=1

EDt−1

[
Et

[
f(x∗)− g∗t + g∗t − f(xt)

]]

=

T∑
t=1

EDt−1

[
Et

[
g∗t − f(xt)

]] (
∵ Et[f(x

∗)] = Et[g
∗
t ]
)

=

T∑
t=1

EDt−1

[
Et

[
g∗t − µt−1(xt)

]] (
∵ f ⊥⊥xt|Dt−1

)
=

T∑
t=1

EDt−1

[
Et

[
g∗t − µt−1(xt)

σt−1(xt)
σt−1(xt)

]]
.

Then, by defining ξt :=
g∗
t −µt−1(xt)
σt−1(xt)

, we can obtain

BCRT =

T∑
t=1

EDt−1

[
Et

[
ξtσt−1(xt)

]]

= E
[ T∑
t=1

ξtσt−1(xt)

]

≤ E
[ T∑
t=1

ξt1{ξt ≥ 0}σt−1(xt)

]

≤ E
[√√√√ T∑

t=1

ξ2t 1{ξt ≥ 0}
T∑

t=1

σ2
t−1(xt)

]
.

(
∵ Cauchy-Schwarz inequality

)
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We can use the following well-known bound of MIG:

T∑
t=1

σ2
t−1(xt) ≤ C1γT ,

(
∵ Lemma 5.4 in (Srinivas et al., 2010)

)
where C1 := 2/ log(1 + σ−2). Therefore,

BCRT ≤ E


√√√√ T∑

t=1

ξ2t 1{ξt ≥ 0}

√C1γT

≤

√√√√E
[ T∑
t=1

ξ2t 1{ξt ≥ 0}
]√

C1γT
(
∵ Jensen inequality

)

=

√√√√ T∑
t=1

E
[
ξ2t 1{ξt ≥ 0}

]√
C1γT .

We can apply Lemma 4.1 to ξt for all t ≥ 1. Thus, we obtain the following upper bound of BCR:

BCRT ≤

√√√√ T∑
t=1

E
[
ξ2t 1{ξt(xt) ≥ 0}

]√
C1γT

≤
√

C1C2TγT ,

where C2 := 2 + 2 log(|X |/2).

C.2. Continuous Domain with Continuous Sample Path

Theorem 4.2. Let f ∼ GP(0, k), where k is a stationary kernel, k(x,x) = 1, and Assumption 2.1 holds. Then, by running
PIMS, BCR can be bounded as follows:

BCRT ≤
π2

6
+
√

C1TγTmT ,

where C1 := 2/ log(1 + σ−2) and mt := 2d log
(⌈
t2bdr

(
log(ad) +

√
π/2

)√
(σ2 + nt)/σ2

⌉)
− 2 log 2 + 2.

Proof. For the sake of analysis, we used a set of discretization Xt ⊂ X for t ≥ 1. For any t ≥ 1, let Xt ⊂ X be a finite set
with each dimension equally divided into τt = ⌈t2bdr

(
log(ad) +

√
π/2

)√
(σ2 + nt)/σ2⌉. Thus, |Xt| = τdt . In addition,

we define [x]t as the nearest point in Xt of x ∈ X . Note that the discretization does not depend on any randomness and is
deterministic.

As with Theorem 4.1, we obtain

BCRT =

T∑
t=1

E
[
Et

[
g∗t − µt−1(xt)

σt−1(xt)
σt−1(xt)

]]
.

Let g̃∗t := maxx∈Xt gt(x), x̃t := argminx∈Xt
{(g̃∗t − µt−1(x))/σt−1(x)}, and z∗

t := argmaxx∈X gt(x). Then, we can
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obtain

BCRT ≤
T∑

t=1

E
[
Et

[
g∗t − µt−1(x̃t)

σt−1(x̃t)
σt−1(xt)

]] (
∵ xt is minimum

)
=

T∑
t=1

E
[
Et

[
g∗t − g([z∗

t ]t) + g([z∗
t ]t)− g̃∗t + g̃∗t − µt−1(x̃t)

σt−1(x̃t)
σt−1(xt)

]]

≤
T∑

t=1

E
[
Et

[
g∗t − g([z∗

t ]t) + g̃∗t − µt−1(x̃t)

σt−1(x̃t)
σt−1(xt)

]] (
∵ g([z∗

t ]t) ≤ g̃∗t
)

=

T∑
t=1

E
[
Et

[
g∗t − g([z∗

t ]t)

σt−1(x̃t)
σt−1(xt) +

g̃∗t − µt−1(x̃t)

σt−1(x̃t)
σt−1(xt)

]]

=

T∑
t=1

E
[
g∗t − g([z∗

t ]t)

σt−1(x̃t)
σt−1(xt)

]
︸ ︷︷ ︸

=:B1

+

T∑
t=1

E
[
g̃∗t − µt−1(x̃t)

σt−1(x̃t)
σt−1(xt)

]
︸ ︷︷ ︸

=:B2

For B2, as with the proof of Theorem 4.1,

B2 ≤
√
C1γT

√√√√ T∑
t=1

E
[
ξ̃2t 1{ξ̃t ≥ 0}

]
,

where

ξ̃t :=
g̃∗t − µt−1(x̃t)

σt−1(x̃t)
= min

x∈Xt

g̃∗t − µt−1(x)

σt−1(x)
.

Hence, by replacing X with Xt compared with Theorem 4.1, we can apply Lemma 4.1 as follows:

E
[
ξ̃2t (x̃t)1{ξ̃t(x̃t) ≥ 0}

]
≤ 2 log(|Xt|/2) + 2

= 2d log
(⌈
t2bdr

(
log(ad) +

√
π/2

)√
(σ2 + nt)/σ2

⌉)
− 2 log 2 + 2

= mt.

Therefore, we obtain B2 ≤
√
C1TγTmT .

Next, for B1,

B1 =

T∑
t=1

E
[
g∗t − g([z∗

t ]t)

σt−1(x̃t)
σt−1(xt)

]

≤
T∑

t=1

E
[
g∗t − g([z∗

t ]t)

σt−1(x̃t)

] (
∵ σt−1(xt) ≤ 1

)
≤

T∑
t=1

E
[(
g∗t − g([z∗

t ]t)
)√σ2 + nt

σ2

] (
∵ Lemma 4.2

)
≤

T∑
t=1

1

t2
(
∵ Lemma D.3

)
≤ π2

6
.

Consequently, we obtain the desired result.

Finally, we show the BSR bound:
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Theorem 4.3. Assume the same condition as in Theorem 4.2. Then, by running PIMS, BSR can be bounded as follows:

BSRT ≤
π2

6T
+

√
C1γTmT

T
,

where C1 := 2/ log(1 + σ−2) and mt := 2d log
(⌈
t2bdr

(
log(ad) +

√
π/2

)⌉)
− 2 log 2 + 2.

Proof. For the sake of analysis, we used a set of discretization Xt ⊂ X for t ≥ 1. For any t ≥ 1, let Xt ⊂ X be a finite set
with each dimension equally divided into τt = ⌈t2bdr

(
log(ad) +

√
π/2

)
⌉. Thus, |Xt| = τdt . In addition, we define [x]t as

the nearest point in Xt of x ∈ X . Note that the discretization does not depend on any randomness and is deterministic.

Let g̃∗t := maxx∈Xt
gt(x), x̃t := argminx∈Xt

{(g̃∗t − µt−1(x))/σt−1(x)}, and z∗
t := argmaxx∈X gt(x). From

Lemma 2.1, BSR can be transformed as follows:

BSRT ≤
1

T

T∑
t=1

BSRt

=
1

T

T∑
t=1

E [f(x∗)− f(x̂t)]

=
1

T

T∑
t=1

E [Et [f(x
∗)]− µt−1(x̂t)]

=
1

T

T∑
t=1

E [f(x∗)− f([x∗]t) + f([x∗]t)− gt([z
∗
t ]t) + gt([z

∗
t ]t)− g̃∗t + g̃∗t − µt−1(x̂t)]

≤ π2

6T
+

1

T

T∑
t=1

E [g̃∗t − µt−1(x̂t)] ,

where the final inequality can be obtained by the same proof of Theorem 3.2 and gt([z
∗
t ]t) ≤ g̃∗t .

Then, we show the inequality between σt−1(xt) and σt−1(x̃t). From the definition of xt and x̃t,

g̃∗t − µt−1(xt)

σt−1(xt)
+

g∗t − g̃∗t
σt−1(xt)

=
g∗t − µt−1(xt)

σt−1(xt)
≤ g∗t − µt−1(x̃t)

σt−1(x̃t)
=

g̃∗t − µt−1(x̃t)

σt−1(x̃t)
+

g∗t − g̃∗t
σt−1(x̃t)

,

and
g̃∗t − µt−1(x̃t)

σt−1(x̃t)
≤ g̃∗t − µt−1(xt)

σt−1(xt)
.

Therefore, by combining the above two inequalities and g∗t ≥ g̃∗t , we see that

σt−1(x̃t) ≤ σt−1(xt).

Hence, we can bound the remained term as follows:

1

T

T∑
t=1

E [g̃∗t − µt−1(x̂t)] =
1

T

T∑
t=1

E
[
g̃∗t − µt−1(x̂t)

σt−1(xt)
σt−1(xt)

]

≤ 1

T

T∑
t=1

E
[
g̃∗t − µt−1(x̂t)

σt−1(xt)
1{g̃∗t − µt−1(x̂t)}σt−1(xt)

]

≤ 1

T

T∑
t=1

E
[
g̃∗t − µt−1(x̂t)

σt−1(x̃t)
1{g̃∗t − µt−1(x̂t)}σt−1(xt)

] (
∵ σt−1(x̃t) ≤ σt−1(xt)

)
≤ 1

T

T∑
t=1

E
[
g̃∗t − µt−1(x̃t)

σt−1(x̃t)
1{g̃∗t − µt−1(x̃t)}σt−1(xt)

] (
∵ µt−1(x̃t) ≤ µt−1(x̂t)

)
≤
√

C1γTmT

T
,

21



Posterior Sampling-Based Bayesian Optimization with Tighter Bayesian Regret Bounds

where the final inequality can be obtained as with B2 in the proof of Theorem 4.2.

C.3. Continuous Domain with Discretized Sample Path

Theorem C.1. Let f ∼ GP(0, k), where k is a stationary kernel, k(x,x) = 1, and Assumption 2.1 holds. Then, by running
PIMS that uses g̃∗t instead of g∗t , i.e., evaluates x̃t = argminx∈Xt

(g̃∗t − µt−1(x))/σt−1(x), BCR can be bounded as
follows:

BCRT ≤
π2

6
+
√

C1TγTmT ,

where C1 := 2/ log(1 + σ−2) and mt := 2d log
(⌈
t2bdr

(
log(ad) +

√
π/2

)⌉)
− 2 log 2 + 2.

Proof. We can transform the BCR as follows:

BCRT =

T∑
t=1

E
[
Et

[
g∗t − g([z∗

t ]t) + g([z∗
t ]t)− g̃∗t + g̃∗t − µt−1(x̃t)

]]

≤
T∑

t=1

E
[
Et

[
g∗t − g([z∗

t ]t) + g̃∗t − µt−1(x̃t)

]] (
∵ g̃∗t ≥ g([z∗

t ]t)
)

=

T∑
t=1

E [g∗t − g([z∗
t ]t)] +

T∑
t=1

E
[
g̃∗t − µt−1(x̃t)

σt−1(x̃t)
σt−1(x̃t)

]
,

where z∗
t = argmaxx∈X gt(x). Then, the first term can be bounded above by π2/6 using Lemma D.3. Furthermore, the

second term can be bounded above by
√
C1TγTmT as with the proof of Theorem 4.1.

D. Auxiliary Lemmas
We used the following useful lemmas:

Lemma D.1 (in Lemma 5.2 of (Srinivas et al., 2010) and Lemma H.3 of (Takeno et al., 2023)). For c > 0, the survival
function of the standard normal distribution can be bounded above as follows:

1− Φ(c) ≤ 1

2
exp(−c2/2).

Lemma D.2 (Lemma H.1 of (Takeno et al., 2023)). Let f ∼ GP(0, k) and Assumption 2.1 holds. Let the supremum of the

partial derivatives Lmax := supj∈[d] supx∈X

∣∣∣ ∂f∂xj

∣∣∣. Then, E[Lmax] can be bounded above as follows:

E[Lmax] ≤ b
(√

log(ad) +
√
π/2

)
.

Lemma D.3 (Lemma H.2 of (Takeno et al., 2023)). Let f ∼ GP(0, k) and Assumption 2.1 holds. Let Xt ⊂ X be a finite
set with each dimension equally divided into τt ≥ bdrut

(√
log(ad) +

√
π/2

)
for any t ≥ 1. Then, we can bound the

expectation of differences,

T∑
t=1

E
[
sup
x∈X
|f(x)− f([x]t)|

]
≤

T∑
t=1

1

ut
,

where [x]t is the nearest point in Xt of x ∈ X .

Similarly, we can obtain the following lemma:
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Lemma D.4. Let f ∼ GP(0, k) and assume the same condition as in Lemma B.1. Let Xt ⊂ X be a finite set with each
dimension equally divided into τt ≥ drLσut for any t ≥ 1. Then, the following inequality holds with probability 1:

∀t ≥ 1,∀Dt−1, sup
x∈X
|σt−1(x)− σt−1([x]t)| ≤

1

ut
,

where [x]t is the nearest point in Xt of x ∈ X .

Proof. From the construction of Xt, we can obtain the upper bound of L1 distance between x and [x]t as follows:

sup
x∈X
∥x− [x]t∥1 ≤

dr

drLσut

=
1

Lσut
. (2)

Note that since this discretization is fixed beforehand, the discretization does not depend on any randomness.

Then, we obtain the following:

E
[
sup
x∈X
|σt−1(x)− σt−1([x]t)|

]
≤ Lσ sup

x∈X
∥x− [x]t∥1

(
∵ Lemma B.1

)
≤ Lσ

1

Lσut

(
∵ Eq. (2)

)
≤ 1

ut
.

(
∵ Lemma D.2

)

For BSR, based on the discussion in Appendix A of Takeno et al. (2023), we show the following lemma:

Lemma 2.1. BSR can be bounded from above as follows:

BSRT ≤
T∑

t=1

BSRt/T ≤ BCRT /T.

and

BSRT ≤ BCRT /T

Proof. For the first inequality, we can bound the modified BSR from above as follows:

BSRT = E [f(x∗)− f(x̂T )]

= EDT−1

[
ET

[
f(x∗)− f(x̂T )

]]
= EDT−1

[
ET

[
f(x∗)

]
− µT−1(x̂T )

]
≤ EDT−1

[
ET [f(x∗)]− 1

T

T∑
t=1

µT−1(x̂t)

] (
∵ ∀t ≤ T, µT−1(x̂t) ≤ µT−1(x̂T )

)
= EDT−1

[
ET

[
f(x∗)− 1

T

T∑
t=1

f(x̂t)

]]

=
1

T

T∑
t=1

E [f(x∗)− f(x̂t)]

=
1

T

T∑
t=1

BSRt.
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In addition, we can obtain

1

T

T∑
t=1

BSRt =
1

T

T∑
t=1

E [f(x∗)− f(xt) + f(xt)− f(x̂t)]

= EDt−1

[
1

T

T∑
t=1

{
Et

[
f(x∗)− f(xt)

]
+ µt−1(xt)− µt−1(x̂t)

}]

≤ 1

T

T∑
t=1

E [f(x∗)− f(xt)]
(
∵ ∀t ≥ 1, µt−1(xt) ≤ µt−1(x̂t)

)
=

1

T
BCRT .

The inequality for BSR can be obtained from the relationship between average and the maximum maxt≤T f(xt) ≥∑T
t=1 f(xt)/T .

Lemma D.5. Suppose that X is a discrete input domain. Let ξt = minx∈X
g∗
t −µt−1(x)
σt−1(x)

=
g∗
t −µt−1(xt)
σt−1(xt)

. Then, for all t ∈ N
and c ≥ 0,

Pr
(
ξt > c

)
= Pr

(
g∗t > max

x∈X
{µt−1(x) + cσt−1(x)}

)
.

Proof. From Lemma A.1, xt ∈ argmaxx∈X

{
µt−1(x) +

g∗
t −µt−1(xt)
σt−1(xt)

σt−1(x)
}

. Therefore, if ξt > c, i.e.,

g∗t − µt−1(xt)

σt−1(xt)
> c,

then

g∗t = max
x∈X

{
µt−1(x) +

g∗t − µt−1(xt)

σt−1(xt)
σt−1(x)

}
> max

x∈X
{µt−1(x) + cσt−1(x)} .

Inversely, if

g∗t = max
x∈X

{
µt−1(x) +

g∗t − µt−1(xt)

σt−1(xt)
σt−1(x)

}
> max

x∈X
{µt−1(x) + cσt−1(x)} .

then

g∗t − µt−1(xt)

σt−1(xt)
> c.

Hence, the statement of the lemma holds.

Finally, we show the following lemma for completeness:

Lemma 4.2. Let k be a kernel s.t. k(x,x) = 1. Then, the posterior variance is bounded from below as,

σ2
t (x) ≥

σ2

σ2 + nt
,

for all x ∈ X and for all t ≥ 0.
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Proof. When only one input x is repeatedly evaluated t times, σt(x) become the minimum. For simplicity, let D0 = ∅
without loss of generality. Then, we see that

σ2
0(x) = 1,

σ2
1(x) =

σ2

1 + σ2
.

Assume σ2
i (x) =

σ2

i+σ2 . Then, we can obtain

σ2
i+1(x) = σ2

i (x)−
(
σ2
i (x)

)2
σ2
i (x) + σ2

=
σ2σ2

i (x)

σ2
i (x) + σ2

=
σ4

i+σ2

(i+1)σ2+σ4

i+σ2

=
σ2

(i+ 1) + σ2
.

Since σ2
i (x) =

σ2

i+σ2 holds when i = 0 and 1, the statement σ2
t (x) =

σ2

t+σ2 holds for all t ≥ 0. If |D0| = n0 > 0, t changes
to nt = n0 + t.
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