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STKOpt: Automated Spatio-Temporal Knowledge Optimization
for Traffic Prediction

Anonymous Author(s)

Abstract
Ubiquitous sensors and mobile devices have spurred the growth
of Web-of-Things (WoT) services in smart cities, making accurate
spatio-temporal traffic predictions increasingly crucial. Leveraging
advances in deep learning, recent Spatio-Temporal Graph Neural
Networks (STGNNs) have achieved remarkable results. However,
these methods address scenario-specific spatio-temporal hetero-
geneity by designing model architectures, often overlooking the
importance of selecting optimal spatio-temporal knowledge (i.e.,
model inputs). In this paper, we propose an automated framework
for spatio-temporal knowledge optimization to address this chal-
lenge. Our framework seamlessly integrates with downstream mod-
els, enhancing their performance across various prediction tasks.
Specifically, we design a knowledge search space composed of
parameters that represent scenario-specific spatio-temporal corre-
lations within data. Additionally, we employ a bandit-based multi-
fidelity algorithm for knowledge optimization to solve the con-
straint of limited resource. Furthermore, we adopt a meta-learner
to extract transferable meta-knowledge about optimal knowledge,
facilitating efficient exploration of the search space. Extensive ex-
periments on five widely used real-world datasets demonstrate the
effectiveness of our proposed framework. To the best of our knowl-
edge, we are the first to automatically optimize spatio-temporal
knowledge for spatio-temporal traffic prediction.

CCS Concepts
• Computing methodologies → Machine learning; • Informa-
tion systems→ Spatial-temporal systems.

Keywords
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Learning
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1 Introduction
As sensors, mobile devices, and positioning technologies become
increasingly prevalent, a surge of innovative Web-of-Things (WoT)
services, such as shared bicycle system and ride-hailing platforms,
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have become integral components of smart cities. Since these ser-
vices heavily rely on spatial and temporal humanmobility dynamics,
accurate spatio-temporal traffic prediction plays a pivotal role in
intelligently monitoring traffic systems [22, 29, 30, 45] and offering
crucial insights for traffic control [18], emergency response [45]
and urban planning [41].

The challenge of spatio-temporal traffic prediction lies in captur-
ing scenario-specific ST heterogenity. Recently, the Spatio-Temporal
Graph Neural Networks (STGNNs) have garnered significant at-
tention, whose basic framework for predictive learning mainly
contains data processing and spatio-temporal graph (STG) learning
module [11]. Since data from diverse scenarios shows heteroge-
neous ST correlations, it can be theoretically addressed from two
key aspects. Firstly, in the data processing module, constructing
the STG data that best captures the underlying data distribution
as model inputs, including historical sequences and corresponding
graph structures that we called ST knowledge. Secondly, in the STG
learning module, designing the optimal network architecture for
ST dependency modeling.

To address the issue of scenario-specific ST heterogeneity, exist-
ing methods have achieved considerable advancements by design-
ing STG learning modules, i.e., model architectures. For example,
attention mechanism have been adopted for modeling scenario-
specific temporal correlation [12, 39]; adaptive graph learning meth-
ods, including learnable static graphs [1, 35] and time-varying dy-
namic graphs [8, 20], have been proposed to learn application-
specific spatial correlation. The essence of these methods lies in
optimizing model parameters. Furthermore, neural architecture
search (NAS) methods have been introduced to automatically de-
sign optimal model architecture for specific datasets [15, 23, 33].
However, these methods overlook the importance of selecting op-
timal model inputs (i.e., ST knowledge), leading to the following
practical issues. i) Lack of scenario-specific customized tempo-
ral knowledge. There are multiple types of temporal correlations
among different time intervals [8, 28]. Taking traffic flow as an ex-
ample, the impact duration of congestion varies between scenarios
such as first-tier cities and smaller cities. Most existing studies rely
solely on the most recent time steps (e.g., past 12 time steps [13, 26]).
However, it has been proven that incorporating effective tempo-
ral knowledge would significantly improve prediction [8, 19, 32].
ii) Lack of scenario-specific customized spatial knowledge.
Constructing spatial topology is crucial for capturing spatial het-
erogeneity. Predefined graphs can be constructed using multiple
functions such as distance [40], connectivity [6], and points of inter-
est (POI) similarity [6]. However, the specific data conditions vary
across different scenarios, for predefined graph-based methods, it
is difficult to manually select well-work predefined graphs for dif-
ferent datasets. In addition, for adaptive graph-based methods, they
can benefit further from predefined graphs [13, 37].

Another idea to address the issue of scenario-specific ST hetero-
geneity is to optimize ST knowledge, i.e., selecting the optimal ST
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Figure 1: The basic framework of STGNN for predictive learn-
ing. Our STKOpt focuses on how to obtain optimal spatio-
temporal knowledge in the data processing module.

knowledge for different scenarios. However, currently researchers
can still only manually select knowledge, which demands substan-
tial domain knowledge and human efforts. Therefore, there is a
strong motivation to design an automated ST knowledge optimiza-
tion framework for various application scenarios. Fortunately, re-
cent automated machine learning (AutoML) technology has been
widely applied across various fields [2, 31], including the field of
ST traffic prediction [15, 23, 33]. However, adopting existing au-
tomated methods to optimize ST knowledge presents two main
challenges. Firstly, optimal ST knowledge must accurately repre-
sent the ST correlations within data. Therefore, it is crucial for the
search space to be as extensive as possible, covering the possibili-
ties of various data distributions. Existing NAS methods considered
the structure of the adjacency matrix as a special architecture in
the proposed model, employing one-shot methods simultaneously
evaluate all candidate matrices [10, 14]. However, this approach
places significant demands on computational resources, thereby
constraining the scalability of the search space. Secondly, given the
high dimensionality of the knowledge search space, finding optimal
configurations necessitates a substantial number of evaluations.
The complexity of ST traffic prediction models further exacerbates
this issue, as random search and Bayesian methods demand exten-
sive computational resources to effectively explore the search space.
This requirement poses significant challenges for researchers with
limited budgets. To tackle aforementioned challenges, we propose
a novel framework for automated ST knowledge optimization, en-
titled STKOpt. Notably, STKOpt is a general framework that can
seamlessly integrate into existing STGNNs. Our main contributions
are summarized as follows:

• We propose a general framework for spatio-temporal traffic pre-
diction, entitled STKOpt, focusing on automated ST knowledge
optimization. This framework seamlessly integrates into exist-
ing STGNNs, enhancing their performance. To the best of our
knowledge, we are the first to automatically discover optimal ST
knowledge for spatio-temporal traffic prediction.

• To accommodate various scenario-specific data distributions, we
atomize ST knowledge and design a knowledge search space
composed of parameters. To solve the constraint of limited re-
source, we employ a multi-fidelity optimization strategy that

leverages downsampling to increase the number of configu-
rations evaluated. To efficiently explore search space, a meta-
learner is adopted to extract transferable meta-knowledge about
optimal ST knowledge.

• We conduct extensive experiments on real-world datasets, and
the experimental results demonstrate that our STKOpt can en-
hance the performance of downstream STGNNs. In particular,
the improved prediction we achieve in this paper will enhance
the confidence and proactiveness of users for emerging WoT
services. The knowledge optimization ideas we propose can be
broadly applicable for web-based ubiquitous computing, includ-
ing environment analysis and energy management, as well as
contributing to the development of smart cities [44].

2 Related Work
2.1 Deep Learning for Spatio-Temporal Traffic

Prediction.
In recent explorations of spatio-temporal traffic prediction, deep
learning technology has become a mainstream trend. Almost all
studies consider the effect of recent time intervals, and some studies
further consider multiple periodicities [8, 28, 32, 42], demonstrating
its effectiveness. Due to the importance of prior knowledge, early
studies introduced predefined graphs, including distance-based
weighted graphs[17, 28] and binary graph constructed based on
connectivity of nodes [6, 7, 27]. In order to make up for the lack of
prior knowledge, subsequent studies introduced learnable graph
structures to model implicit spatial correlations [1, 36, 43]. Recently,
attention mechanism has been widely adopted to model dynamic
graphs [7–9]. However, most of them still require predefined graph
structure as input [9, 20, 24, 43]. In addition, some models try to
combine predefined graphs and adaptive graphs, which can better
combine the advantages of both [13, 37]. For different scenarios,
there are still research gaps on which temporal factors to consider
and how to find the most effective predefined graphs to improve
the accuracy of downstream prediction tasks. Our STKOpt aims to
address this limitation.

2.2 Automated Machine Learning for
Spatio-Temporal Traffic Prediction.

Recently, automated machine learning (AutoML) has been exten-
sively explored in the field of spatio-temporal (ST) traffic prediction.
Most studies aim to automatically find the optimal ST modeling ar-
chitecture for specific prediction tasks, utilizing neural architecture
search (NAS) methods [15, 23, 33]. Some studies also focus on auto-
matically finding the optimal graph structure [10, 14]. These works
treat the adjacency matrix of the predefined graph as a special archi-
tecture of the model and use one-shot NAS methods to evaluate all
candidate matrices at once, identifying the best one. This approach
requires memory proportional to the number of candidate matrices,
limiting the expansion of the search space. Additionally, some stud-
ies emphasize the selection of optimal hyperparameters, finding
them through joint search with the architecture [34] or using rank-
ing strategies [38]. However, these approaches cannot be directly
applied to optimizing ST knowledge because we require different
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search spaces to construct time-series and graph structures that
accurately reflect the data distribution as model input.

3 Preliminaries
3.1 Definitions and Problem Statement

Definition 3.1. Spatio-TemporalGraph.A spatio-temporal graph
(STG), denoted asG = (V, E,A), whereV is a set of𝑁 = |V| nodes
that represent different locations and have time-varying attributes;
E is a set of edges and A ∈ A𝑁×𝑁 is a adjacency matrix where
each element represents the inter-location relationships between
nodes (e.g., distance, connectivity). The attributes over an STG can
be viewed as a graph signal X ∈ R𝑇×𝑁×𝐶 , where 𝑇 is the length
of sequence, 𝐶 is the number of attributes of each node. The graph
signal is X𝑡 ∈ R𝑁×𝐶 at each time step 𝑡 .

Definition 3.2. Spatio-Temporal Knowledge. ST knowledge
is constructed from raw data in the data processing module and
serves as input to the subsequent STG learning network. Specifically,
temporal knowledge is represented as a collection of time-series data
sampled at various intervals, capturing distinct temporal dynamics:
T = {X𝑝𝑘 |𝑝𝑘 ∈ 𝑃}. Here, 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑛} represents a set of
specific intervals, each 𝑝𝑘 denoting a particular sampling period.
The time-series data for each period X𝑝𝑘 is defined as:

X𝑝𝑘 = [X𝑡−𝑖 ·𝑝𝑘 |𝑖 = 1, . . . , 𝑙𝑘 ], (1)

where 𝑙𝑘 denotes the length of the time series associated with
the period 𝑝𝑘 , and 𝑡 is the current time step; spatial knowledge is
composed of a series of predefined graph, denoted asMG = {G𝑖 |𝑖 =
1, · · · , 𝑘}, where 𝑘 is the number of selected graphs.

Definition 3.3. Spatio-Temporal Knowledge Optimization.
Our STKOpt aims to improve the accuracy of downstream predic-
tion tasks by finding optimal ST knowledge, which achieves the
minimum loss on validation dataset D𝑣𝑎𝑙 :

min
𝜆∗

L(𝜆∗,D𝑣𝑎𝑙 ) s.t. 𝜆∗ = argmin
𝜆∈Λ

L(𝜆,D𝑣𝑎𝑙 ) (2)

where L denotes loss function, 𝜆 denotes a specific configuration
within the set Λ of all possible ST configurations, 𝜆∗ is the optimal
configuration that minimizes the loss.

3.2 Multi-fidelity Optimization
Multi-fidelity optimization effectively addresses limited time and
resource constraints by combining evaluations of varying fidelities.
Lower-fidelity evaluations are less costly but offer poorer gener-
alization, while higher-fidelity evaluations, though more expen-
sive, yield better generalization. one representative bandit-based
approach is HYPERBAND [16], which forms the basis of our pro-
posed optimization framework. SUCCESSIVE HALVING, as a sub-
routine within HYPERBAND, uniformly allocates a budget (𝐵) to
a set of configurations (𝑛), evaluates their performance, discards
the worst half, and repeats until only one configuration remains.
HYPERBAND explores multiple values of 𝑛 for a given 𝐵 by parti-
tioning the budget into combinations of 𝑛 and minimum resource 𝑟 ,
and then executing SUCCESSIVE HALVING for each combination

(𝑛𝑠 , 𝑟𝑠 ). In the next section, we improve the design of the config-
uration sampling method to more effectively identify promising
configurations within the extensive search space.

4 Methodology
In this section, we introduce the details of the STKOpt, which ac-
cepts three hyperparameters as input: (1) 𝑏, one unit of resource,
i.e., the minimum desired resource; (2) 𝐵, the ratio between max-
imum resource and minimum resource; (3) 𝜂, the proportion of
configurations discarded in each round. Following HYPERBAND,
the workflow of STKOpt consists of a loop that iterates over differ-
ent configuration numbers (𝑛) and minimum resources (𝑟 ). For each
sub-loop (𝑠) with a fixed (𝑛𝑠 , 𝑟𝑠 ), the framework can be divided into
a sampling stage and an evaluation stage, as shown in Figure 2.

Sampling stage.The knowledge generator employs random strat-
egy or a meta-learner to sample 𝑛𝑠 ST knowledge configurations
from the knowledge search space.

Evaluation stage. The knowledge evaluator uses the SUCCES-
SIVE HALVING algorithm to evaluate the received 𝑛𝑠 configura-
tions based on the budget 𝑟𝑠 to find the best configuration.

Algorithm 1 illustrates the complete spatio-temporal knowledge
optimization process. The input 𝐵 determines how many sub-loops
are considered. Specifically, 𝑠𝑚𝑎𝑥 + 1 different values for 𝑛 are
considered with 𝑠𝑚𝑎𝑥 = ⌊log𝜂 (𝐵)⌋.

Algorithm 1 Knowledge Optimization
Require: maximum budget 𝐵, one unit of budget 𝑏 and 𝜂
Ensure: optimal knowledge configuration
1: 𝑠𝑚𝑎𝑥 = ⌊log𝜂 (𝐵)⌋
2: for 𝑠 ∈ {𝑠𝑚𝑎𝑥 , 𝑠𝑚𝑎𝑥 − 1, . . . , 0} do
3: 𝑛𝑠 = ⌈𝜂𝑠 𝑠𝑚𝑎𝑥+1

𝑠+1 ⌉, 𝑟𝑠 = 𝐵𝜂−𝑠𝑏
4: Sample |Λ| = 𝑛𝑠 configurations
5: for 𝑖 ∈ {0, . . . , 𝑠} do
6: 𝑛𝑠,𝑖 = ⌊𝑛𝑠𝜂−𝑖 ⌋, 𝑟𝑠,𝑖 = 𝑟𝑠𝜂

𝑖

7: 𝑙𝑜𝑠𝑠 = {L(M(𝜆), 𝑟𝑠,𝑖 ,D𝑣𝑎𝑙 ) : 𝜆 ∈ Λ}
8: Λ = 𝑡𝑜𝑝𝑘 (Λ, 𝑙𝑜𝑠𝑠, ⌊𝑛𝑠,𝑖/𝜂⌋)
9: end for
10: end for
11: return Configuration with lowest loss so far.

4.1 Knowledge Search Space Design
To accommodate diverse scenario-specific data distributions, we
atomize ST knowledge into individually adjustable and evaluable
parameters. This approach enables researchers to finely control and
optimize both the composition of time series data and the structure
of graphs, thereby tailoring them to meet the precise requirements
of specific prediction tasks. Based on this atomization, we propose
a knowledge search space composed of these parameters, as shown
in Table 1.

4.1.1 Temporal Knowledge. In traffic prediction, temporal knowl-
edge can be summarized into three categories: closeness, daily peri-
odicity and weekly periodicity due to their effectiveness in captur-
ing temporal correlations among different time intervals [28, 32, 42].
Each category is designed to capture specific temporal dynamics. (1)
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Table 1: Knowledge Search Space. (#𝑔𝑟𝑎𝑝ℎ: number of graphs;
G𝑡𝑦𝑝𝑒 (𝑖 ) : type of adjacency matrix for G𝑖 ; 𝜖𝑠𝑐 (𝑖 ) : sparsity coef-
ficient for G𝑖 )

Knowledge Values

𝑙𝑐 1, · · · , 12
𝑙𝑑 0, · · · , 7
𝑙𝑤 0, · · · , 4

# graph 1, · · · , n
G𝑡𝑦𝑝𝑒 (𝑖 ) binarized,weighted
𝜖𝑠𝑐 (𝑖 ) 0.1,0.2,0.3,0.4

closeness: X𝑐 = [X𝑡−𝑙𝑐 ,X𝑡−(𝑙𝑐−1) , . . . ,X𝑡−1], captures short-term
dependencies that are immediately adjacent to the predicting pe-
riod. (2) daily periodicity: X𝑑 = [X𝑡−𝑙𝑑 ·𝑑 ,X𝑡−(𝑙𝑑−1) ·𝑑 , . . . ,X𝑡−𝑑 ],
captures the daily repeated patterns. (3) weekly periodicity: X𝑤 =

[X𝑡−𝑙𝑤 ·𝑤 ,X𝑡−(𝑙𝑤−1) ·𝑤 , . . . ,X𝑡−𝑤], captures the weekly periodic
features. Here, 𝑑 and𝑤 are period and trend spans that are fixed to
one-day and one-week respectively. 𝑙𝑐 , 𝑙𝑑 and 𝑙𝑤 are input lengths of
the closeness, daily periodicity and weekly periodicity time-series,
respectively.

We note in many existing works, the length of the closeness
typically does not go beyond 12, as longer temporal dependencies
are generally not observed in themost recent time slots.We limit the
daily periodicity length to 7 as it encompasses the traffic patterns
for all seven days of the week. Similarly, we cap the length of weekly
periodicity at 4, considering that monthly patterns are generally less
pronounced. Furthermore, in certain application scenarios where
the data lacks periodicity, we allow the corresponding periodicity
sequence length to be set to zero.

4.1.2 Spatial Knowledge. Despite different inter-location relation-
ship graphs can represent many types of spatial relationships, exist-
ing work [32] has proven that blindly adding various spatial knowl-
edge graphs to the model may not help network parameter learning,

and even reduce prediction performance and computational effi-
ciency. Therefore, determining the number of spatial knowledge
graphs and which ones to employ are the two important parameters
that need to be optimized.

Upon conducting a comprehensive review of existing literature,
we observe that the construction method of adjacency matrices
generally falls into two predominant categories: threshold-based
binarization and direct weight assignment. Formally, The relation-
ship between location 𝑖 and 𝑗 is denoted as𝑤𝑖, 𝑗 = relationship(𝑖, 𝑗).
Hence, we can build binarized graphs by Equation (3) and weighted
graphs by Equation (4).

For binarized graphs, the simple graph structure endows it with
higher computational efficiency and reduced sensitivity to data
noise. Furthermore, by adjusting the sparsity coefficient, the graph
structure can more accurately match the characteristics of specific
data distributions. In contrast, weighted graphs can capture multi-
dimensional spatial correlations with their rich weight information.
The choice between these structures largely hinges on the data
distribution. Sparse binarized graphs excel in scenarios with robust
local correlations, capturing essential relationships and filtering out
potential noise introduced by weighted graphs. On the other hand,
in cases with a more uniform data distribution, binarized graphs
might omit vital weight information that weighted graphs retain.

𝐴𝑖, 𝑗 =

{
1 if𝑤𝑖, 𝑗 ≤ 𝜖,

0 otherwise.
(3)

𝐴 =

©«
0 𝑤0,1 · · · 𝑤0,𝑁−1

𝑤1,0 0 · · · 𝑤1,𝑁−1
.
.
.

.

.

.
. . .

.

.

.

𝑤𝑁−1,0 𝑤𝑁−1,1 · · · 0

ª®®®®¬
(4)

We regard the type of adjacency matrix as one of the parameters
to be optimized. Thus, the sparse coefficient becomes a crucial con-
ditional parameter when the graph type is set to binarized. While
there exists no universally accepted guideline for defining the spar-
sity coefficient for binarized graphs, it is generally observed that
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Figure 3: Meta Learner Overview.

binarized graphs with excessive connections may inadvertently in-
troduce noise and irrelevant correlations. Consequently, the sparsity
coefficients for binarized graphs in our search space are intention-
ally set to be relatively low.

4.2 Knowledge Generator for Sampling
To achieve robust performance, it is crucial to search for the optimal
configuration in a huge search space. Our knowledge generator
employs two sampling strategies. Firstly, the meta-learner extracts
transferable meta-knowledge about optimal ST knowledge configu-
rations and predicts the next likely best configuration. Concurrently,
a random sampling strategy with a probability of 𝜌 ensures com-
prehensive global exploration. This balanced approach integrates
targeted learning from the meta-learner and global exploration
through random sampling, effectively balancing exploration and
exploitation while safeguarding against potential inaccuracies in
the meta-learner’s predictions [4].

Specifically, meta learner is trained to estimate the mapping from
ST knowledge configuration 𝜆 to the expected performance

L(𝜆,Y𝑡+1,Y′𝑡+1). (5)
Initially, random sampling is employed to obtain configurations and
their corresponding evaluated results from knowledge evaluator,
forming the observed data points 𝐷 = (𝜆0,L0), · · · , (𝜆𝑖 ,L𝑖 ). We
then use a multidimensional Kernel Density Estimator (KDE) [4],
implemented with statsmodels [25], to model the densities

𝑙 (𝜆) = 𝑝 (L < 𝛼 |𝜆, 𝐷),
𝑔(𝜆) = 𝑝 (L > 𝛼 |𝜆, 𝐷) (6)

based on 𝐷 over the ST knowledge space. In order to train useful
KDEs, we need sufficient historical observation, with a minimum
number 𝑁𝑚𝑖𝑛 . After initializing with 𝑁𝑚𝑖𝑛 + 2 random configu-
rations, we use the KDE to sample configurations with a certain
probability 1-𝜌 . Specifically, we select

𝑁𝑙 = max(𝑁𝑚𝑖𝑛, 𝑞 · |𝐷 |),
𝑁𝑔 = max(𝑁𝑚𝑖𝑛, |𝐷 | − 𝑁𝑙 )

(7)

the best and worst configurations, respectively, to model the two
densities, where 𝑞 is a percentile that trades off the exploration and
exploitation, and |𝐷 | is the number of observations. This ensures
both models have sufficient data points and minimal overlap when
observations are limited. To encourage more exploration around

the promising configurations and improve convergence, we con-
sider a KDE model 𝑙 ′ (𝜆) similar to 𝑙 (𝜆), with one major difference
that all bandwidths, estimated using Scott’s rule of thumb, are mul-
tiplied by a factor 𝑏𝑤 [4]. Then we sample 𝑁𝑠 points from 𝑙 ′ (𝜆) and
return the sample with the highest ratio 𝑙 (𝜆)/𝑔(𝜆) as the next candi-
date configuration. We summarize the above knowledge sampling
procedure in Algorithm 2.

Algorithm 2 Knowledge Generation
Require: observations 𝐷 , 𝜌 , 𝑞, 𝑁𝑠 , 𝑁𝑚𝑖𝑛 , 𝑏𝑤
Ensure: next configuration to evaluate
1: if rand() < 𝜌 or |𝐷 | < 𝑁𝑚𝑖𝑛 + 2} then
2: return random configuration
3: end if
4: fit the meta learner according to Equation 6 and 7
5: sampling 𝑁𝑠 points according to 𝑙 ′ (x)
6: return configurtion with highest ratio 𝑙 (x)/𝑔(x)

4.3 Knowledge Evaluator for Optimization
The knowledge evaluator executes SUCCESSIVE HALVING algo-
rithm based on the given number of configurations and resources
(𝑛𝑠 , 𝑟𝑠 ). Specifically, we define a function L(M(𝜆), 𝑟 ,D𝑣𝑎𝑙 ), where
M is the downstream prediction model (e.g., the optional STGNN),
𝜆 is the knowledge configuration to be evaluated, and the function
returns the validation loss after training the configuration for the
allocated budget 𝑟 . We also define a function 𝑡𝑜𝑝𝑘 (Λ, 𝑙𝑜𝑠𝑠, 𝑘) to
return the top 𝑘 configurations with the lowest loss (best perfor-
mance) from the set Λ, where 𝑘 = 𝑛/𝜂. Overall, the evaluator uses
the L function to evaluate each configuration and then uses the
𝑡𝑜𝑝𝑘 function to eliminate poorly performing configurations. This
process leaves 𝑛𝑠,𝑖 = 𝑛𝑠 · 𝜂−𝑖 configurations and increases the allo-
cated budget to 𝑟𝑠,𝑖 = 𝑟𝑠 · 𝜂𝑖 for each configuration. The next round
of evaluation is performed until all the budget is exhausted, where
𝑖 is the current number of cycles. Overall, knowledge evaluator has
a computational complexity of O(𝑛𝑙𝑜𝑔𝑛). In our work, the budget
is set to the maximum epochs required for training.

5 Experiments
In this section, we conduct extensive experiments on real-world
datasets to verify the effectiveness of STKOpt and answer the fol-
lowing key research questions.

• RQ1: Does STKOpt improve the prediction performance of
downstream baselines on different datasets?

• RQ2: How effective is the knowledge search space and
optimization algorithm?

• RQ3: Is there any connection between the ST knowledge
learned by STKOpt and the data distribution?

• RQ4: How do the hyperparameters of STKOpt influence
the ultimate performance?

• RQ5: How does STKOpt relate to Neural Architecture Search?

5.1 Experimental Settings
5.1.1 Datasets. Following previous works [3, 17, 32], we use five
public traffic datasets for performance evaluation: METR-LA, PEMS-
BAY, BIKE-NYC, TAXI-NYC, LargeST-SD [3, 17, 21, 32], whose
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Table 2: Overall performance comparison on different datasets.

Model Dataset PEMS-BAY METR-LA TAXI-NYC BIKE-NYC LargeST-SD

Metrics RMSE/MAE RMSE/MAE RMSE/MAE RMSE/MAE RMSE/MAE

DCRNN 3.96/1.99 11.10/5.97 4.42/2.30 4.79/3.01 34.21/22.56
w/ STKOpt 3.81/1.82 9.97/5.84 4.18/2.18 4.51/2.84 30.23/20.18

STGCN 3.52/1.73 11.14/5.52 4.56/1.62 3.72/2.38 27.76/20.21
w/ STKOpt 3.39/1.61 10.01/5.41 4.18/1.54 3.61/2.21 25.32/19.24

STMeta 3.35/1.59 10.12/5.30 3.08/1.53 3.48/2.30 23.27/14.11
w/ STKOpt 3.31/1.57 9.72/4.96 2.73/1.40 3.42/2.27 21.86/13.42

GWN 3.60/1.62 9.87/4.62 2.92/1.35 3.55/2.64 21.23/12.21
w/ STKOpt 3.51/1.53 9.70/4.51 2.74/1.19 3.37/2.51 20.19/11.54

D2STGNN 3.41/1.49 9.86/4.26 2.36/1.05 3.55/2.27 20.72/11.81
w/ STKOpt 3.32/1.47 9.73/4.54 2.01/0.63 3.37/2.14 20.15/11.21

DGCRN 3.32/1.51 10.27/4.73 2.77/1.27 4.38/2.69 21.51/13.08
w/ STKOpt 3.28/1.50 9.66/4.61 2.58/1.13 3.59/2.29 20.37/12.28

STWave 3.54/1.60 9.95/4.71 2.80/1.29 4.09/2.58 24.75/15.40
w/ STKOpt 3.44/1.54 9.65/4.57 2.56/1.17 3.86/2.37 23.27/14.29

records include traffic speed, taxi order, bike order and traffic flow.
We aggregate the sequence into 60-minute windows to study the
prediction in a more extended future time period. The granularity of
aggregation affects the results, which may lead to some differences
between our reported results and those in the original paper. Table
3 summarizes the statistics of the datasets. More details about the
datasets is given in Appendix A.1.

Table 3: Dataset statistics.

Dataset # Timestamps # Nodes Time Granularity

PEMS-BAY 52,128 325 5 minutes
METR-LA 34,272 207 5 minutes
BIKE-NYC 446,976 820 5 minutes
TAXI-NYC 779,904 263 5 minutes
LargeST-SD 525,888 716 5 minutes

5.1.2 Baselines. We consider the following baselines, including
typical predefined graph-based models (DCRNN [17], STGCN [40],
STMeta [32]) and several adaptive learning-basedmodels (GWN [37],
D2STGNN [26], DGCRN [13], STWave [5]).We compare the original
performance and enhanced performance(w/ STKOpt) of different
baselines. More details can be found in Appendix A.2.

5.1.3 Metrcis. We leverage Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE) to evaluate the performance of models.

𝑅𝑀𝑆𝐸 =

√√√
1
𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2, (8)

𝑀𝐴𝐸 =
1
𝑁

𝑁∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 |, (9)

where 𝑁 is the number of nodes, 𝑦𝑖 is the predicted value, and 𝑦𝑖 is
the ground truth.

5.1.4 Implementation Setup. We adopt two widely used metrics,
RootMean Squared Error (RMSE) andMeanAbsolute Error (MAE) [1,
23] to evaluate the performance of models. For optimization, we
use RMSE as loss function in knowledge evaluator. Other imple-
mentation details are given in Appendix A.3.

5.2 Overall Prediction Performance (RQ1)
In this section, we evaluate the original and enhanced performance
(w/ STKOpt) of different baselines on five datasets, and the results
are shown in the Table 2. We observe that STKOpt improves differ-
ent types of methods, including predefined graph-based models and
models based on adaptive graph learning. This shows that finding
optimal ST knowledge is necessary for different model architec-
tures, and this improvement does not partialize to a certain category
of baselines, which proves the generalization ability of STKOpt.

Another observation is that the improvements achieved by STKOpt
on certain baselines are relatively limited for specific datasets. For
instance, the RMSE of GWN improved by only 0.06 on the METR-
LA dataset, and the RMSE of STMeta improved by just 0.04 on
the PEMS-BAY dataset. A possible explanation for these findings
is that the ST knowledge originally employed by these baselines
already represents the data distribution well. Specifically, STMeta
is designed to combine human knowledge by manually selecting
the optimal ST knowledge to achieve good results. Since human
efforts are finite, the initial knowledge is likely suboptimal for some
dataset, STKOpt can provide significant improvements (e.g., a 0.35
RMSE improvement on the TAXI-NYC dataset) in this case. GWN
combines predefined graphs and data-driven graphs to capture
hidden spatial dependencies. For high-quality datasets with com-
plete and low-noise data, the data-driven approach can naturally
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identify excellent spatial knowledge, making STKOpt’s impact less
pronounced. However, for datasets where the data-driven methods
struggle, STKOpt can effectively bridge this gap.

5.3 Ablation Study (RQ2)
In this subsection, we conduct ablation studies for STKOpt. STMeta
is utilized as the downstream approach, and two datasets PEMS-
BAY and METR-LA are employed for evaluation.

5.3.1 Effectiveness of search space. 1) w/o TK, which removes
temporal knowledge (TK) from search space; 2) w/o SK, which
removes spatial knowledge (SK) from the ST knowledge search
space. As shown in Figure 4, both SK and TK can enhance the
forecasting performance in ST prediction problems. In particular,
compared to SK, TK has a more significant impact on the final
result, as accurately capturing temporal correlation plays a pivotal
role in ST prediction problems. This also explains why, in certain
scenarios, time series models or machine learning algorithms solely
based on temporal knowledge can achieve favorable result.

METR-LA PEMS-BAY

Figure 4: Ablation Studies on ST knowledge search space.

5.3.2 Effectiveness of optimization algorithm. 1) STKOpt-R, which
randomly samples knowledge from our search space and evaluate
the configuration after complete training; 2) STKOpt-T, which
trains Tree Parzen Estimator to determine knowledge based on
previous observations.

METR-LA

METR-LA

Figure 5: Ablation Studies on optimization algorithm.

Figure 5 illustrates the temporal progression of the minimum
loss curve. Initially, STKOpt extensively explores the search space

and employs a meta-learner to discover promising configurations.
This enables STKOpt to learn from previous results and effectively
exploit these configurations, explaining its superior performance
compared to STKOpt-R. While STKOpt-T possesses similar learning
capabilities, the complexity of downstream model makes it very
time-consuming to fully evaluate each configuration, resulting in a
slower decrease in loss. In contrast, STKOpt utilizes a multi-fidelity
optimization strategy to expedite configuration evaluation and
avoid wasting time on configurations with no potential. This strat-
egy begins by evaluating numerous configurations with a smaller
budget and then employs successive halving to eliminate underper-
forming configurations, thereby focusing resources on those with
potential. Consequently, although STKOpt may require more initial
time to screen potential configurations, it ultimately achieves lower
losses more rapidly than STKOpt-T.

(a) Temporal knowledge (b) Spatial knowledge

(c) Case for traffic pattern (d) Case for prediction

Figure 6: Case study for STKOpt onMETR-LA dataset. (a) and
(b) present the statistics of the dataset; (c) illustrates that traf-
fic patterns are not always related to distance, and (d) shows
the improvement of prediction by the STKOpt framework.

5.4 Investigation on Optimization Effect (RQ3)
We further investigate the relationship between the optimal ST
knowledge searched by STKOpt and the data distribution. First, we
study the data distribution of METR-LA datasets. Specifically, we
use Autocorrelation Function (ACF) of node-wise traffic data to mea-
sure the periodicity of traffic time series. As shown in Figure 6(a),
contrary to the traditional view that periodicity is inevitable, the pe-
riodicity in the METR-LA dataset is not pronounced. Additionally,
Figure 6(b) illustrates the relationship between distance between
node pairs and their traffic correlation. Conventional wisdom sug-
gests that geographically closer nodes would exhibit stronger traffic
correlations. However, the METR-LA dataset lacks a discernible
pattern in this regard, displaying a relatively uniform distribution
of correlations. This leads us to posit that relying on geographi-
cal distance for constructing a spatial knowledge graph may not
guarantee enhanced prediction performance.
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We analyze the traffic patterns of node 176 and its nearest neigh-
bors (node 10), as well as the node with the strongest correlation
(node 122), as illustrated in Figure 6(c). The results reveal that spa-
tial proximity does not necessarily imply similar traffic patterns
among nodes, validating our hypothesis. Secondly, we analyze the
optimal ST knowledge indentified by STKOpt, i.e., {𝑙𝑐 = 8, 𝑙𝑝 =

1, 𝑙𝑡 = 4, #𝑔𝑟𝑎𝑝ℎ = 1,G = 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛,G𝑡𝑦𝑝𝑒 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑}. The
optimal knowledge does not heavily rely on periodic information
and utilizes a weighted spatial knowledge graph to preserve weight
information, accurately capturing the correlation strength between
node pairs and enabling more refined modeling of their positional
relationships. Figure 6(d) demonstrates that employing optimal
knowledge can effectively improve prediction results, underscoring
STKOpt’s capability to discover optimal ST knowledge tailored to
the unique distributions of diverse datasets.

5.5 Hyperparameter Sensitivity Analysis (RQ4)
In this subsection, we evaluate the impact of key hyperparameters
in STKOpt, including the size of one unit of budget 𝑏 (the number
of iterations in this paper), and the proportion 𝜂 of configuration
discarded in each round of iteration. We conduct experiments on
PEMS-BAY dataset and choose STMeta as the downstream model.
For each hyperparameter, we show how the prediction results vary
with it by fixing other hyperparameters. To be specific, we select
the value of 𝑏 among {20, 30, 40} and the value of 𝜂 among {3, 4}.

Figure 7(a) illustrates how prediction results vary with 𝑏. As 𝑏
increases, the duration required to evaluate for each ST knowledge
configuration inevitably extends, leading to more time needed to
reduce the loss. However, minimizing unit of budget is not always
advantageous. A smaller unit of budget implies a reduced time allo-
cation for evaluating configurations, which may bias the evaluation
results and miss promising configurations. Furthermore, figure 7(b)
shows the impact of 𝜂 values on the results. Tuning 𝜂 will change
the number of brackets and consequently the number of different
trade-offs mentioned in Section 4.3. Besides, larger 𝜂 also implies
that more ST knowledge configurations are discarded in each it-
eration. Hence, with a fixed total budget B, a larger 𝜂 reduces the
number of configurations explored but allocates more resources to
each selected configuration.
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Figure 7: Studies on hyperparameters.

5.6 Knowledge Optimization v.s. Architecture
Search (RQ5)

We further explore the relationship between knowledge optimiza-
tion and architecture search. As shown in Figure 8, we compare the

running time and memory consumption, respectively. The results
show that running STKOpt requires additional time, and the amount
of time is closely related to the complexity of the downstreammodel
it is combined with. Additionally, compared to AutoSTG [23], a rep-
resentative model based on NAS methods, knowledge optimization
can elevate an initially average downstream model (e.g., DGCRN)
to a competitive level in a shorter time. In terms of memory con-
sumption, running STKOpt essentially does not bring additional
memory overhead since it primarily involves fine-tuning the in-
put to the model. In contrast, AutoSTG consumes a large amount
of memory, and as the search space becomes more complex and
expanded, the memory usage continues to grow because it needs
to treat the entire search space as a supernet. Overall, when time
and memory budgets are limited, selecting downstream models
with relatively simple architectures for knowledge optimization
can yield competitive results.

It is worth emphasizing that knowledge optimization and archi-
tecture search are not in a competing relationship. The NAS-based
method can be viewed as a specific predictive model serving as
the downstream model for STKOpt. To verify this hypothesis, we
combined STKOpt with AutoSTG. We first searched for the optimal
architecture and subsequently identified the optimal ST knowledge
to achieve best performance. The results demonstrate that STKOpt
can further enhance the performance of AutoSTG, reducing the
original RMSE from 10.12 to 9.65. More experimental results can
be found in Appendix C.1. In the future, more elegant combination
methods remain to be explored.

GPU OccupancyRunning Time & RMSE

Figure 8: Time consumption and GPU occupancy.

6 Conclusion
In this paper, we propose an automated framework tailored for
spatio-temporal traffic prediction tasks, entitled STKOpt. It cap-
tures the complex ST dependencies by discovering the optimal ST
knowledge within our knowledge search space defined by various
parameters. To efficiently explore the search space, we train a meta-
learner capable of predicting promising knowledge configurations.
Additionally, we adopt a bandit-based multi-fidelity algorithm for
knowledge optimization to address the constraints of limited time
and memory budget. We conduct extensive experiments on five
real-world datasets, demonstrating our STKOpt can enhance the
performance of downstream prediction models across different
tasks by finding optimal ST knowledge.
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A Details of the Experiment Setup
A.1 Datasets
We use five public traffic datasets for performance evaluation.

• METR-LA: This dataset is a traffic speed time series dataset
recorded by sensors at 207 different locations on highways in
Los Angeles County, USA.

• PEMS-BAY: This dataset is a traffic speed time series dataset
recorded by sensors at 325 different locations and collected by the
California Transportation Agencies Performance Measurement
System.

• BIKE-NYC: This dataset is a bike flow dataset collected from
New York City and covers a three month time period.

• TAXI-NYC: This dataset is a ride-hailing dataset collected from
New York City. The dataset is collected in the community area
and covers a three month time period.

• LargeST-SD: This dataset is a traffic flow dataset recorded by
sensors at 716 different locations on highways in San Diego
county, USA.

A.2 Baseline Details
• DCRNN [17]. This model combines diffusion GCN and GRU for

traffic prediction.
• STGCN [40]. It employs a Chebysev GCN and a gated 1D con-

volution to build spatio-temporal model.
• STMeta [32]. It flexibly integratesmultiple spatio-temporal knowl-

edge and can generally work well on various scenarios.
• GWN [37]. It designs a data-driven graph convolution method

for adaptively learning spatial knowledge and captures spatial-
temporal dependencies by combining graph convolution with
dilated casual convolution.

• D2STGNN [26]. This model proposes a novel decoupled spatio-
temporal framework and then design the diffusion and inherent
model as well as the dynamic graph learning model.

• DGCRN [13]. This model proves that dynamic graph can effec-
tively cooperate with pre-defined graph while improving the
prediction performance.

• STWave [5]. This model proposes a disentangle-fusion frame-
work and incorporate a query sampling strategy and graph
wavelet-based graph positional encoding to model the dynamic
spatial correlations.

A.3 Implementation Details
A.3.1 Knowledge Search Space Setup. The number and types of
candidate graphs in the search space are adjustable based on differ-
ent data conditions. For example, not all datasets include geographic
attributes such as points of interest (POIs). Therefore, in this paper,

we select two types of graphs that can be constructed on most
datasets: distance graphs and correlation graphs.
• We construct weighted distance graph using thresholded Gauss-

ian kernel as follows:

𝑊𝑖 𝑗 =


exp

(
− dist(𝑣𝑖 ,𝑣𝑗 )2

𝜎2

)
, if dist(𝑣𝑖 , 𝑣 𝑗 ) ≤ 𝜖

0, otherwise

where dist(𝑣𝑖 ,𝑣 𝑗 ) represents the distance between nodes 𝑣𝑖 and
𝑣 𝑗 ; 𝜎 is the standard deviation of distances and 𝜖 is the sparsity
coefficient to be optimized to control the sparsity of graph.

• We compute the correlations between every two nodes to con-
struct correlation graph using Pearson correlation coefficient.

𝑊𝑖 𝑗 = |
∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋 ) (𝑌𝑖 − 𝑌 )√︃∑𝑛

𝑖=1 (𝑋𝑖 − 𝑋 )2
√︃∑𝑛

𝑖=1 (𝑌𝑖 − 𝑌 )2
|

For the correlation graph, in addition to the weighted adjacency
matrix, we also consider its binarized matrix. We use a sparsity
coefficient 𝜖 to control the sparsity of graph. When 𝜖 is set to 0.1,
only the top 10% most relevant edges are retained.

A.3.2 Meta Learner Setup. We set the minimum number of sample
points 𝑁𝑚𝑖𝑛 required to build a meta-learner as 𝑑 + 1, where d
is the number of parameters in our proposed search space. The
proportion of best configurations 𝑞 in observations 𝐷 is set to 15%.
To improve EI, the bandwidth widen factor 𝑏𝑤 is set to 1e-3 and
the number of drawn samples 𝑁𝑠 is set to 64. For sampling the next
configuration, we set the proportion of random sampling 𝜌 as 1/3.

A.3.3 Optimization Algorithm Setup. We employ distinct optimiza-
tion parameters tailored to different downstream models. Our bud-
get adjustments are based on the resources utilized in the original
paper, i.e., the number of epochs. For DCRNN, STGCN, STMeta,
GWN, the maximum budget 𝐵 is 100, with one unit of budget 𝑏
being 30, and the proportion of configuration discarded in each
round of iteration 𝜂 being 3. For DGCRN, 𝑏 is 1, while the other
parameters remain the same as above. For D2STGNN, 𝐵 is 81, 𝑏
is 1 and 𝜂 remains the same. For STWave, 𝑏 is 6, with the other
parameters consistent with the aforementioned models.

A.3.4 Downstream Model Setup. For different models, we adopt
the optimization algorithms and learning rates as specified in the
original papers. For different datasets, we select varying time spans:
we adopt the entire time span for the PEMS-BAY and METR-LA
datasets, the first three months for the BIKE-NYC and TAXI-NYC
datasets, and the year 2019 for the LargeST-SD dataset. The batch
size is set to 64 for the METR-LA, PEMS-BAY, and TAXI-NYC
datasets, 32 for the BIKE-NYC dataset, and 16 for the LargeST-SD
dataset.

B Details of Optimization Framework
In theory, the maximum speedup offered by STKOpt compared
to random search is 𝐵

⌊log𝜂 (𝐵) ⌋+1
. However, in practice, the actual

speedup is influenced by two main factors: 1) The relationship
between training time and allocated resources: When training
time scales superlinearly with respect to the resource, STKOpt
can achieve higher speedups; 2) Additional overhead associated
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Table 4: Overall performance comparison on different datasets.

Model PEMS-BAY METR-LA TAXI-NYC

RMSE MAE RMSE MAE RMSE MAE

DCRNN 3.96±0.02 1.99±0.01 11.10±0.04 5.97±0.02 4.42±0.01 2.30±0.01
w/ STKOpt 3.81±0.02 1.82±0.01 9.97±0.04 5.84±0.02 4.18±0.04 2.18±0.03
STMeta 3.35±0.01 1.59±0.00 10.12±0.08 5.30±0.06 3.08±0.04 1.53±0.02

w/ STKOpt 3.31±0.02 1.57±0.01 9.72±0.06 4.96±0.04 2.73±0.06 1.40±0.04
DGCRN 3.32±0.02 1.51±0.01 10.27±0.08 4.73±0.04 2.77±0.09 1.27±0.06

w/ STKOpt 3.28±0.02 1.50±0.01 9.66±0.08 4.61±0.05 2.58±0.06 1.13±0.04
STWave 3.54±0.02 1.60±0.01 9.95±0.02 4.71±0.02 2.80±0.01 1.29±0.01

w/ STKOpt 3.44±0.02 1.54±0.02 9.65±0.06 4.57±0.04 2.56±0.04 1.17±0.03

with training: Beyond the time required for training the model, the
total evaluation time also includes overhead from model initializa-
tion, validation error computation, and the training and sampling
time associated with the meta-learner.

C Additional Experiments
C.1 Combination of Knowledge Search and

Architecture Search
We compare the experimental results of some baselines with Au-
toSTG [23], Auto-DSTSGN [10] and AutoCTS [33], as shown in the
Table 5. The results show that even though NAS-based methods
sometimes outperform the original baselines, most baselines per-
form better after applying knowledge optimization (w/ STKOpt),
proving STKOpt’s effectiveness. In addition, we compared time
consumption and GPU occupancy of AutoCTS, shown in Figure 9.
AutoCTS takes less time than AutoSTG and STWave w/ STKOpt
but has the largest RMSE. AutoCTS also requires more memory
than the other models.

Table 5: Performance comparison on different datasets (The
best results are marked with ’*’).

Model Dataset PEMS-BAY METR-LA TAXI-NYC

Metrics RMSE/MAE RMSE/MAE RMSE/MAE

GWN 3.60/1.62 9.87/4.62 2.92/1.35
w/ STKOpt 3.51/1.53 9.70/4.51 2.74/1.19

DGCRN 3.32/1.51 10.27/4.73 2.77/1.27
w/ STKOpt 3.28*/1.50* 9.66/4.61 2.58/1.13

STWave 3.54/1.60 9.95/4.71 2.80/1.29
w/ STKOpt 3.44/1.54 9.65*/4.57* 2.56/1.17

AutoSTG 3.401/1.52 10.12/4.68 3.57/1.66

AutoCTS 5.73/2.75 11.01/5.77 4.18/1.79

Auto-DSTSGN 3.47/1.57 10.64/5.03 2.43*/1.10*

GPU OccupancyRunning Time & RMSE

Figure 9: Time consumption and GPU occupancy.

C.2 Necessity of Multiple Sub-Loops
In this section, we analyze the optimization effects of different sub-
loops within the STKOpt framework. Each sub-loop represents the
evaluation of varying numbers of configurations, using different
amounts of resources. The primary objective of employing mul-
tiple sub-loops is to address the "𝑛 versus 𝐵/𝑛" dilemma, which
pertains to finding the optimal balance between the number of
configurations 𝑛 and the budget allocated per configuration 𝐵/𝑛.
The results, depicted in Figure 10, demonstrate that the optimal
prediction outcomes for different datasets occur in distinct sub-
loops. This variation underscores the necessity of utilizing multiple
sub-loops in STKOpt to achieve the best predictive performance
across diverse datasets.

(a) PEMS-BAY (b) METR-LA (c) TAXI-NYC (d) BIKE-NYC

Figure 10: Necessity analysis of multiple sub-loops.

C.3 Replication Study
We train and test each downstream model five times using different
random seeds, and present the results in the format of “mean ±
standard deviation”. The results shown in Table 4 demonstrate
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that STKOpt exhibits strong adaptability to different parameter
initialization settings, reliably discovering and providing optimal
spatio-temporal knowledge for downstream models.

D Limitations and Future Work
The proposed STKOpt has demonstrated its effectiveness in en-
hancing the prediction performance of downstream models. How-
ever, it has two main limitations. First, there is an additional time
cost. Knowledge optimization requires extra time, which may limit
its applicability in scenarios with strict time constraints. Second,

the integration with architecture search methods is suboptimal.
Knowledge optimization and architecture search are two orthogo-
nal approaches to address spatio-temporal heterogeneity. Currently,
STKOpt combines them sequentially—first conducting architecture
search and then applying knowledge optimization. This approach
is both time-consuming and fails to fully leverage the strengths
of each method. In future research, we aim to develop more ef-
ficient spatiotemporal knowledge optimization frameworks and
integrate knowledge optimization and architecture search in a more
synergistic manner.
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