
Under review as a conference paper at ICLR 2024

MULTI-TASK LEARNING FOR ROUTING PROBLEM
WITH ZERO-SHOT GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Vehicle routing problems (VRPs) are widely studied due to their significant prac-
tical importance. In the last decade, leveraging neural networks to solve VRPs in
an end-to-end manner has gained substantial research attention. However, current
works require building separate neural models for each routing problem, which
hinders its practicality in solving diverse problems. In this study, we treat the
VRPs as different combinations of a set of shared underlying attributes and pro-
pose to solve them simultaneously as multi-task learning. By training a unified
model on multiple VRPs with varying attributes, we can effectively solve unseen
problems in a zero-shot manner. Our experimental results on eleven VRPs show
that our unified model performs comparably to single-task models trained specifi-
cally for each problem. More importantly, our model exhibits promising zero-shot
generalization to new VRPs, reducing the average gap to 4.6% and 7.0% for sizes
50 and 100, respectively, compared to over 20% in the single-task approach.

1 INTRODUCTION

The vehicle routing problem (VRP) is a crucial topic in combinatorial optimization and operation
research. It is widely studied in academia and has significant practical importance in real-world
applications such as logistics, transportation, retail distribution, waste collection, and manufactur-
ing (Toth & Vigo, 2014). The objective of the VRP is to manage a fleet of vehicles optimally,
minimizing the total cost while satisfying the demands of customers. Real-world routing problems
are typically subject to diverse attributes, which result in numerous VRP variants (Braekers et al.,
2016; Vidal et al., 2020). Developing one algorithm for each VRP is very costly and impractical.
Therefore, it is desirable to build a single unified solver for solving VRPs, which can significantly
reduce the overall management cost and improve operational efficiency. A few attempts have been
made to develop a unified VRP solver (Vidal et al., 2013; Rabbouch et al., 2021; Errami et al., 2023),
but they demand much effort with domain knowledge from experts.

Neural combinatorial optimization (NCO) learns a heuristic based on neural networks for solving
combinatorial optimization problems. This approach has received growing research attention due
to its potential ability to generate high-quality solutions without much human effort (Bengio et al.,
2021; Vinyals et al., 2015; Kool et al., 2018). However, most existing NCO approaches work in a
single-task manner (Li et al., 2022; Bai et al., 2023). In other words, they need to train a neural
network for each optimization problem. When the problem changes, e.g., the objective changes
and/or new attributes are introduced, another neural network model needs to be trained from scratch,
which inevitably leads to high computational costs. Some attempts to overcome this shortcoming
include transfer learning and multiobjective learning (Feng et al., 2020; Li et al., 2021a; Zhang et al.,
2022; Lin et al., 2022). However, the neural network models generated by these works can only be
used to solve problems whose instances have been used for training. In other words, generalization
across different problems has not been well addressed in the NCO community.

In this work, we take vehicle routing problems as a test bed and investigate whether a neural network
model can solve a combinatorial optimization problem whose instances have not been included in
the training dataset. We design a single neural network model to handle multiple VRPs which can
be efficiently trained by reinforcement learning (RL) without labeled solutions. We show that the
learned model can be used to solve VRP variants that have not been considered in the training in a
zero-shot manner. Our contributions are summarized as follows:
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• We propose a novel learning-based method to tackle cross-problem generalization in VRPs.
It treats the VRP variants as different combinations of a set of shared underlying attributes,
and solves various VRPs simultaneously in an end-to-end multi-task learning manner.

• We develop a unified attention model with a novel attribute composition block to handle
multiple attributes for different VRPs. The proposed structure has a promising zero-shot
generalization ability to handle any combination of the basic attributes. Many routing prob-
lems are solved for the first time using end-to-end NCO in this paper.

• We achieve competitive results with the existing single-task methods, which train one
model for each problem. We also demonstrate promising zero-shot generalization capa-
bilities on unseen VRPs. We reduce the average gap to 4.6% and 7.0% for sizes 50 and
100, respectively, from over 20% in the single-task approach.

2 RELATED WORK

Neural combinatorial optimization (NCO) NCO (Bengio et al., 2021; Vinyals et al., 2015; Kool
et al., 2018) intends to automatically learn a heuristic based on neural networks for solving the
combinatorial optimization problem. Compared to the other approaches (e.g., exact methods and
heuristics), it requires very little domain-specific knowledge and usually generates high-quality so-
lutions significantly fast. As a result, it has gained much attention in the past decade (Bengio et al.,
2021).

There are mainly two groups of works along this line: end-to-end methods (Vinyals et al., 2015;
Bello et al., 2016; Nazari et al., 2018; Kwon et al., 2020; Joshi et al., 2022; Choo et al., 2022; Pan
et al., 2023) and improvement-based methods (Chen & Tian, 2019; Hottung & Tierney, 2019; Chen
& Tian, 2019; Kool et al., 2022). The former aims to construct a solution without any assistance from
non-learning methods, while the latter incorporates additional algorithms to improve performance.
In this paper, we focus on the end-to-end approach.

NCO for vehicle routing problem (VRP) NCO has been successfully applied to many vehicle
routing problems, including traveling salesman problem (TSP) (Bello et al., 2016), capacitated VRP
(CVRP) (Nazari et al., 2018), VRP with time windows (VRPTW) (Zhao et al., 2020), open VRP
(OVRP) (Tyasnurita et al., 2017), VRP with pickup and delivery (Li et al., 2021b), and heteroge-
neous VRP (Li et al., 2021a). A recent survey of the works on learning-based methods for different
vehicle routing problems can be found in Li et al. (2022).

Despite extensive studies, the existing works have been conducted in a single-task manner, in which
an individual neural model is trained for each problem. The time-consuming training process for
every new problem hinders their practical application. It should be noted that various VRPs have
common features, including shared objectives and underlying attributes. Nonetheless, these similar-
ities and correlations have not been adequately studied in the context of NCO. Recently, Jiang et al.
(2022); Bi et al. (2022); Geisler et al. (2022) explored the robust optimization over multiple distri-
butions, several works (Fu et al., 2021; Pan et al., 2023; Manchanda et al., 2023; Cheng et al., 2023;
Drakulic et al., 2023; Gao et al., 2023) studied generalization to large-scale problems and Zhou et al.
(2023) considered generalization in terms of both problem size and distribution. The cross-problem
generalization has not been studied in VRPs.

Multi-task learning and zero-shot Learning Multi-task learning (MTL) tackles multiple related
learning tasks in a single learning process. It has been widely studied in various research fields, in-
cluding computer vision (Yuan et al., 2012), bioinformatics (He et al., 2016a), and natural language
processing (Collobert & Weston, 2008). However, MTL has received limited attention on combi-
natorial optimization problems. Reed et al. (2022) and Ibarz et al. (2022) proposed a general agent
capable of solving diverse tasks, including several combinatorial optimization problems. Wang &
Yu (2023) presented a multi-task learning method for combinatorial optimization problems with
separate encoders and decoders. Nevertheless, their approach falls short with respect to handling
complicated VRPs, and they require revision or fine-tuning to solve new problems not previously
encountered during training.

Zero-shot learning (ZSL) allows the recognition of previously unseen objects based on their shared
semantic properties or attributes (Oh et al., 2017; Xian et al., 2018; Ruis et al., 2021). Our idea
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Figure 1: VRP variants as combinations of attribute blocks. The basic version is known as the
CVRP. VRP variants can be regarded as extensions of CVRP, encompassing additional attributes.
For instance, VRPTW extends CVRP by incorporating time windows, while OVRPTW adds open
routes attribute alongside time windows.

of learning on multiple VRPs with several underlying attributes and generalizing to unseen VRPs
is similar to compositional ZSL (Ruis et al., 2021), which composes novel problems out of known
subparts or attributes.

3 PROBLEM STATEMENT AND MOTIVATION

We begin by introducing the formulation of the basic CVRP and then demonstrate that other VRP
variants can be considered as extensions of the basic CVRP by incorporating additional attributes.
We denote a CVRP on an undirected graph G = (V,E). V = {v0, . . . , vn}, where v0 is the depot
and v1, . . . , vn are the n customers. Vc = {v1, . . . , vn} is the customer set. For the i-th customer,
there is a demand di. E = {eij}, i, j ∈ {1, . . . , n} are the edges between every two nodes. For each
edge eij , there is an associated cost (distance) cij . A fleet of homogeneous vehicles with a capacity
of C is sent out from the depot to visit the customers and return to the depot. Each customer must
be visited once. The objective is to minimize the total traveling distance of all the used vehicles.

Figure 1 shows that various VRPs can be regarded as extensions of CVRP by considering one
or more attributes. For example, VRPTW is extended from CVRP by adding time windows, and
OVRPTW involves both time windows and open route attributes.

Except for the capacity constraints (C), we involve the following attributes in this paper:

• Time windows (TW): we denote the time windows [ei, li], i ∈ {0, . . . , n} for the i-th node,
where ei and li are the early and late time windows. In addition, each node has a service
time si. We consider hard time windows, i.e., the vehicle must visit the node i in the time
range from ei to li. If the vehicle arrives at node i earlier than ei, the vehicle has to wait
until ei.

• Open routes (O): open routes mean that the vehicle does not need to return to the depot
after it services all the customers in its route.

• Backhauls (B): the classical CVRP assumes that all the vehicles load demands at the depot
and unload at the customers. We call these customers, who require deliveries di > 0,
linehaul customers. Correspondingly, backhaul customers are these customers that need
pickup di < 0. We consider the VRP with mixed linehaul and backhaul customers, i.e., the
order of linehaul and backhaul customers can be mixed up in each route.

• Duration limits (L): duration limits refer to the situation in which the total length of the
routes can not exceed some pre-set thresholds. It is commonly used in real-world applica-
tion scenarios to maintain a reasonable workload for different routes. In our setting, we use
the same duration limit for all the routes.
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Figure 2: Unified model extended from attention model. The model is trained on multiple VRPs
with diverse attributes. Then it can be used to solve numerous unseen VRPs as any combinations of
the attributes involved in the training.

Motivation VRP variants can be extended from the basic CVRP by integrating one or more at-
tributes. Even numerous VRPs involve only a few underlying attribute blocks, with the combinations
of these blocks resulting in new VRPs. In previous works on NCO, the neural networks are trained
independently for each routing problem without exploring potential similarities and correlations be-
tween different VRPs. In this paper, we aim to study the benefits of training a unified model on
diverse VRPs as multi-task learning and demonstrate its capability of zero-shot generalization to
new routing problems.

4 MULTI-TASK LEARNING FOR VEHICLE ROUTING

4.1 UNIFIED MODEL

We consider multiple VRPs as a set of related tasks and propose training a unified neural model
through reinforcement learning to solve them simultaneously. Figure 2 illustrates the unified model
used in this paper. It consists of three parts: encoder, decoder, and attribute composition. We adopt
the typical encoder-decoder framework of attention model (Kool et al., 2018). The encoder learns
the node embeddings, and the decoder generates solutions sequentially. Different from the existing
works (Kool et al., 2018; Kwon et al., 2020; Zhu et al., 2023), we enable its ability to handle various
VRPs by adding an additional attribute composition block. The idea is that the diverse VRPs actually
consist of several common underlying attributes. By learning from these attributes, we can solve an
exponential number of new VRPs as any combination of them.

Encoder The encoder consists of N stacked multi-head attention (MHA) blocks (Kool et al.,
2018). The input of the encoder is the node features fi, i = 1, . . . , n. In this paper, the input
features for the i-th node are denoted as fi = {xi, di, ei, li}, where xi are the coordinates, di is
the demand, and ei and li are the early and late time windows, respectively. The input features are
embedded through a linear projection to generate the initial feature embedding hi. In each MHA
layer, skip connections (He et al., 2016b) and instance normalization (IN) are used.

ĥ
(l)
i = IN l

(
h
(l−1)
i +MHA(l)

(
h
(l−1)
1 , . . . , h(l−1)

n

))
h
(l)
i = IN l

(
ĥi + FF l

(
ĥi

)) (1)

where l and l− 1 represent the current and last MHA layers, respectively. The FF contains a hidden
sublayer with ReLU activations. The above encoding process generates the final node embeddings
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h
(N)
i . This encoding is performed only once, and the static node embeddings are reused for every

decoding step.

Decoder The decoder constructs a solution sequentially. The input of the decoder includes three
parts: the node embedding h

(N)
1 , . . . , h

(N)
n , the embedding of currently visited node h

(N)
t , and the

attribute embedding at. All the node embeddings are produced by the decoder. at is the embedding
of the current state of attributes. We provide an attribute vector to include various attributes involved
in the multiple VRPs. At the t-th step, the attribute vector is at = {ct, tt, lt, ot}, where ct is the
remaining capacity of the current vehicle, tt is the current time, lt is the current duration of the route,
and ot indicates whether the route is open or not. Except for ot, the others will be updated in each
step. Backhauls are not embedded because they are implicitly considered in the node demands.

The decoder consists of one MHA layer and one single-head attention (SHA) layer with clipping.
The MHA is slightly different from that used in the encoder. Skip connection, instance normaliza-
tion, and FF sublayer are not used.

ĥc = MHAc

(
h
(N)
1 , . . . , h(N)

n , h
(N)
t , at

)
u1 . . . , un = SHAc

(
h
(N)
1 , . . . , h(N)

n , ĥc

) (2)

The output embedding of MHA ĥc is used as the input of the SHA, and the SHA outputs the prob-
abilities of choosing the next node using a softmax pi =

eui∑
j euj . We omit the step indicator t for

readability. The detailed structure of the MHA and SHA can be found in Kool et al. (2018).

In each step, we need to mask some nodes from being selected. We update a masking vector mt.
The associated positions of unwanted nodes in the vector will be set to -inf, which will be used in
the attentions before softmax. Except for masking those nodes that have already been selected in the
previous steps, the infeasibility caused by various attributes should also be considered. For example,
these nodes that violate time window constraints should not be selected.

Attribute composition The input of attribute composition is the input node features fi, i =
1, . . . , n, the list of visited nodes Vt at the current step t, and the problem attributes A. The output
is the attribute vector at and mask vector mt.

The problem attributes A are given explicitly with the input problem. A are used to activate the
corresponding attribute updating procedure in the attribute composition block. In this paper, we
have four procedures for the four attributes. Each procedure j updates the corresponding attribute
in the attribute vector ajt and calculates an infeasible node list that must not be visited in the next
step mj

t . The output attribute vector will include all the updated activated attributes and pad the
inactivated attributes to be a default value. The output mask vector mt is the union of all activated
attribute masks mt = Vt ∪

⋃
j∈A mj

t . See Appendix A for the details of the attribute procedures.

For example, if only the capacity attribute is involved in the problem (i.e., CVRP), the indicator only
activates the capacity updating procedure. In each step, the remaining capacity of the current vehicle
is calculated. The attribute vector at = {ct, tt, lt, ot} only updates ct, and pads the rest attributes
to zero. The infeasible nodes that exceed vehicle capacity when added into the route are updated to
update masking mt = Vt ∪mc

t .

Most of the investigated VRPs involve subsets of attributes in our unified model. We are learning
the shared underlying attributes of diverse VRPs. In this way, we can train on a few VRPs and
solve a much larger group of VRPs as arbitrary combinations of the underlying attributes. This
characteristic enables the zero-shot generalization ability of our model.

4.2 MULTI-TASK REINFORCEMENT LEARNING

We use the REINFORCE algorithm with a shared baseline following Kwon et al. (2020). We
use greedy inference, i.e., a deterministic trajectory is constructed iteratively based on the pol-
icy. In each iteration, the next node is selected as the node with the maximum probability pre-
dicted by the decoder. n trajectories are constructed from n different starting points. Long-term
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rewards R(τ1), . . . , R(τn) (negative of the total distances) are calculated after the entire trajectories
τ1, . . . , τn are constructed. For the model with parameters θ, the following gradient ascent is used:

∇θJ(θ) ≈
1

nB

B∑
i=1

n∑
j=1

(
R
(
τ i
j | sik

)
− bi(sik)

)
∇θ log pθ

(
τ i
j | sik

)
(3)

where sk represents the instances are generated from k-th task (VRP). pθ(τ i
j ) is the aggregation of

the probability of selection in each step of the decoder. bi(sk) = 1
n

∑n
j=1(R

(
τ i
j

)
) is the shared

baseline. B is the batch size.

For multi-task learning, many optimizers have been designed to improve robustness and conver-
gence. Instead of using the sophisticated multi-task optimizers (Chen et al., 2018; Kendall et al.,
2018; Zhang & Yang, 2021), we simply trained the multiple tasks with equal weight.

5 EXPERIMENTS

We conduct experiments on eleven vehicle routing problems, namely CVRP, VRPTW, OVRP,
VRPB, VRPL, VRPBTW, VRPBL, OVRPL, OVRPLTW, OVRPBTW, and OVRPBLTW. We train a
unified model on the former five VRPs simultaneously and use the model to solve the rest problems
in a zero-shot manner. Many of these questions are being addressed by the neural method for the
first time. Note that one can easily extend the model to consider other attributes. We chose these
attributes because they are among the most frequently used ones (Braekers et al., 2016).

Instance generation We use the same problem setup as that used in Kool et al. (2018) to generate
the basic CVRP. For VRPTW, we use the method introduced in Zhao et al. (2020) to generate time
windows and service times. For the rest problems, there is no existing work that solves exactly
the same settings. We make the following settings: For VRPB, we first generate a CVRP and then
randomly select 20% of customers as backhaul customers, whose demands are set to be the negative
values of the original demands. For OVRP, we only need to set the open route indicator as active.
For VRPL, the same maximum duration limit of 3 is used for each route.

Model setting The number of MHA for the encoder is 6, and the number of heads is 8. The hidden
layer size is 512, and the embedding size is 128.

Training In training, we randomly select one type of VRP in each batch and generate instances of
the selected VRP. We use 10,000 training instances for each epoch with a batch size of 64, and the
number of epochs for training is 10,000. Adam optimizer is used. The initial learning rate is 1e-4
with a weight decay of 1e-6. We implement the unified model using PyTorch, and the experiments
are running on a single RTX 2080Ti GPU. The training on the vehicle routing problems of size 100
costs about ten days.

Tabel 1 presents the required number of models and the total parameter sizes for single-task learning
and our multi-task learning for five tasks. The required number of models (and the total parameters)
could be much higher for single-task learning if we train a different model for each possible attribute
combination, which is not affordable for real-world applications.

Table 1: Training costs between POMO with single-task learning and our model with multi-task
learning on five VRPs

#Models #Total Parameters Instances per epoch #Total Training Epochs Training time cost (day)
POMO 5 6.56M 10,000 50,000 49
Ours 1 1.35M 10,000 10,000 10.5

5.1 PERFORMANCE ON TRAINING VRPS

Table 2 lists the experimental results on the five VRPs used in the training. For CVRP, we com-
pare our results to the original version of AM (Kool et al., 2018) and three extensions MDAM (Xin
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et al., 2021), POMO (Kwon et al., 2020), and GCAM (Zhu et al., 2023). For VRPTW, a deep re-
inforcement learning method (DRL) (Zhao et al., 2020) and POMO are compared. The results of
LHK3 (Helsgaun, 2017) and Gurobi are used as the baseline for CVRP and VRPTW, respectively.
For the rest three problems, there are no existing end-to-end NCO methods for comparison. We im-
plemented POMO on these problems and used the state-of-the-art hybrid genetic search (HGS) (Vi-
dal et al., 2013) method as the baseline.

Table 2: Experimental results on five training VRPs. (The compared neural solvers require training
one model for each VRP)

Problem Method N=50 N=100
Dis. Gap Time Dis. Gap Time

CVRP HGS 10.38 - 7h 15.54 - 14h
LKH3 10.38 0.00% 7h 15.61 0.46% 14h
AM (Samp1280) 10.59 2.02% 7m 16.16 4.00% 30m
MDAM (BS50) 10.48 0.96% 7.5m 15.99 2.90% 26m
GCAM (Samp1280) 10.64 2.50% - 16.29 4.83% -
POMO 10.53 1.41% 3s 15.87 2.13% 10s
POMO (Aug8) 10.44 0.58% 15s 15.75 1.36% 1.1m
SGBS 10.39 0.12% 2.0m 15.63 0.62% 11.8m
Ours 10.56 1.73% 3s 15.90 2.29% 11s
Ours (Aug8) 10.47 0.85% 20s 15.80 1.71% 1.2m
Ours+SGBS 10.40 0.18% 2.3m 15.66 0.81% 12.6m

VRPTW HGS 16.30 - 7h 26.14 - 14h
LKH3 16.52 1.36% 7h 26.60 1.76% 14h
DRL (BS10) 17.90 9.82% 1m 29.50 12.85% 2m
DRL (BS10) +LNS 16.94 3.93% 11m 27.44 4.97% 65m
POMO 16.78 2.97% 3s 27.13 3.77% 11s
POMO (Aug8) 16.66 2.22% 19s 26.91 2.93% 1.2m
SGBS 16.55 1.52% 2.9m 26.55 1.58% 15.1m
Ours 16.96 4.06% 3s 27.46 5.05% 11s
Ours (Aug8) 16.80 3.09% 20s 27.13 3.81% 1.2m
Ours+SGBS 16.58 1.71% 3.2m 26.63 1.89% 17.9m

OVRP HGS 6.49 - 7h 9.71 - 14h
LKH3 6.52 0.46% 7h 9.75 0.41% 14h
POMO 6.73 3.67% 3s 10.18 4.91% 10s
POMO (Aug8) 6.63 2.14% 16s 10.07 3.76% 1.1m
SGBS 6.56 1.12% 2.1 m 9.89 1.92% 12.1m
Ours 6.81 4.90% 3s 10.34 6.56% 11s
Ours (Aug8) 6.71 3.40% 20s 10.14 4.48% 1.2m
Ours+SGBS 6.59 1.58% 2.5m 9.94 2.38% 13.4m

VRPB HGS 7.69 - 7h 11.13 - 14h
LKH3 7.70 0.18% 7h 11.29 1.40% 14h
POMO 7.92 3.06% 3s 11.57 3.88% 10s
POMO (Aug8) 7.84 2.05% 15s 11.43 2.68% 1.1m
SGBS 7.78 1.22% 1.9m 11.31 1.59% 11m
Ours 8.17 6.36% 3s 11.72 5.23% 11s
Ours (Aug8) 7.87 2.40% 20s 11.53 3.58% 1.2m
Ours+SGBS 7.78 1.25% 2.1m 11.36 2.06% 11.7m

VRPL HGS 10.37 - 7h 15.54 - 14h
LKH3 10.37 0.03% 7h 15.61 0.43% 14h
POMO 10.55 1.78% 3s 15.84 1.96% 10s
POMO (Aug8) 10.46 0.91% 16s 15.72 1.14% 1.1m
SGBS 10.40 0.30% 2.3m 15.64 0.66% 13.1m
Ours 10.56 1.88% 3s 15.96 2.72% 11s
Ours (Aug8) 10.47 0.98% 20s 15.80 1.66% 1.2m
Ours+SGBS 10.40 0.33% 2.6m 15.67 0.83% 14.3m

Average POMO 10.50 2.58% 3s 16.12 3.33% 10s
POMO (Aug8) 10.41 1.58% 16s 15.97 2.37% 1.1m
SGBS 10.34 0.86% 2.24m 15.81 1.28% 12.6m
Ours 10.61 3.78% 3s 16.27 4.37% 11s
Ours (Aug8) 10.46 2.14% 20s 15.81 3.05% 1.2m
Ours+SGBS 10.35 1.01% 2.5m 15.85 1.59% 14.0m
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Table 3: Zero-shot generalization performance on five new VRPs.

VRP Method n50 n100 VRP Method n50 n100
Dis. Gap Dis. Gap Dis. Gap Dis. Gap

V
R

PB
L

HGS 7.70 - 11.15 -

O
V

R
PL

T
W

HGS 10.69 - 17.35 -
NI 11.69 51.86% 17.38 55.92% NI 15.74 47.20% 26.16 50.78%
FI 11.61 50.81% 16.37 46.88% FI 15.22 42.41% 25.81 48.79%
POMO CVRP 8.21 6.61% 12.41 11.37% POMO CVRP 15.23 42.46% 26.75 54.18%
POMO VRPTW 13.43 74.45% 17.86 60.27% POMO VRPTW 11.51 7.70% 19.41 11.88%
Ours 7.97 3.48% 11.65 4.50% Ours 11.50 7.59% 19.34 11.50%

O
V

R
PL

HGS 6.49 - 9.71 -

O
V

R
PB

T
W

HGS 10.67 - 17.31 -
NI 13.85 113.55% 13.61 40.17% NI 15.76 47.77% 26.24 51.60%
FI 14.34 121.11% 13.46 38.62% FI 15.22 42.69% 25.79 48.99%
POMO CVRP 7.75 19.47% 11.78 21.35% POMO CVRP 15.25 42.98% 26.78 54.69%
POMO VRPTW 10.80 66.54% 18.62 91.78% POMO VRPTW 11.52 7.94% 19.48 12.51%
Ours 6.69 3.10% 10.15 4.57% Ours 11.49 7.72% 19.32 11.61%

V
R

PB
T

W

HGS 16.43 - 26.31 -

A
ve

ra
ge

HGS 10.39 - 16.36 -
NI 18.92 15.15% 36.84 40.05% NI 15.19 46.16% 24.05 46.95%
FI 18.33 11.56% 36.59 39.10% FI 14.95 43.78% 23.60 44.25%
POMO CVRP 22.98 39.85% 38.99 48.20% POMO CVRP 13.88 33.56% 23.34 42.64%
POMO VRPTW 16.63 1.22% 27.18 3.33% POMO VRPTW 12.78 22.93% 20.51 25.34%
Ours 16.70 1.66% 27.11 3.05% Ours 10.87 4.59% 17.51 7.03%

We extended the original POMO on these problems and trained these models independently on each
problem with single-task learning. We keep the settings of the original paper (Kwon et al., 2020).
For other compared single-task learning models, we select the best results from the corresponding
papers. If additional inference techniques are used, such as beam search (BS) and sampling (Samp),
their size is indicated in the parentheses following the method. We adopt additional data augmen-
tation (Aug) following POMO (Kwon et al., 2020). Additionally, the advanced inference strategy
simulation guided beam search (SGBS) has been investigated and integrated into our framework for
better zero-shot generation performance.

For each problem, the experiments are conducted on 5,000 instances. We compare the performance
with respect to three criteria: the average distance (Dis.), the gap of the average distance to the
baseline results, and the total running time on 5,000 instances. In general, our unified model is com-
petitive with the existing single-task NCO methods. On CVRP and VRPTW, the results are better
than the various existing end-to-end methods except for POMO. The gap between our model and
optimal baselines is less than 5% across all five VRPs tested, and our running time is significantly
less than baseline methods. The average gap of our unified model on the five training VRPs can be
further reduced to around 1% when integrating with SGBS, with an acceptable increase in inference
time. Despite slightly inferior results compared to POMO and SGBS, we note that the latter re-
quires training individual neural networks for each problem and does not generalize well on unseen
problems.

5.2 ZERO-SHOT GENERALIZATION TO UNSEEN VRPS

We use our unified model to solve unseen VRPs in a zero-shot manner. The experiments are carried
out on five VRPs (i.e., VRPBTW, VRPBL, OVRPL, OVRPLTW, and OVRPBTW).

We compare the results of our unified model with single-task models, two commonly used construc-
tive heuristics, and the SOTA heuristic HGS. The constructive heuristics are the nearest insertion
method and farthest insertion method. We extended the source code of HGS so that it is able to
solve various problems (Vidal et al., 2013). The two single-task models are POMO trained on
CVRP and VRPTW, respectively. We added the masking procedure in our unified model so that
they are applicable to different VRPs. Our unified model and the two single-task models are used in
a zero-shot way without any fine-tuning on the new VRPs.

Table 3 shows the zero-shot performance. The results are evaluated on 5,000 instances for each
problem. Our unified model outperforms other methods including two heuristic methods except
for HGS, which is specifically developed for VRPs. The two single-task models are inferior to
our multi-task unified model. The deficiency of single-task models is more obvious in problems
with very different attributes. For example, the model only trained on CVRP performs worse on
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these problems involving time windows attributes, while the model trained on VRPTW has poor
performance on VRPBL. The average gap of our model over five VRPs is 4.6% and 7% on VRPs of
sizes 50 and 100, respectively.

5.3 MORE DISCUSSIONS

We conduct additional experiments on all eleven VRPs with size 50 using our unified model to study
1) a comprehensive evaluation of our multi-task learning approach, 2) the contribution of attribute
composition, and 3) fine-tuning. Figure 3 compares the gap between the baseline HGS and five
different models on the eleven VRPs, with 5,000 instances for each problem. The detailed results
can be found in the Appendix.

ST ST_FT ST_all MT MT_FT0.1
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Figure 3: A comparison of gaps on eleven VRPs (Left: box plot, Right: radar plot). ST represents
the unified model trained with single-task learning on CVRP, ST all represents the unified model
with single-task learning on OVRPBLTW, and MT represents our approach, i.e., the unified model
with multi-task learning on five VRPs. ST FT and MT FT are the fine-tuning models.

Overall performance Our unified model with multi-task learning significantly outperforms
single-task learning models in terms of overall performance. The average gap from the baseline is
less than 4%, and this difference can be further reduced to 2% through fast fine-tuning. Furthermore,
our method demonstrates strong generalization capabilities across different VRPs. In comparison,
single-task learning models only perform well on the training problem. Additional results and com-
parisons can be found in the Appendix B. We also show that our cross-problem learning benefits
cross-distribution generalization on out-of-distribution cases (Appendix D) and many benchmark
test suites (Appendix E).

Attribute composition To demonstrate the advantages of multi-task learning with attribute com-
position, we train the unified model on OVRPBLTW with all attributes (ST all). According to the
results depicted in the radar plot, ST all achieves promising performance on the problem it was
trained on (OVRPBLTW), as well as on two VRP variants with similar attributes (OVRPBTW and
OVRPLTW). However, its performance deteriorates significantly for the remaining VRPs. It sug-
gests that direct training with all attributes fails to generalize effectively to other variants with only
a subset of attributes. This comparison further confirms the advantage of learning different VRP
variants through attribute composition.

Fine-tuning A fast fine-tuning of the unified model to each VRP can yield further performance
improvement. Our unified model, when accompanied by fine-tuning, achieves the best results with
a small gap across all VRPs. See Appendix C for the experimental settings of fine-tuning and more
results.

We would like to highlight the possible impacts of our multi-task learning paradigm and zero-shot
generalization ability for combinatorial optimization: 1) The design and implementation of SOTA
heuristics on new problems require domain knowledge and much effort in development. Our unified
model generates good solutions for unseen VRPs in a zero-shot manner. The development workload
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for solving new VRPs is significantly reduced. 2) Any unseen VRP variants that are combinations
of the learned attributes can be solved in an end-to-end way. In this way, we can train a unified
model on a relatively small set of attributes and solve an exponential number of VRP variants. 3) In
addition to routing problems, many other combinatorial optimization problems, such as scheduling
problems and packing problems, can be regarded as combinations of common underlying attributes.
Our approach is applicable to these problem sets.

6 CONCLUSION

This paper investigates multi-task learning for vehicle routing problems. The multiple VRPs are
regarded as combinations of several shared underlying attributes. We propose to build a unified
model to solve these related combinatorial optimization problems in an end-to-end way. The unified
neural network is extended from the attention model with a unified encoder-decoder framework and
attribute composition. To the best of our knowledge, solving multiple combinatorial optimization
problems using a single neural network has seldom been studied, and many VRPs investigated in this
paper are solved for the first time using the neural method. Experiments show that the unified model
exhibits a promising zero-shot generalization ability on unseen VRPs that have not been used in
training. Without any fine-tuning, it is significantly better than single-task models and outperforms
two commonly used constructive heuristics. The average gap to baseline is reduced significantly
from over 20% to 4.6% and 7% on sizes 50 and 100, respectively.

In the future, we would like to demonstrate multi-task learning on other combinatorial optimization
problems, such as scheduling and packing. Moreover, other advanced multi-task learning techniques
and approaches, e.g., prompt learning, can be investigated to further improve the zero-shot general-
ization performance of the unified model.
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Csordás, Andrew Joseph Dudzik, Matko Bošnjak, Alex Vitvitskyi, Yulia Rubanova, et al. A
generalist neural algorithmic learner. In Learning on Graphs Conference, pp. 2–1. PMLR, 2022.

Yuan Jiang, Yaoxin Wu, Zhiguang Cao, and Jie Zhang. Learning to solve routing problems via distri-
butionally robust optimization. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 9786–9794, 2022.

Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning the
travelling salesperson problem requires rethinking generalization. Constraints, 27(1-2):70–98,
2022.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 7482–7491, 2018.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! arXiv
preprint arXiv:1803.08475, 2018.

Wouter Kool, Herke van Hoof, Joaquim Gromicho, and Max Welling. Deep policy dynamic pro-
gramming for vehicle routing problems. In Integration of Constraint Programming, Artificial
Intelligence, and Operations Research: 19th International Conference, CPAIOR 2022, Los Ange-
les, CA, USA, June 20-23, 2022, Proceedings, pp. 190–213. Springer, 2022.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188–21198, 2020.

11



Under review as a conference paper at ICLR 2024

Bingjie Li, Guohua Wu, Yongming He, Mingfeng Fan, and Witold Pedrycz. An overview and
experimental study of learning-based optimization algorithms for the vehicle routing problem.
IEEE/CAA Journal of Automatica Sinica, 9(7):1115–1138, 2022.

Jingwen Li, Yining Ma, Ruize Gao, Zhiguang Cao, Andrew Lim, Wen Song, and Jie Zhang. Deep
reinforcement learning for solving the heterogeneous capacitated vehicle routing problem. IEEE
Transactions on Cybernetics, 52(12):13572–13585, 2021a.

Jingwen Li, Liang Xin, Zhiguang Cao, Andrew Lim, Wen Song, and Jie Zhang. Heterogeneous
attentions for solving pickup and delivery problem via deep reinforcement learning. IEEE Trans-
actions on Intelligent Transportation Systems, 23(3):2306–2315, 2021b.

Xi Lin, Zhiyuan Yang, and Qingfu Zhang. Pareto set learning for neural multi-objective combinato-
rial optimization. In International Conference on Learning Representations, 2022.

Sahil Manchanda, Sofia Michel, Darko Drakulic, and Jean-Marc Andreoli. On the generalization
of neural combinatorial optimization heuristics. In Machine Learning and Knowledge Discovery
in Databases: European Conference, ECML PKDD 2022, Grenoble, France, September 19–23,
2022, Proceedings, Part V, pp. 426–442. Springer, 2023.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. Advances in neural information processing
systems, 31, 2018.

Junhyuk Oh, Satinder Singh, Honglak Lee, and Pushmeet Kohli. Zero-shot task generalization with
multi-task deep reinforcement learning. In International Conference on Machine Learning, pp.
2661–2670. PMLR, 2017.

Xuanhao Pan, Yan Jin, Yuandong Ding, Mingxiao Feng, Li Zhao, Lei Song, and Jiang Bian. H-tsp:
Hierarchically solving the large-scale traveling salesman problem. In AAAI 2023, February 2023.

Eduardo Queiroga, Ruslan Sadykov, Eduardo Uchoa, and Thibaut Vidal. 10,000 optimal CVRP so-
lutions for testing machine learning based heuristics. In AAAI-22 Workshop on Machine Learning
for Operations Research (ML4OR), 2022. URL https://openreview.net/forum?id=
yHiMXKN6nTl.
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A MODEL DETAILS

A.1 ATTENTION

We use the attention mechanism in Vaswani et al. (2017), which is a mapping (message pass-
ing (Kool et al., 2018)) of query Q, key K, and value V vectors to an output. For each node i,
the query Qi, key Ki, and value Vi are projections of the input embedding hi:

Qi = WQhi,Ki = WKhi, Vi = WV hi. (4)

where, parameters WQ and WK are of size (dk × dh) and WV is of size (dv × dh). We compute
the compatibility uij from the queries and keys as follows:

uij =
QT

i Kj√
dk

. (5)

We scale the compatibilities uij using softmax to get attention weights aij ∈ [0, 1]:

aij =
euij∑
j e

uij
. (6)

The output vector ho
i for node i is the combination of the weights aij and values Vj :

ho
i =

∑
j

aijVj . (7)

A.2 MULTI-HEAD ATTENTION (MHA)

Multi-head attention enables the model to learn diverse information and usually benefits the results.
MHA consists of h heads and each head is an attention. It concatenates the results from all heads
with a linear projection.

MHA(h1, . . . , hn) = Concat(head1, . . . , headh)W
O

headi = Attention(h1, . . . , hn)
(8)

where WO has size (hdv × dk). In our experiments, we use 8 heads with different parameters,
and the embedding size is 128. For the attention model in each head, the parameter dimensions are
dk = dv = dh/h = 16.

A.3 DECODER DETAILS

We use an MHA followed by a SHA in the decoder following Kool et al. (2018). The computing of
queries, keys, and values for the MHA are as follows:

Qc = WQhc,Ki = WKhi, Vi = WV hi,

hc = Concat(ht, at),
(9)

where ht is the embedding of the current visited node and at is the attribute vector. hi is the output
embedding from the encoder for node i.

In the SHA, we compute the compatibility using equation (5) and clip the results within [-10,10]
with tanh. We also exclude the masked nodes by setting their compatibility values to -inf:
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ucj =

10 · tanh
(
qTc kj√
dk

)
if j /∈ mt

− inf otherwise
(10)

The output probability of selecting next node is computed as the softmax of the output compatibili-
ties pi = eui∑

j euj .

A.4 ATTRIBUTE PROCEDURES

Capacity We track the remaining vehicle capacity ct at each step t, which is initially set to be the
capacity of the vehicle c1 = 1 (all the demands have been scaled by the capacity). After selecting a
new node vt, we update the remaining capacity as:

ct = ct−1 − dt (11)

where ct−1 represents the remaining capacity from the previous step, and dt represents the demand
of the selected node in the current step t.

We mask these nodes that have already been visited or have demands that exceed the remaining
vehicle capacity.

Time windows We keep track of the current time tt at each step t, initialized as t1 = 0. After the
selection of a new node, we update the current time as:

tt = max(tt−1 + c(t−1),t, et) + st (12)

where tt−1 represents the time from the previous step. c(t−1),t represents the distance between the
last node and the current node (i.e., the traveling time cost between two nodes). et and st represent
the early time window and the service time at node vt, respectively.

We mask the visited nodes and the nodes whose time windows cannot be satisfied: 1) when we are
unable to visit the node within the feasible time windows starting from the current node, or 2) when
visiting the node would result in being too late to return back to the depot.

Duration limit We keep track of the route length lt at each step t, which is initialized to be zero
lt = 0. We update the current route length by adding the route length from the previous step t − 1
and the distance between the last node and the current node:

lt = lt−1 + c(t−1),t (13)

We mask the nodes that exceed the duration limit when selected.

Open route We only need a fixed binary indicator for the open route attribute, with ot = 1 repre-
senting the route is open and ot = 0 otherwise. It has no contribution to the masking vector.

However, different from other attributes, the open route attribute results in a different total distance
calculation. The distance between the last node and the depot is not included.

B RESULTS ON ELEVEN VRPS

We present detailed results on eleven VRPs to demonstrate the advantages of our unified model with
multi-task learning and attribute composition. We compared the following settings:

• Our unified model with multi-task learning.

• Our unified model with single-task learning on each training VRP.

• Our unified model with single-task learning on the VRP with all training attributes.

15



Under review as a conference paper at ICLR 2024

• POMO with single-task learning on each training VRP

We also examined the influence of the normalization method and included the results with fine-
tuning. Table 4 lists all the results for VRPs of size 50. The top three results for each VRP are
highlighted in bold. The abbreviations ST and MT represent single-task learning and our multi-
task learning, respectively. NN, BN, IN, and RN denote no normalization, batch normalization,
instance normalization, and re-zero normalization, respectively. FT represents fast fine-tuning. All
the models were trained on a single RTX 2080Ti GPU. The testing time cost is the duration it takes
to solve 5,000 instances for each VRP.

MT vs. ST It is clear from this table that the single-task learning baselines perform similarly
to the POMO counterparts. These results come without surprise since the POMO model serves as
our base model. The performance of our multi-task learning model is slightly poorer than POMO
and single-task learning (which is directly trained on each specific task), but our model has a much
better (zero-shot) generalization performance on other seen/unseen tasks. Therefore, our method has
a much better average performance across multiple VRP variants. In addition, we only need to build
and train one single model to tackle all tasks with various attribute combinations, while single-task
learning needs to build a different model for each task. The training budget has been significantly
reduced.

Attribute Composition As discussed in the main paper, we directly train the unified model on
OVRPBLTW with all the attributes taken into account (ST OVRPBLTW) to demonstrate the benefit
of attribute composition. Line 11 in Table 4 lists the results of ST OVRPBTW. According to the
results, ST OVRPBLTW can achieve promising performance on the problem it trained on (OVRP-
BLTW) as well as two VRP variants with similar attributes (OVRPBTW and OVRPLTW). However,
its performance becomes extremely poor for the rest VRPs (from simple CVRP to VRPBTW). This
observation suggests that ST OVRPBLTW is over-fitted to CVRPBLTW with all attributes and can-
not generalize well to other variants with a subset of attributes. This comparison also confirms
the effectiveness and usefulness of our proposed method for learning different VRP variants with
attribute composition.

Normalization Line 13 to 16 list the outcomes of the multi-task learning experiment without
normalization, batch normalization, instance normalization, and re-zero normalization (BQ-NCO).
Overall, we observed that normalization techniques had minimal impact on the results. Surpris-
ingly, even without normalization, the results were already satisfactory. It is important to mention,
however, that these tests were conducted solely on our unified model with VRPs of size 50. A
comprehensive study is required in future work.

Fine-tuning We conducted fast fine-tuning of ST CVRP and MT on eleven VRPs. The fine-
tuning on each problem costs less than two hours on size 50 and about 5 hours on size 100. The
results indicate that the unified model with fine-tuning can yield further performance improvement.
With fine-tuning, our unified model achieves the best results with a small gap across all VRPs. See
Appendix C for the experimental settings of fine-tuning and more results.
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Table 4: A summary of results on eleven VRPs with size 50. The top three results on each VRP are in bold. ST and MT represent single-task learning and the
proposed multi-task learning, respectively. NN, BN, IN, and RN represent no normalization, batch normalization, instance normalization, and re-zero normalization,
respectively. FT represents fast fine-tuning. All the models are trained on a single RTX 2080Ti GPU. The testing time cost is the time cost of solving 5,000 instances
on each VRP.

Method
Time Cost Gap

Training Testing CVRP VRPTW OVRP VRPB VRPL VRPBL OVRPL VRPBTW OVRPLTW OVRPBTW OVRPBLTW Average

HGS / 7 h 0 0 0 0 0 0 0 0 0 0 0 0

LKH3 / 7 h 0.05% 1.29% 0.94% 0.40% 0.96% / / / / / / 0.73%

POMO

1 POMO CVRP 3.8 d

15 s

0.11% 38.93% 19.57% 5.38% 0.83% 6.65% 19.65% 39.54% 42.66% 42.48% 43.22% 23.55%

2 POMO VRPTW 4.6 d 29.34% 2.52% 66.48% 58.91% 28.06% 53.55% 66.66% 1.60% 7.70% 7.91% 8.00% 30.06%

3 POMO OVRP 4.3 d 9.28% 45.48% 2.11% 15.79% 9.23% 17.12% 2.38% 44.65% 26.80% 27.32% 27.16% 20.67%

4 POMO VRPB 3.9 d 1.85% 42.61% 16.64% 2.10% 1.90% 3.05% 16.75% 43.90% 42.60% 41.55% 41.77% 23.16%

5 POMO VRPL 3.9 d 0.49% 38.73% 19.70% 5.48% 0.57% 6.07% 19.44% 39.62% 42.34% 42.41% 43.49% 23.48%

Unified Model

6 ST CVRP 4.1 d

20 s

0.52% 39.11% 19.52% 5.37% 0.59% 7.07% 19.02% 41.10% 42.34% 41.64% 41.88% 23.47%

7 ST VRPTW 4.8 d 39.15% 2.16% 66.23% 67.85% 37.40% 55.30% 65.62% 1.28% 7.83% 7.99% 7.91% 32.61%

8 ST OVRP 4.4 d 8.39% 47.46% 2.01% 16.24% 8.49% 17.03% 2.12% 45.92% 25.83% 25.93% 26.76% 20.56%

9 ST VRPB 4.1 d 1.22% 41.50% 16.94% 1.80% 1.59% 3.46% 17.32% 44.67% 43.50% 42.06% 41.40% 23.23%

10 ST VRPL 4.3 d 0.52% 38.42% 19.56% 8.44% 0.44% 9.67% 19.55% 36.87% 42.08% 43.68% 43.65% 23.88%

11 ST OVRPBLTW 5.4 d 22.95% 7.40% 50.29% 43.11% 20.77% 33.84% 48.63% 6.62% 0.90% 0.84% 0.86% 21.47%

12 ST CVRP (FT) 4.1 d + 0.6 d / 23.06% 4.70% 2.83% 0.86% 3.88% 5.03% 21.38% 17.51% 16.74% 14.31% 10.07%

13 MT (NN) 3.9 d

20 s

0.58% 2.63% 3.11% 2.34% 0.92% 3.49% 3.27% 1.91% 8.11% 8.28% 8.40% 3.91%

14 MT (BN) 4.8 d 0.55% 2.66% 3.29% 2.47% 1.11% 3.43% 3.27% 1.82% 7.82% 7.88% 7.82% 3.83%

15 MT (IN) 4.8 d 0.42% 2.42% 3.50% 2.05% 1.07% 3.28% 3.18% 1.64% 7.71% 8.95% 8.05% 3.75%

16 MT (RN) 4.3 d 0.55% 2.50% 3.34% 2.24% 0.93% 3.31% 3.35% 2.19% 7.82% 8.08% 8.13% 3.86%

17 MT (IN, FT) 4.8 d + 0.6 d 0.37% 2.42% 3.04% 2.05% 0.86% 3.15% 3.06% 1.63% 1.90% 1.84% 1.96% 2.02%
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C FAST FINE-TUNING ON UNSEEN VRPS

We conduct experiments to show the performance of our model under fast fine-tuning. The same
five unseen VRPs are used: VRP with backhauls and time windows (VRPBTW), VRP with back-
hauls and duration limitation (VRPBL), open VRP with duration limitations (OVRPL), open VRP
with duration limitations and time windows (OVRPLTW), and open VRP with backhauls and time
windows (OVRPBTW).

Two different fine-tuning settings are tested: 1) only updating the decoder while keeping the encoder
fixed, and 2) updating the entire model. Each epoch is trained using 10,000 instances with a batch
size of 64, and 200 epochs are used. The learning rate and weight decay are set to 1e-5 and 1e-6,
respectively. The experiments are carried out on the instances of size 100. The entire fine-tuning
process with 200 epochs takes approximately five hours, while we note that the model typically
converges within the first 50 epochs.

Figure 4 provides a comparison of different methods on the five VRPs in terms of distance. The
detailed results are listed in Table 5, where the distance (Dis.), gap to the baseline HGS, and running
time of methods are compared on 5,000 instances. The best results are shown in bold.
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VRPBL OVRPL VRPBTW OVRPLTW OVRPBTW

ST_CVRP
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NI
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Ours

Ours FTD
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Figure 4: Comparison of the average results (total distances) of different methods on five new VRPs.

The abbreviations POMO CVRP and POMO VRPTW denote the single-task model (POMO)
trained on CVRP and VRPTW instances, respectively. NI and FI represent the nearest and farthest
insertion heuristics, and HGS is the SOTA algorithm for VRPs. FTD and FT indicate fine-tuning on
the decoder and the entire network, respectively.

The results indicate that fine-tuning can further improve the performance of our model on new VRPs.
Our pre-trained model with fast fine-tuning outperforms all other methods (except for the baseline).
The average gap to the baseline HGS is only about 3.4% over the five VRPs. The advantages of
fast fine-tuning become more apparent on OVRPLTW and OVRPBTW, which have more attributes
and are therefore more complicated. In contrast, fine-tuning only provides minor improvements on
VRPBL, OVRPL, and VRPBTW, where zero-shot generalization has already produced satisfactory
results.

Figure 5 illustrates the convergence of testing distance vs. the number of fine-tuning epochs on
OVRPLTW. We compare the performance of fine-tuning the pre-trained model with training a new
model from scratch. The experimental settings of training from scratch are the same as that used
for fine-tuning. The results demonstrate that fine-tuning based on our pre-trained unified model
converges rapidly. The fine-tuning of the entire pre-trained model takes less than 50 epochs (about
1.5 hours) to converge, outperforming the results of training from scratch using 1,000 epochs. The
advantage of fast adaptation highlights the significance of our pre-trained unified model.

The results demonstrate the promising generalization ability of our unified model on new prob-
lems. In addition to achieving overall acceptable results through direct zero-shot generalization, our
proposed unified model can be fine-tuned on new problems with low computational cost, further
improving the solution quality.
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Table 5: Experimental Results on Five New VRPs.

Problem Method Dis. Gap Time Problem Method Dis. Gap Time

VRPBL

HGS 11.15 - 14 h

OVRPLTW

HGS 17.35 - 14 h
NI 17.38 55.92% 8m NI 26.16 50.78% 8m
FI 16.37 46.88% 8m FI 25.81 48.79% 8m
POMO CVRP 12.41 11.37% 1.1m POMO CVRP 26.75 54.18% 1.1m
POMO VRPTW 17.86 60.27% 1.1m POMO VRPTW 19.41 11.88% 1.1m
Ours 11.65 4.50% 1.2m Ours 19.34 11.50% 1.2m
Ours FTD 11.62 4.27% 1.2m Ours FTD 18.12 4.46% 1.2m
Ours FT 11.64 4.47% 1.2m Ours FT 17.86 2.94% 1.2m

OVRPL

HGS 9.71 - 14 h

OVRPBTW

HGS 17.31 - 14 h
NI 13.61 40.17% 8m NI 26.24 51.60% 8m
FI 13.46 38.62% 8m FI 25.79 48.99% 8m
POMO CVRP 11.78 21.35% 1.1m POMO CVRP 26.78 54.69% 1.1m
POMO VRPTW 18.62 91.78% 1.1m POMO VRPTW 19.48 12.51% 1.1m
Ours 10.15 4.57% 1.2m Ours 19.32 11.61% 1.2m
Ours FTD 10.18 4.87% 1.2m Ours FTD 18.12 4.70% 1.2m
Ours FT 10.15 4.57% 1.2m Ours FT 17.84 3.07% 1.2m

VRPBTW

HGS 26.31 - 14 h

Average

HGS 16.36 - 14 h
NI 36.84 40.05% 8m NI 24.05 46.95% 8m
FI 36.59 39.10% 8m FI 23.60 44.25% 8m
POMO CVRP 38.99 48.20% 1.1m POMO CVRP 23.34 42.64% 1.1m
POMO VRPTW 27.18 3.33% 1.1m POMO VRPTW 20.51 25.34% 1.1m
Ours 27.11 3.05% 1.2m Ours 17.51 7.03% 1.2m
Ours FTD 27.08 2.94% 1.2m Ours FTD 17.03 4.05% 1.2m
Ours FT 27.11 3.05% 1.2m Ours FT 16.92 3.40% 1.2m

17.0
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22.0
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0 200 400 600 800 1000

Ours + FTD Ours + FT From scratch

Figure 5: Testing distance vs. epoch number. FTD and FT indicate fine-tuning on the decoder and
the entire network of our pre-train unified model, respectively. The curve with grey circles repre-
sents training a model from scratch. Each epoch includes 10,000 randomly generated OVRPLTW
instances. The testing distance is the average result over 2,000 OVRPLTW instances.
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D EXPERIMENTS ON OUT-OF-DISTRIBUTION SCENARIOS

Existing works on neural combinatorial optimization typically assume that the training and testing
instances come from the same distribution. Achieving generalization to out-of-distribution cases is
often challenging for traditional single-task models. In this section, we investigate the generalization
performance of our proposed multi-task model on three out-of-distribution scenarios of the training
problems. All of our experiments are carried out on the problems of size 100.

D.1 CVRP

Basic settings: The training instance generation for CVRP follows the distribution used in Kool
et al. (2018). The coordinates of customers xi, yi are randomly sampled in the unite region [0, 1].
The demands of customers di are randomly selected from {1, . . . , 9} and then normalized with
respect to the vehicle capacity C. The capacity is set to be C = 40 and C = 50 for the problem
with a size of n = 50 and n = 100, respectively.

Out-of-distribution settings: We evaluate the performance of our model with POMO on CVRP
instances with different vehicle capacities. Specifically, we consider seven vehicle capacities: C =
{20, 30, 40, 50, 60, 70, 80}.

Table 6 and Figure 6 show the results on out-of-distribution CVRP instances averaged over 5,000
instances. The better results are in bold and the gap is calculated using POMO as the baseline. A
small gap is preferred and a negative gap indicates that our model outperforms POMO. Except for
the results on 50 and 70 (close to that used for generating training instances), our model beats POMO
on all the out-of-distribution cases. The advantage of using our unified model is more obvious with
the increasing vehicle capacity.

Table 6: A comparison of our model with single-task POMO on out-of-distribution CVRP instances

Vehicle capacity 30 50 70 90 110 130 150 200

POMO CVRP 22.913 15.750 12.910 11.480 10.595 10.114 9.824 9.307
Ours 22.804 15.750 12.914 11.441 10.511 9.900 9.532 8.969
Gap -0.48% 0.00% 0.03% -0.33% -0.80% -2.12% -2.97% -3.63%

-4.00%

-3.00%

-2.00%

-1.00%

0.00%

1.00%

0 50 100 150 200

Figure 6: Performance gap between Ours and POMO with respect to different vehicle capacities on
CVRP.

D.2 VRPTW

Basic settings: For VRPTW, we adopt the same settings as those used in Zhao et al. (2020).
Specifically, we generate the coordinates, demands, and vehicle capacities using the same procedure
as for CVRP. The time windows attributes involve three additional features: 1) the service time si,
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2) the early time ei, and 3) the late time li. The service time si and the length of the time window ∆i

are randomly sampled from a closed interval [0.15, 0.2]. The speed of the vehicle is fixed at v = 1
and the maximum time interval of the depot is set to T = 4.6. It means that all vehicles must return
to the depot before the maximum time interval.

The early and late times for each customer can be calculated as follows:

ei =
hi × c0i

v
, hi ∈

[
1,

T − si −∆i

c0i
× v − 1

]
li = ei +∆i

(14)

where c0i denotes the distance between the depot and the i-th customer. This formulation makes
sure that there is at least one feasible solution for each instance.

Out-of-distribution settings: For out-of-distribution testing, we only modify the closed time
interval used for sampling service time and time window length. The intervals are as follows:
{[0.05, 0.1], [0.15, 0.2], . . . , [0.85, 0.9], [0.95, 1.0]}.

Table 7: A comparison of our model with single-task POMO on out-of-distribution VRPTW in-
stances.

Time Interval [0.05,0.1] [0.15,0.2] [0.25,0.3] [0.35,0.4] [0.45,0.5]

POMO VRPTW 26.230 26.906 28.805 32.327 36.544
Ours 26.390 27.152 29.046 32.174 36.162
Gap 0.61% 0.91% 0.84% -0.47% -1.05%

Time Interval [0.55,0.6] [0.65,0.7] [0.75,0.8] [0.85,0.9] [0.95,1.0]

POMO VRPTW 40.650 45.327 49.219 53.300 57.102
Ours 40.136 45.007 48.901 52.815 56.209
Gap -1.27% -0.71% -0.65% -0.91% -1.56%

-2.00%

-1.00%

0.00%

1.00%

2.00%

0 0.2 0.4 0.6 0.8 1

Figure 7: Performance gap between Ours and POMO with respect to different time intervals on
VRPTW.

The results in Table 7 and Figure 7 again reveal that our model is more robust in out-of-distribution
cases. We have negative gaps in the majority of cases except for these near training distribution
[0.15, 0.2].

D.3 VRPL

Basic settings: Same as CVRP.

Out-of-distribution settings: In the training, the duration limit is fixed to l = 3.0. We modify the
duration limit of each route. The settings used are l = {2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5}. To better
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Table 8: A comparison of our model with single-task POMO on out-of-distribution VRPL instances.

Duration 2.9 3 3.1 3.2 3.3 3.4 3.5

POMO VRPL 10.245 10.145 10.077 10.044 10.019 10.000 9.998
Ours 9.858 9.748 9.683 9.642 9.625 9.601 9.561
Gap -3.78% -3.91% -3.91% -4.00% -3.94% -3.99% -4.37%

-4.60%

-4.40%

-4.20%

-4.00%

-3.80%

-3.60%

2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6

Figure 8: Performance gap between Ours and POMO with respect to different duration limitations
on VRPL.

show the effect of the duration limit on the results, we raise the vehicle capacity from 50 to 150 for
VRPL. In this way, the number of nodes in each route will increase and the influence of duration
limit will be more significant.

Table 8 and Figure 8 show the results. Our model outperforms POMO on all the distributions (the
reason might be that we have also modified the vehicle capacity). The advantage of our model is
more obvious on large duration limits.

Our experiments reveal that our multi-task model displays a strong generalization performance
across various distributions. Conversely, the single-task models perform best only on the test sce-
narios that share the same distributions as the training data. They are outperformed by the multi-task
model when it comes to out-of-distribution scenarios.

We observed that a multi-task model’s advantage becomes more pronounced in extreme cases. For
instance, on CVRP with a vehicle capacity of 200, our model exhibits a substantial performance
gap compared to POMO models. One possible explanation for this is that training a multi-task
model with different VRP variants brings diversity. Although it does not specifically represent
the utilization of various vehicle capacities, the multi-task model can extract more comprehensive
patterns than single-task learning.
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E EXPERIMENTS ON BENCHMARKS AND LARGE-SCALE INSTANCES

We validate our model on CVRPLib benchmarks as well as randomly generated large-scale in-
stances. Specifically, we select six test suites with diverse attributes from CVRPLIB 1. There are a
total of 181 instances whose problem size ranges from 30 to 1,000. We normalize the coordinates
of customers so that they are within the unit range of [0, 1]. We also normalize the demands with
respect to the vehicle capacity.

To evaluate the performance, we compare our unified model with POMO, which is trained on CVRP.
Both models are trained on the instances of size 100. We use the best-known solutions (BKS)
provided by CVRPLIB as the baseline. The criteria for comparison include the average distance
over all test suite instances, the average gap to BKS, and the standard deviation (SD) of the gap.

A-P Test Sets Table 9 lists the information of six test suites as well as the experimental results.
The results demonstrate that, although our model is not specifically trained for CVRP, it outperforms
POMO on all test suites. Overall, the average gap between our unified model and the BKS is less
than 10%, which is about half of POMO. In addition, our model has a lower standard deviation in
the majority of cases, indicating it is more robust than POMO on diverse distributions.

X Test Set More analysis of the results obtained from test suite X is provided. We divided the 100
instances in X into four groups based on their problem size. The results of our model and POMO on
each group are summarized in Table 10. Our findings indicate that both models perform similarly
well on small-scale instances, but as the scale of the problem increases, the performance of POMO
deteriorates. In fact, in the largest group, the average gap of POMO is over 30%. Conversely, our
model is more robust across problem sizes, with its gap increasing only from 6.2% to 13.8%.

Table 9: Experimental results on six test suites.

Beckmark No. Size BKS POMO Ours
Dis. Gap SD Dis. Gap SD

A 27 31-79 1041.9 1104.8 6.0% 7.2% 1066.8 2.4% 1.0%
B 23 30-77 963.7 1065.7 10.6% 14.6% 992.2 2.9% 4.6%
F 3 44-134 707.7 770.6 8.9% 1.1% 760.6 7.5% 3.3%
M 5 100-199 1083.6 1145.2 5.7% 3.0% 1141.9 5.4% 2.6%
P 23 15-100 587.4 660.4 12.4% 35.0% 627.1 6.8% 6.1%
X 100 100-1k 63106.7 75154.8 19.1% 15.2% 69473.5 10.1% 4.7%

Average - - - - 14.7% - - 7.4% -

Table 10: Experimental results on test suite X with respect to different problem sizes.

Size No. BKS POMO Ours
Dis Gap Dis Gap

100-300 43 33868.5 36299.1 7.2% 35954.7 6.2%
300-500 15 63774.8 71524.1 12.2% 68841.6 7.9%
500-700 15 88561.4 107927.9 21.9% 98843.8 11.6%

700-1000 17 113619.5 149858.6 31.9% 129270.9 13.8%

1http://vrp.atd-lab.inf.puc-rio.br/
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XML100 Instances We have conducted additional experiments on XML100 test suites (Queiroga
et al., 2022), which was proposed recently in AAAI 2022 for testing learning methods for vehicle
routing. We compared the results to HGS, LKH3, and OR-Tools which can be found in Table 11.
According to the results, our method has a good generalization performance on these problems. Our
model has an average gap of 5.42%, which is inferior to LKH3 but much better than POMO and
OR-Tools. Additionally, the running time of our model is less than 0.1s.

Table 11: A comparison of results on 30 XML100 instances.

BK Dis. HGS (5 s) LKH3 (60 s) OR-Tools (60 s) POMO (<0.1s) Ours (<0.1s)
Dis. Gap Dis. Gap Dis. Gap Dis. Gap Dis. Gap

SET 1 13179 13182 0.02% 13555 2.29% 14780 16.01% 16988 29.47% 13946 6.23%
SET 2 10738 10740 0.01% 10969 1.53% 11923 12.28% 14851 41.01% 11318 5.60%
SET 3 18996 19028 0.17% 19993 2.76% 20791 12.31% 20767 11.83% 19867 4.44%

Average 14304 14317 0.07% 14839 2.19% 15831 13.53% 17535 27.44% 15044 5.42%

CVRP200-500 We compare results on CVRP200-500

Table 12: Cross-size performance on randomly generated CVRP instances.

N200 N300 N400 N500

HGS 21.82 / 25.76 / 28.14 / 32.01 /
LKH3 22.34 2.39% 26.45 2.72% 29.05 3.23% 32.07 0.17%

OR-tools 24.14 10.63% 28.82 11.89% 31.77 12.89% 35.82 11.90%

POMO 23.11 5.90% 29.21 13.42% 34.75 23.48% 43.12 34.68%
22.85 4.71% 28.79 11.77% 33.76 19.98% 41.14 28.50%

Ours 22.96 5.25% 28.42 10.35% 32.53 15.60% 38.53 20.34%
22.73 4.18% 28.07 8.97% 32.02 13.78% 37.45 16.99%

Ours SGBS 22.34 2.40% 27.30 6.00% 30.92 9.87% 35.78 11.75%

Visualization Figure 9 illustrates the solutions generated by our model and POMO on two in-
stances: X-n322-k28 and X-n561-k42. It is clear from the figure that the results of POMO display
crossovers between different routes, while our model produces more structured solutions.
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(a) X-n275-k28, POMO (b) X-n275-k28, Ours

(c) X-n561-k42, POMO (d) X-n561-k42, Ours

Figure 9: Illustration of the solutions generated by single-task POMO and our proposed multi-task
model on X-n322-k28 and X-n561-k42 instances.
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F ATTRIBUTE CORRELATION

Correlation among Attributes: Similar to Standley et al. (2020), we separately train our model on
each pair of VRPs to investigate the pairwise correlation among tasks. As a result, we have a total
C(5, 2) = 10 pairwise combinations with respect to the 5 basic VRPs (i.e., CVRP, VRPTW, OVRP,
VRPB, and VRPL).

We fine-tune the 10 models from our pre-trained unified model, instead of training them from
scratch. Each epoch is trained using 10,000 instances with a batch size of 64, and 200 epochs are
used (the model typically converges within the first several epochs). The learning rate and weight
decay are set to 1e-4 and 1e-6, respectively. The experiments are carried out on the instances of size
50.

The resulting correlation matrix is shown in Figure 10, which measures the performance gap be-
tween each task pair and our unified model. The positive values represent a positive correlation
between two VRPs, while negative values denote a conflict.

The results reveal that the CVRP, being a fundamental routing problem, has a positive correlation
with all the other problems except for OVRP. The OVRP is found to exhibit the most severe conflicts
among the attributes followed closely by the VRPTW. It aligns with our intuition that the open route
conflicts with the other VRPs that force every route back to the depot. Similarly, time windows
pose additional constraints on the choosing of the next node, which may significantly influence
generalization performance, as we will discuss in the next part.

Distribution of Different VRPs: We have also conducted a comparison of distributions of the
hidden layers of different VRPs on the two-dimensional reduction space. Fig 11 shows a comparison
of distributions of different VRPs on two-dimensional reduction space of the decoder hidden layer
(1000 samples for each VRP). There is a clear distinct distribution of VRPTW compared with others
as the time window attribute poses a strong constraint over the route. In addition to VRPTW, OVRP
also shows a different pattern than others followed by VRPB, this is consistent with the correlation
matrix that OVRP does not force routes back to the depot. In contrast, CVRP and VRPL follow a
very close distribution and overlap with each other in the majority of areas, which is also reflected
in the close final distances. This can be attributed to the fact that our route length limit is set to
3 on the normalized coordinates, which is easily satisfied due to the tighter capacity constraint.
The distribution analysis of the hidden layer aligns with the findings from our correlation matrix
discussions.
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Figure 10: Correlation among Attributes: Positive values indicate a positive correlation between
two attributes, and negative values represent conflict. It can be observed that the CVRP, being
a fundamental routing problem, has a positive correlation with all the other problems except for
OVRP. The OVRP exhibits the most severe conflicts, while the VRPTW follows closely behind.
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Figure 11: A comparison of distributions of different VRPs on two-dimensional reduction space of
the decoder hidden layer.

Influence of the Degree of Constraint: In the second part of the experiments, we examine how the
degree of constraint affects the correlation and zero-shot generalization performance. We illustrate
this using an example of VRPTW (Vehicle Routing Problem with Time Windows). Specifically,
we trained a single-task model on VRPTW (ST VRPTW) with various TW lengths ∆i = 0.15,
1 ,2 ,4 (where a smaller ∆i represents a tighter TW constraint). We then evaluated the models
on OVRPLTW and OVRPBTW. Our results reveal that as the TW length increases (i.e., the time
window constraint is relaxed), the performance gap becomes larger compared to our multi-task
learning approach. This can be attributed to the fact that the time window constraint, which is
tightly enforced in our paper, is a dominant factor compared to other attributes that explain the
strong generalization of ST VRPTW on tasks with time window constraints.

Table 13: A comparison of the zero-shot generalization performance of ST VRPTW with different
TWs and our MT

ST VRPTW MT0.15 1 2 4

OVRPLTW 7.83% 10.71% 14.85% 17.07% 7.71%
OVRPBTW 7.99% 11.55% 15.46% 17.46% 7.95%
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