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Abstract

In this paper, we study the inductive bias of the neural features and parameters1

from neural networks with cross-entropy loss. We study a surrogate model named2

unconstrained layer peeled model (ULPM), which helps us to illustrate that the3

features and classifiers in the last layer of the neural network will converge to4

a certain neural collapse structure [28], where the cross-example within-class5

variability of the last-layer features collapse to zero and the class-means converge6

to a Simplex Equiangular Tight Frame (ETF). We illustrate that the ULPM with7

cross-entropy loss enjoys a benign global landscape on this model where all the8

critical points are strict saddle points except the only global minimizers which9

exhibit neural collapse phenomenon. Empirically we show that our results also10

hold during the training of neural networks in real world tasks when explicit11

regularization or weight decay is not included.12

1 Introduction13

Figure 1: Illustration of Neural Collapse [28].

Deep learning has achieved state-of-the-art per-14

formances in various applications [20], from15

computer vision [16], to natural language16

processing[6] and even scientific discovery [23,17

41]. Despite the empirical successes achieved,18

how gradient descent or its variants leads deep19

neural networks to be biased towards solutions20

with good generalization performance on the21

test set is still a major open question. To de-22

velop a theoretical foundation for deep learn-23

ing, many works have studied the implicit24

bias of gradient descent in different settings25

[21, 1, 37, 33, 25, 3].26

It is well-acknowledged that well-trained end-27

to-end deep architectures have the ability to ef-28

fectively extract features relevant to the given label. Although theoretical analysis of deep learning29

has several achievements in recent years [2, 13], most of the works that aim to analyze properties30

of the final output function fail to understand the feature learned. Recently in [28], authors observe31

that the within-class cross-sample features will collapse to the mean and the mean will converge32

to an Equiangular Tight Frame (ETF) during the terminal phase of training, i.e. after achieving33

zero training error and interpolating the in-sample training data. Such phenomenon, namely Neural34

Collapse (NC) [28], provides a clear view of how the last layer features in the neural network involve35

after interpolation and enables us to understand the benefit of training after achieving zero training36

error to achieve better properties in generalization and robustness. To theoretically analyze the neuron37
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collapse phenomenon, [9, 24, 39] propose the Layer-Peeled Model (LPM) as a simplification for38

neural networks, where the last-layer features are modeled as free optimization variables. In particular,39

in a K-class classification problem using a neural network with d neurons in the last hidden layer, a40

corresponding class of LPMs can be defined through the form41

min
W ,H

1

N

N∑
i=1

L (Whi,yi)

s.t.
1

2
||W ||2F ≤ C1,

1

2
||H||2F ≤ C2

(1)

for some positive constant C1, C2. Here W = [w1,w2, · · · ,wK ]> ∈ RK×d is the weight of the42

final linear classifier, H = [h1,h2, · · · ,hN ] ∈ Rd×N is the feature of the last layer and yi is the43

corresponding label. The intuition behind LPM is that the modern deep networks are often highly44

over-parameterized, with the capacity to learn any representations of the input data. It has been shown45

that equiangular tight frame (ETF), i.e. feature with neural collapse, is the only global optimum46

of the LPM objective (1) [9, 24, 39]. However, even for this simplified model, the non-convexity47

nature of it makes the analysis highly non-trivial. In this paper we aim to understand how gradient48

descent separates data with neural collapse. To do this, we build a connection between the neural49

collapse with the recently proposed normalized margin [25, 38]. In [25], the authors shows that, using50

gradient descent, the direction of the weight converges to the direction that maximizes the `2-margin51

of the data while the norm of the weight diverges to +∞ in homogeneous neural networks. Based on52

these results, we introduce neural collapse margin and use it provide a convergence result to the first53

order stationary point of the minimum-norm separation problem. Furthermore, we illustrate that the54

cross-entropy loss enjoys a benign global landscape where all the critical points are strict saddles55

in the tangent space except the only global minimizers which exhibit neural collapse phenomenon.56

The analysis provides insights on how gradient descent separates data during the training of neural57

networks with neural collapse and the benefit of training after interpolation on generalization and58

robustness. We verify our insights via empirical experiments.

Reference Contribution Feature Norm
Constraint

Feature Norm
Regularization Loss Function

[28] Empirical Results % % Cross-Entropy Loss
[9] Global Optimum " % Cross-Entropy Loss
[39] Global Optimum " % Cross-Entropy Loss
[24] Global Optimum " % Cross-Entropy Loss
[26] Training Dynamics % % `2 Loss
[43] Landscape Analysis % " Cross-Entropy Loss

This paper Training Dynamics+
Landscape Analysis % % Cross-Entropy Loss

Table 1: Comparison of Recent Analysis for Neural Collapse. We provide strongest theoretical results
with minimum modification on the training objective function.

59 Besides, [26] and a concurrent paper [43] also provide landscape and optimization analysis to study60

neural collapse phenomenon, we summarize the connection and difference with our paper in Table 1.61

Our result doesn’t introduce any extra feature norm constraint or feature norm regularization, which62

are not commonly used in the realistic deep learning. We put the detailed discussion in Section 5.2.63

1.1 Contribution64

We summarize our contribution as follows.65

• We build a relationship between the max-margin analysis [33, 27, 25] with the neural66

collapse and provide the inductive bias analysis to the feature rather than the output function.67

• Previous works only prove that Gradient Descent on homogeneous neural networks will68

converge to the KKT point of the corresponding minimum-norm separation problem. How-69

ever, the minimum-norm separation problem is still a highly non-convex problem. In this70

paper, we prove that the ULPM cases enjoys a benign landscape and characterize the neural71

collapse property of the global minimizer.72
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• We show that although the gradient descent on cross entropy loss will push the parameters to73

infinity, the landscape in the tangent space has no spurious minimum thus many optimization74

algorithms will converge only along the neural collapse directions .75

1.2 Related Work76

Inductive Bias of Gradient Descent: To understand how gradient or its variants descent helps77

deep learning to find solutions with good generalization performance on the test set. A recent line of78

research have studied the implicit bias of gradient descent in different settings. As example, gradient79

descent is biased towards model have smaller weight [21, 1, 37] and will converge to large margin80

solution [33, 27, 25, 7, 14] while using logistic loss. For linear networks, [3, 31, 12] have shown that81

gradient descent will find out a low rank approximation.82

Loss Landscape Analysis: Although the practical optimization problems encountered in machine83

learning are often nonconvex, recent works have shown that critical points other than the good ones84

always lies in the balanced superpositions of symmetric copies of the ground truth according to85

the hidden symmetries in the objective function [34, 42] which leads to a benign global landscape.86

In particular, these landscapes do not exhibit spurious local minimizers or flat saddles and can be87

optimized easily via gradient based methods [10]. The examples including phase retrieval [36],88

low-rank matrix recovery [11, 10], dictionary learning [35, 30, 19], blind deconvolution [18].89

2 Preliminaries and Problem Setup90

2.1 Preliminaries91

We consider a dataset with K classes:
⋃K

k=1{xk,i}nk
i=1. For simplicity, we assume the dataset is92

balanced, i.e. n1 = · · · = nK = n. A standard fully connected neural network can be represented as:93

94

f (x;W full) = bL + WLσ (bL−1 + WL−1σ (· · ·σ (b1 + W 1x))) . (2)
Here W full = (W 1,W 2, · · · ,WL) denote the weight matrices in each layer and (b1, b2, · · · , bL)95

are the bias terms, σ(·) stands for the nonlinear activation function, for example, ReLU or sigmoid.96

Let hk,i = σ (bL−1 + WL−1σ (· · ·σ (b1 + W 1xk,i))) ∈ Rd denote the last layer feature for data97

xk,i and h̄k = 1
n

∑n
i=1 hk,i the feature mean within in the k-th class. Without loss of generality, we98

can absorb the bias term into the weight matrix by adding a scalar into each feature vectors, so we99

will ignore the bias term in the following analysis. Let W ∈ RK×d = WL = [w1,w2, · · · ,wK ]>100

be the weight of the final linear classifier. Neural collapse is the phenomenon that the final layer101

feature will convergence to a simplex equiangular tight frame (ETF):102

Definition 2.1. A symmetric matrix M ∈ RK×K is said to be simplex equiangular tight frame103

(ETF) if104

M =

√
K

K − 1
Q(IK −

1

K
1K1>K). (3)

Where Q ∈ RK×K is an orthogonal matrix.105

The four criteria of neural collapse can be formulated precisely as106

• (NC1) Variability collapse: As training progresses, the within-class variation of the activa-
tion becomes negligible as these activation collapse to their class-means h̄k = 1

n

∑n
i=1 hk,i.

||hk,i − h̄k|| = 0, ∀1 ≤ k ≤ K

• (NC2) Convergence to Simplex ETF: The vectors of the class-means (after centering by
their global-mean converge to having equal length, forming equal-sized angles between any
given pair, and being the maximally pairwise-distanced configuration constrained to the
previous two properties.

cos(h̄k, h̄j) = − 1

K − 1
, ||h̄k|| = ||h̄j ||, ∀k 6= j

• (NC3) Convergence to self-duality: The linear classifiers and class-means will converge
to each other, up to rescaling.

∃C s.t. wk = Ch̄k, ∀1 ≤ k ≤ K
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• (NC4) Simplification to Nearest Class-Center For a given deepnet activation h =
σ (bL−1 + WL−1σ (· · ·σ (b1 + W 1x))) ∈ Rd, the network classifier converges to choose
whichever class has the nearest train class-mean

arg min
k

〈wk,h〉 → arg min
k

∥∥h− h̄k

∥∥ ,
In this paper, we say a point W ∈ RK×d,H ∈ Rd×nK satisfies neural collapse conditions or is107

neural collapse solution if these four criteria are all satisfied for (W ,H).108

2.2 Problem Setup109

In this paper, we mainly focus on the neural collapse phenomenon, which is only related to the110

classifiers and features in the last layer. Since general analysis on the highly non-smooth and non-111

convex neural network is difficult, here we peel down the last layer of neural network and propose112

the following Unconstrained Layer-Peeled Model (ULPM) as a simplification to capture the main113

characteristic related to neural collapse during the training dynamics. Similar simplification is114

common used in previous theoretical works [24, 9, 39, 43], but ours don’t have any constraint or115

regularization on features and stands closer to realistic neural network models. We need to mention116

that although [26] also study the unconstrained model, their analysis is highly dependent on the `2117

loss function which is rarely used in classification task while ours can address the most popular cross118

entropy loss.119

Let W = [w1,w2, · · · ,wK ]> ∈ RK×d and H = [h1,1, · · · ,h1,N ,h2,1, · · · ,hK,N ] ∈ Rd×KN120

be the matrices of classifiers and features in the last layer, where K is the number of classes and N121

is the number of data points in each classes. The Unconstrained Layer-Peeled Model is defined as122

following:123

min
W ,H

L(W ,H) = −
K∑

k=1

n∑
i=1

log

(
exp(w>k hk,i)∑K
j=1 exp(w>j hk,i)

)
(4)

Here we do not have any constrain or regularization on features, which corresponds to the absence124

of weight decay in deep learning training. The objective function (4) is generally non-convex on125

(W ,H) and we aim to study the landscape of the objective function (4). Furthermore, we consider126

the gradient flow of the the objective function127

dW (t)

dt
=
∂L(W (t),H(t))

∂W
,
dH

dt
=
∂L(W (t),H(t))

∂H
.

We also trace the the dynamic of the loss function L(t) := L(W (t),H(t)) and study the convergence128

of (W (t),H(t)).129

Notations. We denote || · ||F the Frobenius norm, ‖ · ‖2 the matrix spectral norm, ‖ · ‖∗ the nuclear130

norm, ‖ · ‖ the vector l2 norm and tr(·) the trace of matrices. We use [K] := {1, 2, · · · ,K} to denote131

the set of indices up to K.132

3 Main Results133

In this section, we present our main results about the training dynamics and landscape analysis about134

(4). We organize the section as follows: First in Section 3.1.1, we show the relationship between135

margin and neural collapse in our surrogate model. Inspired by this relationship, we propose a136

minimum-norm separation problem (5) and show the connection between the convergence direction137

of gradient flow and the KKT point of (5). In addition, we explicitly solve the global optimum of138

(5) and show it must satisfy neural collapse conditions. However, due to the non-convexity, we find139

an Example 3.1 in Section 3.2 which shows that there exist some bad KKT points such that simple140

gradient flow will get stuck in them and not converge to neural collapse solution which is proved141

to be optimal in Theorem 3.3. Then we present our second–order analysis result in Theorem 3.4 to142

show that those bad points will exhibit decreasing directions in the tangent space thus if we add some143

noise in the training algorithm (e.g. use stochastic gradient descent), our algorithm can escape from144

those directions and can only converge to the neural collapse solutions.145
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3.1 Convergence To The First–Order Stationary Point146

3.1.1 Neural Collapse Margin147

Before we state our convergence result, let’s first discuss the relationship between margin and neural148

collapse. By building the relationship between them we can have a better intuition about why gradient149

flow can converge to neural collapse solution since the convergence to max-margin solutions has been150

studied in many literature [21, 25, 1, 37]. Recall the margin of a single data point xk,i and associated151

feature hk,i as qk,i(W ,H) := w>k hk,i−maxj 6=k w
>
j hk,i. [5, 4]. To bridge the margin theory with152

neural collapse phenomenon, we define the following neural collapse margin:153

Definition 3.1. We define the the Neural Collapse Margin for the entire dataset as qmin(W ,H) =154

mink∈[1,K],i∈[1,n] qk,i(W ,H).155

The following lemma shows that the neural collapse margin is an indicator of the neural collapse156

phenomenon in the sense that collapsed margin minimize the neural collapse margin. Thus we can157

trace the neural collapse margin to study the convergence to the neural collapse solution.158

Lemma 3.1 (Neural Collapse Margin as an Indicator of Neural Collapse). The neural collapse
margin always smaller than

qmin(W ,H) ≤ ‖W ‖
2
F + ‖H‖2F

2(K − 1)
√
n

and (W ,H) must satisfies the neural collapse conditions when the inequality above is reduced to an159

equality.160

3.1.2 Convergence Results161

Now we present our result about the convergence of gradient flow on the ULPM (4). Following [25],162

we link gradient flow on cross-entropy loss with a minimum-norm separation problem.163

Theorem 3.1. For problem (4), let (W (t),H(t)) be the path of gradient flow at time t, if there164

exist a time t0 such that LCE(W (t0),H(t0)) < log 2, then any limit point of {(Ĥ(t), Ŵ (t)) :=165

( H(t)√
‖W (t)‖22+‖H(t)‖22

, W (t)√
‖W (t)‖22+‖H(t)‖22

)} is along the direction of an Karush-Kuhn-Tucker (KKT)166

point of the following minimum-norm separation problem:167

min
W,H

1

2
||W ||2F +

1

2
||H||2F

s.t. ∀k 6= j ∈ [K], i ∈ [n], w>k hk,i −w>j hk,i ≥ 1.

(5)

Remark 3.1. Indeed, the problem (5) can be reorganized to maximize neural collapse margin such168

that the norm is constrained to be lower than a certain value. The proof is as follows, for all feasible169

solutions (W ,H), we can find that ∀α ≥ qmin(W ,H)−1/2, α(W ,H) are still feasible thus the170

minimum objective value is
1
2 ||W ||

2
F+ 1

2 ||H||
2
F

qmin(W ,H)1/2
along the direction of (W ,H). Then take minimum171

among all the directions we can find the minimum is attained if and only if (W ,H) attains the172

maximum neural collapse margin on the sphere {(W ,H) : ||W ||2F + ||H||2F ≤ C}173

The Theorem 3.1 indicates that the convergent direction of gradient flow is restricted to those174

max-margin directions, which usually enjoy some good properties on robustness or generalization175

performance. Generally speaking, the KKT conditions are not sufficient to obtain global optimality176

since the minimum-norm separation problem (5) is non-convex. Moreover, in some certain occasions,177

KKT conditions may be even not necessary for global optimum. However, we can have a precise178

characterization about the optimum from another perspective, the following result shows that the179

global optimum of this problem satisfies neural collapse conditions.180

Theorem 3.2. Every global optimum of the minimum-norm separation problem (5) is also a KKT181

point and it satisfies the neural collapse conditions.182

To illustrate how does (5) related to (4) and gain insight about Theorem 3.1, we provided the following183

lemmas to show that when t is sufficient large, the (W (t),H(t)) is an (ε, δ) approximate KKT point184

after appropriate scaling, where the (ε, δ) converges to zero when t→∞. Then as shown in [8] we185

know that the limit of these (ε, δ) approximate KKT point is exact KKT point. Detailed definition of186

KKT points and approximate KKT points can be found in appendix.187
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Lemma 3.2. If there exist a time t0 such that L(W (t0),H(t0)) < log 2, then for any t > t0
( ˜W (t), ˜H(t)) := (W (t),H(t))/qmin(W (t),H(t))1/2 is a (ε, δ) - approximate KKT point of the
following minimum-norm separation problem. More precisely, we have

ε =

√
2(1− β(t))

C
, δ =

K

2Cqmin(t)

where:

β =
tr(W>∇WL(W ,H)) + tr(H>∇HL(W ,H))√

||W ||2F ||+ ||H||2F
√
||∇WL(W ,H)||2F ||+ ||∇HL(W ,H)||2F

is the angle between (W ,H) and its corresponding gradient and C is a positive constant.188

Lemma 3.3. If there exist a time t0 such that LCE(W (t0),H(t0)) < log 2, then we have:189

β(t)→ 1, qmin(t)→∞ as t→∞ (6)

which implies that ε→ 0 and δ → 0 when time t goes to infinity.190

3.2 Second–Order Landscape Analysis191

Due to the non-convex nature of the objective (4), we can’t achieve such global solution efficiently.192

The global optimality condition shown in Theorem 3.2 still can’t guarantee convergence to neural193

collapse. In this section, we aim to show that this non-convex optimization problem is actually not194

scary.195

Different from previous landscape analysis of non-convex problem, where people aim to show that196

the objective has a negative directional curvature around any stationary point [34, 42], once features197

can be perfectly separated, the ULPM objective (4) will always decrease along the direction of the198

current point and the optimum is attained only in infinity. Although growing along all of those199

perfectly separation directions can let the loss function decreasing to 0, the speed of decreasing are200

quite different and there exists an optimal direction with fastest decreasing speed. However, simple201

first–order analysis may fail to interpret how does gradient flow move among these directions and we202

need second–order analysis to help us fully characterize the realistic training dynamics. Here is an203

example illustrating our motivation.204

Example 3.1 (A Motivating Example). Consider the case when K = 4, n = 1, let (W ,H) be the205

following point:206

W = H = C

 1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1

 (7)

One can easily verify that this (W ,H) enables our model to classify all of the features perfectly.207

Further more, we can show it is along the direction of a KKT point of the minimum-norm separation208

problem (5) by construct the Lagrangian multiplier Λ = (λij)
K
i,j=1 as following:209

Λ =


0 0 1

2
1
2

0 0 1
2

1
2

1
2

1
2 0 0

1
2

1
2 0 0

 (8)

And the gradient of (W ,H) is210

∇WL(W ,H) = ∇HL(W ,H) = −C 2 + 2e−2C
2

2 + 2e−2C2 + 2e2C2

 1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1

 (9)

We can find that the directions of gradient and the parameter align with each other (i.e.211

W //∇WL(W ,H),H//∇HL(W ,H)), which implies simple gradient descent get stuck in this212

direction and only grow the parameter norm. However, if we construct:213

W ′ = H ′ = C

 1 α β β
α 1 β β
β β 1 α
β β α 1

 , α2 + 2β2 = 1, α < 0, β < 0 (10)
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Then ∀ε > 0, we can choose appropriate α, β such that (see detailed computation in Appendix):214

||W ′||2F = ||W ||2F , ||H
′||2F = ||H||2F ,

||W ′ −W ||2F + ||H ′ −H||2F < ε,L(W ′,H ′) ≤ L(W ,H)
(11)

The results in (11) indicate that (W ′,H ′) is a saddle point on the sphere and there exists many better215

direction (W ′,H ′) staying very close to the original direction (W ,H). Although simple gradient216

descent will always move along the original direction, once we add some noise in the training (e.g.217

stochastic gradient descent), the optimization algorithm can find this better direction and escape the218

original bad direction.219

In Example 3.1, we show that there does exist some suboptimal KKT point of the minimum-norm220

separation problem (5), but there also exist some better points close to it thus stochastic gradient221

method can easily escape form them. In the following theorem, we will show that the best directions222

are neural collapse solutions in the sense that the loss function is lowest among all the growing223

directions.224

Theorem 3.3. The optimal value of loss function (4) on a sphere is attained (i.e. L(W ,H) ≤225

L(W ′,H ′),∀||W ′||2F +||H ′||2F = ||W ||2F +||H||2F ) if only if the (W ,H) satisfies neural collapse226

conditions and ||W ||F = ||H||F .227

Remark 3.2. Note that the second conditions is necessary since neural collapse conditions don’t228

specify the norm ratio of W and H . That is, if (W ,H) satisfies neural collapse conditions,229

(αW , βH),∀α, β ∈ R will also satisfies them but only some certain α, β are optimal.230

Now we turns to those points that don’t satisfy neural collapse conditions. To formalize our discussion231

in the motivating Example 3.1, we first introduce the tangent space:232

Definition 3.2 (tangent space). The tangent space of (W ,H) is defined to be a set of directions that233

are orthogonal to (W ,H) :234

T (W ,H) = {∆W ∈ RK×d,∆H ∈ Rd×nK) : tr(W>∆W ) + tr(H>∆H) = 0} (12)

Our next result justify our observation in the Example 3.1 that for every suboptimal points, there exist235

a direction in the tangent space such that move along this direction will leads to a lower objective236

value.237

Theorem 3.4. If (W ,H) is not the optimal solutions in Theorem 3.3, then ∃(∆W ,∆H) ∈238

T (W ,H),M > 0 such that239

∀0 < δ < M,L(W + δ∆W ,H + δ∆H) ≤ L(W ,H) (13)

. Further more, it implies that ∀ε > 0,∃(W ′,H ′) such that:240

||W ′||2F + ||H ′||2F = ||W ||2F + ||H||2F ,
||W ′ −W ||2F + ||H ′ −H||2F < ε,L(W ′,H ′) ≤ L(W ,H)

(14)

Remark 3.3. The result in (13) give us a decreasing direction orthogonal to the direction of (W ,H),241

as shown in Example 3.1, the gradient might be parallel to (W ,H), the decreasing direction must be242

obtained by analyze the Hessian matrices and it further indicates that these points are exactly saddle243

points in the tangent space, a formal statement and definition can be found in appendix. For a large244

family of stochastic optimization algorithm , the projection of noise onto this decreasing direction245

is not zero with probability 1, so its those algorithms will escape the bad point and no longer move246

along this direction within a small number of iterations.247

4 Empirical Results248

Gradient Descent on the ULPM Objective. We first conduct experiments on the ULPM objective249

(4) to support the results of convergence towards Neural Collapse in our theories. We set N = 10,250

K = 5, d = 20 and use gradient descent with learning rate 5 to run 105 epochs. We characterize251

the dynamics of the training procedure in Figure 2, through four aspects: (1) variation of the252

centered class-mean features’ norms (i.e., Std(‖h̄k − h̄‖)/Avg(‖h̄k − h̄‖)) and the variation of the253

classifier’s norms (i.e., Std(‖w̄k‖)/Avg(‖w̄k‖)). (2) Within-class variation of last layer features254

(i.e., Avg(‖hk,i − hk‖)/Avg(‖hk,i − h̄‖)). (3) The cosines between pairs of last layer features (i.e.,255
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Avg(| cos(h̄k, h̄k′)+1/(K−1)|)) and that of the classifiers (i.e., Avg(| cos(w̄k, w̄k′)+1/(K−1)|)).256

(4) The distance between normalized centered classifier and normalized last layer feature (i.e.,257

Avg(|(h̄k − h̄)/‖h̄k − h̄‖ − w̄k/‖w̄k‖|)). Empirically we observe that logarithm of the two258

variations of norms (in the first aspect) decrease approximately at rate O(1/(log(t))), and the259

remaining quantities decrease approximately at rate O(1/(log(t))).260
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(d) Self-duality

Figure 2: Training dynamics in ULPM. The x-axis in the figures are set to have log(log(t)) scales and the
y-axis in the figures are set to have log scales. (a) The dynamics of the variation of the centered class-mean
features’ norms (shown in blue) and the variation of the classifier’s norms (shown in red). We observe that
the logarithm of both terms decrease at rate O(1/(log(t))). (b) The dynamics of the within-class variation of
last layer features. Logarithm of the variation converge approximately at rate O(1/ log(t))). (c) The dynamics
of the cosines between pairs of last layer features (shown in blue) and that of the classifiers (shown in red).
Logarithm of both terms converge approximately at rate O(1/ log(t))). (d) The dynamics of the distance
between normalized centered classifier and normalized last layer feature. Logarithm of the quantity converge
approximately at rate O(1/ log(t))) to the point of self-duality.

Realistic Training. We also extend our theory to realistic neural network training on benchmark261

dataset. To evaluate our theory, we train the VGG-13 [32] on FashionMNIST [40] without weight262

decay and track the convergence speed of the last layer feature to the neural collapse solution every few263

epochs to see how it changes during the terminal phase training. Observe that all the aforementioned264

quantities either decrease or stay in small values during the training process, providing implications265

that neural collapse can occur with sufficient training epochs.266
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Figure 3: Training VGG-13 without weight decay on FashionMNIST. The x-axis in the figures are set to
have log(log(t)) scales and the y-axis in the figures are set to have log scales. (a) Variation of the centered
class-mean features’ norms and that of the classifier’s norms are below 0.1 after 500 epochs. (b) Logarithm of
the within-class variation of last layer features decreases approximately linearly with respect to log(log(t)) after
100 epochs. (c) The cosines between pairs of last layer features and that of the classifiers decrease and are below
0.1 after 500 epochs. (d) The distance between normalized centered classifier and normalized last layer feature
decreases during training towards self-duality.

267 5 Conclusion and Discussion268

5.1 Conclusion269

To understand the inductive bias of neural feature from gradient descent training, we build a connection270

between large margin inductive bias with neural collapse phenomenon and study a unconstrained271
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layer-peeled model in this paper. We proved that the gradient flow of the ULPM convergences272

to KKT point of a minimum-norm separation problem where the global optimum satisfies neural273

collapse conditions. Although the ULPM is nonconvex, we show that ULPM have a nice landscape274

where all the stationary point is a strict saddle point in the tangent space except the global neural275

collapse solution. Our study helps to demystify the neural collapse phenomenon, which shed light on276

the generalization and robustness properties during the terminal phase of training deep networks in277

classification problems.278

5.2 Relationship with Other Results279

Theoretical analysis of neural collapse are first provided by [24, 39, 9], they show that the neural280

collapse solution is the only global minimum of the simplified non-convex objective function. In281

particular, [39, 24] study a continuous integral form of the loss function and show that the feature282

learnt should be a uniform distribution on sphere. A more realistic discrete setting are studied in283

[9], where the constraint is on the whole feature matrix rather than individual features. All these284

results only relies on Jensen inequality on output logits thus can be generalized to other convex in285

logit losses. Our result utilize the implicit bias of the exponential like loss function to remove the286

feature norm constraint which is not practicable in real applications.287

Though the global optimum shares good property [9], the ULPM objective is still highly non-convex.288

Regards optimization, [26, 29] analyze the unconstrained feature model with `2 loss and establish289

convergence results to collapsed feature for gradient descent. However they fail to generalize on290

other more practical loss functions used in classification tasks. The analysis highly relies on the `2291

loss which turns the training dynamic to an ODE in eigenvalues.292

The most relevant paper is a concurrent breakthrough work [43], which provide a landscape analysis293

about the regularized unconstrained feature model. [43] turns the feature norm constraint in [9] into294

feature norm regularization and still preserves the neural collapse global optimum. At the same295

time, [43] also show that the modified regularized objective shares a benign landscape, where all296

the critical points are strict saddles except the global one. Although our paper and [43] discover297

similar landscape results, we believe our characterization stays closer to the real algorithms used in298

the following two ways299

• The same as [24, 39, 9], [43] only utilize the convexity in logits of the loss function. However,300

our analysis also explores the exponential-like property of the cross-entropy loss which will301

enlarge the norm of the feature. The large feature will provide better approximation to the302

true neural collapse problem of the normalized feature via approximating the max function303

via gradually scaled exponential function.304

• We doesn’t introduce any constraints or regularization on the feature norm, which is not305

applied in the realist training. Regularization on feature introduce in [43] is still different306

from the weight decay regularization [17]. However weight decay on homogeneous neural307

network is equivalent to gradient descent with scaling step size on unregularized objective308

[22, 41].309

We summarize analysis of neural collapse in Table 1.310

5.3 Limitation and Future Work311

The convergence to neural collapse is super slow. [15] provide a loss dependent learning rate schedule312

and leads to O(1/t) convergence rate for linear regression. It’s interesting to investigate can this313

methodology being generalized to our setting. On the other hand, although we have shown that the314

ULPM have a nice landscape, we still leave the global convergence of (stochastic) gradient descent315

as future work for we want to provide global convergence of gradient descent combined with a plug316

in feature extractor.317
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