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Reference Pose Sequence Ours, 4 Steps Champ(Teacher), 20 Steps

Figure 1: Showcase of performance across various styles. Our method achieves comparable perfor-
mance to the teacher model in just 4 steps, while also exhibiting advantages in fine-grained detail
control. Notably, in example f, our method better preserves the reference image’s overall style.

ABSTRACT

Generating pose-driven and reference-consistent human animation has significant
practical applications, yet it remains a prominent research challenge, facing sub-
stantial obstacles. A major issue with widely adopted diffusion-based methods is
their slow generation speed, which is primarily due to multi-step iterative denois-
ing processes. To tackle this challenge, we take the pioneering step of proposing
the ReferenceLCM architecture, which utilizes latent consistency models (LCM)
to facilitate accelerated generation. Additionally, to address hallucinations in fine-
grained control, we introduce the Controllable Self-Contrastive Latent Consis-
tency Distillation (CoSeC-LCD) regularization method. Our approach introduces
a novel perspective by categorizing tasks into various classes and employing con-
trastive learning to capture underlying patterns. Building on this insight, we im-
plement a hierarchical optimization strategy that significantly enhances animation
quality across both spatial and temporal aspects. Comprehensive qualitative and
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quantitative experiments reveal that our method achieves results comparable to, or
even surpassing, many state-of-the-art approaches, enabling high-fidelity human
animation generation within just 2-4 inference steps.

1 INTRODUCTION

Generating videos that closely align with a reference image of a given person using pose-guidance
inputs, such as depth map representations (Jeon et al. (2015)), has significant implications for digital
human and virtual reality applications (da Silva et al. (2022), Wohlgenannt et al. (2020)). This topic
has garnered increasing research interest in recent years (Karras et al. (2023); Wang et al. (2023a);
Hu (2024); Xu et al. (2024b); Zhu et al. (2024)). However, existing methods encounter challenges
in achieving both high efficiency and output quality, highlighting the need for further advancements
to enable a real-time, high-fidelity video synthesis framework.

Generating videos from reference images presents more stringent demands than text-driven tasks
(Loeschcke et al. (2022); Jiang et al. (2023)), particularly in preserving intricate details and stylistic
consistency while accurately reproducing complex motion sequences (Chan et al. (2019); Siaro-
hin et al. (2019b)). This requires precise modulation of extensive semantic information, challeng-
ing current generative models. Diffusion models (Song et al. (2020b); Ho et al. (2020)) excel in
this area, with the ReferenceNet architecture demonstrating remarkable effectiveness in produc-
ing high-quality, temporally consistent videos for applications like facial expression (Tian et al.
(2024); Xu et al. (2024a)) and dance generation (Hu (2024); Zhu et al. (2024)). It effectively en-
codes complex semantic details from reference images into a coherent latent space, enhancing fine
detail preservation. However, current methods face challenges with slow generation speeds and
high computational costs due to the iterative denoising process in diffusion models (Watson et al.
(2022); Lu et al. (2022)), which hinders their suitability for real-time applications. Thus, developing
a computationally efficient ReferenceNet that maintains comparable performance is essential.

The Consistency Model (CM) is an advanced generative framework capable of producing high-
quality images in just a few steps, significantly reducing computational complexity compared to
traditional diffusion models (Song et al. (2023)). Building on this, Luo et al. extends CM into the
latent space (Kingma & Welling (2014)), establishing a foundation for efficient high-resolution im-
age generation. In the realm of video generation, the Latent Consistency Model (LCM) has been
applied by Wang et al. (2023b), demonstrating its potential for enhanced temporal coherence. LCM
has also achieved significant acceleration across diverse tasks, such as motion generation (Dai et al.
(2024)) and audio synthesis (Liu et al.), underscoring its versatility and efficiency improvements.
However, these advancements have primarily focused on text-driven tasks, emphasizing general
alignment with prompts rather than the high-precision control required for controllable and consis-
tent generation. This leaves a gap in research on acceleration algorithms tailored for such tasks.
Moreover, the performance of the Latent Consistency Model (LCM) itself has significant room for
optimization, which constitutes another limitation.

In light of the current situation, to efficiently generate high-quality, controllable, and consistent
videos, we have made a series of innovative advancements, addressing both speed and quality. First,
we introduce the ReferenceLCM architecture, the first known consistency distillation framework
that combines the robust control capabilities of ReferenceNet with the significant acceleration ad-
vantages of LCM, facilitating efficient and high-fidelity video synthesis. Besides, to further en-
hance the performance of the ReferenceLCM framework, we designed a hierarchical Controllable
Self-Contrastive Latent Consistency Distillation (CoSeC-LCD) regularization. Specifically, draw-
ing from insights in contrastive learning, we innovatively construct different categories based on
the significant semantic differences between intra-source and inter-source videos. By optimizing
the distance relationships between generated samples across these categories, the model can bet-
ter understand the underlying patterns in the generation tasks. We introduced Equivalent Target
Aggregation (ETA) to ensure the cohesion among generated equivalent samples and Contrastive
Negative Sampling (CoNS) to enhance the distinction among inter-source samples. This approach
collectively optimizes the sample distribution (Park et al. (2019a); Cui et al. (2021)), thereby in-
creasing the model’s confidence in generation targets and ultimately achieving higher quality and
efficient video generation. We performed hierarchical optimization from two aspects: spatial qual-
ity, referring to the visual quality of video frames, and temporal consistency, addressing the overall
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coherence of the video. A detailed discussion of this approach can be found in section 2.2. Extensive
qualitative and quantitative experiments demonstrate that our proposed method achieves compara-
ble or superior results compared to various state-of-the-art (SOTA) methods, all while achieving
acceleration factors of 10 to 50 times.

Our contributions can be summarized as follows:

• We introduced the ReferenceLCM architecture, which substantially reduces denoising
steps and surpasses the speed bottlenecks of traditional ReferenceNet-based methods.

• We leveraged the semantic features of intra-source and inter-source videos from a novel
perspective, further optimizing the performance of the LCD through the perspective of
contrastive learning. This approach offers new insights into accelerating high-quality, con-
trollable, and consistent video generation.

• Extensive experiments demonstrate that our method maintains results comparable to state-
of-the-art models while achieving significantly high generation efficiency.

2 METHOD

In this section, we will first propose the ReferenceLCM architecture for efficient generation, which
will be detailed in Section 2.1. To further enhance video generation quality, we introduce the CoSeC-
LCD hierarchical regularization method, extending the ReferenceLCM framework, in Section 2.2.

2.1 REFERENCELCM

To enhance efficiency in controllable and consistent generation, we introduce the ReferenceLCM
architecture, which combines ReferenceNet’s strong detail control with LCM’s high-efficiency ac-
celeration capabilities. We decompose the distillation process into two phases: the first emphasizes
accelerating the generation of high-quality video frames, while the second focuses on improving
temporal coherence (Hu (2024); Wang et al. (2023b)). For the teacher model, we selected a leading
state-of-the-art controllable consistent generation model Zhu et al. (2024).

Overall Previous works like Wang et al. (2023b); Li et al. (2024) have not explored the integration
of LCD into the ReferenceNet architecture. We pioneer this integration to enhance ReferenceNet’s
generation speed. Since ReferenceNet is a dual-core U-Net (Ronneberger et al. (2015)) architec-
ture that includes both Denoising UNet (D-UNet) and Reference UNet (R-UNet), applying LCD
to the entire model would introduce significant computational overhead. To address this, we pro-
pose a reusable, lightweight architecture within the distillation pipeline. Specifically, we decouple
ReferenceNet: the teacher, target, and student networks share the same weight initialization, form-
ing the D-UNet group, where only the student D-UNet is trainable. The target-student updates are
performed using Exponential Moving Average (EMA) Hunter (1986). R-UNet, serving as a condi-
tional input module similar to CLIP (Radford et al. (2021)), supplies consistent inputs to the D-UNet
group, thereby facilitating reusability. The overall architecture is illustrated in Figure 2.

Training We denote the R-UNet and D-UNet as FR and FD
θ , respectively. Following the frame-

work of Champ (Zhu et al. (2024)), the guidance encoder group is denoted as EG . The target
sequence is represented as {x0,i}1:f , where f denotes the length of the video segment. The
pose-guidance sequence extracted from the Skinned Multi-Person Linear (SMPL) (Loper et al.
(2023)) model includes semantic maps, depth maps, normal maps, and skeleton maps, denoted as
{xsmt

0,i , xdpt
0,i , x

nml
0,i , xskl

0,i }1:f , respectively. The pose-guidance condition is represented as:

cpi = EG(xdpt
0,i )⊕ E

G(xsmt
0,i )⊕ EG(xskt

0,i )⊕ EG(xnml
0,i ), (1)

where ⊕ denotes the feature fusion operator. The reference image is denoted as I. We consider the
attention weights transferred from R-UNet to D-UNet as input conditions, represented as FR(I).
The CLIP embedding of the reference image is expressed as cI , serving as the conditional input.
xt,i represents the noisy latent space input encoded by the Variational Autoencoder (VAE) (Kingma
& Welling (2014)) at the tth timestep of the ith frame in the target video sequence. Consequently,
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Figure 2: Overview of the ReferenceLCM architecture: We decouple the traditional ReferenceNet
by utilizing R-UNet as a shared conditional input. The attention weights from R-UNet are distributed
across three distinct D-UNet modules, where the consistency distillation process takes place. As
detailed in 2.2, the loss function of ReferenceLCM works with CoSeC regularization to further
enhance video generation quality.

the output of D-UNet can be formulated as FD
θ (xt,i, t, c

p
i ,FR(I), cI). Following the approach in

(Luo et al.), the consistency D-UNet fD
θ can be formulated as:

fD
θ (xt,i, c

p
i , I, c

I) = cskip(t)xt,i + cout(t)FD
θ (xt,i, t, c

p
i ,F

R(I), cI) (2)

where cskip(t) and cout(t) are differentiable functions, which satisfies cskip(0) = 1 and cout(0) = 0,
please refer to Song et al. (2023) for details. The teacher, target, and student models are denoted
by fD

θtch , f
D
θtgt , fD

θstu , respectively. According to previous work Luo et al.; Wang et al. (2023b), the
consistency distillation (CD) loss is given by:

LCD(θ
stu, θtgt,Ψ) = E

[
D
(
f stu
θ

(
xtn+k

, cp, I, cI
)
, f tgt

θ−

(
x̂Ψ,ω
tn , cp, I, cI

))]
(3)

whereD(·, ·) denotes a distance metric, such as Huber loss Huber (1992). Using the PF-ODE solver
Ψ (e.g., DDIM Song et al. (2020a)), an accurate estimation of xt from xtn+k

is obtained, denoted as
x̂Ψ,ω
tn , where ω adjusts the strength of the classifier-free guidance (Ho & Salimans (2021)). Details

for this can be found in Appendix B.1. In the first training phase, x represents a single video
frame, focusing on spatial quality; in the second phase, x represents a video sequence, emphasizing
temporal coherence. For a detailed description of the training algorithm, refer to Appendix D.

2.2 COSEC-LCD

While the ReferenceLCM architecture can generate videos in just a few steps with quality compa-
rable to more computationally intensive methods, it has limitations. Specifically, it may experience
hallucinations in fine-grained control (see Figure 6), and improvements are needed in temporal co-
herence (see Figure 5). To address these issues, we innovatively propose the CoSeC-LCD regular-
ization method from the perspective of contrastive learning. Now we will start with the modeling of
the problem, outline our motivations, and provide a detailed introduction to our method.

2.2.1 PROBLEM FORMULATION

Building on previous outstanding works (Kuang et al. (2021); Lin et al. (2021)), we define reference
frames from the same video as intra-source (RAS) references, while frames from different videos
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Figure 3: The architecture diagram of the self-contrastive regularization method, along with illustra-
tions of equivalent tasks and inter-source tasks, is presented. We also demonstrate how to construct
the self-dependency matrix.

are termed inter-source (ERS) references. Within a temporal window, RAS references exhibit a
high degree of semantic similarity (Wray et al. (2021)). Unlike text-driven generation tasks, con-
trollable consistency generation tasks yield relatively deterministic results. When the reference and
pose guidance are given, the desired generation target is fundamentally determined. Additionally,
considering the inherent semantic similarity of the RAS references, we define a target set guided by
the same pose-guidance sequence and utilizing RAS references as equivalent targets. Otherwise,
they are termed non-equivalent targets. Furthermore, when the reference images are ERS, we refer
to them as inter-source targets, which exhibit significant semantic differences.

2.2.2 SELF-CONTRASTIVE REGULARIZATION

Motivation Numerous outstanding works across various fields (Park et al. (2019b); Khosla et al.
(2020); Mikolov et al. (2013)) have demonstrated the importance of the relative distance relation-
ships of samples in feature space, which play a critical role in understanding the underlying patterns
of a task (Liu et al. (2018)). Building on the previous definitions, we can apply a similar approach to
enable the model to capture the underlying patterns of the task. Specifically, we can consider a set of
equivalent targets as belonging to the same category, while the inter-source targets can be viewed as
different categories. We aim to enhance the cohesion among generated samples related to equivalent
targets while clearly preserving the distinction between generated samples under inter-source tar-
gets, thereby ensuring that the unique characteristics of each category are maintained.Since we use
the generated features of the student model itself, we refer to this as self-contrastive regularization.

Equivalent Target Aggregation Formally, for a set of equivalent tasks {(Ii, p)}1:k, where {Ii}1:k
are k reference frames derived from the RAS video V and p represents the same pose guidance, the
generated samples’ features should be as consistent as possible. We utilize the sampled features ,
which can represent spatial or temporal features, as estimations. Our goal is to aggregate these fea-
tures to minimize the distance between them as much as possible, we refer to this regularization as
Equivalent Target Aggregation (ETA). This aligns with intuitive reasoning: for a complex task, hav-
ing greater overlap between results obtained from different perspectives (i.e., different references)
generally leads to outcomes that are closer to the optimal solution (Wang et al. (2022)).

Contrastive Negative Sampling To avoid blurry images, see Figure 6, caused by focusing solely on
minimizing distances, inspired by previous works (Chen et al. (2020b)), we introduce an innovative
Contrastive Negative Sampling (CoNS) regularization. This regularization ensures that results from
inter-source tasks maintaining an appropriate degree of separation. Specifically, for any two output
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features derived from inter-source tasks, we introduce a penalty term against the ETA. The overall
architecture diagram of the CoSeC method is illustrated in Figure 3.

2.2.3 HIERARCHICAL OPTIMIZATION

Spatial Self-Contrastive Regularization In the first phase of ReferenceLCM training, we apply
this regularization method, where both the input and output are single video frames. The generated
output is denoted as x̂I,p

0,θstu = f stu
θ

(
xtn+k

, cp, I, cI
)

as the spatial feature, with I as the reference
image and p as the pose guidance. The parameter θstu represents the student model’s parameters
optimized in Section 2.1. The CM’s notable ability to map any noisy latent xt at timestep t back
to the estimated original state x̂0 allows us to use this mapped value for spatial feature estimation
without iterative denoising. Since our focus is on the distribution of model outputs in latent space,
there’s no need to revert to pixel space. We define the regularization termRθstu

spt using x̂I,p
0,θstu as:

Rθstu

spt (ϕ1, ϕ2) = ϕ1EIi,Ij∼VRAS

[
D(x̂Ii,p

#

0,θstu , x̂
Ij ,p

#

0,θstu )
]
− ϕ2EIk,Il∼VERS

[
D(x̂Ik,p

∗

0,θstu , x̂
Il,p

∗

0,θstu )
]
, (4)

where ϕ1 and ϕ2 are hyperparameters that adjust the weights of ETA and CoNS, respectively. Here,
Ii and Ij denote any intra-source references, while Ik and Il indicate inter-source references. The
symbol # signifies the use of the same action guidance within equivalent tasks, and ∗ denotes a
wildcard. D represents the distance metric. Therefore, the total training loss function for the first
phase can be expressed as follows:

L1(θ
stu, θtgt,Ψ, ϕ1, ϕ2) = LCD(θ

stu, θtgt,Ψ) +Rθstu

spt (ϕ1, ϕ2). (5)

Temporal Self-Contrastive Regularization We propose temporal self-contrastive regularization
in the the second phase of ReferenceLCM training for smoother video generation, leveraging the
temporal dependencies of video frames (Zhou et al. (2018)). We use a self-dependency matrix
(Jeong et al. (2024)) to quantify frame changes. The Temporal Self-Dependency Matrix Tv0

1:f for
frames in a video is defined as:

Tv0
1:f = diag(d−1)Z⊤Zdiag(d−1);Z = [v1,v2, . . . ,vf ]

⊤;d = [∥v1∥, ∥v2∥, . . . , ∥vf∥] (6)

Here, vi represents the flattened latent representation of the ith frame, and diag(d−1) is a diagonal
matrix with inverse latent vector norms. In Tv0

1:f ∈ Rf×f , larger values indicate greater cosine
similarity between frame pairs. The temporal feature is represented as T I,p

v̂0,θstu
, where v̂0,θstu is the

latent representation predicted by the student model. Our optimization objective is:

θstu,∗ = argmin
θstu
Rθstu

tmp = EIi,Ij∼VRAS

[
D(T Ii,p

#

v̂0,θstu
, T Ij ,p

#

v̂0,θstu
)
]
, (7)

The total training loss function, where λ is a hyperparameter, for the second phase of training is:

L2(θ
stu, θtgt,Ψ) = LCD(θ

stu, θtgt,Ψ) + λRθstu

tmp. (8)

3 EXPERIMENT

We conducted comprehensive experiments to validate our method’s superiority. In the Main Exper-
iment, we evaluate video generation quality against state-of-the-art methods on standard datasets.
The Efficiency Experiment assesses inference time and generation performance. In the Abla-
tion Study, we analyze the effectiveness of each sub-module within the CoSeC-LCD framework.
The Generalization Experiment examines performance on unseen tasks to evaluate generaliza-
tion capabilities. Finally, in the Zero-Shot Experiment, we demonstrate our method’s rapid video
generation across various domains.
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Method Inference Steps ↓ SSIM ↑ LPIPS ↓ FID ↓ FID-VID ↓ FVD ↓

FOMM (NeurIPS’19) - 0.648 0.335 85.03 90.09 405.22
MRAA (CVPR’21) - 0.672 0.296 54.47 66.36 284.82
DreamPose (CVPR’23) 100 0.509 0.450 79.46 80.51 551.56
DisCo (CVPR’24) 50 0.674 0.285 28.31 55.17 267.75
Magic Animate (CVPR’24) 25 0.714 0.239 32.09 21.75 179.07
Animate Anyone (CVPR’24) 20 0.718 0.285 - - 171.90
MagicDance (ICML’24) 50 0.752 0.292 25.50 46.30 216.01
Champ (ECCV’24) 20 0.804 0.231 30.17 21.23 162.62

ReferenceLCM (Ours) 2 0.766 0.259 32.11 22.86 203.37
CoSeCLCD (Ours) 2 0.769 0.253 29.13 21.01 181.72

Table 1: The quantitative results comparison for the Tik Tok dataset, the top 3 methods for each
metric are prominently highlighted to emphasize their superior performance.

Method Inference Steps ↓ SSIM ↑ LPIPS ↓ FID ↓ FVD ↓

MRAA (CVPR’21) - 0.749 0.212 23.42 253.65
TPSMM (CVPR’22) 50 0.746 0.213 22.87 247.55
PIDM (CVPR’23) 50 0.713 0.288 30.28 1197.39
DreamPose (ICCV’23) 100 0.885 0.068 13.04 238.74
Animate Anyone (CVPR’24) 20 0.931 0.044 - 81.60
Champ (ECCV’24) 20 0.908 0.067 16.01 88.06

ReferenceLCM (Ours) 2 0.890 0.069 17.16 94.26
CoSeCLCD (Ours) 2 0.908 0.066 16.92 87.45

Table 2: The quantitative results comparison for the UBC dataset, the top 2 methods are highlighted.

3.1 DETAILS

Benchmark We utilized two widely adopted open-source datasets, TikTok Jafarian & Park (2022)
and UBC Fashion Zablotskaia et al. (2019), as benchmarks for our research Hu (2024); Zhu et al.
(2024); Xu et al. (2024b). The TikTok dataset features diverse actions and is primarily used to eval-
uate video quality under complex movements, while the UBC Fashion dataset focuses on clothing
displays with minimal motion, emphasizing detail consistency. To further assess the generalization
capability of our method, we also collected a test dataset, Wild-TikTok, which is similar to the
TikTok dataset but offers higher video quality. As for more details about training, please refer to C.

Metrics To quantitatively evaluate the comprehensive performance of different method, we em-
ploy several wild-adopted metrics, including, Learned Perceptual Image Patch Similarity (LPIPS)
Zhang et al. (2018),Frechet Inception Distance (FID), Video Frechet Inception Distance(Vid-FID)
and Frechet Video Distance (FVD) Unterthiner et al. (2019). These metrics provide a comprehensive
assessment of the quality of generated results and their discrepancies from real data.

3.2 RESULTS

3.2.1 MAIN EXPERIMENT

To validate the effectiveness of our method, we conducted a comprehensive quantitative comparison
against several state-of-the-art approaches. The selected methods include FOMM Siarohin et al.
(2019a), MRAA Siarohin et al. (2021), DreamPose Karras et al. (2023), DisCo Wang et al. (2023a),
TPSMM Zhao & Zhang (2022), PIDM Bhunia et al. (2023), Magic Animate Xu et al. (2024b),
Animate Anyone Hu (2024), MagicDance Chang et al. (2023), and the teacher model Champ Zhu
et al. (2024). We listed the inference steps and corresponding metrics for each method. To ensure
fairness, we used the same settings as in DisCo, which is widely adopted..
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CoSeC-LCD (Ours), 2 Steps Teacher Model, 2 Steps Teacher Model, 20 StepsReference

Figure 4: Main experiment’s visualization. We provided qualitative results for our method and the
teacher model at the same inference step, as well as a comparison to the teacher model with 20 steps.

Step Method SSIM ↑ LPIPS ↓ FID ↓ FVD ↓ FID-VID ↓

2 Champ (Teacher) 0.691 0.290 81.41 408.20 45.65
4 Champ (Teacher) 0.707 0.281 48.25 313.34 37.02
6 Champ (Teacher) 0.742 0.267 35.18 209.67 26.91
8 Champ (Teacher) 0.759 0.258 32.68 192.66 23.54
2 CoSeC-LCD (Ours) 0.769 0.253 29.13 181.72 21.01

Table 3: Comparison of performance between our model and the teacher under low-step inference.

Human Dance Generation We conducted comparative experiments on the Tik Tok dataset. The
results are shown in Table 1. Our proposed two methods, ReferenceLCM and CoSeC-LCD, demon-
strate superior performance compared to several state-of-the-art approaches, especially in the FID
and FID-VID metrics, outperforming nearly all baselines. Notably, our method achieved this with
just 2 inference steps, frequently ranking among the top performers in both tables. Moreover, among
the two our proposed approaches, CoSeC-LCD significantly surpasses ReferenceLCM, demonstrat-
ing the substantial contribution of the CoSeC-LCD. Additionally, we conducted a qualitative anal-
ysis of the main experiment results, as shown in Figure 4. Our method demonstrated comparable
performance to the teacher model with just 2 inference steps, while significantly outperforming
the teacher model at the same step count. These results demonstrate that our method can generate
high-quality, complex character dance sequences even at extremely low inference steps.

Fashion Style Video Synthesis We conducted comparative experiments on the test split of the UBC
Fashion dataset, with results presented in Table 2. Our method demonstrated superior performance,
even slightly surpassing the teacher model in LPIPS and FVD metrics. This further underscores the
remarkable enhancement of the CoSeC-LCD approach in fine-grained control capabilities.

3.2.2 EFFICIENCY COMPARE

Another critical question is how significant our advantage over the teacher model is under low in-
ference steps. To illustrate the performance comparison between the two methods, we recorded the
performance metrics in the TikTok dataset under low-step inference, with the teacher model set to
2-8 steps. The results, as shown in Table 3, indicate that our method maintains a significant edge
over the teacher model, achieving an impressive 4X speedup while delivering superior overall per-
formance. This clearly highlights the effectiveness of our innovative approach in optimizing video
generation efficiency. Additionally, we provide more qualitative results in Appendix E to visually
demonstrate the performance differences between the two methods.
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w/o TSC

w/ TSC

Figure 5: We provide a visualization of the temporal self-contrastive regularization method. To
clearly illustrate jitter and abrupt changes, we employed heatmaps to show pixel-level differences
between consecutive frames. Areas of abnormal change reflecting the jitter occurs.

Optimization Aspect Method SSIM ↑ LPIPS ↓ FID ↓ FVD ↓
- ReferenceLCM 0.766 0.259 32.11 203.37

Spatial
+ ETA 0.768 0.256 30.29 193.85
+ CoNS 0.770 0.254 29.59 189.36

Temporal + ETA 0.769 0.253 29.13 181.72

Table 4: Each subsequent row builds on the previous one to highlight the performance improvements
each method contributes.

3.2.3 ABLATION STUDY

We conducted two types of ablation experiments
to validate the effectiveness of our proposed spa-
tial and temporal self-contrastive regularization
methods, using a progressive addition approach to
highlight the contribution of each method. The re-
sults in TikTok dataset are presented in Table 4.

Effectiveness of Spatial Self-Contrastive We
evaluated the enhancements brought by adding
ETA and CoNS at the spatial level, i.e., frame
quality. Both methods showed further improve-
ments over the previous baseline. We also pro-
vide high-resolution reference images in Figure
6 to illustrate the advancements of our approach.
While the pure ReferenceLCM achieved efficient
generation speeds, it often lacked satisfactory de-
tail control, resulting in some unreasonable arti-
facts. The ETA method, lacking sufficient distinc-
tion, faced clarity loss. However, by incorporat-
ing CoNS, we achieved satisfactory results in both
clarity and detail control.

Blurred 
Face

Blurred 
Face

Reference Pose w/o All w/ ETA w/ ETA&CoNS

Figure 6: Qualitative comparison results of
the spatial-level ablation experiments clearly
highlight the defects in the generated out-
puts, where the Self-Contrastive method was
not fully applied, providing better clarity for
understanding.

Effectiveness of Temporal Self-Contrastive As shown in Table 4, our proposed Temporal Self-
Contrastive (TSC) method demonstrates superior performance in quantitative metrics. To provide
a clearer illustration, we analyzed pixel-level differences between adjacent frames in a consecutive
video and visualized these differences using a heatmap. This visualization effectively demonstrates
the influence of incorporating the Temporal Self Contrastive method on the temporal smoothness of
the video flow, as illustrated in Figure 5.

3.2.4 GENERALIZATION EXPERIMENT

To evaluate the generalization capability of our method, we tested its performance on the unseen
datasets. Given that the TikTok dataset often suffers from low resolution, we quantitatively com-
pared our method and the teacher model under the same inference steps, as well as the teacher
model’s full inference scenario. The results, shown in Table 5, demonstrate that our method main-
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Reference 4 Steps Reference 4 Steps Reference 4 Steps

Oil Painting Statue Science Fiction

Figure 7: Our proposed method generates high-quality, controllable, consistent videos across multi-
ple domains in just 4 inference steps.

Inference Step Method SSIM ↑ LPIPS ↓ FVD ↓ FID-VID ↓

20 Champ (Teacher) 0.764 0.249 173.01 18.43

1
Champ (Teacher) 0.605 0.381 562.20 84.02
CoSeC-LCD (Ours) 0.720 0.292 325.84 38.33

2
Champ (Teacher) 0.641 0.344 495.01 66.95
CoSeC-LCD (Ours) 0.732 0.274 198.43 22.51

4
Champ (Teacher) 0.707 0.305 305.23 35.75
CoSeC-LCD (Ours) 0.739 0.268 192.53 19.58

Table 5: Results of Generalization Experiments in Wild-Tiktok Dataset

tains comparable performance to the teacher model on the unseen high-definition dataset. Notably,
under equal inference steps, our method consistently exhibits a significant performance advantage.

3.2.5 ZERO-SHOT EXPERIMENT

We further demonstrate the performance of our method in unseen cross-domain scenarios, where
there is a substantial gap from the examples in the training dataset. To this end, we collected a
diverse set of samples featuring varying styles, specifically three reference image styles—science
fiction, sculptures and oil paintings—that differ significantly from those in the training set. The
results, shown in Figure 7, illustrate that our method exhibits robust cross-domain generalization
capability, even under low inference steps.

4 CONCLUSION AND FUTURE WORK

In conclusion, our work presents significant advancements in controllable human animation by tack-
ling both the speed and quality limitations that exist in current video generation methods. By intro-
ducing the ReferenceLCM architecture, we dramatically improve the efficiency of video synthesis
while maintaining high fidelity, thus addressing the common challenge of slow generation times.
Additionally, our hierarchical CoSeC-LCD regularization framework leverages contrastive learning
to optimize both spatial and temporal dimensions, ensuring that the generated videos exhibit consis-
tent and coherent motion. Key methods like Equivalent Target Aggregation (ETA) ensure cohesion
among equivalent samples, while Contrastive Negative Sampling (CoNS) enhances the distinction
between inter-source samples, collectively improving generation precision. Extensive qualitative
and quantitative experiments show that our approach not only matches state-of-the-art techniques in
terms of output quality but also achieves significant acceleration, making it ideal for real-time ap-
plications. Moreover, our method demonstrates strong zero-shot capabilities, effectively generating
high-quality, controllable videos without the need for fine-tuning on specific datasets. This fur-
ther highlights the robustness and flexibility of our approach in various scenarios. Future research
will focus on extending our method to multi-person and multi-view generation, thus broadening its
applicability and reinforcing its impact across a wider range of animation tasks.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer, Jorma Laakso-
nen, Mubarak Shah, and Fahad Shahbaz Khan. Person image synthesis via denoising diffusion
model. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 5968–5976, 2023.

Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter Gehler, Javier Romero, and Michael J
Black. Keep it smpl: Automatic estimation of 3d human pose and shape from a single image. In
European Conference on Computer Vision, pp. 561–578, 2016.

Caroline Chan, Shiry Ginosar, Tinghui Zhou, and Alexei A Efros. Everybody dance now. In Pro-
ceedings of the IEEE/CVF international conference on computer vision, pp. 5933–5942, 2019.

Di Chang, Yichun Shi, Quankai Gao, Hongyi Xu, Jessica Fu, Guoxian Song, Qing Yan, Yizhe
Zhu, Xiao Yang, and Mohammad Soleymani. Magicpose: Realistic human poses and facial
expressions retargeting with identity-aware diffusion. In Forty-first International Conference on
Machine Learning, 2023.

Naihan Chen, Wei Ping, Ruoming Pang, and Ron J Weiss. Wavegrad: Estimating gradients for
waveform generation. In International Conference on Learning Representations, 2020a.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020b.

Jiequan Cui, Zhisheng Zhong, Shu Liu, Bei Yu, and Jiaya Jia. Parametric contrastive learning. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 715–724, 2021.

Adailton Goncalves da Silva, Marcus Vinicius Mendes Gomes, and Ingrid Winkler. Virtual reality
and digital human modeling for ergonomic assessment in industrial product development: a patent
and literature review. Applied Sciences, 12(3):1084, 2022.

Wenxun Dai, Ling-Hao Chen, Jingbo Wang, Jinpeng Liu, Bo Dai, and Yansong Tang. Motionlcm:
Real-time controllable motion generation via latent consistency model. In European Conference
on Computer Vision (ECCV), 2024.

Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis. In Advances in
Neural Information Processing Systems, 2021.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop on
Deep Generative Models and Downstream Applications, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Jonathan Ho, Tim Salimans, Alex Song, Paul Chu, Ya Chen, Ilya Sutskever, and Pieter Abbeel.
Cascaded diffusion models for high fidelity image generation. In Journal of Machine Learning
Research, 2022.

Li Hu. Animate anyone: Consistent and controllable image-to-video synthesis for character anima-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 8153–8163, 2024.

Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in statistics: Methodol-
ogy and distribution, pp. 492–518. Springer, 1992.

J Stuart Hunter. The exponentially weighted moving average. Journal of quality technology, 18(4):
203–210, 1986.

Yasamin Jafarian and Hyun Soo Park. Self-supervised 3d representation learning of dressed humans
from social media videos. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45
(7):8969–8983, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hae-Gon Jeon, Jaesik Park, Gyeongmin Choe, Jinsun Park, Yunsu Bok, Yu-Wing Tai, and
In So Kweon. Accurate depth map estimation from a lenslet light field camera. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 1547–1555, 2015.

Hyeonho Jeong, Jinho Chang, Geon Yeong Park, and Jong Chul Ye. Dreammotion: Space-time
self-similarity score distillation for zero-shot video editing. In Proceedings of the European Con-
ference on Computer Vision (ECCV), 2024.

Yuming Jiang, Shuai Yang, Tong Liang Koh, Wayne Wu, Chen Change Loy, and Ziwei Liu.
Text2performer: Text-driven human video generation. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pp. 22747–22757, 2023.

Johanna Karras, Aleksander Holynski, Ting-Chun Wang, and Ira Kemelmacher-Shlizerman. Dream-
pose: Fashion video synthesis with stable diffusion. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 22680–22690, 2023.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Advances in neural
information processing systems, 33:18661–18673, 2020.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations (ICLR), 2014.

Zehua Kong, Wei Ping, Jingxin Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. In International Conference on Learning Representations,
2020.

Haofei Kuang, Yi Zhu, Zhi Zhang, Xinyu Li, Joseph Tighe, Sören Schwertfeger, Cyrill Stachniss,
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A RELATED WORK

A.1 DIFFUSION MODELS

Diffusion models have gained significant attention in the field of generative modeling due to their
ability to generate high-quality data samples by reversing a gradual noise addition process. The the-
oretical foundations of diffusion models are rooted in nonequilibrium thermodynamics and SDEs.
Early work by Sohl-Dickstein et al. (2015) introduced the concept of deep unsupervised learning
using nonequilibrium thermodynamics, laying the groundwork for diffusion models. The subse-
quent development of DDPMs by Ho et al. (2020) provided a practical framework for denoising
diffusion-based generative modeling. Song & Ermon (2019) extended this framework by introduc-
ing score-based generative models, where the data distribution’s gradients, or scores, are directly
estimated. Further advancements, such as the work of Song et al., have refined the understanding of
diffusion models using SDEs, enabling the generation of high-fidelity data samples across various
domains.

The underlying idea is to transform a complex data distribution into a simple, known prior distribu-
tion, typically a Gaussian, through a sequence of small perturbations, and then reverse this process
to generate new data. The diffusion process involves adding noise to the data over a continuous time
horizon, transforming the original data distribution into a simple prior distribution. This transforma-
tion can be mathematically formulated as a forward SDE:

dxt = f(xt, t)dt+
√

g(t)dwt (9)

where xt represents the data at time t, f(xt, t) is the drift term controlling the deterministic part
of the evolution, g(t) modulates the stochastic component, and dwt is the increment of a Wiener
process, representing the noise. A common choice for f(xt, t) is − 1

2β(t)xt, with β(t) as the noise
strength parameter. This configuration ensures that as time progresses, the data distribution con-
verges to a prior distribution, typically a standard Gaussian N (0, I).

To generate data, the reverse of this diffusion process is considered. The reverse-time SDE, accord-
ing to the theory of reversing stochastic processes, is given by:

dxt = [f(xt, t)− g(xt, t)∇x log pt(xt)] dt+
√

g(xt, t)dw̄t (10)

Here,∇x log pt(xt) is the score function, representing the gradient of the log-probability density of
the data at time t. This term guides the reverse process towards higher-probability regions of the
data distribution, effectively reconstructing the data from noise. Accurately estimating this score
function is crucial and is typically achieved through a neural network trained using score matching
techniques. The network, denoted as sθ(x, t), is optimized to match the true score function by
minimizing the loss:

L(θ) = Et,x0,xt

[
∥sθ(xt, t)−∇xt log pt(xt|x0)∥2

]
(11)

By minimizing this loss, the model learns to approximate the score function, enabling the reverse
process to generate high-quality data samples.

These advancements have established diffusion models as a versatile and robust framework for gen-
erative modeling. By leveraging the theoretical properties of SDEs and the flexibility of neural
networks, these models achieve a delicate balance between high-quality data generation and compu-
tational tractability. Their application spans a wide range of areas, including image synthesis Dhari-
wal & Nichol (2021); Ho et al. (2022), audio generation Kong et al. (2020); Chen et al. (2020a),
and beyond Rombach et al. (2022); Nichol et al. (2021), making them a cornerstone of modern
generative modeling research.

A.2 SKINNED MULTI-PERSON LINEAR

SMPL (Skinned Multi-Person Linear Model) is a widely-used 3D human body model designed to
provide a realistic and controllable representation of the human body. It represents the human body
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as a mesh with a fixed topology and a set of parameters that describe the shape and pose of the
body, making it a powerful tool for various applications in computer vision, computer graphics,
and machine learning. The model is parameterized by shape parameters , capturing body shape
variations, and pose parameters representing joint rotations. These parameters are used together
with Linear Blend Skinning (LBS) to deform the mesh according to a skeletal structure, providing
a versatile representation of human body shapes and poses. SMPL has been successfully applied in
human pose estimation Bogo et al. (2016), motion capture Lassner et al. (2017), clothing simulation
Pons-Moll et al. (2017), and human reconstruction from partial observations Pavlakos et al. (2019).

B PRELIMINARY

B.1 LATENT CONSISTENCY DISTILLATION

Latent Consistency Distillation (LCD) is a training framework designed to accelerate the conver-
gence of diffusion models by enforcing self-consistency in the latent space. The core principle of
LCD is based on minimizing discrepancies between latent states across different time steps within
a denoising process, ensuring that they follow a consistent trajectory along a predefined Probability
Flow ODE (PF-ODE).

The LCD method leverages the self-consistency property, where the model, for any noised latent
variable xt, is trained to map it to a corresponding denoised estimate along the PF-ODE path at an
arbitrary time step t. Mathematically, this self-consistency can be expressed as:

fθ(xt, t) = fθ(xt′ , t
′), ∀t, t′ ∈ [ϵ, T ]

where t and t′ represent different time steps, T is the total number of denoising steps, and ϵ is a
small positive constant representing the start of the denoising process. This ensures that the model’s
output at different points in the trajectory remains consistent.

To encourage the self-consistency property, the model parameters θ are trained using a consistency
distillation loss function, which minimizes the distance between latent states at subsequent time
steps. The distillation loss can be formulated as:

L(θ, θ∗; Φ) = Ex,t [d(fθ(xt+1, tn+1), fθ∗(x̂tn , tn))]

Here, θ∗ represents the exponentially weighted moving average (EMA) of the model parameters θ,
and d(·, ·) is a distance metric (e.g., ℓ2-norm) used to measure the deviation between the predicted
latent state and the true state at time tn. The function Φ corresponds to a numerical ODE solver used
to approximate the denoising process. The next latent estimate x̂tn is computed as:

x̂tn = xtn+1
+ (tn − tn−1)Φ(xtn+1

, tn+1;ϕ)

C SETTINGS

We trained our model on the open-source training samples provided by Champ, consisting of ap-
proximately 800 videos. The training process was conducted in two distinct phases. In the first
phase, which focused on spatial aspects, specifically the visual quality of individual video frames,
the model was trained for 3000 steps. The classifier-free guidance (CFG) scale, ω, was set to 2.5.
The ETA weight, ϕ1, was 0.1, and the CoNS weight was 0.02, aimed at maintaining a consistent
balance across different loss components. In the second phase, focused on temporal aspects, the
model was trained for 2000 steps. The ETA weight was set to 0.05, CoNS weight was reduced to 0,
and the CFG scale ω was set to 1.5. For both phases, the learning rate was 1e−6, and the Exponential
Moving Average (EMA) decay factor α was set to 0.95. Training was conducted using four A800
GPUs, while inference requires one A800 GPU, with CFG disabled during this stage.
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Algorithm 2 The training algorithm for ReferenceLCM.

1: Input: Target video sequence {x0}, pose-guidance sequence {cpi } from SMPL, reference image
I, number of diffusion timesteps T , distance metric D (e.g., Huber Loss), PF-ODE solver Ψ,
classifier-free guidance weight ω, EMA decay rate α.

2: Initialize: Model parameters θstu, θtgt, and θtch with the same initial weights.
3: for each epoch do
4: Encode noisy latent input xtn+k

using VAE.
5: Compute pose-guidance condition: cp = EG(xdpt

0 )⊕ EG(xsmt
0 )⊕ EG(xskt

0 )⊕ EG(xnml
0 )

6: Obtain attention weights from R-UNet FR(I) and CLIP embedding cI .
7: Compute the output of student D-UNet:

f stu
θ (xtn+k

, cp, I, cI) = cskip(tn+k)xtn+k
+ cout(tn+k)F stu

θ (xtn+k
, tn+k, c

p,FR(I), cI)

8: Classifier-Free Guidance: Use ODE solver Ψ to estimate x̂Ψ,ω
tn :

x̂Ψ,ω
tn ← xtn+k

+ (1 + ω)Ψ
(
xtn+k

, cp, I, cI , tn+k, tn
)
− ωΨ

(
xtn+k

, cp, I, ∅, tn+k, tn
)

9: Update model parameters:

LCD(θ
stu, θtgt,Ψ) = E

[
D
(
f stu
θ

(
xtn+k

, cp, I, cI
)
, f tgt

θ

(
x̂Ψ,ω
tn , cp, I, cI

))]
10: EMA Update: Update weights θtgt using student model θstu:

θtgt ← αθtgt + (1− α)θstu

11: end for
12: Output: Trained model parameters θstu.

Champ

Ours

Champ

Ours

Steps=2 Steps=4 Steps=2 Steps=4

Figure 8: More showcase in Zero-Shot domains.

D THE TRAINING ALGORITHM FOR REFERENCELCM

We provide a detailed description of the training algorithm for ReferenceLCM, where the EMA
decay weight α is a hyperparameter.

E MORE QUALITATIVE RESULTS

We visualized the results to provide an intuitive comparison that clearly demonstrates the significant
improvements of our method over the teacher model in low-step inference. These visualizations
effectively highlight the enhancements in video quality and consistency achieved through our ap-
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Figure 9: More showcase in the Main Experiment.
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Figure 10: More showcase in unseen reference.
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proach, particularly in scenarios where the teacher model struggles with maintaining fidelity and
coherence.

We further showcase the effectiveness of our model from three aspects:

Examples from the TikTok test set, where our method produces high-quality and consistent ani-
mations under challenging conditions; Animations generated from unseen real human references,
demonstrating the model’s robustness in generalizing to new inputs; Zero-shot generation results,
where our method exhibits strong performance even in previously unexplored domains, highlighting
its adaptability across different domains.
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