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ABSTRACT

Echocardiography is the most widely used imaging modality in cardiology, yet
its interpretation remains labor-intensive and inherently multimodal, which re-
quires view recognition, quantitative measurements, qualitative assessments, and
guideline-based reasoning. While recent vision–language models (VLMs) have
achieved broad success in natural images and certain medical domains, their po-
tential in echocardiography has been limited by the lack of large-scale, clini-
cally grounded image–text datasets and the absence of measurement-based rea-
soning central to echo interpretation. We introduce EchoGround-MIMIC, the first
measurement-grounded multimodal echocardiography dataset, comprising 19,065
image–text pairs from 1,572 patients with standardized views, structured mea-
surements, measurement-grounded captions, and guideline-derived disease labels.
Building on this resource, we propose EchoVLM, a vision–language model that
incorporates two novel pretraining objectives: (i) a view-informed contrastive
loss that encodes the view-dependent structure of echocardiographic imaging, and
(ii) a negation-aware contrastive loss that distinguishes clinically critical nega-
tive from positive findings. Across five types of clinical applications with 36
tasks spanning multimodal disease classification, image–text retrieval, view clas-
sification, chamber segmentation, and landmark detection, EchoVLM achieves
state-of-the-art performance (86.5% AUC in zero-shot disease classification and
95.1% accuracy in view classification). We demonstrate that clinically grounded
multimodal pretraining yields transferable visual representations and establish
EchoVLM as foundation model for end-to-end echocardiography interpretation.
We will release EchoGround-MIMIC and data curation code, enabling repro-
ducibility and further research in multimodal echocardiography interpretation.

1 INTRODUCTION

Echocardiography (cardiac ultrasound) is the most widely used imaging technique in cardiology
due to its safety (non-invasive, radiation-free), portability, and low cost. Given its high volume
usage, clinicians are routinely tasked with interpreting large numbers of studies within limited time
constraints. The clinical workflow for interpreting an echo study is inherently multi-modal and com-
plex. In a standard echo exam, clinicians first identify standardized views of the heart and extract
quantitative measurements (e.g., ejection fraction, chamber dimensions, valve gradients). Follow-
ing guideline-based criteria, these measurements are combined with qualitative assessments (e.g.,
morphology) to determine disease findings. Finally, these findings are transcribed into a narrative
report using natural language to document diagnoses in medical records. This highlights the need
for automated AI systems that can support end-to-end, multi-modal echo image analysis.

Despite rapid progress in medical AI, most echo models remain task-specific—strong on single
vision tasks but difficult to transfer and insensitive to the cross-modal structure of clinical reading
(Leclerc et al., 2019b; Ouyang et al., 2020a). Foundation models (FMs) trained on large, weakly
supervised corpora generalize broadly across downstream tasks (Radford et al., 2021; Zhang et al.,
2024a; Siméoni et al., 2025), but in echocardiography the landscape is fragmented: recent vision-
only FMs (e.g., EchoApex (Amadou et al., 2024), EchoFM (Kim et al., 2024)) lack language and
measurement context, while echo VLMs (e.g., EchoCLIP (Christensen et al., 2023)) align images
with reports without grounding captions in quantitative measurements or guideline logic. A central
bottleneck is absence of measurement-grounded image–text supervision tailored to echo workflow.
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Figure 1: (a) EchoGround-MIMIC examples with standardized view labels (A2C/A4C), OCR-
extracted measurements, measurement-grounded captions, and guideline-aligned disease labels. (b)
Zero-shot disease classification AUC by category (radar plot): EchoVLM consistently outperforms
EchoCLIP, BiomedCLIP, and SigLIP2 (higher is better).

In this work, we introduce EchoGround-MIMIC, the first measurement-grounded multimodal dataset
for echo, and EchoVLM, a vision–language model that encodes clinical priors essential for faith-
ful interpretation. EchoGround-MIMIC contains 19,065 image–text pairs from 1,572 patients,
each linked to an ASE-standard view label, OCR-extracted structured measurements, LLM-derived
measurement-grounded captions, and guideline-aligned disease labels. The curation mirrors how
cardiologists process echo studies: organize by view, distill quantitative machine measurements
from images, and extract sentences that explicitly depend on those measurements; labels are checked
for consistency against measurements and captions.

Building on this resource, EchoVLM extends CLIP-style image–text alignment with two clinically
informed objectives. A view-informed contrastive loss enforces intra-view coherence and inter-
view separation, reflecting the view-dependent nature of echo acquisition. A negation-aware con-
trastive loss contrasts original captions with counterfactual negated variants (e.g., “no regurgitation”
vs. “mild regurgitation”), improving discrimination of clinically critical negatives. For quantitative
statement such as EF is 45%, we map the value to its clinical interpretation and negate that inter-
pretation, e.g. ”no systolic dysfunction”. Together these objectives inject echo-specific priors into
multimodal pretraining.

In summary, our contributions are

1. Measurement-grounded echocardiography dataset. We introduce EchoGround-MIMIC,
pairing echo images with standardized views, structured measurements, measurement-
grounded captions, and guideline-derived disease labels, enabling training and rigorous
evaluation of clinically faithful VLMs. We will release the dataset together with the pre-
processing code.

2. Clinically informed multimodal pretraining. We propose EchoVLM with view-informed
and negation-aware contrastive objectives on top of CLIP, explicitly encoding view struc-
ture and negative findings central to echo diagnosis.

3. Comprehensive validation. We systematically evaluate EchoVLM on 5 different clinical
applications with 36 clinical tasks. Across multimodal and vision-only tasks, EchoVLM
achieves state-of-the-art performance: zero-shot disease classification (AUC 86.5%, preci-
sion 34.2%), best Top-5/Top-10 image–text retrieval recall, 95.1% accuracy on downstream
view classification (surpassing the strongest vision FM), strong interactive segmentation
and competitive landmark detection on public datasets consisting of over 10K annotated
images. Our ablations confirm complementary gains from proposed objectives.
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2 RELATED WORK

Medical vision–language models. Large-scale image–text pretraining has enabled generalizable
representation learning across tasks and domains. CLIP popularized contrastive alignment between
vision and language, demonstrating strong zero-shot transfer from large scale image–text pairs and
catalyzing the modern VLM paradigm ((Radford et al., 2021)). Subsequent work emphasized the
role of data curation (e.g., MetaCLIP (Xu et al., 2023) and MetaCLIP 2 (Chuang et al., 2025)),
showing that transparent, balanced selection from web corpora can rival or surpass original CLIP
data across benchmarks. Beyond general-domain VLMs, the biomedical community has trained
domain-adapted models on scientific figures and clinical images. BiomedCLIP pretrains on large
PMC-scale figure–caption pairs and reports strong transfer across radiology and biomedical tasks
((Zhang et al., 2023)). Complementary efforts (e.g.,, PMC-CLIP (Lin et al., 2023)) curate millions
of high-fidelity biomedical image–text pairs to improve retrieval, classification, and VQA. This line
of work establishes the viability of contrastive VLMs in clinical settings but typically lacks explicit
modeling of measurement-grounded semantics crucial for echocardiography.

Foundation models for echocardiography. Self-supervised vision pretraining has matured through
contrastive and masked reconstruction objectives, yielding robust visual features that transfer with
minimal labels ((Chen et al., 2020; He et al., 2022; Caron et al., 2021; Oquab et al., 2024; Siméoni
et al., 2025)). Recent works have begun to specialize foundation modeling to echo. For vision-only
FMs, EchoApex ((Amadou et al., 2024)) pretrains an in-domain visual backbone on ∼20M echo
images spanning transthoracic (TTE), transesophageal (TEE), and intracardiac echocardiography
(ICE), across B-mode, Doppler, and 3D acquisitions, then adapts with task-specific heads to vision
tasks . EchoFM ((Kim et al., 2024)) targets video representation learning with spatio-temporal mask-
ing and periodic-driven contrastive learning, pretraining on ∼290k echo videos and transferring to
four downstream tasks. These models underscore the value of large in-domain pretraining but treat
language and measurement semantics only indirectly. EchoCLIP ((Christensen et al., 2023)) scales
echo VLM training to over one million video–text pairs mined from clinical reports, enabling zero-
shot assessment and retrieval. EchoPrime ((Zhang et al., 2024b)) pushes multi-video (study-level)
learning further: it uses a view classifier and view-aware anatomic attention to aggregate across stan-
dardized views, training on 12M video–report pairs and achieving improved performance across di-
verse form/function benchmarks. While these VLMs exploit report text, their captions largely reflect
free-text narratives; quantitative measurements—central to guideline-based echo diagnosis—are not
explicitly modeled, leaving negation and threshold-based criteria underrepresented.

3 METHOD

3.1 DATA CURATION

Source data EchoGround-MIMIC is curated from the publicly available MIMIC-IV-ECHO and
MIMIC-IV-Note modules (Goldberger et al. (2000); Johnson et al. (2023; 2024)), collected at
Beth Israel Deaconess Medical Center. MIMIC-IV-ECHO comprises over 500,000 echocardiogram
videos from 7,243 studies across 4,579 patients (2017–2019), each containing embedded machine
measurements. MIMIC-IV-Note includes 331,794 de-identified discharge summaries from 145,915
patients, processed under HIPAA Safe Harbor protocols. We identify echocardiography reports
within this corpus via string matching and link them to imaging studies using shared identifiers and
study timestamps.

View and measurement extraction We structure each study to mirror clinical reading: a pre-
trained classifier assigns standardized views, followed by quantitative measurement extraction.
Views are categorized using the American Society of Echocardiography (ASE)–defined classes
(Mitchell et al. (2019)). To extract quantitative parameters, we crop the clinically annotated mea-
surement overlays from the image and transcribe them into structured JSON using Qwen2.5-VL-72B
(Qwen (2025); Wang et al. (2024)). The resulting fields include chamber dimensions, transvalvular
gradients, and Doppler ratios.(Fig. 2a). Extraction fidelity was verified by manual review.

Extracting measurement-grounded captions Echo reports are retrieved from discharge sum-
maries and paired with structured measurements. We prompt a state-of-the-art LLM (Qwen2.5-
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Figure 2: Data curation for EchoGround-MIMIC. (a) For each MIMIC-IV echocardiogram, we
perform view classification, OCR the embedded machine measurements, and prompt an LLM with
the image and report to produce measurement-grounded captions. (b) Using the report and ASE
grading schema, an LLM assigns patient- and image-level disease labels, followed by a consistency
check against the extracted measurements.

Instruct-72B) to extract sentences explicitly referencing or dependent on these measurements, gen-
erating measurement-grounded captions (e.g., “Quantitative biplane left ventricular ejection fraction
is 45%”). Studies without such grounded sentences are excluded.

Guideline-based Abnormality Extraction To derive patient-level disease labels, we implement a
two-stage procedure (Fig. 2b). First, we prompt LLM to extract abnormalities defined by American
Society of Echocardiography guidelines, assigning exactly one severity grade per abnormality (none,
mild, moderate, severe). Default assignment is normal when no evidence is found. Second, we
perform consistency checking by prompting LLM with both the measurements, captions and the
patient-level disease labels to verify alignment with guidelines. The model discards any label that
conflicts with measurements or captions. This process ensures that the final abnormality annotations
reflect a guideline-consistent interpretation of both measurement and textual content. The process is
further detailed in appendix A.4.

EchoGround-MIMIC The resulting dataset, EchoGround-MIMIC, comprises 19,065 image–text
pairs from 1,572 patients. Each image is annotated with abnormality labels spanning 9 ASE-defined
disease categories (Fig. 3, left) graded from normal to severe (see appendix A.5.1, Fig. 8), as well
as one of 22 ASE-standard views (Fig. 3, right). In addition, the dataset includes structured mea-
surements and measurement-grounded captions. This unified resource anchors echocardiography
interpretation in standardized views, quantitative measurements, and clinical guidelines, supporting
the development and evaluation of multimodal models.

3.2 PRETRAINING ECHOVLM WITH CLINICALLY INFORMED OBJECTIVES

Having curated a large-scale multi-modal dataset, our goal is to build a vision-language model that
captures the clinical priors inherent to echocardiography. We adopt the standard CLIP (Radford
et al., 2021) image-text contrastive framework as a baseline and introduce two novel objectives that
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Figure 3: Disease and view label distributions in EchoGround-MIMIC. Left: Binary label distribu-
tion for each of the 9 disease categories (labels greater than mild are considered positive). Right:
Distribution of echocardiographic views in the dataset.

encode such priors: view-informed contrastive learning and negation-aware contrastive learning.
We aim to address two challenges in multi-modal echo interpretation: (i) the view-dependent nature
of image content and (ii) the prevalence of clinically critical negations in reports.

View-informed contrastive learning. Echocardiographic interpretation is inherently view-
dependent, with each standardized acoustic window (e.g., PLAX, A4C) providing distinct anatom-
ical and diagnostic cues. To encode this structure, we introduce a view-informed contrastive loss
Lview. For each anchor image, positive examples are drawn from the same view class, while neg-
atives come from different views. This encourages intra-view coherence and inter-view separation
in the visual embedding space, mirroring how cardiologists reason within and across views. Let
zimg
i ∈ Rd be the image embedding, and vi the discrete view label of image i (e.g., PLAX, A4C).

Let the positive set be P (i) = {j | vj = vi, j ̸= i}. The view-informed contrastive loss Lview is

Lview = − 1

N

N∑
i=1

1

|P (i)|
∑

j∈P (i)

log
exp(τ · zimg

i · zimg
j )∑

k ̸=i exp(τ · z
img
i · zimg

k )
, (1)

where N is the batch size and τ is a learnable temperature.

Negation-aware contrastive learning. Clinical reports frequently use negations (e.g., “no peri-
cardial effusion”, “no significant regurgitation”), but standard contrastive training often struggles
with understanding negations. To address this, we augment captions by prompting an LLM to
rewrite positive findings into their negated forms. We then introduce a negation-aware loss Lneg that
explicitly separates original and negated embeddings:

Lneg =
1

N

N∑
i=1

BCEWithLogits
(
τ ztxt

i · z
neg
i , 0

)
(2)

where ztxti and znegi denote embeddings of the original and negated captions, respectively.
BCEWithLogits(·) denotes the binary cross-entropy loss with logits. This loss explicitly teaches
the model to distinguish negative, normal findings from positive ones, improving the precision of
disease detection.

Total objective The final pretraining objective L combines the three components:

L = LCLIP + λviewLview + λnegLneg, (3)

where LCLIP is the CLIP loss and we set λview to 0.5 and λneg to 0.1. This design preserves the multi-
modal capacity of VLM, while injecting both vision and text supervisions that encode the structured
workflow of echocardiography.
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Implementation details For EchoVLM, we use ViT-B as the vision backbone and CLIP text en-
coder as text backbone. During pretraining, we use a global batch size of 512, a learning rate of
1e-4 and weight decay of 0.05. All images are resized to 112 × 112. We pretrain for a total of 20
epochs with a linear warmup of 200 steps. Vision encoder is initialized from weights pretrained on
an internal echo dataset. Text encoder is initialized from EchoCLIP Christensen et al. (2023). More
details in Appendix Table 15.

4 RESULTS

4.1 CROSS-MODAL RESULTS ON ECHOGROUND-MIMIC

Figure 4: Pretraining objectives in EchoVLM.
Left: View-informed contrastive learning en-
forces intra-view invariance and inter-view sepa-
ration. Middle: Image–text contrastive learning
aligns images with measurement-grounded cap-
tions. Right: Negation-aware contrastive learn-
ing separates affirmative vs. negated clinical state-
ments (e.g., “no systolic dysfunction” vs. “mild
systolic dysfunction”).

Evaluation We randomly partition
EchoGround-MIMIC into training, vali-
dation, and testing sets using a ratio of
0.8/0.1/0.1. The final training cohort contains
15,255 image–text pairs, and the test cohort
includes 1,911 pairs; the validation set is used
for hyperparameter tuning. To evaluate cross-
modal performance, we consider two tasks:
(1) zero-shot disease classification and (2) im-
age–text retrieval. For zero-shot classification,
we construct positive and negative prompts for
each disease, compute the VLM’s predicted
probabilities, and assign the label via argmax.
We report standard metrics including precision,
recall, and AUC. For retrieval, we compute
embeddings for both images and texts in the
test set and measure performance by top-5
and top-10 recall. We compare EchoVLM
against both domain-specific vision–language
models such as EchoCLIP (Christensen et al.,
2023), BiomedCLIP (Zhang et al., 2024a)
and generalist models such as CLIP (Radford
et al., 2021), MetaCLIP (Xu et al., 2023)
and SigLIP2 (Tschannen et al., 2025)). All
methods are finetuned on EchoGround-MIMIC
for fairness.

EchoVLM outperforms existing VLMs in multi-modal tasks. As shown in Table 1, EchoVLM
achieves the strongest zero-shot disease classification with an AUC of 86.5% and precision of 34.2%,
surpassing the next best model, EchoCLIP, by 7.2% and 6.9%, respectively. On image–text re-
trieval, EchoVLM also leads with recall of 2.98% at top-5 and 5.70% at top-10, exceeding the
strongest baseline by 0.26% and 0.57%. These results demonstrate that incorporating echo-specific
priors during pretraining yields transferable representations that generalize robustly across multi-
modal echocardiography tasks.

4.2 DOWNSTREAM VISION TASKS

View classification We assess the quality of visual representations by finetuning each VLM’s
vision encoder on a private, multi-vendor TTE dataset collected from six sites (26k videos with
18 ASE-standard views, including contrast). All data are de-identified and converted to grayscale.
The dataset is split into 21.5k/2.1k/2.1k videos for training, validation, and testing, respectively. A
linear classification head is attached to the pooled visual embeddings, and the encoder is fine-tuned
end-to-end (details in Appendix Table 10).

EchoVLM achieves state-of-the-art performance in view classification. EchoVLM achieves
the best performance among all evaluated models (Table 2), reaching 95.1% accuracy, 95.3% F1
score, and 95.8% precision. Notably, EchoVLM not only surpasses all VLM baselines but also
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Model Disease Zeroshot Retrieval

AUC Precision Recall Recall Top-5 Recall Top-10

EchoCLIP (Christensen et al., 2023) 79.3 27.3 75.1 1.94% 4.03%
EchoPrime (Vukadinovic et al., 2024) 82.8 29.7 93.8 1.41% 2.78%
BiomedCLIP (Zhang et al., 2024a) 77.1 20.4 77.2 2.35% 5.13%
CLIP (B/16) (Radford et al., 2021) 73.9 23.8 73.1 2.72% 4.60%
SigLIP2 (B/16) (Tschannen et al., 2025) 78.1 22.6 86.0 1.98% 4.19%
MetaCLIP (B/16) (Xu et al., 2023) 79.1 21.5 84.3 2.35% 4.91%
EchoVLM (ours) 86.5 34.2 86.2 2.98% 5.70%

Table 1: Image-text tasks on EchoGround-MIMIC by comparing with existing VLMs. EchoVLM
performs strongly in both disease zero-shot and image-text retrieval. BOLD means best result.

Figure 5: Class-wise view classification (balanced accuracy). EchoVLM vs. EchoCLIP. Row “Test
set” reports the number of test images per class; row “p < 0.01” marks whether EchoVLM’s gain is
significant (one-sided t-test). EchoVLM achieves higher balanced accuracy on most views.

outperforms the strongest vision foundation model EchoApex by 0.9% in precision. We also provide
class-wise analysis in Figure 11. EchoVLM consistently achieves higher balanced accuracy than
EchoCLIP across most ASE-standard views, with improvements that are statistically significant
for the majority of classes (p < 0.01, one-sided t-test). These results highlight that our pretraining
strategy yields transferable and clinically meaningful visual features, extending beyond multi-modal
alignment to purely vision-based tasks.1

Interactive segmentation We adapt EchoVLM for chamber segmentation tasks by attaching a
prompt-based (box) encoder-decoder module following SAM (Kirillov et al., 2023). Training and
evaluation is conducted on three public benchmarks: EchoNet-Dynamic (left ventricle masks in A4C
views) (Ouyang et al., 2020b), EchoNet-Pediatric (left ventricle masks in A4C, PSAX views) (Reddy
et al., 2023) and CAMUS (left ventricle and atrium masks in A2C views) (Leclerc et al., 2019a).
We report Dice similarity coefficient (DSC) and compare with task-specific baselines (U-Net (Ron-
neberger et al., 2015) or Deeplabv3 (Chen et al., 2017)), MedSAM (Ma et al., 2024) and the vision
FM EchoApex (Amadou et al., 2024).

EchoVLM outperforms tasks-specialists and achieves similar performance as vision FM.
EchoVLM attains the best DSC on EchoNet-Dynamic (93.1%) and EchoNet-Pediatric-A4C
(92.4%), and ties EchoApex on EchoNet-Pediatric-PSAX (93.0%) (Table 3). On the CAMUS
dataset, EchoVLM matches EchoApex for left ventricular segmentation (93.8%) and achieves com-
petitive performance for left atrial segmentation (90.2%). Visualization of segmentation results on
CAMUS using EchoVLM is shown in Figure 6. These results indicate that our pretraining maintains
transferable local features for segmentation across datasets.

Landmark detection We further evaluate EchoVLM on landmark detection using the public
EchoNet-LVH dataset (Duffy et al., 2022), which benchmarks left ventricular hypertrophy (LVH) as-
sessment from PLAX echocardiographic frames. The task requires predicting landmark coordinates

1As EchoPrime is a video-based model, the results are evaluated based on using 16 consective frames rather
than single image from the echo video.
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Figure 6: EchoVLM segmentation on CAMUS
dataset. Image quality labels: Good, Medium,
Poor. Red = prediction, Green = annotation.

Figure 7: EchoVLM landmark detection on
EchoNet-LVH dataset. Boxplots present error
distributions (mm) for IVS, LVPW, and LVID.

Model Accuracy F1 Precision

Vision foundation model
EchoApex (Amadou et al., 2024) 94.8 94.7 94.9

VLMs
EchoCLIP (Christensen et al., 2023) 90.9 91.6 93.2
EchoPrime(Vukadinovic et al., 2024) 93.8 94.9 93.2
BiomedCLIP (Zhang et al., 2024a) 92.6 92.3 92.9
CLIP (B/16) (Radford et al., 2021) 90.5 87.8 86.7
SigLIP2 (B/16) (Tschannen et al., 2025) 89.7 89.1 89.4
MetaCLIP (B/16) (Xu et al., 2023) 87.4 86.1 86.7
EchoVLM (ours) 95.1 95.3 95.8

Table 2: Performance of VLMs and the vision FM on downstream view classification. EchoVLM
achieves the highest accuracy, F1, and precision.

for the interventricular septum (IVS), left ventricular internal dimension (LVID), and left ventricu-
lar posterior wall (LVPW), from which wall thicknesses are derived. For network architecture, we
attach a UNETR style decoder to EchoVLM Hatamizadeh et al. (2022). Evaluation metrics include
the mean absolute error (MAE) of the derived measurements (mm) and the average landmark error
(Average L.E), defined as the Euclidean (L2) distance between predicted and ground-truth landmark
coordinates (mm). The dataset is split into 20,254/2,275/683 frames for training, validation, and
testing, respectively. We compare with a task-specific model DeepLabV3 (Chen et al., 2017) and
foundation model EchoApex. As shown in Table 4, EchoVLM achieves competitive performance,
outperforming both baselines on IVS and LVID in both metrics.

4.3 ABLATION STUDY ON DATA CURATION

We conduct an ablation on the importance of data curation by comparing performance between
pretraining EchoVLM using the raw echocardiography report and using the curated grounded cap-
tions. To isolate the effect of text data, we did not use additional supervision strategies such as
view contrastive or text negation loss. We used the same training and evaluation split and pretrain-
ing setup as in our main experiment. As in Table 5, training on raw reports leads to substantially
worse multimodal alignment. In zero-shot disease classification, AUC drops from 79.6 to 54.4,
and precision drops from 29.0 to 12.5. We suspect the reason for such decline is that raw clin-
ical reports contain large amounts of non-specific information that impedes image-text alignment.
Therefore, we leverage OCR-extracted measurements and ASE guideline to curate both visually and
clinically-grounded captions. We believe that our curated EchoGround-MIMIC provides substantial
and necessary benefit for training a clinically reliable VLM.
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Model EchoNet-Dynamic EchoNet-Pediatric CAMUS

A4C PSAX LV LA

EchoApex (Amadou et al., 2024) 92.8 92.1 93.0 93.8 90.8
Specialist (Ronneberger et al., 2015) 91.5 89.1 89.6 92.8 90.4
MedSAM (Ma et al., 2024) 86.5 87.2 88.0 87.2 80.3
EchoVLM (ours) 93.1 92.4 93.1 93.8 90.2

Table 3: Downstream segmentation performance (DSC (%)) on public datasets: EchoNet-Dynamic,
EchoNet-Pediatric and CAMUS. EchoVLM consistently outperforms task-specific models (U-Net,
MedSAM) and performs on par with vision FM model.

Model IVS LVID LVPW

Average L.E MAE Average L.E MAE Average L.E MAE

DeepLabV3 (Chen et al., 2017) 4.68 1.77 5.35 3.23 5.94 1.56
EchoApex (ViT-B) (Amadou et al., 2024) 4.73 2.03 5.49 3.06 6.99 1.81
EchoVLM (ours) 4.15 1.70 5.30 3.04 6.56 1.67

Table 4: Downstream landmark detection results on EchoNet-LVH. EchoVLM surpasses the task-
specific model DeepLabV3 and the vision FM EchoApex on IVS and LVID. Lower is better.

Data Source AUC Precision Recall Recall@5 Recall@10

Raw Reports 54.43 12.47 66.62 0.31 0.78
Curated Captions 79.60 29.00 73.60 2.30 4.33

Table 5: Ablation study on curated captions.

4.4 ABLATION STUDY ON PRETRAINING OBJECTIVES

We evaluate impact of each proposed objective on (i) cross-modal zero-shot disease classification
and (ii) vision-only view classification (Table 6). We pretrain VLM with each ablated loss configu-
ration on EchoGround-MIMIC and fine-tune vision encoder on TTE dataset for view classification.

View-informed loss Incorporating Lview improves view recognition accuracy considerably by
1.1%. On zero-shot disease detection, we also find considerable gains in precision (+4.5%), recall
(+4.5%) and AUC (+1.1%).

Negation-aware loss Adding Lneg primarily benefits text–image alignment. Zero-shot disease
classification improves by 2.6% in AUC and 2.5% in recall. We also found modest improvements to
view classification, indicating indirect benefits for the vision encoder.

Combined objectives When both objectives are applied alongside LCLIP, EchoVLM achieves the
best performance across all metrics: 86.5% AUC, 34.2% precision, and 86.2% recall for disease
zero-shot classification, and 95.1% accuracy for view classification. These results demonstrate that
Lview and Lneg are complementary and produce meaningful representations in the multi-modal em-
bedding space, without compromising vision features.

Pretrain losses Disease Zeroshot View Classification

AUC Precision Recall Accuracy F1 Precision

LCLIP 79.6 29.0 73.6 92.9 93.1 93.9
LCLIP + LView 80.7 33.5 78.1 94.0 94.4 95.2
LCLIP + LNegation 83.3 30.5 81.6 94.4 94.4 94.9
LCLIP + LView + LNegation 86.5 34.2 86.2 95.1 95.3 95.8

Table 6: Ablation study on pretraining objective. Cross-modal and vision-only results are reported.
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λview λneg AUC Precision Recall

1.0 1.0 79.6 29.0 73.6
0.25 0.5 81.8 28.0 87.2
0.5 0.5 78.1 26.3 81.3
0.5 0.1 83.9 32.2 83.4

Table 7: Ablation study with vary loss ratios.

Loss ratio sensitivity We further examine the ef-
fects of weighting λview and λneg on zero-shot dis-
ease classification (Table 7). Equal weighting yields
modest AUC (79.6%) and precision (29.0%). Re-
ducing the view-informed loss (λview = 0.25, λneg =
0.5) increases recall to 87.2% but at the expense
of specificity. Finally, reducing text negation loss
(λview = 0.5, λneg = 0.1) achieves the best perfor-
mance with the highest AUC (83.9%) and precision
(32.2%) while maintaining strong recall (83.4%).

4.5 INFERENCE EFFICIENCY IN CLINICAL WORKFLOWS

To assess the suitability of EchoVLM for real-time or near–real-time clinical environments, we
performed a profiling study on an NVIDIA A100 GPU to quantify end-to-end inference latency and
peak memory usage across all downstream tasks. EchoVLM uses lightweight task-specific decoders
(e.g., linear heads, SAM-based segmentation heads, and compact UNet architectures), enabling fast
inference and modest memory consumption across applications.

Task Model Size Decoder Type Latency Memory

Disease Classification 393.9M CLIP 251 ms 4.19 GB
View Classification 86.6M Linear 5 ms 0.83 GB
Segmentation 105.8M SAM 9.5 ms 2.15 GB
Landmark Detection 99.4M UNETR 15.3 ms 2.49 GB

Table 8: Inference latency and peak GPU memory usage for EchoVLM across downstream tasks,
measured on an NVIDIA A100 GPU.

As shown in Table 8, EchoVLM achieves sub-second latency for all tasks, with most operations
completing within 5–20 ms, and peak memory usage remaining below 5 GB. Such efficiency makes
the model well-suited for both real-time image interpretation and post-exam analysis in routine
echocardiography workflows.

5 CONCLUSION

This work introduces EchoGround-MIMIC, a measurement-grounded multimodal dataset for
echocardiography, and EchoVLM, a vision–language model that encodes clinical priors via view-
informed and negation-aware objectives. EchoVLM achieves state-of-the-art results across multi-
modal tasks, while transferring strongly to vision-only tasks. Future work will focus on scaling our
approach to multi-institutional data with diverse acquisitions and temporal modeling. Our approach
also has a few limitations. First, EchoGround-MIMIC is derived from a single healthcare system and
time window, which may limit demographic and protocol diversity. Second, quantitative values are
obtained via OCR from overlays. Despite manual checks, parsing errors may introduce label noise.
Third, measurement-grounded captions and guideline labels are generated with large language mod-
els. While consistency checks reduce obvious errors, such supervision cannot fully replace expert
adjudication and may propagate biases. For these reasons, we do not recommend direct clinical use
of EchoGround-MIMIC labels or EchoVLM outputs for diagnosis without expert validation.
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Claire Roberts, Andrea Vedaldi, Jamie Tolan, John Brandt, Camille Couprie, Julien Mairal, Hervé
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A.1 USAGE OF LLMS

Large Language Models were used in the data curation pipeline but not in the ideation of this
manuscript. Specifically:

• Measurement parsing and caption generation. We used Qwen2.5-VL-72B to transcribe
embedded measurement overlays from echocardiography images into structured JSON, and
Qwen2.5-Instruct-72B to extract measurement-grounded captions from associated clinical
reports.

• Guideline-based disease labeling. We prompted an LLM to assign disease severity grades
(none, mild, moderate, severe) according to American Society of Echocardiography (ASE)
guidelines. A secondary LLM pass was used to verify label–measurement consistency.

• Text negation. We employed an LLM to rewrite affirmative captions into their negated
forms (e.g., “mild regurgitation”→ “no regurgitation”) for use in the negation-aware con-
trastive loss.

All outputs generated by LLMs were subjected to automated consistency checks and sub-sampled
manual review to minimize errors and biases. LLMs did not contribute to study design or analysis.
We used LLM to polish the writing of the paper.

A.2 ETHICS STATEMENTS

This work uses de-identified echocardiography data from two sources. First, we curate EchoGround-
MIMIC from the publicly available MIMIC-IV-Echo and MIMIC-IV-Note modules, which are re-
leased under HIPAA Safe Harbor protocols with prior IRB approval at the source institution. Second,
we evaluate model transferability on a private, multi-vendor institutional dataset collected across six
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clinical sites. All private data were fully de-identified before use, and no additional patient recruit-
ment or human subject experimentation was conducted by the authors. Our experiments focus on
developing general-purpose vision–language models for echocardiography interpretation and do not
provide diagnostic outputs intended for direct clinical use. While our models achieve strong perfor-
mance, outputs may still contain errors and should not replace expert judgment. Dataset release and
code will comply with the terms of use of the underlying MIMIC databases; no identifiable or sen-
sitive information from private institutional datasets will be shared. We believe our study complies
with the ICLR Code of Ethics, including fairness, transparency, and responsible use of medical data.

A.3 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure reproducibility of our work. Full details of data curation
(view classification, OCR parsing, caption generation, and label extraction) are provided in Section
3 and Appendix A.4.1. Pretraining and loss formulations are explicitly defined in Section 3.2, with
pseudocode included in Algorithm 1. Hyperparameters, architectures, and training schedules are
described in Section 3.2 and the Appendix. Evaluation protocols for both multimodal and vision-
only downstream tasks are detailed in Sections 4.1–4.3, with dataset splits provided in Appendix.
We will release code for data preprocessing and the dataset EchoGround-MIMIC. Our goal is to
enable independent verification and extension of EchoVLM across multi-modal echocardiography
tasks.

A.4 ADDITIONAL ECHOGROUND-MIMIC DATASET DETAILS

A.4.1 EXAMPLE PROMPT

In EchoGround-MIMIC, each caption was rigorously verified against OCR-extracted measurements
to ensure consistency with quantitative values such as ejection fraction, chamber size, and wall
motion. Below we show the full prompt used for verifying captions given measurements.

Prompt

TASK: Read the measurements extracted from an echo image (the OCR block) and decide
which pre-written caption best describes the image.

• Select exactly one caption that is most clinically specific (break ties by first appear-
ance).

• Discard any caption that conflicts with any measurement (e.g., EF %, cavity size, wall
motion).

• If no caption is consistent with the OCR block, return an empty array.
• Preserve the exact caption text without modification.

Output format (must be exact):
OCR block:
{{ocr}}

captions:
{{caption}}

Return ONE of the following and nothing else:

1. {"caption": ["SELECTED CAPTION"]} (list length = 1)
2. {"caption": []} (if no caption fits)

A.5 OCR-BASED MEASUREMENT EXTRACTION AND LLM CAPTION VALIDATION

OCR-based measurement extraction. We use OCR exclusively to extract measurement name–
value pairs from echocardiographic overlays. The initial OCR pass produced 1,232 unique keys,
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many representing identical measurements with varied naming conventions (e.g., “AV Vmax” vs.
“AV Vmax”) or non-clinical display elements such as gain, velocity scale, or time scale.

To standardize these measurements, we focused on keys appearing more than ten times, yielding 278
candidates. Following clinical reporting practice, we organized all measurements into 11 anatomical
categories (LV, LA, RV, RA, MV, TV, AV, PV, SV, pulmonary vein, aorta). Through manual review,
these were consolidated into 167 final structured measurements. This curation significantly improves
measurement consistency and reduces OCR-related noise.

Validation of LLM-generated captions. To ensure the reliability of measurement-grounded cap-
tions, we collaborated with a cardiologist to establish clinically appropriate normal ranges for quan-
titative measurements. We then applied a rule-based consistency check: for each disease category,
we compared the LLM-generated diagnostic statement with a rule-based label inferred directly from
the numerical value.

Across all disease categories, we observed strong agreement in approximately 87% of cases, typi-
cally where values were clearly normal or abnormal. The remaining ∼13% involved borderline or
subjective clinical ranges. For example, although an LA length of 3.5–5.2 cm is generally normal, a
value of 4.9 cm may still be described as “dilated” in practice depending on patient-specific factors
such as age or comorbidities. For transparency, we retain these samples but annotate them with a
binary “subjective” flag, enabling users to re-filter or reinterpret them as needed.

During manual verification, we removed disease categories where measurement–caption incon-
sistencies were most prominent—including mitral valve disease, mitral regurgitation, and stroke-
volume–related labels. These diagnoses rely on multi-parameter Doppler criteria and hemodynamic
context not available in our extracted measurements. Excluding these categories improves dataset
reliability and avoids introducing clinically implausible labels.

A.5.1 DATA DISTRIBUTIONS

Figure 8 further shows that the curated dataset captures fine-grained disease severity across nine
ASE-standard categories. We observed long-tailed distributions for most diseases’ severity labels.

A.6 ADDITIONAL RESULTS AND DETAILS ON VISION TASKS

A.6.1 VIEW CLASSIFICATION DATASET AND BENCHMARKING

Transthoracic echocardiography (TTE) is a cornerstone of cardiac imaging for diagnosis and longi-
tudinal follow-up. Routine TTE studies comprise many standardized views, yielding large volumes
of cine loops for clinicians to review. Automatic view classification can accelerate retrieval of tar-
get clips and pre-populate structured reports. We evaluate this task on an internal, multi-vendor
TTE dataset that spans diverse transducers, spatial/temporal resolutions, image quality, imaging
depths, color Doppler, and contrast-enhanced studies. The dataset covers 18 American Society of
Echocardiography (ASE)–style views (standard and contrast variants). All images were annotated
by certified echocardiographers.

Below are the class abbreviations used in our figures:

• A2C: Apical two-chamber view.

• A3C: Apical three-chamber view.

• A4C: Apical four-chamber view.

• A5C: Apical five-chamber view.

• Cont:A2C: Apical two-chamber view with contrast.

• Cont:A3C: Apical three-chamber view with contrast.

• Cont:A4C: Apical two-chamber view with contrast.

• Cont:SAX: Parasternal short-axis view with contrast.

• PLAX:ID: Parasternal long-axis view with increased depth.

• PLAX:LV: Parasternal long-axis left ventricle .
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Figure 8: Fine-grained disease label distributions in EchoGround-MIMIC. For each of the 9 disease
categories, we show the distribution of ASE-standard ordinal labels (e.g., none, mild, moderate,
severe).

• PLAX:RVN: Parasternal long-axis right ventricle inflow.

• PLAX:RVT: Parasternal long-axis right ventricle outflow.

• PLAX:VAL: Parasternal long-axis zoomed on the mitral and/or aortic valve.

• PSAX:AV: Parasternal short-axis with a focus on the aortic valve.

• PSAX:MV: Parasternal short-axis with a focus on the mitral valve.

• PSAX:PAP: Parasternal short-axis at the papillary muscles level.

• SC:4C: Subcostal four-chamber view.

• SC:IVC: Subcostal long axis inferior vena cava view.

We next present quantitative and qualitative results for the view classification benchmark. Fig-
ure 10 shows the confusion matrix across the 18 echocardiographic views, where the strong diag-
onal pattern indicates high overall accuracy and residual errors are concentrated among anatomi-
cally adjacent views or contrast subtypes. Figure 11 reports class-wise balanced accuracy compared
with baseline models, demonstrating that EchoVLM achieves superior performance over prior vi-
sion–language models while remaining competitive with vision-only foundation models.

A.7 GENERALIZATION ACROSS INSTITUTIONS AND IMAGING PROTOCOLS

Although EchoGround–MIMIC originates from a single institution, the downstream datasets used
in our evaluation naturally span a broad range of acquisition settings, demographics, and ultrasound
vendors. The public EchoNet datasets used for segmentation and landmark detection were collected
in the United States, while the CAMUS dataset was acquired in France and reflects distinct imaging
protocols and scanner characteristics.
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(a) A2C (b) A3C (c) A4C (d) A5C (e) Cont:A2C

(f) Cont:A3C (g) Cont:A4C (h) Cont:SAX (i) PLAX:ID (j) PLAX:LV

(k) PLAX:RVN (l) PLAX:RVT (m) PLAX:VAL (n) PSAX:AV (o) PSAX:PAP

(p) PSAX:MV (q) SC:IVC (r) SC:4C

Figure 9: Example of images used in the TTE view classification task.

For view classification, our evaluation further incorporates studies from multiple clinical sites across
different geographic regions and institutions. Table 9 summarizes performance across these sites,
showing that EchoVLM maintains consistently strong accuracy, precision, and recall despite cross-
institutional variability.

Table 9: Performance of EchoVLM across different clinical sites.

Clinical Site F1 Precision Recall
New York, US 93.2 95.6 91.8
Georgia, US 96.3 96.4 96.7
New Jersey, US 95.9 97.1 95.2
Minnesota, US 91.8 92.2 92.5
Asia 91.1 95.1 89.9
Europe (CAMUS, KNN) 94.0 94.0 94.0

These results suggest that the visual representations learned by EchoVLM generalize well across het-
erogeneous imaging environments, even though pretraining was performed using a single-institution
source dataset.
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Figure 10: View classification confusion matrix (EchoVLM). Counts per class on the multi-vendor
TTE test set (darker = higher). The strong diagonal indicates high accuracy; remaining errors are
concentrated among anatomically adjacent views and contrast subtypes (e.g., PLAX and PSAX
variants).
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Figure 11: Class-wise view classification (balanced accuracy). Top: EchoVLM vs. EchoCLIP (VLM
baseline). Middle: EchoVLM vs. EchoPrime. Bottom: EchoVLM vs. EchoApex (vision-only FM).
Bars show balanced accuracy per ASE view on the multi-vendor TTE test set. Row “Test set” reports
the number of test images per class; row “p < 0.01” marks whether EchoVLM’s gain is significant
(one-sided t-test). EchoVLM achieves higher balanced accuracy on most views than existing image-
based VLM and video-based VLM while remaining competitive with vision-only FM.

A.8 COMPARISON WITH THE VIDEO-BASED ECHOPRIME MODEL

Fine-tuning comparison. Because EchoPrime was originally designed as a video-level model,
we evaluated two fine-tuning settings adapted to our frame-based benchmark: (1) EchoPrime-FT-
Sequence, using 16 real consecutive frames; and (2) EchoPrime-FT-Static, repeating the same frame
16 times to match the single-frame information provided to EchoVLM. As shown below, EchoVLM
achieves higher performance in all metrics.

Model F1 Precision Recall
EchoPrime-FT-Sequence 93.8 94.9 93.2
EchoPrime-FT-Static 92.2 92.5 92.1
EchoVLM (ours) 95.3 95.8 95.1

k-NN evaluation (no fine-tuning). To isolate the quality of the learned visual representations and
avoid fine-tuning–related confounders, we also performed a k-NN classification following the stan-
dard DINO evaluation protocol (k = 20, frozen backbone). We tested both our internal dataset and
an unseen public dataset (CAMUS). EchoVLM again demonstrates stronger feature quality.
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Model Dataset F1 Precision Recall
EchoPrime Internal-26k 38.9 38.7 53.1
EchoVLM (ours) Internal-26k 53.3 54.2 62.7
EchoPrime CAMUS-1k 79.3 80.0 84.5
EchoVLM (ours) CAMUS-1k 94.0 94.0 94.0

Confusion matrices on CAMUS. On the CAMUS test split (A2C/A4C videos), EchoVLM pro-
vides notably more accurate view discrimination, further indicating superior vision encoder repre-
sentations.

EchoPrime A2C A4C EchoVLM (ours) A2C A4C
A2C 49 19 A2C 47 3
A4C 1 31 A4C 3 47

Across all evaluations—fine-tuning, k-NN representation quality, and cross-dataset generalization—
the video-based EchoPrime model consistently underperforms the frame-based EchoVLM. These
results suggest that EchoPrime is optimized for video–language aggregation rather than high-fidelity
frame-level visual representation, whereas EchoVLM’s design more effectively captures clinically
relevant frame-based features.

config value
optimizer AdamW
base learning rate 5e-5
weight decay 0.005
optimizer momentum β1, β2 = 0.9, 0.999
batch size 512
learning rate schedule cosine decay
warmup epochs 10
training epochs 100
losses CE

Table 10: Hyperparameters used for the view classification experiment.

A.8.1 STRUCTURE SEGMENTATION DATASET AND BENCHMARKING

We benchmark chamber segmentation on three public echocardiography datasets: EchoNet-
Dynamic (Ouyang et al., 2020b), EchoNet-Pediatric (Zhang et al., 2021), and CAMUS (Leclerc
et al., 2019a). These datasets span different populations and acquisition protocols, providing com-
plementary challenges for evaluation. EchoNet-Dynamic contains over 10k apical four-chamber
(A4C) videos with end-diastolic (ED) and end-systolic (ES) left ventricle masks. EchoNet-Pediatric
comprises pediatric A4C and parasternal short-axis (PSAX) videos with left ventricle annotations.
CAMUS provides 500 adult patients with A2C and A4C views annotated for both left ventricle and
left atrium at ED/ES. Dataset statistics are summarized in Table 11.

We adapt EchoVLM for interactive segmentation by attaching a prompt-conditioned en-
coder–decoder following SAM (Kirillov et al., 2023). Models are trained with DiceCE loss and
evaluated using the Dice similarity coefficient (DSC). As shown in Table 12, EchoVLM consis-
tently outperforms task-specific baselines (U-Net, MedSAM) and performs on par with the vision
foundation model EchoApex across all datasets. Notably, EchoVLM achieves the highest DSC
on EchoNet-Dynamic (93.1%) and EchoNet-Pediatric A4C (92.4%), while matching EchoApex on
EchoNet-Pediatric PSAX and CAMUS. These results indicate that measurement-grounded multi-
modal pretraining preserves fine-grained local features required for precise structure segmentation,
while also transferring across age groups and acquisition settings.
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Dataset Structure Views Patients Videos Annotations Eval. (ED, ES)

EchoNet-Dynamic LV A4C 10,030 10,030 20,048 2,552
EchoNet-Pediatric LV A4C 1,958 3,176 6,449 1,386

LV PSAX – 4,424 9,001 1,928
CAMUS LV A4C 500 500 9,964 80

LV A2C 500 500 9,268 80
LA A4C 500 500 9,964 80
LA A2C 500 500 9,264 80

Table 11: Details of datasets used for structure segmentation. We report the number of patients,
videos, annotations, and evaluation cases at end-diastole (ED) and end-systole (ES).

Figure 12: Additional EchoVLM segmentation results on CAMUS dataset. Image quality labels:
Good, Medium, Poor. Image quality is assessed from the original dataset performed by CAMUS
annotation team. Red = prediction, Green = annotation.

Dataset Target Specialist MedSAM EchoApex EchoVLM

EchoNet-Dynamic
LV-ES 90.3 84.5 91.7 92.0
LV-ED 92.7 88.5 93.9 94.1
ENDym LV mean 91.5 86.5 92.8 93.1

EchoNet-Pediatric A4C-LV 89.1 87.2 92.2 92.4
PSAX-LV 89.6 88.0 93.0 93.1

CAMUS

LV-ES 91.6 85.6 93.0 92.9
LV-ED 93.9 88.7 94.5 94.6
CAMUS LV mean 92.8 87.2 93.8 93.8
LA-ES 91.8 82.5 92.0 91.4
LA-ED 88.9 78.0 89.6 89.0
CAMUS LA mean 90.4 80.3 90.8 90.2

Table 12: Benchmark of segmentation performance (DSC) with state-of-the-art models. Bold indi-
cates the best score in each row. Proposed EchoVLM model shows improvement over task-specialist
models, medical generalist models and vision-only foundation models.

A.8.2 LANDMARK DETECTION DATASET AND BENCHMARKING

We evaluate landmark detection on the public EchoNet-LVH dataset (Duffy et al., 2022), which
benchmarks left ventricular hypertrophy (LVH) assessment from PLAX echocardiographic frames.
The dataset provides frame-level annotations for three key structures: the interventricular septum
(IVS), left ventricular internal dimension (LVID), and left ventricular posterior wall (LVPW). From
these landmarks, wall thicknesses and cavity dimensions can be derived. Following the official split,
we use 20,254 frames for training, 2,275 for validation, and 683 for testing.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

config value
optimizer AdamW
base learning rate 5e-4
weight decay 0.005
optimizer momentum β1, β2 = 0.9, 0.999
batch size 64
learning rate schedule cosine decay
training epochs 60
losses DiceCE

Table 13: Hyperparameters used for the segmentation experiment.

We attach a UNETR-style decoder (Hatamizadeh et al., 2022) to EchoVLM for landmark prediction
and train using a combination of GeneralizedDice and Focal losses (see Table 14). At inference,
landmark coordinates are obtained from the predicted heatmaps as the centroids of thresholded
activation regions. Performance is assessed using mean absolute error (MAE, in mm) of derived
measurements and the average landmark error (Average L.E., Euclidean distance in mm) between
predicted and ground-truth locations.

As summarized in Table 4, EchoVLM achieves competitive performance, outperforming both the
task-specific baseline DeepLabV3 and the vision foundation model EchoApex on IVS and LVID
measurements. These results confirm that our multimodal pretraining retains fine-grained spa-
tial sensitivity required for clinical measurement tasks, providing reliable landmark localization in
echocardiographic frames.

config value
optimizer AdamW
base learning rate 2e-4
weight decay 0.005
optimizer momentum β1, β2 = 0.9, 0.999
batch size 128
learning rate schedule cosine decay
training epochs 150
losses GeneralizedDice + Focal

Table 14: Hyperparameters used for landmark detection experiment.

A.9 ADDITIONAL RESULTS AND DETAILS ON VISION-LANGUAGE TASKS

A.9.1 IMPLEMENTATION DETAILS

We provide the full set of hyperparameters used for multimodal pretraining on EchoGround-MIMIC
in Table 15. EchoVLM was trained with AdamW optimizer and a cosine decay learning rate sched-
ule, with 200 warmup steps and a total of 20 epochs. The loss combined standard CLIP contrastive
alignment with our proposed view-informed and negation-aware objectives, weighted by λview and
λneg. To ensure fair comparisons, we finetune each VLM on EchoGround-MIMIC following the
same data split.
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config value
optimizer AdamW
base learning rate 1e-4
weight decay 0.005
optimizer momentum β1, β2 = 0.9, 0.999
batch size 512
learning rate schedule cosine decay
warmup steps 200
training epochs 20
losses LCLIP + λviewLview + λnegLneg

Table 15: Hyperparameters used for pretraining on EchoGround-MIMIC.

A.9.2 DISEASE ZEROSHOT RESULTS

We further report detailed results for disease zero-shot classification on the EchoGround-MIMIC
test set. Figure 13 shows confusion matrices across the nine disease categories, highlighting that
EchoVLM yields both high sensitivity for positive findings and improved discrimination of negative
cases. Figure 14 presents additional evaluation metrics, confirming that EchoVLM consistently out-
performs domain-specific and generalist VLM baselines across precision, recall, and AUC. These
results demonstrate the effectiveness of grounding captions in quantitative measurements and en-
forcing negation-awareness, both of which are critical for accurate disease detection in clinical set-
tings.
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Figure 13: Confusion matrices for EchoVLM on EchoGround-MIMIC test set.

A.9.3 VISUALIZATION OF ATTENTION MAPS

To better understand how EchoVLM attends to echocardiographic structures, we visualize CLS-
token-to-patch attention maps from the final transformer block (Figure 15). Compared to CLIP,
BiomedCLIP, and SigLIP2, EchoVLM produces sharper and more clinically meaningful attention
patterns, focusing on cardiac chambers, septal boundaries, and valve regions relevant to the captions.
This suggests that the proposed pretraining objectives not only improve task-level performance but
also enhance interpretability of multimodal representations.
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Figure 14: Additional results for disease zeroshot classification results on EchoGround-MIMIC test
set.

Figure 15: Qualitative comparison of CLS-token-to-patch attention maps on echocardiogram im-
ages. We extract self-attention weights from the final transformer block, select all rows corre-
sponding to CLS-to-patch attention across heads, average them, and reshape to form attention maps.
From left to right: caption with labels, input image, EchoVLM, EchoVLM (ours), SigLIP2, CLIP,
BiomedCLIP.
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A.10 PSEUDO CODE FOR TRAINING

Algorithm 1 EchoVLM Pretraining

Require: {(xi, ti, ni, vi)}Bi=1 Batch of B training samples, where
1: xi: echocardiogram image,
2: ti: measurement-grounded caption,
3: ni: negated caption,
4: vi: view label.
5: fI , fT : image and text encoders.
6: τ : temperature.
7: λview, λneg Loss weights for view-informed and negation-aware objectives.
8: Opt optimizer.

9: function COMPUTE ECHOVLM STEP(fI , fT , τ, λview, λneg,Opt)
10: zIi ← fI(xi), zTi ← fT (ti), zNi ← fT (ni) ▷ Encode image and captions
11: ZI ← [zI1 ; . . . ; z

I
B ], ZT ← [zT1 ; . . . ; z

T
B ], ZN ← [zN1 ; . . . ; zNB ]

12: v ← [ v1; . . . ; vB ] ▷ Batch view-label
13: SIT ← τ ZIZ

⊤
T , STI ← S⊤

IT ▷ Image–text similarities
14: SII ← τ ZIZ

⊤
I ; set (SII)ii ← −∞ ▷ Image–image similarities (no self similarity)

15: LCLIP ← CLIP LOSS(SIT , STI) ▷ Symmetric image↔text CE
16: Lview ← VIEW CONTRASTIVE(SII , v) ▷ View-contrastive loss
17: Lneg ← NEG BCE(ZT , ZN , τ) ▷ Separate pos vs neg caption
18: L← LCLIP + λviewLview + λnegLneg ▷ Final objective
19: Backward L and update fI , fT with Opt ▷ Update the network
20: return L
21: end function

22: function CLIP LOSS(SIT , STI )
23: L1 ← CE ROW(SIT ) ▷ row-wise CE w.r.t. diagonal
24: L2 ← CE ROW(STI) ▷ row-wise CE w.r.t. diagonal
25: return 1

2 (L1 + L2)
26: end function

27: function VIEW CONTRASTIVE(SII , v) ▷ contrastive loss over views
28: Mij ← ⊮[vi = vj ∧ i ̸= j] ▷ mask: same-view positives
29: for i = 1 to B do
30: di ← max(1,

∑
j Mij) ▷ number of positives for i

31: ℓi ← − 1
di

∑
j Mij log

exp((SII)ij)∑
k ̸=i exp((SII)ik)

▷ per-sample loss
32: end for
33: return 1

B

∑B
i=1 ℓi ▷ average over batch

34: end function

35: function NEG BCE(ZT , ZN , τ ) ▷ negation-aware loss
36: ui ← τ ⟨zTi , zNi ⟩ ▷ logit between caption and its negation
37: return 1

B

∑B
i=1 BCEWithLogits(ui, 0) ▷ push apart each (ti, ni) pair

38: end function

39: function CE ROW(S) ▷ row-wise CE to diagonal
40: return 1

B

∑B
i=1

(
− log exp(Sii)∑B

j=1 exp(Sij)

)
41: end function

27


	Introduction
	Related work
	Method
	Data curation
	Pretraining EchoVLM with clinically informed objectives

	Results
	Cross-modal results on EchoGround-MIMIC
	Downstream vision tasks
	Ablation study on data curation
	Ablation study on pretraining objectives
	Inference Efficiency in Clinical Workflows

	Conclusion
	Appendix: Tables and Figures
	Usage of LLMs
	Ethics Statements
	Reproducibility Statement
	Additional EchoGround-MIMIC dataset details
	Example prompt

	OCR-Based Measurement Extraction and LLM Caption Validation
	Data distributions

	Additional results and details on vision tasks
	View classification dataset and benchmarking

	Generalization Across Institutions and Imaging Protocols
	Comparison with the Video-Based EchoPrime Model
	Structure segmentation dataset and benchmarking
	Landmark detection dataset and benchmarking

	Additional results and details on vision-language tasks
	Implementation details
	Disease zeroshot results
	Visualization of attention maps

	Pseudo code for training


