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Abstract
Stimulus variability—a form of nuisance variability—is a primary source of perceptual
uncertainty in everyday natural tasks. How do different properties of natural images
and scenes contribute to this uncertainty? Using binocular disparity as a model system,
we report a systematic investigation of how various forms of natural stimulus variability
impact performance in a stereo-depth discrimination task. With stimuli sampled from a
stereo-image database of real-world scenes having pixel-by-pixel ground-truth distance
data, three human observers completed two closely related double-pass psychophysical
experiments. In the two experiments, each human observer responded twice to ten thou-
sand unique trials, in which twenty thousand unique stimuli were presented. New analyt-
ical methods reveal, from this data, the specific and nearly dissociable effects of two dis-
tinct sources of natural stimulus variability—variation in luminance-contrast patterns and
variation in local-depth structure—on discrimination performance, as well as the relative
importance of stimulus-driven-variability and internal-noise in determining performance
limits. Between-observer analyses show that both stimulus-driven sources of uncertainty
are responsible for a large proportion of total variance, have strikingly similar effects on
different people, and—surprisingly—make stimulus-by-stimulus responses more pre-
dictable (not less). The consistency across observers raises the intriguing prospect that
image-computable models can make reasonably accurate performance predictions in
natural viewing. Overall, the findings provide a rich picture of stimulus factors that con-
tribute to human perceptual performance in natural scenes. The approach should have
broad application to other animal models and other sensory-perceptual tasks with natural
or naturalistic stimuli.

Author summary
Linking properties of the external world, and of sensory stimuli, to how neurons and animals
respond has proven an important approach to understanding how the brain works. Much is
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known about how nervous systems respond to simple stimuli. Less is known about how sys-
tems respond to real-world stimuli. A major challenge is to present stimuli in an experimental
setting that reflect important aspects of the variability that is present in natural viewing, while
maintaining the rigor and interpretability that is necessary for drawing scientific conclusions
about what drives and limits perceptual performance. Using a high-fidelity database of natural
images and scenes, we conducted two human stereo-depth discrimination experiments and
analyzed the data with a newly developed method that reveals how distinct features of natural
scenes and images impact performance. Results show that stimulus-by-stimulus variation has
highly consistent effects on different people. The approach should have broad application to
other animal models and other sensory-perceptual tasks.

GitHub repository at https:
//github.com/burgelab/WhiteBurge2025-Data
MATLAB code used to perform analyses is
available on a repository at https:
//github.com/burgelab/WhiteBurge2025-Code.

Funding: This research was funded by a
Research Project Grant from the US NIH
National Eye Institute and Office of Behavioral
and Social Sciences (Grant number
R01-EY028571 to JB; https://www.nei.nih.gov/
and https://obssr.od.nih.gov/) and a Training
Grant from the US NIH National Eye Institute
(Grant number 5T32EY007035-40 to DNW;
https://www.nei.nih.gov/). The funders had no
role in study design, data collection and
analysis, decision to publish, or preparation of
the manuscript.

Competing interests: The authors have
declared that no competing interests exist.

Introduction
An ultimate goal for perception science is to understand and predict how perceptual systems
work in the real world. One approach to achieving this goal is to probe the system with nat-
uralistic stimuli—stimuli that are derived from the natural environment, or bear substan-
tial similarities to them. By examining how stimulus variation characteristic of real-world
scenes affects stereo-depth discrimination, we show that performance patterns are similar
across different humans, and we partition the effects of distinct stimulus and scene factors
on performance—with some surprising results. Further, natural-stimulus variation causes a
high degree of stimulus-by-stimulus consistency across observers, consistency that, in prin-
ciple, could be used to develop and constrain future image-computable models of human
perceptual performance.

There is a long tradition of investigating visual performance in human and animal mod-
els using simple stimuli and simple tasks. Recent years have been marked by the realization
that simple stimuli and tasks may be insufficiently complex to understand how vision works
in the real world. A number of recent efforts have taken steps to make the tasks during which
psychophysical and neurophysiological data are collected more ecologically valid, while using
traditional stimuli (e.g. gratings, Gabors). Some such efforts have, for example, removed the
requirement that animals maintain fixation, allowing them fixate freely on stimuli presented
on a monitor [1]. Here, we use a traditional forced-choice task, and focus effort on probing
perceptual performance with stimuli that are more similar to those encountered in real-world
viewing situations (see Discussion).

The use of natural or naturalistic stimuli, however, poses challenges. With such stimuli, it
is difficult to maintain the rigor and interpretability that has characterized classic research.
One important source of difficulty is the sheer number of factors that inject variability into
natural retinal images. Some of these factors depend on the environment: the textural pat-
terns on surfaces, the 3D structure of those surfaces, and how the objects that own those sur-
faces are arranged in 3D space. Other factors are due to the organism and its relationship to
the environment, including the optical state of the eyes and the posture and movements of
the eyes, head, and body relative to objects in the scene. All of these factors combine to gen-
erate many different retinal images, all of which are associated with a particular value of a dis-
tal property (e.g. depth) of interest. Such natural-stimulus variability—a form of “nuisance
stimulus variability”—impacts neural response [2–4], and is an important reason that estima-
tion and discrimination of behaviorally-relevant latent variables (e.g. depth, size, 3D orienta-
tion) is difficult. In order to perform well, perceptual systems must select for proximal stim-
ulus features that provide information about the latent variable of interest, while generalizing
across (i.e. maintaining invariance to) stimulus variation that is not useful to the task. In nat-
ural viewing, the computations run by the vision system should minimize, to the maximum
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possible extent, the degree to which natural-stimulus variability causes variability in human
estimation and discrimination in each critical task [5–13].

Using binocular disparity as a model system, we report a systematic investigation of how
various forms of natural-stimulus variability impact performance in a depth discrimination
task. To approximate natural-stimulus variation, thousands of stimuli were sourced from a
natural stereo-image database with co-registered laser-based range data at each pixel using
constrained sampling techniques. The sampled stimuli were used to probe human depth-
from-disparity discrimination and to determine distinct properties of natural scenes that
place limits on human performance. With appropriate experimental designs and data-analysis
methods, the natural (random) variation across the uncontrolled aspects of the stimuli in
each condition provides one with the ability to determine the limits that distinct types of
nuisance stimulus variability place on performance.

Two experiments were conducted using the double-pass psychophysical paradigm [13–16].
In contrast to typical 2AFC forced-designs, in which hundreds of responses are collected for
each unique stimulus (or trial), double-pass experiments collect two responses for each of two
presentations of hundreds of unique stimuli (or trials) in each condition. The conditions of
the experiments were defined by different fixation disparities and levels of local-depth vari-
ation. These aspects of the stimuli were parametrically manipulated and tightly controlled.
Other aspects of the stimuli—luminance-contrast patterns and local-depth structure—were
allowed to vary randomly (as they do in natural viewing). We develop new analytical meth-
ods that allow us to infer, from the double-pass data, (i) the relative importance of natural-
stimulus variability and internal noise in limiting performance, and (ii) the specific impact
that distinct sources of natural-stimulus variability—luminance-pattern variability and local-
depth variability—have on performance.

Several key findings emerge. First, we replicate a performance pattern from the classic liter-
ature: discrimination thresholds increase exponentially as targets move farther in depth from
fixation. Second, we show that performance limits are increasingly attributable to stimulus
variability (rather than internal noise) as the stimuli used to probe performance have more
local-depth variability. Third, we show that two distinct types of natural-stimulus variability—
luminance-pattern variation and local-depth variation—have distinct and largely separa-
ble effects on human performance. Fourth, we find that as stimulus variation becomes more
severe, the absolute impact of that stimulus-by-stimulus variation on performance becomes
more severe and also becomes more uniform across human observers.

Materials and methods
Ethics statement
All observers provided informed written consent in accordance with the declaration of
Helsinki. The Institutional Review Board at the University of Pennsylvania approved all pro-
tocols and experiments.

Human observers
All observers had normal or corrected-to-normal acuity. Two of the observers were authors,
and the third was naive to the purpose of the study.

Data and software
Psychophysical experiments were performed in MATLAB 2017a using Psychtoolbox version
3.0.12. Stimulus sampling and data-analyses were also performed in MATLAB 2017a. Data
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are available at https://github.com/burgelab/WhiteBurge2025-Data. Code used to perform
the analyses is available at https://github.com/burgelab/WhiteBurge2025-Code.

Apparatus
Stimuli were presented on a custom-built four-mirror haploscope. The haploscope displays
were two identical VPixx ViewPixx 23.9 inch LED monitors. Displays were 53.3× 30.0 cm in
size, with 1920× 1080 pixel resolution and a native 120 Hz refresh rate. The maximum lumi-
nance of each display was 106 cd/m2. After light loss due to mirror reflections, the effective
luminance was 94 cd/m2. The mean background gray level of the displays was set to 40 cd/m2.
The gamma function was linearized over 8 bits of gray level.

All mirrors in the haploscope were front-surface mirrors, to eliminate secondary reflec-
tions. The mirrors most proximal to the observer were housed in mirror cubes with 2.5 cm
circular viewports. The viewports were positioned 65 mm apart, a typical human interpupil-
lary distance. The openings of the cubes limited the field of view to approximately 16○ of
visual angle.

The optical and vergence distances of the displays were set to 1.0 m. This distance was ver-
ified both by standard binocular sighting techniques and via laser distance measurement. At
this distance, each pixel subtended 1.07 arcmin. A chin and forehead rest stabilized the head
of each observer.

Stimuli
Stereo-image patches (32× 32 pixels each for the left- and right-eye patches) were sam-
pled from 98 large stereo-images (1920× 1080 pixels) of the natural environment with co-
registered laser range data at each pixel [17]. Sampling procedures are described below. Image
patches were presented dichoptically and subtended 1○ of visual angle. The center pixel of
the stereoscopically-specified scene patch was located straight-ahead along the observer’s
cyclopean line of sight and had uncrossed disparity with respect to the display. The patch
was spatially windowed by a raised-cosine function—a Hann window function—having zero
disparity with respect to the display. When viewed binocularly, the patch of scene appeared
in depth behind a fuzzy aperture; the aperture appeared in the depth-plane of the display.
When viewed monocularly, the patch appeared to fade into the mean luminance surround.
Uncrossed fixation disparities (i.e. uncrossed disparity pedestals) were introduced at the
stereo-patch sampling stage by cropping the patch from its source image, assuming that a vir-
tual pair of eyes was fixating a point along the cyclopean line of sight in front of the sampled
scene location (i.e. a virtual fixation error) [18]. The size of the virtual fixation error was set
such that the uncrossed disparity would have the desired value when the stereo-patch was
viewed in the haploscope rig.

Each stereo-image patch in the dataset was labeled by the amount of local-depth variation
in the imaged scene region, as quantified by disparity-contrast. Disparity-contrast is given by
the root-mean-squared difference between the vergence demand of the central corresponding
point and the vergence demands of the points in the local surround

c𝛿 =

¿
ÁÁÁÁÀ

∑
x
(v(x) – v0)2 w(x)

∑
x
w(x)

, (1)
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where v0 is the vergence angle that is required to fixate the 3D-scene point specified by the
center pixels of the left- and right-eye image patches, v(x) is the vergence angle required to
fixate the scene points corresponding to the other pixels in the patch, w is the raised cosine
window function, and x = {x, y} is the spatial location of each pixel. Note that the difference
in vergence demand v(x) – v0 is simply equal to the relative disparity between the center pixel
and the other pixels in the patch. The vergence demand at each point in the patch was com-
puted for an observer viewing the stimulus at the viewing distance and direction set by the
experimental rig (i.e. 1 meter away, straight-ahead). Note that that v0 is identical for all stim-
uli having the same nominal disparity, but that the differences in vergence demand v(x) – v0

(i.e. the pattern of relative disparity) is unique to each stimulus.
Each stereo-image patch was contrast fixed to the median root-mean-squared (RMS)

contrast (i.e. crms = 0.3) in the natural-stimulus dataset. RMS contrast is given by

crms =

¿
ÁÁÁÁÁÀ

∑
x
(cL2(x) + cR2(x)) w(x)

∑
x
w(x)

, (2)

where cL and cR are the left- and right-eye Weber contrast image patches, w is the window
function, and x = {x, y} is the location of a given image pixel.

Stimulus sampling Left- and right-eye image patches were sampled from a natural image
database with pixel-wise co-registered range data [17]. Because the stereo-photographs were
of natural scenes, each local patch was characterized by a different luminance pattern and
by some amount of local-depth variability. Corresponding points in the image were deter-
mined directly from the range data (see [18]). Sampled patches were then cropped such that
each resulting stimulus patch had specified fixation disparities (i.e. pedestal disparities) rela-
tive to the corresponding point (see Stimuli above). Patches were screened to ensure that the
disparity variability within the central 1/8○ (≈ 4 pixel diameter) region of each patch equaled
the nominal fixation disparity within a tight tolerance (see below). Note that because depth
varies naturally across any given patch, this central region was the only region of the patch
that was guaranteed to equal the nominal fixation disparity. Because we were interested in
the effect of disparity-contrast on performance, we sampled patches whose disparity-contrast,
when viewed in the experimental rig, fell into a “low” range (0.025–0.117 arcmin) or a “high”
range (0.393–1.375 arcmin). We report performance below for patches having each disparity-
contrast separately. To ensure that each stereo-image patch was unique, patches were not
allowed to overlap radially in their source images by more than 10 pixels; this level of overlap
was rare.

If the viewing geometry (i.e. distance and direction) of stimulus presentation in an exper-
imental rig does not match the viewing geometry during stereo-image patch sampling, the
stereo-specified 3D structure of presented stimulus will be distorted relative to the geometry
of the original scene [19]. Stereo-image patches were sampled from all distances and direc-
tions, but presented patches at a fixed distance and direction (i.e. one meter away, straight-
ahead). Hence, the stereo-specified depth structure during presentation was distorted from
that in the original 3D scene. It is possible to prevent these distortions, but only at the cost of
distorting the left- and right-eye luminance images. We opted to preserve luminance struc-
ture rather than the details of the stereo-specified 3D geometry of the original natural scene.
Throughout the article, the disparity-contrast values that are used to characterize the stereo-
specified depth variation in each stereo-image patch were set by each patch as it was viewed
by the participants in the experimental rig.
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Stimulus vetting Before being included in the experimental stimulus set, stereo-image
patches underwent a vetting procedure. The vetting procedure had two primary aims.

The first, most fundamental aim was to ensure accurate co-registration between the lumi-
nance and range information in the half-images of each patch. Accurate co-registration was
critical for all aspects of the experiment, because the values of the independent variables (i.e.
disparity and disparity-contrast) are determined directly from the range data. Although inac-
curate co-registration was rare, it was present in a non-negligible proportion of patches. In
such cases, the luminance data that observers would have used to estimate disparity would
have been inconsistent with the range data used by the experimenters to compute the nomi-
nal ground truth disparity. Hence, failing to identify and exclude poorly co-registered patches
would mar the accuracy of the results. Potential stereo-image patches were manually vetted
by viewing each patch in the experimental rig with onscreen disparities that were nominally
uncrossed, zero, or crossed with respect to the screen. Patches that did not pass scrutiny (i.e.
that had the wrong depth relationship relative to the screen) were discarded from the pool.
The manual vetting procedure was conducted until thousands of unique stimulus patches
without co-registration problems were obtained.

The second aim of the vetting procedure—which was enforced programmatically—was
to ensure that the center of each stereo-image patch was a coherent target for depth esti-
mation (see above). We required that the most central region of each patch contained nei-
ther a substantial change in disparity (i.e. a disparity-contrast greater than 20 arcsec), or a
half-occluded region. Pixels containing half-occluded regions were allowed outside of the
most central region. Because regions that are half-occluded have undefined disparity, stim-
uli including a half-occluded region have undefined disparity-contrast. For patches contain-
ing half-occlusions, disparity-contrast was computed by excluding pixels corresponding to
half-occluded regions of the scene from the calculation. We did not exclude stimuli with
half-occlusions from the dataset because they occur commonly in natural viewing [18].

Stimulus flattening From the sampled set of natural stereo-image patches—which con-
tain both natural luminance-pattern variation and natural-depth variation—we also created
a “flattened”—but otherwise matched—dataset of stereo-image patches. To convert patches
with natural-depth structure into patches with flat depth structure, either the left- or right-
eye half-image patch (chosen randomly) was replaced by a duplicate of the remaining right-
or left-eye half-image patch. This procedure ensured that there is essentially zero-disparity
variation across the patch, such that the disparity pattern specifies a fronto-parallel plane.

Procedure
Stimuli were presented at the center of a fixation crosshairs. The crosshairs were positioned
in the center of a circular, 4○ diameter, mean-luminance gray area. The circular area was sur-
rounded by a mean-luminance 1/f noise field. The crosshairs consisted of a 2○ diameter circle
punctuated by hairs jutting outwards at the cardinal and diagonal directions. Hairs were 1○ in
length and 4.2 arcmin in thickness.

Stimuli were presented using a two-interval forced choice (2IFC) procedure. Each inter-
val had a duration of 250 ms. The inter-stimulus interval was also 250 ms. In one interval of
each trial, a stimulus with a standard disparity was presented. In the other interval, a stimulus
with a comparison disparity was presented. The order in which the standard or comparison
stimulus was presented was randomized. All stimuli (standards and comparisons) were always
unique across all intervals and trials of an experiment, having been sampled from different
locations and scenes across the source image set.
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The task was to report, with a key press, whether the stimulus in the second interval
appeared to be nearer or farther than the stimulus in the first interval. Feedback was provided
after each response: a high frequency tone indicated a correct response; a low frequency tone
indicated an incorrect response.

Psychometric data were collected in a fully-crossed design with disparity pedestal
and disparity-contrast as the independent variables. For each combination of dispar-
ity pedestal and disparity-contrast, the method of constant stimuli was used for stim-
ulus presentation. Disparity pedestals were defined by one of five standard disparities:
𝛿std = [–11.25, –9.38, –7.5, –5.63, –3.75] arcmin. Five equally spaced comparison dis-
parities were paired with each standard. Disparity-contrast levels were defined as 𝛿C =
[0.025—0.117, 0.393—1.375] arcmin, which were labeled “low” and “high” disparity-
contrasts respectively. Stimuli in the low disparity-contrast conditions were just-noticeably
non-flat to observers. Stimuli in the high disparity-contrast conditions appeared quite notice-
ably non-uniform in depth. The high disparity-contrast condition contained stimuli that were
easily fusible in most cases.

The disparity-contrast levels and the comparison disparities in each condition were chosen
based on pilot data. Comparison disparities were chosen so that data points on the psychome-
tric function ranged from 10% to 90% in the low disparity-contrast condition. Data points at
0% and 100% provide no useful information for estimating decision variable correlation (see
“Partitioning the variability of the decision variable” section). Before collecting the data, each
observer completed practice sessions to ensure that discrimination performance was stable.

To simulate the stimulus variability that occurs in natural-viewing conditions, a
unique natural stereo-image patch was presented on each interval of each trial. This fea-
ture of the experimental design represents a departure from more standard experimen-
tal designs, in which either the same stimulus is presented many times each or stimulus
differences (e.g. different random dot stereograms) are considered unimportant and not
analyzed.

Experiments were conducted using a double-pass experimental paradigm. In double-pass
experiments, observers respond to the exact same set of unique trials two times each. Double-
pass experiments enable one to determine the relative importance of factors that are repeat-
able across trials (e.g. external stimulus variation), and factors that vary randomly across trials
(e.g. internal noise).

Two double-pass experiments were conducted. In one, all stimuli had natural-depth varia-
tion. In the other, all stimuli were “flattened” (see “Stimulus flattening” section). Importantly,
both double-pass experiments used the same scene-locations (and hence, near-identical lumi-
nance contrast patterns). This design feature allowed us to examine the relative importance of
luminance-pattern-driven variability and disparity-contrast-driven variability in the decision
variable (see “Partitioning the externally-driven component of the decision variable” section).

Over the course of each double-pass experiment, 10,000 unique stimuli were presented
in 5000 unique trials of each double-pass experiment. Five-hundred trials were collected in
each of ten conditions (5 standard disparities ×2 disparity-contrasts). Data were collected
in 100-trial blocks (i.e. twenty repeats per comparison disparity level per block). The order
in which the blocks were run was randomized and counterbalanced across conditions. Two
double-pass experiments were conducted, for a total of 20,000 trials per observer.

Psychometric fitting
Cumulative Gaussian functions were fit to the psychometric data in each condition using
maximum-likelihood methods. Discrimination thresholds were calculated from the fitted
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functions. The relationship between the sensitivity index d′ (i.e. d-prime) and percent the
comparison chosen PC in a two-interval two-alternative forced-choice experiment is given by

PC =Φ( d′√
2
) , (3)

where Φ is the cumulative normal function, with d′ given by

d′ = Δ𝛿𝜎T
, (4)

where Δ𝛿 = 𝛿cmp – 𝛿std is the difference between the comparison and standard disparities
(i.e. the mean value of the decision variable), and 𝜎2

T is the variance of the underlying deci-
sion variable. (In accordance with standard practices, we assume that decision variable vari-
ance is constant for all comparison-disparity levels at a given standard-disparity level—that is,
pedestal disparity. The psychometric data are consistent with this assumption.)

The discrimination threshold T is set by choosing a criterion d-prime that defines the just-
noticeable difference. In a two-interval, two-alternative forced-choice (2AFC) experiment,
threshold is given by

T =
√
𝜎2
T d′crit, (5)

where d′crit is the criterion d-prime. For computational simplicity, we assume a criterion d-
prime of 1.0 such that threshold level performance corresponds to the 76% point on the psy-
chometric function. Thresholds are thus given by the change in the disparity required to go
from the 50% to the 76% points on the psychometric function.

Discrimination thresholds were computed from data across both passes of the experiment.
When fitting psychometric data across one or both double-pass experiments (see below),
thresholds were constrained to change log-linearly across disparity pedestals. Under this con-
straint, discrimination thresholds in the conditions of a double-pass experiment associated
with a given disparity-contrast are specified by

T = 𝜎T = exp(m𝛿std + b), (6)

where 𝛿std is the standard pedestal disparity, m and b are the slope and y-intercept of the line
characterizing the log-thresholds. This constraint is consistent with the predictions of norma-
tive models of disparity discrimination with natural stimuli previously reported patterns in
psychophysical data [20] and with the log-linear patterns in the current threshold data (see
“Experiment 1” and “Experiment 2” subsections of the Results section below). The maximum-
likelihood estimates of the parameters defining threshold under the constraint were fit across
all conditions having a given disparity-contrast. They are given by

m̂, b̂ = arg max
m, b

∑
s
Ls([exp(m𝛿(s)std + b)]

2), (7)

where Ls is the likelihood of the raw response data in the sth condition, under the assump-
tion that percent correct is governed by a cumulative normal function with mean parameter
equal to the sth disparity pedestal 𝛿(s)std and variance parameter equal to [exp(m𝛿(s)std + b)]2.
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Finally, the variance of decision variable at each pedestal disparity was obtained by plugging
these estimated parameters into Eq (6).

Modeling the decision variable
The decision variable can be modeled as a difference between disparity estimates from the
stimuli presented on each trial

D = ̂𝛿cmp – ̂𝛿std, (8)

where ̂𝛿std is the estimate from the stimulus with the standard disparity and ̂𝛿cmp is the esti-
mate from the stimulus with the comparison stimulus. In accordance with signal detection
theory, if the value of the decision variable is greater than zero (and if the observer sets the
criterion at zero), the observer will select the stimulus with the comparison disparity. If the
decision variable is less than zero, the observer will select the stimulus with the standard
disparity.

The decision variable can be more granularly modeled as the sum of two independent ran-
dom variables. The first random variable accounts for stimulus-driven variability (i.e. variance
that is due to nuisance stimulus variability), and has its value set by the particular stimulus (or
stimuli) that are presented on a given trial. The second random variable accounts for inter-
nal noise, and has its value set randomly on each trial. In a double-pass experiment, across
the two presentations of a particular unique trial in a double-pass experiment (i.e. the pre-
sentation in the first pass and the presentation in the second pass), the value of the decision
variables are given by

D1 =V +W1,
D2 =V +W2,

(9)

where V is stimulus-driven contribution to the decision variable, W is a sample of inter-
nal noise, and the subscripts index on which pass the trial was presented. Across the two
passes of the double-pass experiment, the decision variables can be described as a single
two-dimensional random variable D = [D1,D2]⊺.

The stimulus-driven component of the decision variable on a single pass of the experiment
V∼N (𝛿cmp – 𝛿std, 𝜎2

E) is modeled as unbiased and normally distributed with stimulus-driven
variance 𝜎2

E. The noise-driven component of the decision variable W∼N (0,𝜎2
I ) is modeled

as zero-mean and normally distributed with variance 𝜎2
I . If the external (i.e. stimulus-driven)

and internal (i.e. noise-driven) components of the decision variable are independent, as we
assume they are here, the total variance of the decision variable on a given pass is given by the
sum of the internal and external components

𝜎2
T = 𝜎2

E + 𝜎2
I . (10)

Decision-variable correlation
The correlation of the decision variable across passes is given by the fraction of the total
variance that is accounted for by external (i.e. stimulus-driven) factors, the factors that are
repeated across passes. Hence, decision-variable correlation is given by

𝜌 = 𝜎
2
E

𝜎2
T
= 𝜎2

E

𝜎2
E + 𝜎2

I
, (11)
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where 𝜎2
E is the component of the decision-variable variance accounted for by external (i.e.

stimulus-driven) factors and 𝜎2
I is the component of the decision-variable variance accounted

for by internal factors (i.e. noise). (Note that decision variable correlation Eq (11) should not
be confused with variance accounted for (R2), a statistic that is often computed in regression
analyses.) In order to partition stimulus- and internally-driven sources of variability, we com-
bine estimates of decision-variable correlation and discrimination thresholds (see below).
Decision-variable correlation is an integral factor in determining the repeatability of observer
responses across passes of a double-pass experiment.

Estimating decision-variable correlation Decision-variable correlation was estimated via
maximum likelihood from the pattern of observer response agreement between passes. The
log-likelihood of n-pass response data, under the model of the decision variable, is

Ln(𝜃𝜃𝜃) =∑
j
Nj logLj

n(𝜃𝜃𝜃), (12)

where 𝜃𝜃𝜃 represents the parameter(s) to be estimated, j is a specific pattern of response,
Nj represents the number of times a specific pattern of response was measured. For a
double-pass experiment (n = 2), the set of response patterns are given by the combina-
tion of all possible combinations of responses for each pass. The number of patterns of
binary responses is N = 2n. For 2IFC experiment, N = 22 = 4, with patterns of responses j∈
{[–, –], [–,+], [+, –], [+,+]}. Here, we use + to indicate that the comparison was chosen and
– indicates the comparison was not chosen.

We model the joint decision variable as a vector drawn from a multivariate normal distri-
bution D∼N (x;m,Σ) with a mean vector m and covariance matrix Σ. The likelihood of a
particular pattern of response is given by

Lj
2(𝜃𝜃𝜃) = ∫

sj(c1 ,c2)

N (x;m,Σ) d𝜇(x), (13)

where integration is in respect to probability measure 𝜇 and sj is a subset of the support S.
Here, sj defines the integration limits for a specific pattern of response j and is a function of
the decision criterion on each pass c∈ {c1, c2}. Specifically, the integration limits for each
dimension/pass are determined by the values of response pattern. For a response ri at pass i,
where the comparison is not chosen (ri = –), P(Di < ci) and the integration limits are [–∞, ci].
Likewise, for comparison chosen (ri = +), P(Di ≥ ci) with integration limits [ci,∞].

It is computationally convenient to estimate decision-variable correlation with a normal-
ized joint decision variable Dz = [Dz

1,Dz
2]⊺ such that it has unit variance on each pass. Normal-

izing the joint decision variable sets the normalized means equal to d′. Normalizing the joint
decision variable also confers a practical advantage in converting the covariance matrix into a
correlation matrix so that it can be fully characterized by decision-variable correlation.

The normalized mean vector and normalized covariance (i.e. correlation) matrix associ-
ated with the normalized joint decision variable are given by mz =Mm, and Σz =MΣM, where
the superscript z indicates a normalized parameter, and Σz is the correlation matrix (i.e. the
covariance matrix of the normalized joint decision variable). The normalizing matrix is given
by M = diag( 1

𝜎𝜎𝜎T
), where 𝜎𝜎𝜎T is a vector of the standard deviation of the joint decision vari-

able D in each pass, and where the diag(⋅) function converts a vector into a matrix with the
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vector-values on the diagonal. The correlation matrix is given by

Σz = [1 𝜌
𝜌 1

] . (14)

Substituting parameters associated with the normalized decision variable into equations,
yields mathematically equivalent expressions of the likelihoods:

Lj
2(𝜃𝜃𝜃) = ∫

sj(cz1 ,c
z
2)

N (xz;mz,Σz) d𝜇(xz). (15)

We also assume that the criteria associated with the normalized decision variable on all
passes equals zero, which is justified by the data and by the two-interval, two-alternative
forced choice design. In the general case, when this assumption is not made, the decision cri-
teria should also be normalized—that is, the normalized criteria are given by cz =Mc. Thus,
when analyzing double-pass experimental data under the indicated assumptions, decision
variable correlation 𝜃𝜃𝜃 = 𝜌 is the only parameter that needs to be estimated. Specifically, the
maximum-likelihood estimate of decision variable correlation is given by

̂𝜌 = arg max
𝜌

∑
j
Nj logLj

2(𝜌), (16)

where Np ∈ {N––, N–+, N+–, N++} is the number of each type of response agreement or dis-
agreement, and Lp ∈ {L––, L–+, L+–, L++} is the likelihood of the data given an underlying
decision variable distribution specified by the decision variable correlation. The likelihoods
are given by

L––
2 =

cz1

∫
–∞

cz2

∫
–∞
N (xz;mz,Σz) d𝜇(x1, x2),

L–+
2 =

cz1

∫
–∞

∞

∫
cz2

N (xz;mz,Σz) d𝜇(x1, x2),

L+–2 =
∞

∫
cz1

cz2

∫
–∞
N (xz;mz,Σz) d𝜇(x1, x2),

L++2 =
∞

∫
cz1

∞

∫
cz2

N (xz;mz,Σz) d𝜇(x2, x2).

(17)

The decision-variable correlation analyses presented in this work were computed under
the assumption that the means were equivalent and criteria were zero. Under these assump-
tions, the two likelihoods of response disagreements are equal (L–+

2 =L+–2 ), thus simplifying
the computation of Eq (17). However, we first verified that these assumptions were reasonable
for the current dataset.

Determining the variances of the decision-variable components With an estimate of
the total variance of the decision variable and an estimate of decision-variable correlation, one
can estimate the variances of the externally- and internally-driven components of the decision
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variable. Plugging Eq (5) into Eq (11) and rearranging yields an estimate of the variance the
externally-driven component of the decision variable

̂𝜎2
E = ̂𝜌 ̂𝜎2

T. (18)

Plugging this estimate into Eq (10) and rearranging gives an expression for the internally-
driven component of the decision variable

̂𝜎2
I = ̂𝜎2

T – ̂𝜎2
E. (19)

This series of analytical steps was performed for the two double-pass experiments that were
conducted: one with natural and one with flattened local-depth variation.

Partitioning the externally-driven component of the decision variable
To estimate the contributions of luminance-pattern- and local-depth-driven (i.e. disparity-
contrast-driven) variability to the decision variable, performance was compared across the
stimulus sets with natural and flattened local-depth variation. Recall that the flattened stim-
ulus set effectively eliminates local-depth variability from the natural-stimulus set—because
the disparity pattern in each flattened stimulus specifies a fronto-parallel plane—while leaving
luminance-contrast patterns essentially unaffected. Hence, because the luminance-pattern-
driven component should be essentially the same in both stimulus sets, and because the
local-depth-driven component is eliminated in one of the two stimulus sets, an appropriate
comparison should reveal the impact of each factor.

To compare performance across the flattened and natural-stimulus sets, we simultaneously
analyzed all data from both double-pass experiments using a quasi-quadruple-pass analysis
(see below).

Expanded decision variables and correlations Before explaining in detail how to esti-
mate the contribution of two distinct stimulus-driven factors it is necessary to show how the
decision variable depends on these factors in each of the two double-pass experiments. The
decision variables in the experiments with flattened and natural-stimuli are given, respec-
tively, by

V† =L, (20)
V∗ =L + B, (21)

where L and B denote the the luminance-pattern- and local-depth-driven components of
the decision variable, respectively, and † and * indicate, respectively, whether the decision
variable corresponds to stimuli that have been flattened (2nd double-pass experiment) or
have natural-depth profiles (1st double-pass experiment). (Note that, for the simplicity of
mathematical development, we present the equations here in the Methods section in the
opposite order from which the experiments were conducted and presented in the Results
section).

Plugging these expanded forms for the externally-driven component of the decision vari-
able into Eq (9) yields expanded expressions for the decision variables in each of the two

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1012945 April 15, 2025 12/ 42

https://doi.org/10.1371/journal.pcbi.1012945


ID: pcbi.1012945 — 2025/5/14 — page 13 — #13

PLOS COMPUTATIONAL BIOLOGY How natural image variability limits human stereopsis

double-pass experiments

D† =

V†
³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ
(L )+W†,

D∗ =(L + B)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

V∗

+W∗.
(22)

Clearly, the presence or absence of the local-depth-driven component of the decision vari-
able was the only component that differed across the two double-pass
experiments.

Decision-variable correlations across passes in the flattened and natural double-pass exper-
iments, in terms of these new variables, are given by

𝜌†† =
𝜎2
E†
𝜎2
T†
= 𝜎2

L

𝜎2
L + 𝜎2

I†
,

𝜌∗∗ =
𝜎2
E∗

𝜎2
T∗
= 𝜎2

L + 𝜎2
B + 2cov[L,B]

𝜎2
L + 𝜎2

B + 2cov[L,B] + 𝜎2
I∗

,
(23)

where 𝜎2
T† and 𝜎2

T∗ are variabilities of the decision variable, where 𝜎2
L and 𝜎2

B are the
luminance-pattern and local-depth-driven contributions to response variability, 𝜎2

I† is the
internal noise when only luminance-pattern-driven variability is present, 𝜎2

I∗ is the inter-
nal noise when both luminance-pattern- and local-depth-driven variability is present, †
indicates comparisons across between passes in the double-pass experiment with flattened-
depth profiles (i.e. the second double-pass experiment), and ** indicates comparisons across
passes in the double-pass experiment with natural-depth profiles (i.e. the first double-pass
experiment). Clearly, there are five unknowns—𝜎2

L, 𝜎2
B, cov[L,B], 𝜎2

I† , and 𝜎
2
I∗—and, includ-

ing the threshold equations from each of the two double-pass experiments (see Eqs (5)
and (10)), but only four equations. However, by computing decision-variable correlation
between passes across each of the two double-pass experiments, a fifth equation is obtained.
Specifically,

𝜌†∗ =
𝜎2
L + cov[L,B]
𝜎T†𝜎T∗

= 𝜎2
L + cov[L,B]

√
(𝜎2

L + 𝜎2
I†)
√
(𝜎2

L + 𝜎2
B + 2cov[L,B] + 𝜎2

I∗)
, (24)

where †* indicates the cross-double-pass-experiment comparisons. Now, with five equations
and five unknowns, the equations can be solved.

Estimating decision-variable correlation with expanded decision variables A novel
quasi-quadruple-pass analysis was used to simultaneously estimate 𝜌††, 𝜌∗∗, and 𝜌†∗, the
decision-variable correlations across all four passes of the two double-pass experiments. The
quasi-quadruple pass analysis is distinguished from an “ordinary” quadruple-pass analysis
because, in an ordinary analysis, the trials on all four passes are identical. Here, only some
of the four passes have trials with identical stimuli (e.g. the flattened stimuli were similar but
not identical to the stimuli with natural depth variation). The quasi-quadruple pass analysis
allows the three distinct decision variable correlations to take on different values. An ordinary
analysis does not allow this flexibility.
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For a quadruple-pass (whether quasi or not), the likelihood function takes the form
Ln(𝜃𝜃𝜃) =∑jNj logLj

n(𝜃𝜃𝜃) from Eq (12) above, but across sixteen response patterns

j∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[+ + ++],
[+ + +–], [+ + –+], [+ – ++], [– + ++],
[+ + ––], [+ – +–], [+ – –+], [– + +–], [– + –+], [– – ++],
[– – –+], [– – +–], [– + ––], [+ – ––],
[– – ––]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

The individual likelihoods for these response patterns are extended from Eq (15), such that

Lj
4(𝜃𝜃𝜃) = ∫

sj(cz1 ,c
z
2 ,c

z
3 ,c

z
4)

N (xz;mz,Σz) d𝜇(xz), (25)

with integration limits sj as described in the text proceeding Eq (13). As an example, the likeli-
hood that a particular decision variable distribution (and set of criteria) gave rise to responses
that agreed on all four passes is given by

L++++4 (𝜃𝜃𝜃) =
∞

∫
cz1

∞

∫
cz2

∞

∫
cz3

∞

∫
cz4

N (xz;mz,Σz) d𝜇(xz1, xz2, xz3, xz4). (26)

(We note that builtin MATLAB routines for computing an arbitrary integral of a four-
dimensional normal distribution are slow and unreliable. Our code release made use of pub-
licly available MATLAB code written for this purpose [21].)

Just as with the double-pass analysis described above, it is convenient to normalize the
joint decision variable D in quadruple-pass analyses via application of a normalization matrix
M = diag( 1

𝜎𝜎𝜎T
). In a quasi-quadruple-pass analysis, the vector 𝜎𝜎𝜎T of standard deviations is

given by

𝜎𝜎𝜎T =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜎T†√𝜎T†𝜎T∗√𝜎T∗𝜎T†
𝜎T∗

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (27)

which results in correlation matrix

Σz =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 𝜌†† 𝜌†∗ 𝜌†∗
𝜌†† 1 𝜌†∗ 𝜌†∗
𝜌†∗ 𝜌†∗ 1 𝜌∗∗
𝜌†∗ 𝜌†∗ 𝜌∗∗ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (28)

With estimates i) of the total variance of the decision variables from the two double-pass
experiments (i.e. 𝜎2

T∗ and 𝜎2
T†) which are obtained from the thresholds, and ii) of the three

decision-variable correlations between passes within and across the two double-pass experi-
ments (i.e. 𝜌††, 𝜌∗∗, and 𝜌†∗ ), the values of the five unknown parameters can be determined.
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Estimates of decision-variable correlation are obtained by maximizing the likelihood of the
data under the model. Specifically,

̂𝜌††, ̂𝜌†∗, ̂𝜌∗∗ = arg max
𝜌†† , 𝜌†∗ , 𝜌∗∗

∑
j
Nj logLj

4(𝜌††, 𝜌†∗, 𝜌∗∗). (29)

We show in the next section how to solve for the contributions of the two distinct natural
stimulus-driven factors—i.e. L and B—to the variance of the decision variable.

Determining the variability of the stimulus-driven components We modeled natural-
stimulus variability as being due to two distinct factors: luminance-pattern variability L and
local-depth-variability B (see Eq. (22)). To obtain maximum-likelihood estimates of the vari-
ance of the luminance-pattern-driven component of the decision variable ̂𝜎2

L, the variance
of the local-depth-driven component ̂𝜎2

B, and the covariance between these two components
̂cov[L,B], from the maximum-likelihood estimates of the three decision-variable correlations

(see Eq (29)), we rearranged Eqs (23) and (24) for the variables in question. Specifically,

̂𝜎2
L = ̂𝜌†† ̂𝜎2

T† , (30)

̂cov[L,B] = ̂𝜌†∗ ̂𝜎T† ̂𝜎T∗ – ̂𝜎2
L, (31)

̂𝜎2
B = ̂𝜌∗∗ ̂𝜎2

T∗ – ̂𝜎2
L – 2 ̂cov[L,B]. (32)

The maximum likelihood estimates indicated in Eqs (30) and (32) are plotted in the main
text (see subsection “Partitioning the variability of the decision variable” of the Results section
below). The maximum-likelihood estimate of the covariance between the two components
(31) tended towards zero, and can safely be ignored.

Fitting constraints Model parameters were fit via the quasi-quadruple-pass analysis
under a pair of constraints. The first constraint was that the disparity-discrimination thresh-
olds used in normalization matrix M (see Eq (27)) were set to values obtained from linearly
constrained threshold fits (see Eq (7)). The second constraint was that the scaled covariance
(i.e. correlation) between the luminance-driven and local-depth-driven components of the
decision variable was constrained to lie between -1 and 1. In particular,

–1 < cov[L,B]
𝜎L𝜎B

< 1, (33)

where the scaling factor is given by the product of the standard deviations of the two
stimulus-driven components. Given that most estimates of the interaction term were near
zero, we re-fit the model with the more stringent constraint that this interaction term equaled
zero. Eqs (23) and (24) make clear that setting the interaction term equal to zero forces the
different decision-variable correlations to have more constrained values with respect to one
another than they would be constrained to have otherwise. The log-likelihoods of the models
with their best-fit parameters were essentially identical, regardless of whether the interaction
term was set equal to zero or not. Non-zero values of the interaction term thus carried little
explanatory value.

Between-observers decision-variable correlation
To derive an expression for between-observers decision-variable correlation, the stimulus-
driven component of the decision variable is assumed to be the sum of two independent ran-
dom variables. (Note that this expansion of the stimulus-driven component is not inconsistent
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with the expansion used in Eq (21) above.) One is a stimulus-driven component that is shared
across observers, the other is a stimulus-driven component that is private to each observer.
Specifically,

D1 =

V1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(S1 + P1)+W1,

D2 =(S2 + P2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

V2

+W2,
(34)

where S1 and S2 are stimulus-driven components that are identically driven by the stimulus
across observers (i.e. the components are proportional S1 ∝ S2, or identical up to a scale factor
S1 = aS2), P1 and P2 are the stimulus-driven components that are private to (i.e. uncorrelated
between) each observer, and W1 and W2 are the respective noise-driven components (see Eq
(9)). The total variance of the stimulus-driven component of the decision variable Vi in each
subject i is given by 𝜎2

Ei = 𝜎2
Si + 𝜎2

Pi, the sum of the variances in the shared and private com-
ponents. (Note the overloaded subscripts notation. Here, i subscripts denote different sub-
jects. Earlier, i subscripts denoted different passes through the experiment.) Between-subjects
decision-variable correlation is given by

𝜌12 =
cov[S1, S2]√
𝜎2
T1𝜎2

T2

, (35)

where 𝜎2
T1 and 𝜎2

T2 are the total variance of the decision variables in each observer. Of course,
these variances include the effects of internal noise. To eliminate the impact of internal noise
in the two observers, one can divide through by the square-roots of the within-observer
decision-variable correlations to obtain the partial correlation

𝜌12⋅W =
𝜌12√𝜌11𝜌22

= cov[S1, S2]√
𝜎2
E1𝜎2

E2

, (36)

where 𝜎2
E1 and 𝜎2

E2 are the variances of the stimulus-driven component of the decision vari-
able for each observer, and 𝜌11 and 𝜌22 are the within-observer decision-variable correlations
for each observer. This partial correlation 𝜌12⋅W specifies the degree to which the stimulus-
driven components in two different observers are correlated with each other. High levels of
this partial correlation indicate that stimulus-driven components of the two observer are
highly similar.

Estimating between-observers correlations Estimation of between-observers decision-
variable correlation within a given experiment also used the quasi-quadruple pass analysis
introduced above, with a few small but important differences. The vector of standard devia-
tions that determined the normalizing matrix is given by

𝜎𝜎𝜎T =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜎T1√𝜎T1𝜎T2√𝜎T2𝜎T1

𝜎T2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (37)
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where subscripts 1 and 2 indicate observer identity, rather than the experiment number. The
resulting correlation matrix is given by

ΣzΣzΣz =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 𝜌11 𝜌12 𝜌12

𝜌11 1 𝜌12 𝜌12

𝜌12 𝜌12 1 𝜌22

𝜌12 𝜌12 𝜌22 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (38)

where 𝜌12 is the between-observer decision variable correlation, and 𝜌11 and 𝜌22 are the
within-observer decision variable correlations. The maximum likelihood estimates of these
parameters was given by

̂𝜌11, ̂𝜌12, ̂𝜌22 = arg max
𝜌11 , 𝜌12 , 𝜌22

∑
j
Nj logLj

4(𝜌11, 𝜌12, 𝜌21). (39)

In each of the two experiments, all three unique pairings of observers per experiment were
analyzed, so that three between-observers decision variable correlations were estimated for
each condition of each experiment.

Between-observer fitting constraints Constraints for quasi-quadruple between-
observers analysis were similar to those for within-observer analysis. First, disparity-
discrimination thresholds used in normalization matrix M (see Eq (37)) were set to values
obtained from linearly constrained threshold fits (see Eq (7)). Second, the scaled partial cor-
relation 𝜌12⋅W between the luminance-driven and local-depth-driven components of the
decision variable was constrained to lie between -1 and 1. In particular,

–1 < cov[S1,S2]
𝜎E1𝜎E2

< 1. (40)

Spatial integration
Throughout the article, we defined the disparity of the patch to be the disparity associated
with the central pixel. But there is no guarantee that human observers base their responses on
the central pixel alone. It is possible–perhaps, likely–that observers based their responses on
the average disparity within some spatial-integration region.

We examined whether the decision-variable correlations that we observed might be due,
at least in part, to observers basing their responses on the average disparity within a fixed
area, rather than on the disparity at the central pixel. We computed a new decision variable,
trial-by-trial, for each of several spatial-integration areas and tested whether it provides an
improved ability to account for the decision-variable correlations. We computed each new
decision variable as

Da =
∑
x
(𝛿cmp(x) – 𝛿std(x)) wi(x)

∑
x
wi(x)

, (41)

where the window w defines the area of spatial integration. We computed alternative deci-
sion variables for pillbox-shaped windows having diameters ranging from a 7.5 arcmin diam-
eter up to a 1 degree (4 to 32 pixel) diameter. The sign of the decision variable predicts the
binary response. The ability of each newly computed decision variable to predict the human
responses was then assessed via logistic regression.
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To setup the logistic regression model, the decision variables were used as the regressor for
the human binary responses. For each window-size, a single random effects model was used,
conditioned by disparity pedestal, disparity-contrast, and observer. The coefficient of deter-
mination (R2) was used to assess explanatory power of a given window size, and the Akaike
information criterion (AIC) was used to compare models and their significance.

We also evaluated three alternative models to determine whether they could better account
for the data. These models differed from the spatial-integration model described above by
their decision variables, which were defined as

Da = ̃𝛿cmp – ̃𝛿std, (42)

where ̃𝛿cmp and ̃𝛿std represent heuristics of disparity for the comparison and standard stim-
ulus patch respectively. Each model used a different heuristic: the largest near disparity, the
largest far disparity, or the maximally deviant disparity in each patch.

Results
Three observers collected 20,000 trials each across two double-pass experiments, with the
aim of determining how different types of natural stimulus variability—namely, variation in
luminance-contrast patterns and variation in local-depth variation—limit sensory-perceptual
performance in a depth-from-disparity discrimination task. Comparing performance between
two appropriately designed double-pass experiments enables one to dissect the limits placed
on performance by distinct types of stimulus-driven uncertainty versus the limits imposed by
noise.

In each of the two double-pass experiments, psychometric data were collected with
stimuli sampled from scene locations with two different levels of local-depth variability.
There were ten conditions total in each experiment—five fixation disparities 𝛿std (i.e. dis-
parity pedestals) at [–11.25, –9.38, –7.5, –5.63, –3.75] arcmin crossed with the two lev-
els of local-depth variability 𝛿C (i.e. disparity-contrast; see Methods) that ranged between
[0.025—0.117, 0.393—1.375] arcmin. In the first double-pass experiment, all stimuli con-
tained natural luminance-pattern variation and natural local-depth variation. In the sec-
ond double-pass experiment, “flattened” versions of the stimuli from the first experiment
were used such that local-depth variation was eliminated while leaving luminance patterns
essentially unaffected (see Fig 1B and 1C).

To obtain the stimuli for the experiments, thousands of stereo-image patches were sampled
from a published dataset of stereo-photographs of the natural environment with co-registered
laser-based distance measurements at each pixel [17]. Corresponding points were calculated
directly from the distance data; a subset of corresponding points is shown in one example
stereo-image (Fig 1D). Stereo-image patches with zero disparity were sampled such that the
central pixels of each half-image were corresponding points associated with a given scene
point along a virtual cyclopean line of sight (Fig 1E). Stereo-image patches with non-zero dis-
parity were obtained by introducing the required amount of uncrossed disparity at the central
pixel [18]. To quantify local-depth variability (i.e. disparity-contrast), ground-truth dispari-
ties were computed at each pixel directly from the distance measurements. The routines upon
which the sampling procedures were built were accurate to within ±5 arcsec [18]. Hence,
sampling errors are smaller than human stereo-detection thresholds for all but the very most
sensitive conditions [20,22].

Stimuli were presented using a two-interval, two-alternative forced choice (2AFC) design
(Fig 2A). The task was to indicate, with a key-press, which of two natural stereo-image patches
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Fig 1. Sources of uncertainty in stereo-depth perception, stereo-image database, and experimental stimuli. (A) The total variance of the decision variable—
the variable that signal-detection-theory posits that perceptual decisions are made on the basis of—is contributed to by at least two distinct sources of uncertainty:
external (e.g. stimulus-driven) variability 𝜎2

E and internal noise 𝜎2
I . The stimulus-driven component can be decomposed into distinct external factors: here,

luminance-driven variability 𝜎2
L and local-depth-driven variability 𝜎2

B. In natural viewing, luminance-driven variability depends on how luminance-contrast
patterns vary across natural stimuli, and depth-driven variability depends on how local-depth structure varies across natural scenes (see B and C). Traditional
psychophysical methods can determine the total variance of the decision variable. Double-pass experiments can partition the total variance into externally- and
internally- driven components. The new approach used here can further partition the externally-driven component into distinct external factors. Two double-pass
disparity-discrimination experiments were conducted. Both used images from hundreds of the same natural scene locations. (B) Experiment 1 used stimuli with
natural-depth profiles, as quantified by disparity-contrast (see Methods Eq (1)), was either high (top row) or low (bottom row). (C) Experiment 2 used the same
stimuli but with flattened versions of the natural-depth profiles. The flattened stimuli had the same luminance profiles as the stimuli in Experiment 1, but had no
local-depth variation. (D) Example natural stereo-image from which natural stimuli were sampled for the experiments, taken from a publicly available database
[17], licensed under CC BY-NC-ND 4.0. Corresponding points, overlaid in yellow, were calculated directly from laser-range-based ground-truth distance data at
each pixel. Points in one image without a valid corresponding point in the other (e.g. half-occluded scene regions) are colored red. Divergently-fuse the left two
images, or cross-fuse the right two images, to see the scene in stereo-3D. (E) Another example natural stereo-image with patches that were vetted for inclusion
in the experimental stimulus set (boxes; see Methods). For purposes of visualization, depicted patches are four times wider (4×4○) than those used in the actual
experiments (1×1○).

https://doi.org/10.1371/journal.pcbi.1012945.g001

appeared to be farther behind the screen. On each trial, we assume that disparity estimates are
obtained for the standard and comparison stimuli: 𝛿std and 𝛿cmp, respectively. Each of these
estimates is affected both by properties of the standard and comparison stimuli, and by noise.
The decision variable is then obtained by subtracting the standard disparity-estimate from
the comparison disparity estimates. Distributions of these disparity-estimate and decision-
variable distributions are shown in Fig 3B.

Decision-variable correlation
The decision variable underlying performance is given by

D =V +W, (43)

where V is captures the effect of externally-driven, stimulus-based variability and W is a
sample of internal noise.
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Fig 2. Example trials. Stimuli were presented using a two-interval, two-alternative forced choice (2AFC) design. The task on each trial was to indicate
which of two briefly presented (250 ms) stereo-defined stimuli appeared to be farther behind the display. Example trials from high (top) and low (bottom)
disparity-contrast conditions of experiment 1. Over the course of a single pass, a unique natural image patch was presented for every trial and interval with
binocular-disparity-defined depth at each patch-center. Each patch either had a standard or comparison disparity value (𝛿std and 𝛿cmp, respectively). The interval
in which the standard (and comparison) appeared was randomized. Each natural image patch was unique across all trials and intervals. Patches were 1 degree in
diameter and presented at the center of a mean-luminance gray area with a fixation crosshairs, surrounded by a 1/f noise field.

https://doi.org/10.1371/journal.pcbi.1012945.g002

The double-pass experimental design (Fig 3A), like a typical (single-pass) experimental
design, allows one to estimate the variance of the decision variable. Assuming conditional
independence between externally- and internally-driven components, the total variance of the
decision variable is given by

𝜎2
T =𝜎2

E + 𝜎2
I , (44)

where 𝜎2
E is the variance of the externally-driven component and 𝜎2

I is the variance of the
internally-driven component. The total variance of the decision variable can be computed
directly from the discrimination threshold (Fig 3B-C). Specifically, for a certain definition
of threshold-level performance which we used here (i.e. d′ = 1.0), the total variance of the
decision variable simply equals the square of the discrimination threshold (i.e. 𝜎2

T = T2; see
Methods Eq (5)).

The double-pass experimental design, more uniquely, allows one to estimate decision-
variable correlation (Fig 3D-F). Decision-variable correlation indicates the degree to which
the trial-by-trial values of the decision variable are correlated across passes. It is given by

𝜌 = 𝜎
2
E

𝜎2
T
, (45)

being equal to the proportion of total variability in the decision variable that is due to fac-
tors that are common across repeated presentations of the same trial (e.g. external stimulus
variability) versus those that are not (e.g. internal noise). Decision-variable correlation is esti-
mated from the repeatability of observer responses across passes (Fig 3D-E; see below). On
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Fig 3. Double-pass experimental design. (A) Each pass of a double-pass experiment is composed of a large number of unique trials, presented one time each.
Trials are identical between passes. (B) Standard and comparison disparity estimate distributions for each of three comparison disparity levels (left) and corre-
sponding decision variable distributions (right). Each decision variable distribution is obtained simply by subtracting the standard disparity estimate from the
comparison disparity estimate on each trial. (C) Psychometric data for stereo-depth discrimination with fitted cumulative Gaussian curve, collapsed across both
passes of a double-pass experiment. Threshold or standard deviation of the decision variable is estimated from the variance parameter of the curve. Psychometric
data are binary, indicating whether the comparison stimulus was chosen (+) or not (−). Different decision-variable distributions (B) underlie performance at
each point on the psychometric function. Data at 0.5 proportion comparison chosen (arrow) are the least informative for estimating discrimination thresh-
olds, but the most informative for estimating decision variable correlation (see D and E). (D) Distribution of joint decision variable (ellipses) and samples (dots)
across both passes of a double-pass experiment. Samples in each of the four different quadrants will yield one of four possible joint responses across passes
(−−,−+,+−,++), two of which indicate agreement (++ and−−). Decision-variable correlations larger than 0.0 evince shared sources of response variabil-
ity across passes. Dashed ellipse shows joint decision-variable distribution if observer responded completely by chance (correlation of zero). (E) Histograms
show the expected proportion of each of the four joint response types for the joint-decision-variable distribution shown in B. (F) Proportion of between-pass
agreement as a function of proportion comparison chosen. Solid line shows best fit to the data. Dashed line shows expected agreement if the observer responded
completely by chance (correlation of zero).

https://doi.org/10.1371/journal.pcbi.1012945.g003

each trial of each pass, the observer reports either that the comparison stimulus appeared far-
ther away than the standard stimulus (+), or that the comparison stimulus appears closer than
the standard stimulus (–). Upon completion of both passes, the observer will have made a
particular joint response on each unique trial, out of four possible joint responses (––,–+, +–,
++). When decision-variable correlation equals zero—as it will be when internal noise is the
only source of variability in the decision variable—response agreement is expected to be at
chance levels (see Fig 3D-F, dashed lines). When decision-variable correlation is high—as it
will be when external factors (e.g. nuisance stimulus variability) are the dominant source of
variance in the decision variable—response agreement will be high.

Decision-variable correlation, like other important quantities in signal detection theory
(e.g. d′), must be estimated from a set of binary observer responses (Fig 3D-F). We computed
how repeatable observers’ responses were (i.e. how often observer responses agreed) across
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the repeated presentations of the same stimuli in the first and second passes of the double-
pass experiment (see Fig 3 and Methods). From the level of response agreement in a given
condition, we used maximum-likelihood techniques to estimate decision-variable correlation
across passes.

Decision-variable correlations reflect the relative contributions of each individual source
of variability in the decision variable (Eq (43)). A change in decision-variable correlation
between conditions could result from an increase in one source of variability, a decrease in the
other, or a combination of both. Discrimination thresholds provide an absolute measure of
the total variance in the decision variable, but they do not indicate the relative contribution of
external (e.g. stimulus-driven) and internal (e.g. noise-driven) sources of variability (Eq (44)).
Together, discrimination thresholds and decision-variable correlation can be used to deter-
mine the absolute contribution of stimulus-driven and internal-noise-driven sources of vari-
ability to the decision variable (see Eqs (10) and (18)). From estimates of decision-variable
correlation (Eq (45)) and of the total variance of the decision variable (Eq (44)), the variances
of the externally- and internally-driven components of the decision variable can be computed
(see Methods, and below).

Experiment 1: Natural stimuli with natural-depth profiles
Fig 4 shows raw data from one individual observer in the first double-pass experiment which
used stimuli having natural-luminance and natural-depth profiles. Psychometric data and
function fits showing proportion comparison chosen are presented in Fig 4A. The slopes of
the psychometric functions decrease systematically both as disparity-contrast increases from
low to high (top vs. bottom), and as disparity pedestal increases (psychometric functions, left
to right). These patterns show that, as the surfaces to be discriminated become more non-
uniform in depth (i.e. have higher disparity-contrast), and as they move farther from the
fixated distance, discrimination thresholds increase.

Response agreement data and fits for the same observer are shown in Fig 4B. The corre-
sponding estimates of decision-variable correlation in each condition are indicated at the top
of each subplot. In all conditions, response agreement is systematically higher than expected
under the assumption that decision-variable correlation equals 0.0. Indeed, decision-variable
correlation is approximately equal to 0.5, on average across the conditions. Thus, the relative
contributions of externally- and internally-driven components to the variance of the deci-
sion variable are similar (i.e. 𝜎2

E ≈ 𝜎2
I ; see Eqs (44) and (45)). External and internal sources

limit performance near-equally. Further, decision-variable correlation is always higher in the
high than in the low disparity-contrast conditions (see the inset values of 𝜌 in each subplot).
The increase in decision-variable correlation with the level of disparity-contrast entails that
the threshold increases are due to more substantial increases in the variance of the stimulus-
driven than of the noise-driven component of the decision variable.

Fig 5A shows how stereo-based depth discrimination thresholds change with fixation error
(i.e. disparity pedestal) and local-depth variability (i.e. disparity-contrast) for each individ-
ual observer, and the observer average. For both disparity-contrast conditions, discrimina-
tion thresholds are well-characterized by an exponential function, the signature of which
is a straight line on a semi-log plot. This exponential rise in discrimination threshold with
pedestal disparity is a classic empirical finding [20,22–25], and is predicted by a normative
image-computable model of optimal disparity estimation with natural stereo-images [8]. The
current result provides a psychophysical demonstration that the classic exponential law of
human disparity discrimination generalizes to natural stimuli. Because this pattern is robust

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1012945 April 15, 2025 22/ 42

https://doi.org/10.1371/journal.pcbi.1012945


ID: pcbi.1012945 — 2025/5/14 — page 23 — #23

PLOS COMPUTATIONAL BIOLOGY How natural image variability limits human stereopsis

Fig 4. Discrimination thresholds, response agreement, and estimates of decision-variable correlation results for one observer. (A) Response data (points)
and psychometric curves for each condition. Thresholds increase systematically with disparity pedestal and with disparity-contrast. (B) Human response agree-
ment and fitted agreement curves for each condition. Thresholds and decision-variable correlation was used to determine relative impact between sources of
performance variability. Dashed lines shows expected agreement if the observer responded completely by chance (correlation of zero).

https://doi.org/10.1371/journal.pcbi.1012945.g004

Fig 5. Experiment 1 discrimination thresholds and decision-variable correlations. Stimuli in Experiment 1 had naturally varying local-depth variation.
(A) Discrimination thresholds as a function of disparity pedestals, for different disparity-contrast levels (shades), for each observer and the observer average
(columns). For individual observers, shaded regions indicate 68% confidence intervals for each condition, generated from 10,000 bootstrapped datasets. For the
observer average, shaded regions indicate across-observer standard deviations. Lines represent exponential fits to the data in each disparity-contrast condition
(see Methods). Discrimination thresholds are equal to the square-root of the total variance of the decision variable (see Eq (5)). (B) Histogram of threshold
differences in the high and low disparity-contrast conditions, collapsed across disparity pedestal and individual observers. Curves indicate best-fit normal distri-
butions to the data. (C) Estimated decision-variable correlation in the same conditions for each observer and the observer average. (D) Histogram of differences
in decision-variable-correlation differences between the high and low disparity-contrast conditions, collapsed across disparity pedestal and individual observers.

https://doi.org/10.1371/journal.pcbi.1012945.g005
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to the particular stimuli that are used to probe performance, it should be thought of as a fea-
ture of how the visual system processes disparity, rather than a consequence of the particular
stimuli used to probe performance.

Discrimination thresholds are also higher for stimuli with high disparity-contrast than
they are for stimuli with low disparity-contrast. Hence, local-depth variability harms depth
discrimination performance. As disparity-contrast increases, thresholds shift vertically in
the semi-log plots, such that the two sets of thresholds are parallel to one another, indicating
that the threshold increases with disparity-contrast are multiplicative. Fig 5B visualizes these
threshold differences as a histogram, collapsed across all disparity pedestals and observers.
Clearly, the histogram of threshold differences is substantially shifted to the right of zero,
which confirms that thresholds increase with disparity constraint.

The fact that disparity-contrast degrades discrimination performance should surprise no
one [26–29]. Increased local-depth variability entails that the left- and right-eye images have
more local differences between them. These more pronounced local differences make the
stereo-correspondence problem more difficult to solve. The increased difficulty in solving the
correspondence problem should, in turn, make stereo-based depth discrimination more diffi-
cult. This increase in difficulty is what we observe in our results. However, as we will see, this
expected degradation in discrimination performance with disparity-contrast is partly due to a
surprising underlying cause (see below).

Decision-variable correlations in each condition for each observer, and for the observer
average are shown in Fig 5C. In each and every condition, decision-variable correlation is
higher in the high disparity-contrast condition than in the low disparity-contrast condition
(Fig 5D). This pattern of results indicates that as disparity-contrast increases and the task
becomes harder, there is an increase in the proportional impact of external, stimulus-driven
components on the decision variable—that is, observer responses become more repeatable,
not less.

The externally- and internally-driven contributions to threshold were computed from
the estimates of decision-variable correlation and the total variance of the decision variables
(i.e. discrimination-thresholds squared (see Eqs (18) and (19)), and are shown in Fig 6. As
with the discrimination thresholds (see Fig 5A)—which reflect the total variance of the deci-
sion variable—these individual components also tend to increase exponentially with dispar-
ity pedestal (i.e. linearly on semi-log axes; see Fig 6A). However, disparity-contrast impacts
these two components differently. The variance of the externally-driven component scales
with disparity-contrast (Fig 6A top row), and substantially so, whereas the variance of the
internally-driven component changes more modestly (Fig 6A bottom row). Thus, the increase
in discrimination thresholds with disparity-contrast can be attributed primarily to increases
in the variance of the externally-driven (i.e. stimulus-driven) component of the decision vari-
able. The histograms in Fig 6B emphasize this point. They show histograms of the differ-
ence in variance between the high and low disparity-contrast conditions in each component,
across all observers and disparity pedestals. Clearly, the effect of disparity-contrast on the
externally-driven component is more pronounced than the effect on the internally-driven
component.

As noted, the fact that discrimination thresholds increase with local-depth variability is to
be expected [26]. What is unexpected is that a substantial portion of the threshold increases
are attributable to factors that make responses more repeatable on successive presentations
of the same stimulus. The implication is that, in natural scenes, local-depth variability does
not simply make disparity-based depth discrimination noisier, as might be expected if local-
depth variability simply made the binocular matching process more unreliable. Rather, the
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Fig 6. External stimulus-driven and internal noise-driven contributions to thresholds in Experiment 1. Estimated external stimulus-driven (top row) and
internal stimulus-driven (bottom row) contributions to threshold, at all disparity and disparity-contrast conditions, for each observer and the observer average.
For observers, bounds of shaded regions indicate 68% confidence intervals for each condition, generated from 10,000 bootstrapped samples. For the observer
average, bounds indicate standard deviations. Threshold contribution reflects the variances 𝜎2

E and 𝜎2
I of the stimulus-driven and internal- noise-driven compo-

nents of the decision variable, respectively (see Methods). B. Histograms of differences between high and low disparity-contrast conditions for both externally-
and internally-driven components (top row and bottom row respectively).

https://doi.org/10.1371/journal.pcbi.1012945.g006

results suggest that local-depth variability biases the observer, stimulus-by-stimulus, to per-
ceive more or less depth in a manner that is repeatable across repeated stimulus presentations.
The results therefore imply that, at least in principle, observer errors on each individual stim-
ulus should be predictable. Developing image-computable models that enable stimulus-by-
stimulus prediction of depth estimation performance in depth-varying natural scenes is an
interesting direction for future work [12].

One potential source of observer repeatable error was that observers were not making dis-
parity estimates based on the very most central pixels of each stimulus. Instead, observers
could have been averaging disparities within a window of spatial integration. We investigated
this possibility using logistic regression (see Methods), by asking whether disparities averaged
within spatial integration windows of fixed size, across a range of sizes, could better account
for the observer responses than the disparities associated with the central pixel of each patch.
We found that all fixed window sizes accounted for the data equally well. Changing the size of
the spatial integration window produced no improved ability to account for explainable vari-
ance (all R2<0.01; S1 Fig A). And the Akaike information criterion (AIC) indicated that none
of tested spatial integration window sizes produced a significantly better account of the data
than the smallest window size that was implicitly assumed throughout the rest of the paper.
We also investigated whether the largest near disparity, largest far disparity, and maximally
deviant disparity of each patch could account for differences in performance. These analyses
yielded similar results (all R2<0.01; S1 Fig B). None of these models produced a better account
of the data. The primary results should be considered representative.

Another way to investigate the degree to which stimulus-based variability is predictable
is to examine between-observer performance similarities. We assessed whether between-
observer-threshold variability is more attributable to differences in the effect of external fac-
tors (e.g. stimulus-based variability) or internal factors (e.g. noise) across observers. Fig 7
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Fig 7. Between-observer variability is primarily attributable to differences in internal noise. Observer-mean
subtracted estimates of externally-driven 𝜎2

E (green) and internally-driven 𝜎2
I (pink) components of the decision

variable, histogrammed across conditions. Black lines represent best-fit normal distributions. Across the high and
low disparity-contrast conditions, the fraction of between-observer variance explained by the internally-driven
component for Experiment 1 was 0.81 (p = 2.0 × 10−4,F = 0.23 where F is the test statistic of a two-sample F-test).

https://doi.org/10.1371/journal.pcbi.1012945.g007

shows how the external, stimulus-based and internal, noise-based contributions to threshold
vary across observers relative to the between-observer mean. Between-observer variation in
the externally driven-component of the decision variable is substantially smaller than in the
internally-driven component (Fig 7). The stimulus-driven component of the decision vari-
able is very similar across human observers, and does not contribute substantially to between-
observer differences in discrimination threshold. Because the external drive to the decision
variable is consistent across observers, it implies that the stimulus-specific computations
performed by the human visual system are stable across observers (also see below). Hence,
between-observer variability is primarily due to differences in internal noise.

Experiment 2: Natural stimuli with flattened depth profiles
The second double-pass experiment made use of natural stimuli having “flattened” depth
profiles (see Fig 1C). The luminance profiles of these stimuli are essentially unchanged from
those in the first experiment, because they were derived from the exact same scene locations,
but the disparity-contrasts of all stimuli were set equal to zero. Thus, in Experiment 2, the
nominal “high disparity-contrast” and “low disparity-contrast” stimuli had zero disparity-
contrast, even though the luminance profiles were drawn from scene regions originally asso-
ciated with high and low levels of local-depth variability.

The primary aim of the second double-pass experiment is to make it possible to partition
the effects of variation in natural luminance-contrast patterns and local-depth variation in
limiting stereo-depth discrimination. Doing so requires analyzing the data from both exper-
iments simultaneously. Before turning to this joint analysis of the psychophysical data from
both double-pass experiments, we first present the results of the second experiment on their
own.

Fig 8 shows discrimination thresholds (i.e. the square-root of the total variance of the deci-
sion variable), and decision-variable correlations across all conditions in Experiment 2, for
each individual observer and the observer average. There is one marked change in the pat-
terns in the data as compared to the first experiment. Discrimination thresholds (Fig 8A and

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1012945 April 15, 2025 26/ 42

https://doi.org/10.1371/journal.pcbi.1012945.g007
https://doi.org/10.1371/journal.pcbi.1012945


ID: pcbi.1012945 — 2025/5/14 — page 27 — #27

PLOS COMPUTATIONAL BIOLOGY How natural image variability limits human stereopsis

Fig 8. Experiment 2 disparity discrimination thresholds and decision-variable correlation. Experiment 2 stimuli were flattened (i.e. had zero local-depth
variability), but otherwise had the same luminance contrast patterns as those in Experiment 1. (A) Discrimination thresholds as a function of disparity pedestal,
for different disparity-contrast levels (shades), for each observer and the observer average (columns). Unlike in Experiment 1, there is little to no effect of nominal
disparity-contrast on threshold. For individual observers, shaded regions indicate 68% confidence intervals for each condition, generated from 10,000 boot-
strapped datasets. For the observer average, shaded regions indicate standard deviations. Solid lines represent exponential fits to the data. Dotted lines represent
the exponential fits to the threshold data from Experiment 1 (see Fig 6A). (B) Histogram of threshold differences in the high and low disparity-contrast con-
ditions, collapsed across disparity pedestal and individual observers. Curves indicate best-fit normal distributions to the data. (C) Estimated decision-variable
correlation in the same conditions for each observer and the observer average. Decision-variable correlations are systematically lower than those in Experiment 1
(see Fig5). (D) Histogram of decision-variable-correlation differences in the high and low disparity-contrast conditions, collapsed across disparity pedestal and
individual observers.

https://doi.org/10.1371/journal.pcbi.1012945.g008

8B) and decision-variable correlations (Fig 8C and 8D) are now largely unaffected by nomi-
nal disparity-contrast. There are also consistent decreases in thresholds and decision-variable
correlations, as compared to Experiment 1 (see Fig 5). These results imply that a source of
stimulus-driven variance in the decision variable that increases response agreements across
repeated stimulus presentations, has been removed from the stimuli.

Analysis of the external (stimulus-driven) and internal (noise-driven) contributions to
threshold lead one to the same conclusion: flattening the stimuli removes a stimulus-driven
source of variance in the decision variable that is due to local-depth variability (Fig 9). Nei-
ther the external drive to threshold (Fig 9, top row), nor the internal drive to threshold (Fig 9,
bottom row), is affected by nominal disparity-contrast.

Of course, this change in the pattern of results makes sense. The “high disparity-contrast”
and “low disparity-contrast” stimuli in Experiment 2 had been associated with depth varying
regions of natural scenes in Experiment 1, but they were flattened for the current experiment.
So the result is not unexpected. But it is also not guaranteed. The effect of natural depth vari-
ability in bumpier (higher disparity-contrast) scene regions on the decision variable could
have been correlated with the effect of natural luminance-contrast patterns such that, even
with flattened stimuli, the associated luminance profiles would have generated higher dis-
crimination thresholds. That is, luminance profiles associated with scene locations having
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Fig 9. External stimulus-driven and internal noise-driven contributions to thresholds in Experiment 2. (A) Estimated external stimulus-driven (top row) and
internal stimulus-driven (bottom row) contributions to threshold, at all disparity and disparity-contrast conditions, for each observer and the observer average.
For observers, bounds of shaded regions indicate 68% confidence intervals for each condition, generated from 10,000 bootstrapped samples. For the observer
average, bounds inidcate across-observer standard-deviations. Threshold contribution reflects the variances 𝜎2

E and 𝜎2
I of the stimulus-driven and internal

noise-driven components of the decision variable, respectively (see Methods). Note that, in comparison to the results of Experiment 1, there is hardly any effect of
disparity-contrast on the stimulus-driven contributions to threshold. (B) Histograms of differences between high and low disparity-contrast conditions for both
externally- and internally-driven components (top row and bottom row respectively).

https://doi.org/10.1371/journal.pcbi.1012945.g009

greater local-depth variability could themselves have been more difficult to discriminate, even
after stimulus-flattening. The current results suggest that this is not the case.

Because of the fact that, in the first double-pass experiment, high disparity-contrast stimuli
yielded high levels of externally-driven variance in the decision variable and low disparity-
contrast stimuli yielded lower levels of externally-driven variance (see Fig 6A), the current
results strongly imply that a stimulus-driven, and repeatable, source of variability has been
removed from the decision variable. The flattened stimuli of the second double-pass experi-
ment also yield the lowest levels of externally-driven variability. Together, these results imply
that stimulus flattening removes a distinct source of variability from the decision variable.
This idea is tested more rigorously below.

Partitioning sources of variability in natural stimuli
Here, we show that stimulus-driven variability in the decision variable can be partitioned into
separate factors that depend on natural-luminance and natural-depth structure. These sources
of variability—natural-luminance structure and natural-depth structure—have distinct and
largely separable effects on human performance. To determine the importance of these two
factors, and to test whether these factors interact, we compared human performance across
the four passes of the two double-pass experiments with flattened and natural stimuli. We
refer to this comparative analysis as a quasi-quadruple-pass analysis (see Methods). (As noted
in Methods, ordinary quadruple-pass experiments—to the extent that quadruple-pass exper-
iments are ever ordinary—present exactly the same stimuli across all four passes. Our exper-
iments presented closely related, but not identical, stimuli across the four passes of the two
double-pass experiments, hence the “quasi-quadruple-pass” moniker.)
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Luminance-contrast-pattern variability was essentially the same in both double-pass
experiments, and was thus the same across all four passes. However, because the second
double-pass experiment used flattened stimuli—which prevents local-depth variability from
directly influencing the variance of the decision variable—natural-luminance variation is the
only remaining stimulus factor that can contribute to the decision variable because natural-
depth variability has been eliminated. The quasi-quadruple-pass analysis allows one to deter-
mine how these two factors combine and/or interact to limit performance.

To understand the reasoning behind the quasi-quadruple-pass analysis, it is useful to write
out expanded expressions for the decision variable (also see Eq (43)). The expanded expres-
sion for the decision variable is given by

D =

V
³¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹µ
(L + B)+W, (46)

where L and B are luminance-profile-driven and local-depth-variability-driven contributions
to the decision variable (which sum to the total stimulus-driven contribution V), and W is a
sample of internal noise.

In the double-pass experiment with natural-luminance and depth profiles (Exp. 1), the
expressions for the total variance of the decision variable and for decision-variable correlation
across passes, in terms of the variance of these newly articulated components (i.e. L and B in
Eq (46)), are given by

𝜎2
T∗ =

𝜎2
E∗³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

(𝜎2
L + 𝜎2

B + 2cov[L,B]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

unknowns

)+𝜎2
I∗ , (47)

𝜌∗∗ =
𝜎2
E∗

𝜎2
T∗
=

𝜎2
E∗

𝜎2
E∗ + 𝜎2

I∗
, (48)

where 𝜎2
L and 𝜎2

B are the variances of the components driven by luminance-pattern and local-
depth variability, the interaction term cov[L,B] is the covariance between them (if it exists),
𝜎2
E∗ is the external (stimulus-driven) variance, and 𝜎2

I∗ is the variance of internal noise. The
external stimulus-driven- and internal noise-driven variances can be solved from the equa-
tions for total variance and decision-variable correlation (Eqs (47) and (48)). But there are
not enough equations to separately determine the values of the three unknown factors: the
variance 𝜎2

L of component driven by luminance-pattern variability, the variance 𝜎2
B of com-

ponent driven by local-depth variability, and the covariance cov[L,B] between the luminance
and depth-driven components. Fortunately, the second double-pass experiment allows one
of these unknown factors—the variance of the luminance-driven component of the decision
variable—to be determined.

In the second double-pass experiment with natural-luminance profiles and flattened-depth
profiles (Exp. 2), the expanded expression for the decision variable is given by

D =
V
©
L +W. (49)

Note that the disparity-contrast-driven component B that is present in the first experiment
does not appear in Eq (49), because disparity-contrasts were set equal to zero when the stim-
uli were flattened. The corresponding expressions for the variance of the decision variable,
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and decision-variable correlation, are given simply by

𝜎2
T† =

𝜎2
E†
©
𝜎2
L +𝜎2

I†, (50)

𝜌†† =
𝜎2
E†
𝜎2
T†
=

𝜎2
E†

𝜎2
E† + 𝜎2

I†
, (51)

where, again, 𝜎2
L is the luminance profile driven variance, 𝜎2

E† is the external stimulus-driven
variance, and 𝜎2

I† is the internal-noise-driven variance associated with the flattened stimuli.
Just as before, the external and internal variances can be estimated from Eqs (50) and (51).
Now, the variance of the luminance-pattern-driven component 𝜎2

L is easily obtained because
it exactly equals the variance of the externally-driven component. Also note that in this exper-
iment, because local-depth variability is absent, the variance of the disparity-contrast-driven
component is zero. But there are still two remaining unknowns.

Here is where the quasi-quadruple-pass analysis proves useful. By computing decision-
variable correlation across passes of the two different double-pass experiments, an additional
equation is obtained. Decision-variable correlation between passes across experiments is
given by

𝜌†∗ =
𝜎2
L + cov[L,B]
𝜎T† 𝜎T∗

. (52)

With this expression, we now have the number of equations necessary to determine
the unknowns. Using maximum-likelihood techniques, we fit all three decision-variable
correlations ( ̂𝜌††, ̂𝜌∗∗, and ̂𝜌†∗) simultaneously from the data in both experiments with
the quasi-quadruple-pass analysis (see Eq (28)), and then solved algebraically the sys-
tem of equations specified by Eqs (47), (48) and (50)–(52) for the unknown parameters.
This approach guarantees that shared factors between equations are consistent with one
another.

Before proceeding to the main results, we briefly note that we have already estimated
decision-variable correlation across passes in the first experiment and in the second
experiment— ̂𝜌∗∗ and ̂𝜌††, respectively—, in each case only using data from the respective
experiment in isolation. When carrying out the quasi-quadruple-pass analysis, the estimates
of the within-experiment decision-variable correlations ( ̂𝜌∗∗ and ̂𝜌††) and the variances of the
externally- and internally-driven components (𝜎2

E and 𝜎2
I ) are not guaranteed to be the same

as when they are estimated with the data from only one isolated experiment (see Fig 6 and 9).
Reassuringly, however, the estimates from the quasi-quadruple-pass analysis are very similar
to those previously estimated. This consistency supports the claim that factors assumed to be
common to both experiments are in fact common to both experiments (see Fig 10). The con-
sistency by which these parameters vary across experiments and observers suggests that each
component of the decision variable is indeed driven by the natural-image property—or a tight
co-variate of the property—that is said to drive it.

Fig 11 shows the recovered values of the luminance- and depth-driven components of the
decision variable—𝜎2

L and 𝜎2
B, respectively—and their interaction term cov[L,B], that were

obtained from the quasi-quadruple-pass analysis (see above; also see Methods). The variances
of both the luminance-driven and local-depth-driven components clearly increase with dis-
parity pedestal for all conditions and observers. This pattern is similar to the patterns in all
previous plots. More interestingly, whereas the luminance-driven component is very nearly
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Fig 10. Robustness of fitting methods. Comparison of values obtained from fitting data from Experiments 1 and 2 separately (see Fig 6 and 9) versus together
with a quasi-quadruple pass analysis. For decision-variable correlation (left), and threshold contributions by stimulus-driven factors (middle) and internally-
driven factors (right), results are consistent regardless of the analytical approach. The consistency of the results indicates the validity and robustness of the
quasi-quadruple pass analysis.

https://doi.org/10.1371/journal.pcbi.1012945.g010

unaffected by the level of disparity-contrast (Fig 11A and 11B top row), the local-depth driven
component has substantially higher variance with high than for with low disparity-contrast
stimuli (Fig 11A and 11B bottom row).

These points are emphasized by histograms of the differences in the values of these com-
ponents in the low and high disparity-contrast conditions. Although the luminance-pattern-
driven component is essentially invariant to it (Fig 11B), the local-depth-driven component
changes substantially with disparity-contrast (Fig 11D). From these results we conclude that
the variance of luminance-driven component of the decision variable is a function of pedestal
disparity but not disparity-contrast 𝜎2

L(𝛿std), and that the local-depth-driven component
is a function of both factors 𝜎2

B(𝛿std,C𝛿), a finding that strongly suggests that the compo-
nents are not substantively affected by a potential common cause (e.g. local-depth variabil-
ity). Overall, these results support the conclusion that natural luminance-pattern variability
and natural local-depth variability in real-world scenes have separable effects on stereo-depth
discrimination performance.

Note that the value of the interaction term is near-zero for all conditions (Fig 11C and
11D). Refitting the data with a model that fixes the interaction term to zero yields estimates of
luminance-pattern- and local-depth-driven sources of variance (𝜎2

L and 𝜎2
B respectively), and

of the internal noise (𝜎2
I ), that are robust to whether the constraint on the interaction term is

imposed during fitting (Fig 12; also see S2 Fig). Any qualitative description that applies to one
set of fitted results applies to the other. Fits with and without the constraint also yield near-
identical log-likelihoods. There is little evidence that non-zero covariances are required to
account for the data.

Distinct features of natural scenes and images limit perceptual performance in distinct
and largely independent ways. This is, perhaps, not surprising: local-depth variability is sig-
naled by disparity-contrast, a stimulus feature that can be computed only by a binocular
comparison of the eye’s images, whereas luminance-pattern variability is monocularly com-
putable. Their independence, however, is also not guaranteed. A common scene location
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Fig 11. Contributions of distinct stimulus-specific factors to thresholds, as revealed by the quasi-quadruple-pass analysis. (A) Contribution of luminance-
contrast pattern variability (top) and variability in local-depth structure (bottom) to threshold as a function of disparity pedestal at different disparity-contrast
levels (shades), for each observer and the observer average. For individual observers, bounds of shaded regions indicate 68% confidence intervals for each condi-
tion, generated from 10,000 bootstrapped samples. For the observer average, bounds indicate across-observer standard-deviations. (B) Histogram of differences
in luminance-pattern-driven and local-depth-driven threshold contributions across high and low disparity-contrast conditions, collapsed across disparity
pedestals and individual observers. (C) Same as A, but for the interaction term (i.e. cov[L,B]). Histogram of the interaction terms collapsed across all disparity
pedestals, disparity-contrasts, and individual observers is shown on the rightmost y-axis of the third column (mean=-0.11, sd=0.23). (D) Histogram of differ-
ences in the interaction term (i.e. cov[L,B]) across high and low disparity-contrast conditions, collapsed across disparity pedestals and individual observers. Data
in C-D indicate that the interaction term is near-zero in all conditions.

https://doi.org/10.1371/journal.pcbi.1012945.g011

gives rise to the luminance-contrast pattern (i.e. photographic content) in the left- and right-
eye images, and to the pattern of binocular disparities between them. This might cause the
effects of luminance-pattern variability to be correlated with those of local-depth variability;
local regions with more depth variability could give rise to luminance (photographic/retinal)
images with more variable luminance-contrast patterns, which could translate into correlated
effects on performance. The data show that this is not the case. The results strongly suggest
that each of these natural-stimulus-based sources of variability in the decision variable are
near-independent of one another.

This result, when combined with other key results that have thus far been presented,
provide a rich picture of the factors contributing to human disparity discrimination per-
formance in natural scenes (Fig 13). Variability in luminance-pattern and variability in
local-depth structure are independent external factors that limit performance. The effects of
luminance-driven variation are the same regardless of the amount of local-depth variation in
the scene. The local-depth-driven component of the decision variable is at its largest in the
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Fig 12. Comparison between fitted values of luminance-pattern- and local-depth-driven variability in the quasi-quadruple-pass analysis when the covari-
ances cov[L,B] are unconstrained versus when they are constrained to equal zero. Fitted values for the luminance-pattern (left), local-depth (middle), and
internal-noise components (right) remain largely consistent between the two fitting conditions. Different symbols represent different subjects. Stars represent
across-subject averages.

https://doi.org/10.1371/journal.pcbi.1012945.g012

Fig 13. Summary of main results. The variance of the decision variable for disparity-based depth discrimination is highly dependent on the amount of local-
depth variability in the scene. Total variability can be decomposed into externally stimulus-driven and internal-noise-driven components (𝜎2

E and 𝜎2
I ) for each

condition. The externally-driven component can be further decomposed into in factors of luminance variability (𝜎2
L) and local-depth variability (𝜎2

B). (Note
that previous figures showed threshold contributions/standard deviations rather than variances; we show variances here for clarity, because they are additive.)
When local-depth variability is A. high, B. low, and C. non-existent, 𝜎2

B is the only external factor that changes appreciably. Internal-noise variance changes with
external-noise variance. Numerical values indicate across-subject averages (see fourth column of Figs 5A, 6, 6A, 9, and 11) when the standard disparity was 7.500
arcmin. Averaging across all standard-disparities yields similar value.

https://doi.org/10.1371/journal.pcbi.1012945.g013

high disparity-contrast condition (Fig 13A) and gets smaller as disparity-contrast is reduced
(Fig 13B) or is eliminated entirely (Fig 13C). Hence, the local-depth-driven component of
the decision variable is primary determinant of the performance differences in the different
disparity-contrast conditions.
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Shared stimulus drive between observers
Earlier, we presented data showing that between-observer variability (i.e. threshold differ-
ences) was driven more by observer-specific differences in internal noise than by observer-
specific differences in stimulus-driven variability (see Fig 7). We speculated that this result
was due to a high degree of similarity between the computations that different humans use
to extract useful information from each stimulus for the task. Here, we present data from
between-observers decision-variable correlations that bolster the case.

Between-observers decision-variable correlation quantifies the similarity of the decision
variable in two different observers across repeated presentations of the same stimuli. If dif-
ferent human observers are using the same computations to estimate and discriminate stereo-
defined depth from natural stimuli, stimulus-by-stimulus disparity estimates from one human
should be correlated with those from a second—that is, between-observers decision-variable
correlation will be substantially larger than zero (assuming internal noise is not too large). On
the other hand, if subjects are using quite different computations to process stimuli, stimulus-
by-stimulus estimates or trial-by-trial responses from one observer will provide no infor-
mation about estimates or responses from another, and between-subjects decision-variable
correlation should equal zero.

We computed between-observers decision-variable correlation from response agree-
ment data by straightforward adaptation of the quasi-quadruple-pass analysis (see Methods).
However, because between-observers correlation is impacted by internal noise, its value does
not transparently reflect the level of shared stimulus drive. The partial correlation does. Partial
correlation is given by

𝜌12⋅W =
𝜌12√𝜌11𝜌22

= cov[S1, S2]
𝜎E1𝜎E2

, (53)

where 𝜌12 is between-observers decision-variable correlation, 𝜌11 and 𝜌22 are the within-
observer decision-variable correlations, S1 and S2 are the stimulus-driven components of the
decision variable that are shared between the two observers, and 𝜎E1 and 𝜎E2 are the standard-
deviations of the stimulus-driven components of the decision variable in the two observers.
This partial correlation provides more unvarnished information about what we are most
interested in, because it is unaffected by internal noise. It quantifies the level of correlation in
the stimulus-driven component of the decision variable between observers (see Methods).

Between-observers partial correlations are shown in Fig 14. Across all conditions and
observer pairs, between-observers partial correlations are substantially above zero. In the high
disparity-contrast conditions of Experiment 1, which are the conditions in which local-depth
variability has its largest effects, between-observers partial correlations are 0.79 on average,
with some values approaching the maximum possible value (i.e. 1.0). In the low disparity-
contrast conditions of Experiment 1, the average value is 0.59. In Experiment 2, the aver-
age partial correlations for the high and low disparity-contrast conditions are 0.56 and 0.53,
respectively (Fig 14 bottom row). Histograms of the differences between the high- and low-
disparity-contrast conditions are shown in Fig 14B. And histograms of the raw values are
shown in Fig 14C.

These results indicate that the majority—and, in one case (i.e. the high disparity-contrast
stimuli with natural depth structure), the strong majority—of the stimulus-driven compo-
nent of the decision variable is shared between observers. That is, natural stimulus variability

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1012945 April 15, 2025 34/ 42

https://doi.org/10.1371/journal.pcbi.1012945


ID: pcbi.1012945 — 2025/5/14 — page 35 — #35

PLOS COMPUTATIONAL BIOLOGY How natural image variability limits human stereopsis

Fig 14. Between-observer correlation in the stimulus-driven component of the decision variable, as revealed by the quasi-quadruple-pass analysis. (A)
Estimated partial correlation values, controlling for (i.e. removing) the effect of internal noise, between all observer pairs, for each experiment (rows), at all dis-
parity and disparity-contrast levels. Averages across observer-pairs are shown in column 4. With the effect of internal noise removed, only the stimulus-driven
component of the decision variable drives between-observer correlation. For observer pairs, bounds of shaded regions indicate 95% confidence intervals for
each condition from 1,000 bootstrapped datasets. For the across-observer-pair average, bounds of shaded region indicates across-pair standard deviations. (B)
Histogram of differences in partial correlation across high- and low-disparity-contrast conditions shown in A, collapsed across disparity pedestals and observer
pairs. (C) Histograms of the raw partial correlations for each observer pair in A. In Experiment 1, the mean partial correlations are 0.79 and 0.59 in the high and
low disparity-contrast conditions, respectively. In Experiment 2, the values are 0.56 and 0.53. The majority of the stimulus-driven variance is shared between
observers.

https://doi.org/10.1371/journal.pcbi.1012945.g014

associated with different stimuli having the same the latent variable (i.e. disparity) causes sim-
ilar stimulus-by-stimulus over- and under-estimations of disparity-defined-depth in differ-
ent humans. We conclude that the deterministic computations that the human visual system
performs on individual stimuli are largely consistent across observers.

Chin and Burge [13], in the domain of speed discrimination, came to a similar conclusion
using a related approach. By comparing human performance to that of an image-computable
ideal observer, they found that differing levels of human inefficiency are near-exclusively
attributable to different levels of internal noise. Like the current findings, this finding entailed
that the variance of the stimulus-driven component of the decision variable is quite similar
across different human observers, and is consistent with the visual systems of different human
observers performing the same deterministic computations on the stimuli. The dovetailing
evidence in stereo-depth and speed discrimination suggests that natural stimulus variability
(natural variation in luminance patterns and/or depth-structure) has consistent effects on the
visual systems of different human observers. These results suggest that evolution has honed
the details of how visual systems compute so that they extract the most useful task-relevant
information from natural stimuli.

Discussion
In this article, using a natural-stimulus dataset, two double-pass experiments, and a series of
analyses, we investigated human stereo-depth discrimination in natural scenes, with specific
emphasis on how natural-stimulus variability limits performance. We sourced stimuli from a
natural stereo-image database with a constrained sampling procedure, and computed ground-
truth disparities directly from laser-range data at each pixel. Fixation (or pedestal) dispar-
ity, and local-depth variability—as quantified by disparity-contrast—were tightly controlled.
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Luminance-contrast patterns and local-depth structures were allowed to vary naturally across
the hundreds of unique stimuli that were sampled for each condition.

We find that the exponential law of disparity discrimination holds for human vision in nat-
ural scenes. We find that stimulus-driven variability and noise-driven variability have near-
equal roles in setting these thresholds, and that the stimulus-based sources of variability make
responses more repeatable (and thus potentially more predictable) across repeated stimulus
presentations. We find that one of two underlying causes of the stimulus-driven variability
is attributable to local-depth variation, multiplicatively increases discrimination thresholds,
and is largely separable from luminance-contrast-pattern variation. And we find that differ-
ent subjects make correlated stimulus-by-stimulus over- and under-estimations of dispar-
ity, suggesting that different human visual systems process individual natural stimuli with
computations that are largely the same.

The approach developed here extends the rigor and interpretability that has been integral
to progress in more traditional psychophysics and neuroscience experiments to more natural-
stimulus sets [11,13,30]. In the real world, perceptual, and behavioral variability is driven by
both external and internal factors. A comprehensive account of perceptual and behavioral
variability, and the neural activity underlying it, must identify and describe the impact of all
significant sources of performance-limiting variability. Encouragingly, the current results
raise the prospect that an appropriate image-computable model may, in principle, be able to
predict a substantial proportion of stimulus-by-stimulus variation across natural images.

Progress and limitations
Progress in science is often incremental. Many times, it occurs by way of relaxing one exper-
imental design element, while holding others fixed. We have investigated perceptual per-
formance with stimuli sampled from natural scenes—which are atypical of laboratory
experiments—while using conventional, tightly controlled, laboratory tasks [9,11,13,30].
Others have investigated performance with atypical tasks (e.g. free viewing and unconstrained
eye-movements), while using conventional (e.g. Gabor) stimuli [1]. Both approaches have
increased the ecological validity of the experimental conditions, and have provided new
insights into the properties of neural computations underlying sensory-perceptual perfor-
mance. But there are always limitations.

The stimuli used in the current experiments were foveally presented and subtended only 1○

of visual angle, the approximate size of foveal receptive fields in early visual cortex. Foveal pre-
sentation of spatially-limited stimuli is common in psychophysical experiments, but doing
so prevents the assessment of peripheral visual processing or how performance is affected by
the dynamic interplay between eye, head, and body movements that occur in natural view-
ing. Limiting stimulus size to one degree also limits the extent to which contextual effects can
affect performance. In the ’current experimentals, however, there was no evidence that one
fixed spatial integration area accounted for performance any better than another (see S1 Fig).
Experiments, possibly with larger stimuli, that are specifically designed to examine contextual
effects could be interesting for future work.

Related issues concern the two-alternative forced choice (2AFC) procedure used in the
current experiments. Although commonly employed, the rigid trial structure imposed by such
designs is not well-aligned with how perceptual estimates, perception-driven decisions, and
perception-guided action are inter-related in natural viewing. Alternative methods, such as
continuous psychophysics, that more closely reflect the continuous interplay of perception
and action in natural viewing, could complement the current findings [31–33].
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Despite these limitations, the current experiments showed that the natural variation of
luminance-contrast patterns and local-depth structures have large, distinct, and identifiable
effects on performance. Developing methods that guide the judicious choice of stimulus sets
and tasks that strike an appropriate balance between fully natural and tightly constrained, that
are well-suited to available analytical methods, and are well-matched to the specific research
question under study, will be increasingly important as the science becomes more focused on
understanding how neurons respond and how perception works in the natural environment.

Performance variation and prediction
An ultimate goal of perception science is to be able to predict, from an individual stimulus,
the neural activity and subsequent perceptual estimate, whether it will be accurate or inaccu-
rate, and whether it will be reliable or unreliable. The degree to which this goal is achievable
hinges on the degree to which the stimulus-by-stimulus estimates are controlled by the prop-
erties of the stimulus, as opposed to noise. If the strong majority of performance variation
is noise-driven, such efforts will be futile. So, before undertaking to develop and test mod-
els that make stimulus-by-stimulus predictions, it is prudent to demonstrate that a substan-
tial proportion of performance variation is stimulus driven. In the current stereo-depth dis-
crimination experiments, natural-stimulus-based sources of response variability account for
approximately half of all performance-limiting variability (see Fig 5), a substantial proportion
of which was shared across observers (see Fig 14).

However, while the stimuli—stereo-photographs of natural scenes—were allowed to vary
naturally in many respects, the mean luminance was fixed to a comfortable photopic level,
and luminance-contrast was set to the median contrast in natural scenes (see Methods)
[4,34]. Both properties are known to impact stereo-depth discrimination performance [22],
and stimulus detection performance in general [11,35–38]. Indeed, as mean-luminance
and luminance-contrast increase, neurons respond more vigorously, signal-to-noise ratios
increase, and performance becomes more reliable [34,39]. Hence, if luminance and contrast
had been allowed to vary more naturally, the proportional contribution of stimulus-based fac-
tors to performance-limiting variability would likely have increased. The current estimates
of stimulus-based contributions to the decision variable may therefore be underestimates
of the total impact that stimulus-based factors would have in less tightly controlled circum-
stances. This speculation is supported by the fact that between-observers partial correlations
are near the maximum possible values in the conditions in which natural stimulus variability
was highest (see Fig 14).

The power of empirical datasets to help develop, constrain, and evaluate models can be
improved by presenting unique stimuli on each trial. Many models can yield similar pre-
dictions of performance if only summary statistics (e.g. bias and precision) are used to eval-
uate the models’ successes and failures. Image-computable models that predict decision-
variable correlation and stimulus-by-stimulus estimates (or discriminations), in addition to
bias and/or precision, can provide increased power for evaluating hypotheses about the neural
activity and sensory-perceptual computations underlying performance [12,13,40].

Stimulus-driven mechanisms
Our results show that stimulus variability is a major factor driving depth-discrimination per-
formance. What are the mechanisms by which the visual system produces the specific patterns
of trial-by-trial performance variation?
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Binocular disparity is estimated by comparing image patches—and not isolated individ-
ual pixels—across the eyes, so some amount of spatial integration is undoubtedly occur-
ring [41]. (The smallest known disparity sensitive receptive fields are approximately 6 arcmin
in size [26,27].) Obligatory spatial integration necessarily reduces the reliability of solutions to
the stereo-correspondence problem when local depth is varying (i.e. when disparity-contrast
is high).

We tested whether spatial integration over a range of fixed-size areas could account for the
trial-by-trial response variation. We found that no one fixed-size integration area provided
more explanatory power than any another. Other simple mechanisms were similarly unable
to account for the trial-by-trial response variation (see S1 Fig). It may be that mechanisms
that dynamically adjust the integration area on a stimulus-by-stimulus basis are required to
account for the trial-by-trial variation.

Ongoing computational research shows that probabilistic decoding of disparity from the
responses of a model binocular receptive-field population is affected by stimulus variability
in a manner similar to how it affects our human observers—that is, thresholds increase log-
linearly with disparity and thresholds increase multiplicatively with disparity-contrast [42].
Interestingly, the probabilistic decoding routines employ a fixed strategy that implicitly adapts
the spatial integration area on a trial-by-trial basis. Future work will be needed to determine
whether similar mechanisms account for stimulus-by-stimulus variation in human perfor-
mance.

Noise and its impact on performance
In this article, we sought to partition the influence on performance of stimulus-driven from
noise-driven variability, and to further partition the effects of two distinct types of natural-
stimulus variability: luminance-pattern and local-depth variability. We made no attempts
to determine different potential sources of noise (i.e. stimulus-independent sources of vari-
ability). As a consequence, any source of variance that led to less repeatable responses in the
current experiments increased the estimate of noise variance. We conceptualized the noise
as occurring at the level of the decision variable. But there are multiple stages in the chain of
events preceding perceptual estimatation, both external and internal to the organism, where
such variability could have originated and that would be consistent with the results.

Variation due to noise could have occurred during the initial encoding of the retinal image,
in early visual cortex, at the decision stage (e.g. in the placement of the criterion), or a com-
bination of these possibilities. Potential sources of such variation include the noisy nature
of light itself [43], random fixational errors [44], neural noise [45,46], and trial-sequential
dependencies [47]. Higher-level factors could also manifest as noise, including stimulus-
independent fluctuations in alertness, attention, or motivation [48–51].

Experimental and computational methods that can determine the contribution of differ-
ent types of stimulus-independent sources of variation are of interest to systems neuroscience
[13,52]. There are clear steps that could be taken to identify and account for some of these
potential sources of noise. Psychophysical methods have the potential to distinguish some
of them. High-resolution eye-tracking would allow one to condition performance on the
fixational state of the eyes [53–55]. Parametrically varying performance-contingent reward
can systematically alter motivational state [51]. But neurophysiological methods would be
required to identify and partition sources of noise internal to the nervous system that may
arise at various stages of the visual processing and perceptual decision making pipeline.
Paradigms that blend the advantages of the current approach for partitioning stimulus-based
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variation with neurophysiological and computational methods for partitioning noise would
be a useful way forward [30,52,56].

External limits to human performance
Broadly construed, the current work continues in the tradition of the classic 1942 study of
Hecht, Shlaer, and Pirenne. Its two most widely appreciated results are that, when fully dark
adapted, (i) the absorption of a single photon reliably elicits a response from a rod photore-
ceptor and (ii) the absorption of five to seven photons in a short period of time reliably causes
a reportable sensation of the light. Less widely appreciated is the finding that the limits of the
human ability to detect light (i.e. light detectability thresholds) are attributable to the stochas-
tic nature of light itself, a performance-limiting factor that is external to the organism. On a
given trial at a given stimulus intensity, whether or not subjects reported that they had seen
the stimulus depended near-exclusively on whether or not the requisite number of photons
had been absorbed. That is, if the numbers of photons in proximal stimulus was identical,
humans would respond identically. Performance was thus very tightly yoked to the variability
of the external stimulus.

The results the current study suggest that, just as rod photoreceptors support performance
in a very similar manner across different human observers, the computational mechanisms
supporting the estimation and discrimination of depth in natural scenes are very similar
across observers. In the current study, we showed that stimulus-based limits to performance
become increasingly important as stimuli become ever more natural. If this pattern holds, it
may be that stimulus-based limits to performance are by far the dominant factor as organ-
isms engage with the natural environment. If true, image-computable models will have the
potential to achieve strong predictive power from analysis of the stimulus alone. Such models,
in which the underlying computations are made explicit, would have tremendous practical
applications and deepen our understanding of how vision works in the real world.

Supporting information
S1 Fig. Variance in trial-by-trial response data explained by simple stimulus-driven mech-
anistic models. Logistic regression was used to assess whether a number of different strate-
gies could account for the variability in trial-by-trial responses in the high (top row) and/or
low (bottom row) disparity-contrast conditions. (A) Variance accounted for by strategies that
assume a fixed spatial-integration area as a function of integration diameter, where each dis-
parity estimate is computed as the mean disparity within the integration area of each patch.
Note that the largest integration diameter is equal to the area of the entire patch, and the
smallest integration area was equal to the central region which had the same disparity value
at each pixel up to a tight tolerance. In the former case, the disparity estimate equals the mean
disparity of the patch. In the latter case, the disparity estimate equals the disparity of the
central, target pixel. (B) Variance accounted for by strategies that assumed that the decision
variable was determined by the largest near disparity (nearest), largest far disparity (farthest),
and maximally deviant disparity (max) of each patch.
(TIF)

S2 Fig. Contributions of distinct stimulus-specific factors of luminance pattern and local-
depth structure to assuming covariance cov[L,B] is constrained to equal zero. For ref-
erence, threshold-contributions fit without the zero-covariance constraint are also shown
(black-filled symbols). Constraining the covariance has little effect for Observer 1, Observer 3,
and the Average Observer. In Observer 2, the magnitudes of the threshold contributions are
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systematically reduced, but the patterns are unaffected. In cases where black-filled symbols
are not visible, they are plotted directly behind white-filled symbols. Contribution of lumi-
nance pattern variability (top) and variability in local-depth structure (bottom) to threshold as
a function of disparity pedestal at different disparity-contrast levels (shades), for each observer
and the observer average. For individual observers, shaded regions indicate 68% confidence
intervals for each condition, generated from 10,000 bootstrapped samples. For the observer
average (last column), shaded regions indicate across-observer standard-deviations.
(TIF)
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