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Abstract

Identifying the relation between two sentences001
requires datasets with pairwise annotations. In002
many cases, these datasets contain instances003
that are annotated multiple times as part of dif-004
ferent pairs. They constitute a structure that005
contains additional helpful information about006
the inter-relatedness of the text instances based007
on the annotations. This paper investigates008
how this kind of structural dataset information009
can be exploited during training. We propose010
three batch composition strategies to incorpo-011
rate such information and measure their per-012
formance over 14 heterogeneous pairwise sen-013
tence classification tasks. Our results show014
statistically significant improvements (up to015
3.9%) - independent of the pre-trained lan-016
guage model - for most tasks compared to017
baselines that follow a standard training pro-018
cedure. Further, we see that even this baseline019
procedure can profit from having such struc-020
tural information in a low-resource setting.1021

1 Introduction022

Datasets that define pairwise relations between023

sentence-level text instances are widely used in Nat-024

ural Language Processing (NLP). They describe the025

relation of sentence pairs with an annotated label.026

Common examples of such pairwise classification027

tasks are Paraphrase Identification (Wang et al.,028

2017; Dolan et al., 2004), Natural Language In-029

ference (Williams et al., 2018a; Bowman et al.,030

2015), Semantic Textual Similarity (Cer et al.,031

2017; Reimers et al., 2019), or Argument Convinc-032

ingness (Habernal and Gurevych, 2016).033

In many such datasets (eq. six out of 11 GLUE034

tasks), single sentences can occur in multiple pair-035

wise annotations. Figure 1 shows such an exam-036

ple where three annotated pairs share a common037

question. Besides the annotations themselves, such038

1We provide the code and hyperparameter optimisation
details at https://anonymous.4open.science/r/
arr-submission-6461/Readme.md

Figure 1: Example of three pairwise annotations
(edges) using four unique questions (nodes), taken
from the QQP dataset (Wang et al., 2018). Q1 is the
common element of all annotations.

structural properties of datasets carry additional 039

helpful information about the inter-relatedness of 040

the text instances. We argue that the defining dis- 041

criminative attributes of a text instance are learned 042

most readily when the instance is encountered in 043

multiple contexts. Therefore, we hypothesize that 044

a (neural) learner can utilize such additional infor- 045

mation when provided appropriately. 046

There exist several ways to integrate structural in- 047

formation during model training. Contrastive learn- 048

ing (Chen et al., 2020; Giorgi et al., 2021; Gao et al., 049

2021) aims at learning text representations where 050

similar instances are aligned, and dissimilar pairs 051

are separated. In Curriculum Learning (Bengio 052

et al., 2009) the training data order is determined 053

by the estimated difficulty of the instances. 054

This work follows a more direct approach by 055

leveraging the structure in annotations of datasets 056

for pairwise text classification tasks. More specif- 057

ically, we present three different strategies to 058

compile training batches that consider that text 059

instances occur in multiple pairwise configura- 060

tions. This approach is also motivated by recent 061

work (Dodge et al., 2020; Zhou et al., 2020) investi- 062

gating the effect of training order and inter-instance 063

correlations on model performance. 064

We evaluate the strategies on 14 heterogeneous 065

tasks from different domains and in two different 066
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scenarios to measure the generalizability of our067

approach. Our experimental results show signifi-068

cant performance improvements on a wide range069

of tasks for both scenarios compared to a standard070

training setup. Our contributions can be summa-071

rized as follows:072

1. we propose three different batching strategies073

for pairwise text classification tasks to inte-074

grate inter-instance relations into the training075

procedure076

2. we show statistical significant performance077

improvements on a wide range of heteroge-078

neous tasks in our experimental results079

3. we discuss the role of dataset characteristics,080

additional computational complexity and the081

stability of our approach082

To foster the reproducibility of our work, we083

publish all experimental code and hyperparame-084

ters.085

2 Approach086

By analysing different pairwise annotated datasets,087

we found that various ones contain single sentences088

that occur in multiple annotation instances (see De-089

gree in Table 1). For example, every sentence of the090

QNLI dataset is annotated with 1.9 other sentences091

on average. With our approach, we want to exploit092

this untouched information to improve the tasks’093

performance. Thus, we show how we capture this094

information in a graph structure and strategies to095

implicit present it to the neural network.096

2.1 Annotation Graph (AG)097

We use a graph structure to represent all annota-098

tions of a dataset - as in Figure 1. In this graph,099

nodes are unique sentences, edges represent a label100

for a pair of them, and the degree k indicates the101

number of connected edges of a node. Based on102

the typed of annotations, this graph can be directed103

or undirected.104

In Figure 2 we show an example of such a graph105

structure and its construction. It includes six sen-106

tences V = {V1, ..., V6} and seven pairwise anno-107

tations E = {(V1, V2), ..., (V5, V6)}. Within the108

graph, we define a nodes’ neighbourhood as all di-109

rectly connected nodes - like {V1, V2} for node V3.110

In the case of an edge, we consider edges connect111

to one of its starting points as the neighbours - for112

example, (V4, V5) and (V5, V6) are neighbours.113

Using this structure, we define different opera- 114

tions: fe(n) returns all edges of a given node n, 115

and fs(c, x) randomly samples x elements from a 116

collection of edges c. Further, we use the average 117

degree µk, its standard deviation σk, and coeffi- 118

cient of variation (CVk = σk
µk

) to characterise an 119

AG. Using these measurements, we can group the 120

selected tasks into three groups (see Table 1). The 121

first one (G1) includes tasks (all in-domain tasks, 122

UKP-A, BWS) that do not show extreme patterns 123

in the graph (CV ≈ 1). The second group,G2 (Arg- 124

Conv, and Evi-Conv), has a high average degree 125

but a lower std. dev. (CV < 1). The third group G3 126

fits tasks (Evi-St, ArgQ-St, Arg-KP) where a few 127

nodes with a high degree are connected to many 128

others with a small degree (CV > 1). 129

Dataset Label Degree Group Metric
In

-D
om

ai
n

SICK-NLI 3-Class 3.2± 2.1 G1 acc
SICK-REL* 1-5 3.2± 2.1 G1 ρ
RTE 3-Class 1.1± 0.6 G1 acc
QNLI Binary 1.9± 0.8 G1 acc
MNLI-m 3-Class 1.5± 0.9 G1 acc
MNLI-mm 3-Class 1.5± 0.9 G1 acc
QQP Binary 1.6± 2.2 G1 F1

C
ro

ss
-T

op
ic

UKP-A Binary 3.5± 3.0 G1 F1 macro
BWS* 0-1 1.6± 1.5 G1 ρ
Arg-Conv Binary 22.2± 4.6 G2 acc
Evi-Conv Binary 6.2± 4.4 G2 acc
Evi-St Binary 1.9± 5.8 G3 F1 macro
Arg-KP Binary 7.1± 18.1 G3 F1 macro
ArgQ-St 3-Class 2.0± 20.7 G3 acc

Table 1: Overview of the 14 used dataset for the In-
Domain and Cross-Topic Scenario. In the latter we
train on different topics then we evaluate. Degree de-
notes average number of edges of a node and datasets
marked with (*) are regression tasks.

Figure 2: Construction of an annotation graph (AG)
with a degree of 2.5± 0.84 and CVk = 0.34.

2.2 Batching Strategies 130

With the following strategies, we randomly traverse 131

through the graph, either with the focus on the 132

neighbourhood of nodes (NODE) or edges (EDGE- 133

I, EDGE-II). Since NODE will incorporate all the 134

neighbours of a node, it could overfit towards them 135

- given a high µk. Thus, EDGE-I and EDGE-II 136

2



Figure 3: Example batch for the strategy NODE

focus on just a limited neighbourhood to reduce137

this potential dominance.138

NODE This strategy composes a batch by focus-139

ing on common nodes within the AG. Figure 3140

shows this process with a set of example nodes141

(N = {V3, V5}). For every node n, we select all142

connected edges ({(V1, V3), (V3, V2)} for node V3).143

The loss L is equal to the average error (using the144

cross-entropy objective function J ) for each edge145

e, as defined in Equation 1.146

L = − 1∑N
n |fe(n)|

N∑
n

fe(n)∑
e

J (ŷe, ye) (1)147

EDGE-I The second strategy starts from a set of148

randomly selected edges E to construct a single149

batch. For each base edge e ∈ E, a set of context150

edges E′ is sampled from the neighbourhood of151

e. To select these neighbours, we consider the two152

nodes2 (i, j) that are the starting points of e - as in153

Equation 2. For both of them, we randomly select154

two directly connected edges using fs (Equation 3).155

Figure 4 shows an example batch that considers156

the two base edges B = {(V1, V3), (V5, V6)}. For157

base edge (V1, V3), the set of context edges is158

E′ = {(V1, V2), (V1, V6), (V3, V2)}. To calculate159

the loss, we sum the average error of base and the160

context edges - as in Equation 4.161

Figure 4: Example batch for the strategy EDGE-I

E′ =
E⋃

(i,j)

f ′e(i) ∪ f ′e(j) \ {(i, j)} (2)162

2We check different node numbers during early prelimi-
nary experiments and found two works the best.

f ′e =

{
fe(n) if |fe(n)| ≤ 2

fs(fe(n), 2)
(3) 163

L =
−1
|E|

E∑
e

J (ŷe, ye) +
−1
|E′|

E′∑
e′

J (ŷe′ , ye′)

(4) 164

EDGE-II Within EDGE-I all context edges are 165

treated equally and independently of their base 166

edge. In EDGE-II we adapt the calculation of the 167

loss to focus on the fact that the neighbourhood 168

size of base edges can vary. First we sum the er- 169

ror of an base edge e with the average error of its 170

neighbours e′ (as in Equation 5). Afterwards, we 171

average this sum over all e in E (Equation 6). 172

Figure 5: Example batch for the strategy EDGE-II

J ′ = J (ŷe, ye) +
1

|E′(e)|

E′(e)∑
e′

J (ŷe′ , ye′) (5) 173

L =
−1
|E|

E∑
e

J ′(e) (6) 174

Batch Composition Due to the nature of the de- 175

scribed strategies, a single training instance can be 176

contained in multiple batches. For NODE, every 177

edge (i.e. training instance) is used twice as both 178

contained nodes are sampled individually. In the 179

case of EDGE-I and EDGE-II, the occurrence of 180

one instance depends on how many times it is sam- 181

pled as context edge and is affected by the AGs 182

density. The chances to sample an edge as a con- 183

text edge are higher in a more dense area. Thus, the 184

effective number of instances processed within a 185

batch can vary. Note, when we speak of batch size, 186

we refer instead to the number of initially sampled 187

nodes or edges, not the effective one. 188
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3 Data and Training Setup189

3.1 Datasets190

We evaluate our approach on 14 heterogeneous pair-191

wise classification tasks in two scenarios.3 Table 1192

shows an overview of the tasks including the label193

type, the degree (µk, σk), and evaluation metrics.194

The first scenario aims at evaluating our general195

idea using standard natural language understand-196

ing tasks, e.g. GLUE (Wang et al., 2018). In the197

second scenario, we use tasks for the challenging198

cross-topic evaluation, where train, development,199

and test set covers different topics to measure the200

generalizability. For this scenario, we rely on Argu-201

ment Mining tasks, which include sentence-level202

arguments assigned to a specific topic (Stab and203

Gurevych, 2017; Reimers and Gurevych, 2019a).204

In-Domain Scenario The first scenario consists205

of five tasks (RTE, MNLI, QNLI, QQP) from the206

GLUE benchmark (Wang et al., 2018) and the207

SICK dataset (Marelli et al., 2014) that provides208

annotations for relatedness (SICK-REL) and natu-209

ral language inference (SICK-NLI). As in Devlin210

et al. (2019), we exclude the WNLI dataset because211

of the problematic data structure.4 The average de-212

gree of all tasks of these scenarios ranges from 1.1213

to 3.2 (as in Table 1).214

Cross-Topic Scenario We use two argument215

similarity datasets, UKP-A (Reimers et al., 2019)216

and BWS (Thakur et al., 2021). For UKP-A, we217

binarize the labels into similar and not-similar as218

suggested by the authors. Next, we use the evi-219

dence dataset from Gleize et al. (2019) that anno-220

tates topic, stance, and convincingness for a set221

of evidence pairs. Apart from the evidence con-222

vincingness task (Evi-Conv), we compose a stance223

prediction task (Evi-St) given evidence and a topic.224

Further, we use the stance annotations in Gretz225

et al. (2020) for a second stance prediction task226

(ArgQ-St) and the dataset provided by Bar-Haim227

et al. (2020) matching arguments with keypoints228

(Arg-KP). Finally, we use the argument convincing-229

ness dataset (Arg-Conv) by Habernal and Gurevych230

(2016). All cross-topic tasks are evaluated using231

multiple folds. We sample these folds on our own232

except for UKP-A and ArgQ-St - where the authors233

provide the folds. For all these tasks, we see a more234

diverse average degree (1.6 to 22.2).235

3We provide additional details and examples for each task
in the Appendix § A.1.

4See https://gluebenchmark.com/faq

3.2 Training Setup 236

We fine-tune BERT (Devlin et al., 2019) for the pro- 237

posed batching strategies and the baseline BASE 238

with random batch sampling. As we earlier de- 239

scribed, single training instances can occur in sev- 240

eral batches, depending on the batching strategy, 241

Considering NODE every instance occur twice as 242

well as approximately twice for EDGE-I and EDGE- 243

II. In the case of BASE, we saw no sustainable 244

difference of showing training instances once or 245

twice per epoch in preliminary experiments. Even- 246

though, we want to ensure a fair and comparable 247

setting and thereby include every instance twice for 248

BASE. This is equal as for the NODE strategy and 249

an approximation for EDGE-I and EDGE-II. 250

Due to computational expenses, we fine-tune 251

the language models for large tasks (QNLI, MNLI- 252

m, MNLI-mm, QQP) over three epochs and the 253

remaining ones for five epochs. For all experi- 254

ments we use four NVIDIA A4000 GPUs using 255

PyTorch v1.8.1, Huggingface v4.9.1 (Wolf et al., 256

2019), and Sentence-Transformer v2.0.0 (Reimers 257

and Gurevych, 2019a). 258

Model Architecture We use for our experiments 259

both bi- and cross-encoder model architecture. Bi- 260

encoders showed their computational efficiency 261

for pairwise tasks (Reimers and Gurevych, 2019a) 262

because they encode every distinct sentence sep- 263

arately and use efficient operations (like cosine 264

similarity) to find a prediction. In comparison, 265

cross-encoders increase the complexity by encod- 266

ing every sentence pairs together. To select the 267

pre-trained language model, we distinguish be- 268

tween NLI tasks (SICK-NLI, RTE, QNLI, MNLI) 269

and others. For NLI tasks, we use the standard 270

pretrained weights (i.e. bert-base-uncased) since 271

SBERT (Reimers and Gurevych, 2019a) models 272

were trained on NLI data. 273

The detailed architecture of the models looks 274

as follows. For cross-encoders, we use the stan- 275

dard text pair separators following Devlin et al. 276

(2019). In the case of bi-encoders, we use the 277

cosine similarity of the text pair embeddings fol- 278

lowed by the sigmoid function for regression tasks 279

(BWS, SICK-REL). For binary classification (UKP- 280

A, Evi-St, Arg-KP, QQP) tasks, we determine an 281

optimal threshold towards the development set as 282

done by Reimers et al. (2019). For all multi-class 283

tasks (RTE, QNLI, MNLI, SICK-NLI), we use soft- 284

max to aggregate both sentence embeddings and 285

their difference as done by Reimers and Gurevych 286
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(2019a) and for capturing the annotation direction287

for tasks with a directed AG (Arg-Conv, Evi-Conv).288

Hyperparameters We optimise the batch size289

for all experiments, strategies, and tasks with zero290

as random seed and keep the rest of the hyperpa-291

rameters fixed following previous work (Mosbach292

et al., 2021; Dodge et al., 2020) (see Appendix293

§ A.2 for details). To compare the different batch294

sizes, we take the best performing epoch consider-295

ing the development set. For MNLI, we average the296

performance of the two development sets (MNLI-m297

& MNLI-mm). When having multiple folds, we se-298

lect the optimal batch size according to the average299

performance overall folds, rather than optimising it300

separately for each fold.301

Figure 6: Comparison of the cumulative distribution
functions (CDF) of BASE with NODE, EDGE-I, and
EDGE-II for the QQP task. It shows for a given ob-
servation x the probability of observing x or a smaller
value in the CDF.

Evaluation Setting We fine-tune every language302

model with the optimised batch size using ten ran-303

dom seeds, find the final results from the epoch304

with the highest development score, and report av-305

erage and std. dev. on the test set. These met-306

rics approximate the underlying results due to the307

non-gaussian distributed results and an expected308

performance variance (Dodge et al., 2020). Thus,309

we test whether an approach outperforms a base-310

line or vice-versa - i.e. in Figure 6. One option is311

using the Mann-Whitney U-test (Mann and Whit-312

ney, 1947) which checks whether our approach313

(i.e. NODE) is stochastic larger than the baseline314

BASE (Lehmann, 1955). To match this criterion,315

the cumulative distribution function (CDF) of the316

superior approach needs to be consistently below317

the other one - shown on the left of Figure 6. In318

Dror et al. (2019), the authors show the sensitivity319

of the U-test towards minor violations of this re-320

quirement. Thus, they proposed Almost Stochastic321

Order (ASO) Dror et al. (2019) that better adapts to322

results of neural networks by slightly allow some 323

validation ε. Such a situation is shown in the middle 324

of Figure 6, where we observe EDGE-I outperform- 325

ing NODE but its CDF is not constantly under the 326

other one. Here, the U-test fails (p < 0.05) to make 327

a decision due to the minor marked violation while 328

ASO can confirm our observation. In contrast, on 329

the right, we see our approach is underperforming 330

the baseline (consistently above the blue line). Us- 331

ing ASO we can confirm this observation while the 332

U-test can not gives us a decision (p < 0.05). 333

Since this desired softening of ASO increases the 334

risk of type-I errors (i.e., we observe a significant 335

improvement when there is none), we apply a strict 336

test setting compared to other work (Dodge et al., 337

2020; Zhang et al., 2021). We use a p-value of 0.01 338

and adapt it with the Bonferroni correction (Bon- 339

ferroni, 1936) (we provide additional details in the 340

Appendix § B.1). We test significant improvements 341

and deteriorates for all experiments using ASO and 342

the U-test (p < 0.05), but use ASO for analysis. 343

4 Experiments 344

4.1 In-Domain and Cross-Topic Evaluation 345

In the first experiment, we evaluate the general 346

effect of using our approach by fine-tuning a BERT 347

bi-encoder. We report the task’s mean, standard 348

deviation, and significance with a publicly available 349

test set (Table 2). As the test sets for datasets from 350

the GLUE benchmark are not publicly accessible, 351

we report results based on the development set and 352

the ensemble performance (majority vote) on the 353

test set (set Appendix § B.2 for the test results).5 354

Overall, the results show that NODE significantly 355

improves (ε < 0.5, p < 0.01) the baseline BASE 356

on nine tasks and is never outperformed statisti- 357

cally significant. For EDGE-I and EDGE-II, we see 358

a statistically significant improvement in eleven 359

and five tasks while being outperformed in zero 360

and four cases, respectively. Considering cross- 361

topic results, we see that EDGE-I performs with a 362

improvement/deterioration ratio of 5/0 better than 363

NODE (4/0) and EDGE-II (2/1). Similar, EDGE-1 364

performs slightly better than NODE on in-domain 365

tasks (6/0 vs. 5/0) and outperforms EDGE-II (2/3). 366

4.2 Low-Resource Scenario 367

In the second experiment, we examine the effect of 368

our approach for the low-resource scenario. There- 369

fore, we iterative select 25, 50, 75, and 100 in- 370

5Evaluated with (https://gluebenchmark.com/)

5
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SICK-NLI SICK-REL RTE QNLI MNLI-m MNLI-mm QQP
BASE 80.3±1.1 88.9±0.2 62.8±2.0 79.8±0.2 73.6±0.2 74.0±0.3 87.8±0.2
NODE 80.6±1.1 89.1±0.1(1,3) 62.6±1.5 80.4±0.1(1,3) 74.2±0.4(1,3) 74.4±0.2(1,3) 88.0±0.1(1,3)

EDGE-I 81.2±0.7(1) 89.1±0.1(1,3) 62.4±1.6 80.5±0.2(1,3) 74.0±0.2(1,3) 74.3±0.3(1,3) 87.9±0.2(1,3)

EDGE-II 79.2±1.5(2) 89.0±0.1(1) 63.4±0.8 80.2±0.3(1,3) 73.8±0.5 73.8±0.4(2) 87.6±0.5(2)

UKP-A BWS Arg-Conv Evi-Conv Evi-St Arg-KP ArgQ-St
BASE 71.4±1.3 59.5±0.9 81.8±0.3 71.9±0.7 83.8±1.0 72.2±0.9 89.1±0.4
NODE 71.3±0.9 59.8±1.0 82.1±0.3(1,3) 72.7±0.6(1,3) 83.7±1.2 72.8±0.8(1) 89.2±0.3(1)

EDGE-I 71.4±1.0 60.0±0.6(1) 82.0±0.2(1) 72.5±0.6(1,3) 85.2±1.1(1,3) 72.4±0.5 89.6±0.4(1,3)

EDGE-II 71.1±0.7(4) 59.7±0.4 81.8±0.4 72.0±0.6 84.9±1.5(1) 70.1±0.6(2,4) 89.6±0.4(1,3)

Table 2: Results of BERT Bi-encoder using different batching strategies on 14 heterogeneous tasks. Tasks in
the upper table are evaluated in-domain, results in the lower part in a cross-topic scenario. We report Pearson
Correlation (SICK-REL, RTE), micro-F1 (QQP), and macro-F1 (UKP-A, Evi-St, Arg-KP) as evaluation measures,
for all others we report accuracy scores. The best performance for each task is marked bold and statistically
significant improvements (ASO(1), U-test(3)) and deteriorations (ASO(2), U-test(4)) are indicated. We find in 17
cases a significant improvement and one deterioration based on both tests. Further, in seven cases and in four cases
an improvement or deterioration based on ASO, and one deterioration based on the U-test.

stances from SICK-NLI, SICK-REL, BWS, and371

Evi-Conv in a way that these subsets match the372

average and std. dev. degree of the full dataset.373

In addition, we randomly sample for each subset a374

control subset (RANDOM) to verify the added value375

of having structural information within the training376

samples. These control subsets are trained in the377

same setting as BASE. We sample four folds for378

every subset and control subset of the four tasks to379

get more robust results.380

Figure 7 shows the results for all the subsets381

on the four selected datasets where we see the382

proposed strategies underperforming BASE on the383

most subsets. Exceptions are EDGE-II for SICK-384

REL and NODE for Arg-KP with a ratio of 4/0, as385

well as the subsets with 25 instances. For them,386

we observe nine significant improvements and no387

deteriorations of our strategies in 12 cases, where388

NODE brings a significant improvement in overall389

tasks. Considering the control subsets RANDOM,390

we see that they perform significantly worse than391

BASE in 12 out of 16 cases.392

4.3 Model Agnostic393

Next, we want to check whether the success of394

batching strategy depends on the model type in use.395

We choose UKP-A, BWS, Evi-St, SICK-NLI, and396

SICK-REL to cover both scenarios and the overall397

performance spectrum reported in § 4.1. We com-398

pare the bi-encoder (BERT-bi) and cross-encoder399

(BERT-cross) architecture using BERT. Further, we400

examine the effect of having more parameters by401

evaluating BERT-Large in the bi-encoder setting.402

Finally, we investigate the influence of the model403

Improvement / Deterioration
Model NODE EDGE-I EDGE-II
BERT-bi 1/0 4/0 2/1
BERT-cross 2/0 2/0 2/1
BERT-large 1/2 1/2 0/2
ALBERT 3/1 3/2 2/2
RoBERTa 3/1 3/1 3/2

Table 3: Overview of statistically significant improve-
ments and deteriorations - using ASO - based on § B.4.

family by comparing BERT with ALBERT (Lan 404

et al., 2020), and RoBERTa (Liu et al., 2019). 405

Table 3 shows the aggregated results of this ex- 406

periment. It lists the improvements/deteriorations 407

ratio of all language models and strategies. These 408

results show that EDGE-I outperforms NODE for 409

BERT (1/0 vs. 4/0) while performing on par for 410

BERT-cross (2/0 both). EDGE-II achieves a ratio of 411

2/1. Looking at BERT-large, we see that NODE and 412

EDGE-I have the same performance (1/2), while 413

EDGE-II underperforms both (0/2). Considering 414

the model family (BERT, ALBERT, RoBERTa), we 415

see for EDGE-I (4/0, 3/2, 3/1) slightly better ratios 416

that for NODE (1/0, 3/1, 3/1), while EDGE-II (2/1, 417

2/2, 3/2) perform worse. In general, we observe 418

a better improvement/deterioration ratio on BERT 419

(7/1) than on BERT-cross (6/1), RoBERTa (9/4), 420

ALBERT (8/5), and BERT-large (2/6). Considering 421

the strategies, we see an overall ratio of 10/4 for 422

EDGE-I, 13/5 for NODE and 8/8 for EDGE-II. 423

4.4 Summary 424

Summarising the experiments shows our ap- 425

proach’s significant effect on the performance of 426

different tasks and language models. In detail, 427
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Figure 7: Performance of all strategies, the baseline, and the random sampled control sets SICK-REL, SICK-NLI,
BWS, and Arg-KP for 25, 50, 75, and 100 instances (see § B.3 for raw results and details of the subsets). Circles
indicates significant improvements and squares deteriorations (using ASO with p < 0.01).

we see EDGE-I and NODE significantly improve428

the performance for a majority of the tasks while429

EDGE-II causes fewer improvements and all the430

significant deteriorations. Further, we see slightly431

better performance on the in-domain tasks than the432

cross-topics ones. One reason is that finding an433

optimal batch size is challenging for cross-topics434

due to the additional regularization coming from435

having multiple divers folds. This fact could have436

a bigger effect on the batching strategies because437

the batch size has more influence than for BASE.438

Considering the low-resource setting, we see the439

success of our strategies for the extreme case of 25440

instances but can not find a clear trend for all the441

subsets. We see one reason in the face that BASE442

works similar to our proposed strategies when hav-443

ing a small instance number. In this case, the prob-444

ability of selecting two instances with a common445

sentence is higher even with the standard batch sam-446

pling procedure. Further, we note that including447

structural information can provide an added value448

for the low-resource setting since we see RANDOM449

constantly underperforming BASE.450

Overall, the EDGE-I strategy seems to be slightly451

superior over NODE, for bi-encoders. We note its452

significant performance gain on datasets with dif-453

ferent task types and its’ model agnostic capabili-454

ties. For cross-encoder, we see EDGE-I performing455

similar to NODE but on general with a larger mar-456

gin. We can imagine that cross-encoders are more457

sensible when a distinct sentence appears multiple458

times.459

5 Further Analysis460

Based on the previously shown experiments, we461

further analyse the influence of the graph structure462

and the stability & computational complexity of463

our approach.464

5.1 Influence of Graph Structure 465

We observe for NODE a moderate correlation (0.5) 466

of the selected batch size with the CV. We see one 467

reason for this coherence in the fact that having 468

a high CV means that there are rare nodes with a 469

high degree. Thus, when one of them are sampled 470

in one batch, they can dominate it. Therefore, in- 471

creasing the batch size can reduce this dominance. 472

For EDGE-I, and EDGE-II we can not observe a 473

notable correlation. 474

When consider previously showed pattern (Ta- 475

ble 1) G1 and G2, we observe a slightly better ratio 476

of EDGE-I (7/0 and 2/0) than for NODE (5/0 and 477

2/0). In case of the third group G3, we observe 478

similar performance of both (2/0) while EDGE-I 479

outperforms NODE in absolute terms. Compared 480

to NODE, we see EDGE-I better gaining from sit- 481

uations where the degree of a few nodes grows 482

extremely (k > 400) like in ArgQ-St or Evi-St. 483

To summarise, we see that the structural pat- 484

terns influence the training and performance of the 485

different strategies. Thus, we can derive that the 486

batch size of NODE should grow with the CV, or 487

that EDGE-I is better suited for tasks where a few 488

nodes have a large degree. 489

5.2 Stability 490

Previously work (Dodge et al., 2020; Zhou et al., 491

2020) identify the training instances’ order as a 492

reason for instabilities. Since we adopt this order 493

for our approach, we verify whether the proposed 494

batching strategies lead to additional instabilities. 495

For this purpose, we verify the results of all ex- 496

periments for a significant difference in the perfor- 497

mance variance for every batching strategy com- 498

pared to the baseline. Using the Brown-Forsyth 499

test (Brown and Forsythe, 1974), we find in 15 500

out of 165 cases of all experiments a significant 501

(p < 0.01) difference in the performance variance, 502

where ten reduced and five raised the variance com- 503
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pared to the baseline. Thus, we conclude that our504

approach does not introduce new notable instabil-505

ities in the performance regardless of the specific506

task.507

5.3 Computation Complexity508

Our approach does not add any complexity during509

inference, as the model size and structure remains510

unchanged. For training, the complexity for NODE511

and BASE is O(2n) since both process every train-512

ing instance twice. For EDGE-I and EDGE-II, the513

complexity depends on the density of the AG. In514

extreme cases with no structure at all, it is equal to515

O(n) because no context edges are sampled, and516

only base edges are processed. For the other ex-517

treme, when every node has at least three connected518

edges, the complexity is O(n+ 4n) since we sam-519

ple for every training instance at most four context520

edges - two for both starting points. In the average521

case the complexity is approx. O(n+2n(µk−1)),522

since we sample for both starting point of every523

base edge on average (µk - 1) context edges - where524

µk is the average degree of all nodes. Note that we525

subtract one because we already consider, with the526

based edge, one of the connected edges for both527

starting points. Thus, NODE and the baseline has a528

higher complexity than EDGE-I and EDGE-II until529

µk exceeds 1.5.530

6 Related Work531

While not directly comparable, our work is re-532

lated to (supervised) contrastive learning in natural533

language processing (Rethmeier and Augenstein,534

2021). Most approaches in this domain (Pagliar-535

dini et al., 2018; Logeswaran and Lee, 2018; Giorgi536

et al., 2021; Gao et al., 2021) aim to learn text537

representations where related samples (positive538

pairs) are aligned while unrelated samples (neg-539

ative pairs) are separated. This is done in a self-540

supervised fashion using artificial training objec-541

tives like text reconstruction (Logeswaran and Lee,542

2018) or using supervision signals (Conneau et al.,543

2017; Cer et al., 2018; Reimers and Gurevych,544

2019b) from labelled data like Natural Language545

Inference (NLI) (Bowman et al., 2015; Williams546

et al., 2018b). In their setup with NLI data, Gao547

et al. (2021) adapt training batches such that en-548

tailment relations are treated as positive examples549

but contradiction relations and all other in-batch in-550

stances as negative examples. Their setup is limited551

to binary relations, while our approach is indepen-552

dent of the task. Further, our approach does not 553

introduce any training objective but only adapts the 554

loss calculation to the batch composition. 555

In general, our approach adapts the training in- 556

stance order that a model processes. This idea 557

is also at the core of Curriculum Learning (Ben- 558

gio et al., 2009) where training instances are re- 559

ordered according to their estimated difficulty. This 560

has been shown to be beneficial for model perfor- 561

mance (Tay et al., 2019; Xu et al., 2020) and faster 562

convergence (Platanios et al., 2019). While Cur- 563

riculum Learning approaches make use of heuris- 564

tics to adapt the batch composition, our approach 565

only relies on the dataset structure. 566

Dodge et al. (2020) identified that the order of 567

the training samples is a random factor that in- 568

fluences the non-deterministic learning process of 569

neural networks. Further, Zhou et al. (2020) found 570

that inter-instance correlations lead to instabilities 571

during training. We acknowledge these effects and 572

investigate if inter-instance relations can be lever- 573

aged in the batch composition to improve the task 574

performance for pairwise text classification. 575

7 Conclusions 576

We presented three strategies that adapt the com- 577

position of batches to encode structural dataset in- 578

formation. We evaluated these batching strategies 579

on 14 heterogeneous tasks from different domains. 580

Our results confirm the usefulness of this structural 581

information during model training. EDGE-I show 582

the best overall results, including different model 583

types (e.g. ALBERT or RoBERTa) and model ar- 584

chitectures (bi- or cross-encoder). Further, we see 585

its success on tasks with extreme characteristics 586

(high degree) and in situations where annotated 587

data is extremely scarce (25 instances). We inter- 588

pret our results as a promising step to integrate 589

structural dataset information besides instance- 590

level annotations. Further, we encourage future 591

annotation studies to consciously consider includ- 592

ing pairs that share common text instances for two 593

reasons. First, to exhaust all possibilities later and 594

second, we showed that even baseline approaches 595

can gain from such structures. 596

This work covered a broad set of pairwise clas- 597

sification datasets that provide a structure of anno- 598

tation pairs that share text instances. We plan to 599

employ our method on datasets that do not meet 600

this requirement by inducing inter-instance rela- 601

tions using similarity metrics for future work. 602
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A Training Setup877

We present additional information on the training878

setup, including details of the used datasets and879

hyperparameters.880

A.1 Used Datasets881

We outline additional detail of the used dataset com-882

plementary to § 3.1. Table 9 introduce examples883

for all used datasets, and Table 10 show additional 884

details for all of them, like the average degree or 885

the number of topics. 886

A.2 Hyperparameters 887

The Table 4 and Table 5 shows the evaluated hy- 888

perparameters for the different strategies and the 889

used pre-trained language model for the different 890

experiments. This information complements § 3.2 891

Parameter Values

Batch Size
{8, 16, 32} (BASE)
{8, 10, 12, 14} (NODE)
{8, 16, 24, 32} (EDGE-I &
EDGE-II)

Learning Rate 2e−5

Optimizer AdamW
Optimizer
Function

Cross-Entropy

Warmup 10% (linear)

Table 4: Overview of the different used hyperparame-
ters.
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B
i NLI 1,2,3 3 3 3 - - - -

Other Tasks - - - - 1,2,3 3 3 3

C
ro

ss NLI 3 - - - - - - -
Other Tasks 3 - - - - - - -

Table 5: Overview of the used Huggingface model tags
for fine-tuning during the different experiments. (1) re-
fer to the first experiment In-Domain and Cross-Topic
Evaluation, (2) to Dataset Size, and (3) to Model Ag-
nostic .

B Additional Results of the Experiments 892

In this section, we show the additional details of 893

the three Experiments (§ 4.1, § 4.2,§ 4.3). 894

B.1 Significance Testing Correction 895

Following the defined significance testing setting 896

(see § 3.2) we use a corrected p-value (p = 0.01) 897

for the different experiments. Thus, we divide it 898

by 14 for the first experiment, 8 for the second one, 899

and 6 and 4 for the cross- and in-domain tasks in 900

the third one. 901
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Significance (ε / ε′)
NODE EDGE-I EDGE-II

SICK-NLI

in
-d

om
ai

n

1.0/1.0 0.0/1.0 1.0/0.01
SICK-REL 0.0/1.0 0.0/1.0 0.04/1.0
RTE 1.0/1.0 1.0/1.0 1.0/1.0
QNLI 0.0/1.0 0.0/1.0 0.0/1.0
MNLI-m 0.0/1.0 0.0/1.0 1.0/1.0
MNLI-mm 0.0/1.0 0.0/1.0 1.0/0.09
QQP 0.0/1.0 0.0/1.0 1.0/0.04
UKP-A

cr
os

s-
to

pi
c

1.0/1.0 1.0/1.0 1.0/1.0
BWS 0.82/1 0.09/1.0 1.0/1.0
Arg-Conv 0.0/1.0 0.23/1.0 1.0/1.0
Evi-Conv 0.0/1.0 0.0/1.0 1.0/1.0
Evi-St 1.0/1.0 0.0/1.0 0.05/1.0
Arg-KP 0.38/1.0 1.0/1.0 1.0/0.0
ArgQ-St 0.19/1.0 0.0/1.0 0.0/1.0

Table 6: Results the significance testing of in- and
cross-topic tasks computed with ASO with p < 0.01.

BASE NODE EDGE-I EDGE-II
RTE 59.2 59.2 60.7 60.2
QNLI 80.7 80.2 80.6 80.1
MNLI-m 33.6 33.7 34.0 33.8
MNLI-mm 75.9 76.2 75.3 76.0
QQP 67.0 67.7 67.0 66.8

Table 7: Test results on the GLUE tasks. Best results
per dataset are marked in bold.

B.2 Experiment: In-Domain and Cross-Topic902

evaluation903

The Table 6 shows the results for a significant im-904

provement ε or deterioration ε′, complementary to905

§ 4.1.906

Looking at the GLUE test results (Table 7), we907

see improvements in absolute numbers for RTE (all908

strategies), MNLI-m (EDGE-I & II), MNLI-mm909

(EDGE-II), and QQP (NODE).910

B.3 Experiment: Low-Resource Scenario911

We show in Table 11 the raw results for all subsets912

and control subsets (RANDOM) of the SICK-REL,913

SICK-NLI, BWS, and Evi-St task that we use to914

compose Figure 7 in § 4.2. The last four columns915

include results of testing for a significant improve-916

ment ε or deterioration ε′.917

B.4 Experiment: Model Agnostic918

Table 12 shows the result of the model agnostic919

experiments in detail. In addition, it lists the re-920

sults for the five selected datasets on five language921

models. The results of testing for a significant im-922

provement ε or deterioration ε′ are shown in the last923

three columns. These insights complements the ag-924

gregated results of Table 3 in the third experiment925

(§ 4.3).926

Size Degree Random

B
W

S

25 1.49± 0.09 1.03± 0.04
50 1.54± 0.03 1.05± 0.02
75 1.56± 0.04 1.10± 0.04
100 1.54± 0.02 1.12± 0.04

SI
C

K
-N

L
I 25 1.88± 0.08 1± 0

50 1.77± 0.04 1± 0
75 1.78± 0.04 1± 0
100 1.78± 0.06 1± 0

SI
C

K
-R

E
L 25 1.88± 0.08 1± 0

50 1.77± 0.04 1± 0
75 1.78± 0.04 1± 0
100 1.78± 0.06 1± 0

A
rg

-K
P 25 4.01± 0.20 1.65± 0.11

50 4.34± 0.11 1.93± 0.06
75 4.79± 0.11 2.06± 0.09
100 5.03± 0.09 2.15± 0.08

Table 8: Overview of the average and std. dev. of the
degree for all subsets with 25, 50, 75, and 75 samples.
Column Degree lists the details for the specific sampled
subsets, and Random the ones for the random sample
for the control subsets.
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Dataset Sentence A Sentence B Label
BWS We shouldn’t penalize someone for life. Abortions cause psychological damage. 0.41
UKP-A Cleaner, Greener, Safer, Smarter. The efficiency advantage of electric motors

means excellent on-road "fuel" economy.
Similar

Arg-Conv Spam and adware seems to be so much more
compatible with IE.

If the Firefox is the best then why everybody
tries to have IE compatible sites?

1

Evi-Conv The recently independent country of Southern
Sudan also recognizes polygamy.

A 2011 opinion poll showed that most
Malaysians and Indonesians youth opposed
polygamy.

2

Evi-St A 2011 opinion poll showed that most
Malaysians and Indonesians youth opposed
polygamy.

We should legalize polygamy CON

Arg-KP anyone who contributes to ending a life should
be punished

Assisted suicide is akin to killing someone Matching

ArgQ-St A majority of americans identify with a reli-
gion.

We should adopt atheism. CON

RTE Edward VIII became King in January of 1936
and abdicated in December.

KKing Edward VIII abdicated in December
1936.

Entailment

QNLI What portion of Berlin’s population spoke
French by 1700?

By 1700, one-fifth of the city’s population was
French speaking.

Entailment

MNLI Sorry but that’s how it is. This is how things are and there are no apolo-
gies about it.

contra-
diction

QQP What was the deadliest battle in history? What was the bloodiest battle in history? Duplicated
SICK-
REL

Three kids are sitting in the leaves Three kids are jumping in the leaves 3.8

SICK-NLI Three kids are sitting in the leaves Three kids are jumping in the leaves Neutral

Table 9: Examples of the different tasks annotated with the corresponding labels.

Dataset Label Pairs Topics Degree Folds Split Metric

In
-D

om
ai

n

SICK-NLI* 3-Class 9.954 - 3.2±2.1 (1) 1 4553-495-4906 acc
SICK-REL Score (1-5) 9.954 - 3.2±2.1 (1) 1 4553-495-4906 ρ
RTE* 3-Class 4.866 - 1.1±0.6 (1) 1 2.490-277-2.099 acc
QNLI* Binary 115k - 1.9±0.8 (1) 1 104k-5463-5463 acc
MNLI-m* 3-Class 413k - 1.5±0.9 (1) 1 391k-9.714-9796 acc
MNLI-mm* 3-Class 413k - 1.5±0.9 (1) 1 391k-9832-9847 acc
QQP Binary 751k - 1.6±2.2 (1) 1 363k-40k-390k F1

C
ro

ss
-T

op
ic

UKP-A Binary 3.595 28 3.5±3 (1) 4 17-4-7 F1 macro
BWS Score (0-1) 3.400 8 1.6±1.5 (1) 4 5-1-2 ρ
Arg-Conv Binary 11.650 32 22.2±4.6 (2) 4 19-5-8 acc
Evi-Conv Binary 5.697 69 6.2±4.4 (2) 4 46-7-16 acc
Evi-St Binary 11.394 69 1.9±5.8 (3) 4 46-7-16 F1 macro
Arg-KP Binary 24.093 28 7.1±18.1 (3) 4 17-4-7 F1 macro
ArgQ-St 3-Class 30.497 71 2±20.7 (3) 1 49-7-15 acc

Table 10: Summary of the number of folds and the used splits for all used tasks. NLI task are marked with *. The
degree is grouped into three pattern-groups: (1) the coefficient of variation (CV) is around one, (2) the CV is below
one, and (3) the CV is clearly above one.
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Scores (Bi) Significance (ε / ε′)
Size BASE RANDOM NODE EDGE-I EDGE-II RANDOM NODE EDGE-I EDGE-II

B
W

S

25 51.6±1.1 52.0±0.8 53.1±0.8(1,3) 52.3±0.3(1) 52.7±0.2(1,3) 0.65/1.0 0.0/1.0 0.27/1.0 0.02/1.0
50 54.7±1.1 52.6±0.8(2,4) 53.6±1.2(2,4) 51.7±0.7(2,4) 52.1±0.7(2,4) 1.0/0.0 1.0/0.04 1.0/0.0 1.0/0.0
75 55.4±1.0 53.8±1.3(2,4) 54.7±1.1(2) 55.1±0.8 53.9±0.8(2,4) 1.0/0.0 1.0/0.12 1.0/0.72 1.0/0.0
100 56.4±0.8 54.5±0.8(2,4) 55.8±0.8(2) 53.6±1.1(2,4) 54.4±0.8(2,4) 1.0/0.0 1.0/0.23 1.0/0.0 1.0/0.0

SI
C

K
-N

L
I 25 56.8±0.2 56.7±0.5(2) 57.0±0.2(1) 57.1±0.1(1,3) 56.9±0.3 1.0/0.43 0.04/1.0 0.01/1.0 1.0/1.0

50 56.9±0.1 56.4±0.8(2,4) 56.9±0.2 56.7±0.4(2) 56.8±0.2(2) 1.0/0.03 1.0/1.0 1.0/0.06 1.0/0.05
75 58.2±0.4 56.8±0.4(2,4) 57.7±0.4(2,4) 57.4±0.5(2,4) 57.3±0.4(2,4) 1.0/0.0 1.0/0.0 1.0/0.0 1.0/0.0
100 58.3±0.8 57.4±0.4 58.5±0.6 58.0±0.5 57.7±0.5(2,4) 1.0/1.0 1.0/1.0 1.0/0.79 1.0/0.0

SI
C

K
-R

E
L 25 80.3±0.7 82.6±0.1 80.6±0.2(1,3) 81.5±0.1(1,3) 82.0±0.2(1) 1.0/1.0 0.38/1.0 0.0/1.0 0.0/1.0

50 81.4±0.4 82.0±0.1(1,3) 80.9±0.5(2,4) 81.5±0.3 82.5±0.1(1,3) 0.0/1.0 1.0/0.0 0.9/1 0.0/1.0
75 81.9±0.3 81.4±0.3(2,4) 80.9±0.6(2,4) 81.8±0.3 83.1±0.2(1,3) 1.0/0.0 1.0/0.0 1.0/1.0 0.0/1.0
100 82.3±0.3 81.7±0.4(2,4) 81.6±0.4(2,4) 82.2±0.3(2) 83.2±0.2(1,3) 1.0/0.0 1.0/0.0 1.0/0.32 0.0/1.0

A
rg

-K
P 25 63.3±0.5 63.5±0.9 63.5±0.4(1) 63.5±0.7 63.2±0.4 1.0/1.0 0.29/1.0 0.78/1 1.0/0.86

50 64.6±0.4 64.0±0.7(2,4) 64.8±0.4(1) 64.5±0.6 64.8±0.5(1) 1.0/0.0 0.24/1.0 1.0/1.0 0.13/1.0
75 64.8±0.5 62.4±0.5(2,4) 65.7±0.4(1,3) 65.4±0.6 65.4±0.5 1.0/0.0 0.0/1.0 1.0/1.0 1.0/1.0
100 65.6±1.1 62.7±0.4(2,4) 66.1±0.5(1) 66.1±0.5(1) 66.0±0.4 1.0/0.0 0.25/0.0 0.21/1.0 0.5/1.0

Table 11: Results of the evaluation concerning different dataset sizes for Arg-KP, SICK-REL, and SICK-NLI. The
column size indicates for SICK-REL, and SICK-NLI how many training instances are used and for Arg-KP how
many topics. For the first four rows pick just a portion of one topic. Statistically significant improvements (ASO(1),
U-test(3)) and deteriorations (ASO(2), U-test(4)) are indicated. The best performance for each task is bold marked.

Bi Significance (ε / ε′)
Task BASE NODE EDGE-I EDGE-II NODE EDGE-I EDGE-II

B
E

R
T-

bi

UKP-A 71.4±1.3 71.3±0.9 71.4±1.0 71.1±0.7(4) 1.0/1.0 1.0/1.0 1.0/1.0
BWS 59.5±0.9 59.8±1.0 60.0±0.6(1) 59.7±0.4 0.77/1.0 0.09/1.0 1.0/1.0
Evi-St 83.8±1.0 83.7±1.2 85.2±1.1(1,3) 84.9±1.5(1) 1.0/1.0 0.0/1.0 0.05/1.0
SICK-NLI 80.3±1.1 80.6±1.1 81.2±0.7(1) 79.2±1.5(2) 1.0/1.0 0.0/1.0 1.0/0.01
SICK-REL 88.9±0.2 89.1±0.1(1,3) 89.1±0.1(1,3) 89.0±0.1(1) 0.0/1.0 0.0/1.0 0.04/1.0

B
E

R
T-

cr
os

s UKP-A 76.0±0.5 76.1±0.8 76.5±0.7(1) 76.5±0.5(1) 1.0/1.0 0.02/1.0 0.0/1.0
BWS 63.6±1.1 64.5±0.5(1,3) 63.4±1.8 63.9±1.7(4) 0.0/1.0 1.0/1.0 1.0/1.0
Evi-St 72.5±6.3 72.1±8.1 76.4±6.9(1) 65.9±7.8(2) 1.0/1.0 0.0/1.0 1.0/0.0
SICK-NLI 86.0±0.7 86.5±0.9(1) 86.0±0.6 86.3±0.5 0.2/1.0 1.0/1.0 1.0/1.0
SICK-REL 89.6±0.5 89.5±0.4 89.8±0.5 89.8±0.5(1) 1.0/1.0 0.57/1.0 0.1/1.0

B
E

R
T-

L
ar

ge UKP-A 72.4±0.6 72.6±0.8 72.1±1.0(2) 71.6±1.3(2) 0.79/1.0 1.0/0.39 1.0/0.07
BWS 58.6±0.7 57.3±4.9(2) 58.0±4.9(2) 56.0±5.9(2) 1.0/0.03 1.0/0.19 1.0/0.01
Evi-St 87.6±1.2 85.7±3.3 86.1±2.5 86.9±1.6 1.0/1.0 1.0/1.0 1.0/1.0
SICK-NLI 79.3±0.7 80.7±1.3(1,3) 80.5±1.5(1,3) 79.6±1.4 0.0/1.0 0.03/1.0 1.0/1.0
SICK-REL 89.0±0.3 88.8±0.3(2) 89.0±0.1 88.9±0.2 1.0/0.19 0.82/1.0 1.0/1.0

A
L

B
E

B
R

T UKP-A 69.9±0.9 69.5±1.2 69.3±0.9(2) 68.5±0.8(2,4) 1.0/0.55 1.0/0.11 1.0/0.0
BWS 57.8±0.2 58.1±0.3(1,3) 58.2±0.4(1,3) 58.2±0.3(1,3) 0.0/1.0 0.0/1.0 0.0/1.0
Evi-St 80.3±2.1 79.3±3.0(2) 79.5±2.4(2) 79.4±2.2(2) 1.0/0.21 1.0/0.26 1.0/0.29
SICK-NLI 81.7±2.4 82.6±0.6(1) 82.3±0.7(1) 82.6±0.7(1) 0.01/1.0 0.08/1.0 0.01/1.0
SICK-REL 89.2±0.2 89.5±0.1(1,3) 89.5±0.1(1,3) 89.3±0.2 0.0/1.0 0.0/1.0 0.84/1.0

R
oB

E
R

Ta

UKP-A 72.4±0.9 73.2±0.5(1,3) 73.2±0.7(1,3) 73.5±1.0(1,3) 0.0/1.0 0.01/1.0 0.0/1.0
BWS 63.7±0.3 62.8±0.6(2,4) 63.0±0.3(2,4) 62.4±0.6(2,4) 1.0/0.0 1.0/0.0 1.0/0.0
Evi-St 88.0±1.6 88.7±2.0 88.6±0.8 89.4±1.3(1,3) 1.0/1.0 1.0/1.0 0.0/1.0
SICK-NLI 82.2±0.8 83.3±0.7(1,3) 82.7±0.5(1,3) 82.7±1.0(1) 0.0/1.0 0.0/1.0 0.21/1.0
SICK-REL 89.3±0.1 89.5±0.1(1,3) 89.6±0.2(1,3) 89.3±0.1(2) 0.0/1.0 0.09/1.0 1.0/0.12

Table 12: Results of the model agnostic evaluation concerning BERT, BERT-Cross, BERT-Large, ALBEBRT, and
RoBERTa on SICK-REL, SICK-NLI, UKP-A, BWS, and Evi-St. Statistically significant improvements (ASO(1),
U-test(3)) and deteriorations (ASO(2), U-test(4)) are indicated. The best performance for each task is bold marked.
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