
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BENCHNAME: A SET OF BENCHMARKS
FOR LONG-CONTEXT CODE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The fields of code and natural language processing are evolving rapidly, with
models becoming better at processing long context windows — supported con-
text sizes have increased by orders of magnitude over the last few years. How-
ever, there is a shortage of comprehensive benchmarks for code processing that
go beyond a single file of context, while the most popular ones are limited
to a single method. With this work, we aim to close this gap by introducing
BenchName, a suite of six benchmarks for code processing tasks that require
project-wide context. These tasks cover different aspects of code processing:
library-based code generation, CI builds repair, project-level code completion,
commit message generation, bug localization, and module summarization. For
each task, we provide a manually verified dataset for testing, an evaluation suite,
and open-source baseline solutions based on popular LLMs to showcase the us-
age of the dataset and to simplify adoption by other researchers. We publish the
benchmark page on HuggingFace Spaces with the leaderboard and links to Hug-
gingFace Hub for all the datasets: https://huggingface.co/spaces/
anon-iclr-submission/benchname. We also attach supplementary ma-
terials with baselines and evaluation code.

1 INTRODUCTION

The Machine Learning for Software Engineering (ML4SE) domain has gained popularity over
the recent years, with increasingly more powerful models for text and code processing becoming
available. According to a recent survey by Hou et al. (2023), the most common ML4SE tasks studied
in the literature are code generation, code completion, code summarization, and program repair.
Unfortunately, the majority of the existing benchmarks for assessing ML4SE models have two major
limitations: a short length of the available context and a limited resemblance of the practical use
cases (Hellendoorn et al., 2019; Kovalenko et al., 2018).

Two common approaches in modern natural language processing (NLP) are retrieval-augmented
generation (Gao et al., 2023) and utilization of long contexts (Tay et al., 2022). Retrieval-augmented
approaches (Borgeaud et al., 2022; Jiang et al., 2023b) can base their predictions on information from
large corpora of data using various search techniques, while the development of new architectures (Poli
et al., 2023; Fu et al., 2024; Gu & Dao, 2023) and techniques (Dao, 2023; Bertsch et al., 2024) allows
models to process tens of thousands or even millions of tokens. Both long-context and retrieval-
augmented models can in theory utilize information from an entire software project. However,
most existing ML4SE benchmarks operate with short code snippets — methods or at most files.
For example, two most popular code generation datasets—HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021)—require models to process fewer than 1,000 tokens and generate a short
function, usually no more than 100 tokens long.

A new direction of agentic ML4SE benchmarks requires models to work with long contexts: SWE-
bench (Jimenez et al., 2023) and its variations (Zan et al., 2024; Yang et al., 2025), Commit-0 (Zhao
et al., 2025), MLE-Bench (Chan et al., 2025), and others. Yet, as such benchmarks focus on agentic
solutions, they require models to do function calling and planning as well, not only processing of long
contexts. This makes them less suited for evaluation of processing long context and evaluation of
smaller models. Another type of existing ML4SE benchmarks that operates with long code sequences
is code completion at the repository level (Liu et al., 2023; Zhang et al., 2023). Unfortunately, the

1

https://huggingface.co/spaces/anon-iclr-submission/benchname
https://huggingface.co/spaces/anon-iclr-submission/benchname

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

existing works do not account for the iterative nature of software development: while solving the
code completion task in a single file, the benchmarks allow models to use the rest of the project
without restrictions. At the same time, other parts of the project can be written after the studied file
and utilize its contents, giving the model hints that will not be present in the practical use-case.

In this work, we present BenchName, a suite of novel benchmarks for ML4SE models that cover six
tasks: library-based code generation, CI builds repair, project-level code completion, commit message
generation, bug localization, and module summarization. We design all the tasks and datasets in
such a way that they require models to use information from a project module or the entire project to
successfully complete the task, yet don’t require complex multi-step interactions. For all the tasks,
samples used for evaluation are rigorously filtered and then manually verified to ensure the best
possible data quality. The data for all the tasks comes from open-source repositories with permissive
licenses. We also provide baseline solutions for all the tasks based on popular models, although this
work does not aim at solving the tasks — baselines are provided solely to aid future research. Further
work is required to identify the best approaches to individual tasks and better collection strategies.

We open-source all the datasets on HuggingFace: https://huggingface.co/spaces/
anon-iclr-submission/benchname. The implementations of baselines and code for evalu-
ation are available in supplementary materials.

2 BENCHNAME BENCHMARKS

BenchName is a suite of six benchmarks that cover different aspects of code processing: generation,
repair, completion, summarization, processing diffs. For each task, we gather an evaluation dataset of
around a hundred to a thousand examples that requires models to operate with source code at the scale
of a module or an entire repository. For most tasks, we focus on Python code due to its popularity
and to manually verify the correctness of the samples. However, the collection methodology for all
the tasks allows extending the benchmarks with more languages in the future.

All the datasets we collect in BenchName are based on data from open-source GitHub repositories —
source code, commit history, issues, as well as build data from GitHub Actions. First, we extract a
common corpus of repositories for further processing. To do so, we get the list of repositories via
GitHub Search (Dabic et al., 2021) that pass the following filters used in other works to ensure the
quality of the data (Kalliamvakou et al., 2014): at least 1,000 commits, at least ten contributors, issues,
and stars, at least 10,000 lines of code, not a fork, last commit after 01.06.2023, and a permissive
license (we use the most popular permissive licenses (Vendome et al., 2017) — MIT, Apache-2.0,
BSD-3-Clause, and BSD-2-Clause). After the filtering, we are left with 4,343 repositories that we
then download via GitHub API along with issues and pull requests. For the CI builds repair task, we
also retrieve GitHub Actions logs for some repos, which we describe in Section D. The only task
we base on an existing dataset is commit message generation, for which we find samples with large
commits and long commit messages in the recent CommitChronicle dataset (Eliseeva et al., 2023).

After the initial data collection stage, we prepare evaluation datasets for each of the six tasks separately.
For this, we apply further task-specific filters to the collected data, and then manually examine the
samples to ensure their correctness. In the following two subsections, we present the task description,
data collection methodology, and the conducted experiments for library-based code generation and
project-level code completion. We choose these two tasks out of six as they require different kinds of
models: while code generation expects (possibly large) instruction-tuned models, code completion
requires smaller base models. The rest of the tasks put requirements on the models similar to those of
code generation. For them, we provide the task descriptions in Section 2.3 and further discuss data
collection and experiments for each task in-depth in the Supplementary Materials (Appendices D, E, F,
and G) due to the tight space restrictions.

2.1 LIBRARY-BASED CODE GENERATION

Task description. The first task we want to describe is a novel library-based code generation task.
Given a task description and access to the contents of a software library, the model should generate a
single file that solves the task utilizing methods from the given library. The problem is motivated by
the need of programmers to write code that utilizes the present dependencies and in-project APIs
rather than adding new dependencies and increasing project complexity.

2

https://huggingface.co/spaces/anon-iclr-submission/benchname
https://huggingface.co/spaces/anon-iclr-submission/benchname

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

In contrast to library-based code generation, existing code generation benchmarks require models to
produce self-sufficient code snippets, such as solutions to algorithmic problems (Chen et al., 2021;
Austin et al., 2021; Hendrycks et al., 2021), domain-specific code (Ling et al., 2016), one-liners (Yin
et al., 2018), etc. Among the existing works, the setup of the library-based code generation task is
similar to repository-level code completion benchmarks that evaluate API completion (Liu et al.,
2023; Zhang et al., 2023). Contrary to them, our benchmark requires models to generate an entire
program based on an instruction in natural language instead of a single API call or a single line.

Collection methodology. To prepare the benchmark, we first extract usage examples from our Python
projects by finding directories in project roots that contain “examples” in their name. Such usage
examples are provided by the library authors to show the capabilities and use cases of their libraries.
After collecting the examples, we filter them as described in Section B.1, and get 150 files (usage
examples) from 62 libraries, with each file heavily relying on the APIs of the respective project.

To create instructions, we first run the selected 150 files through GPT-4 (Achiam et al., 2023),
prompting it to generate an instruction for generating the file. This leaves us with step-by-step
instructions that the LLM should follow to generate a script utilizing the library at hand. Then, we
manually fix each instruction to reduce hinting to specific library methods and ensure its correctness.

To build contexts for generation, benchmark users have access to contents of the libraries that include
on average 254 Python files with 2.5M characters and 2,242 unique class and method names. The
respective medians are 164 files, 1.4M characters, and 1,412 names. Also, the libraries contain from
136 to 7,846 API names with mean and median being 2,242 and 1,412, respectively.

Metrics. To assess the usage of the respective library, we propose a metric called API Recall. We
calculate it as the ratio of library-specific API calls (called functions, instantiated classes, used
constants) made in the ground truth solution, that also appear in the generated program. For example,
if the ground truth solution made 5 such calls and the model correctly guessed 3 of them, it will
receive API Recall = 60%. We treat APIs as library-specific if their name appears only in a single
library among all Python repositories that we collected.

Baselines. As baselines, we use models from OpenAI: GPT-3.5-turbo, GPT-4 (Achiam et al., 2023),
GPT-4o, GPT-4o-mini (OpenAI, 2024), reasoning models o1, o1-mini (OpenAI, 2024), and o3 (Ope-
nAI, 2025); from Anthropic: Claude-3.5-Sonnet, Claude-3.5-Haiku, Claude-3-Opus (Anthropic,
2024), Claude-3.7-Sonnet (Anthropic, 2025); from Mistral: Mistral-7B (Jiang et al., 2023a) and
Mixtral-8x7B (Jiang et al., 2024); from DeepSeek: V3 (DeepSeek-AI, 2024) and R1 (DeepSeek-AI,
2025); Qwen2.5-Coder-32B (Hui et al., 2024), and three versions of Llama-3.1 (Dubey et al., 2024)
with 8B, 70B, and 405B parameters.

For the context, we provide models with the list of available APIs from the target library, without
specifying which of them are library-specific, i.e., unique to this library and being used to compute
the metric. We do not provide implementations or usages for them, just names, as the full list of APIs
from a library can overflow a context window of 32,000 tokens. We sort each API list according
to BM-25 (Robertson et al., 2009), treating the respective instruction for generation as a query. To
compute the BM-25 score we split the names by snake_case and camelCase, remove punctuation
from them, and turn them into lower case. Then, we evaluate each model with different lengths of
context, providing 0, 20, 200, 2000, or all API names from the library at hand, and suggesting in the
prompt that they may be helpful. When selecting the API names, we pick the ones with the highest
BM-25 scores. Note that when provided with no context, the model will solely rely on its current
knowledge of the library.

Table 1 shows the results of evaluation for the baselines. Firstly, when provided with no information
about the given library aside from its name, Claude-3.7-Sonnet and DeepSeek-V3 show the best
results by far with 47% and 45% API Recall, respectively. These two models demonstrate their
coding capabilities and knowledge of the less popular libraries, with which other models struggle.
Moreover, they further increase their quality to 51% when given access to all the API names from the
library, showing the best quality of all evaluated models.

Interestingly, Llama-3.1-450B and GPT-4 perform with a similar quality, overcoming the newer
GPT-4o. The models show memorization capabilities, as these libraries should have appeared in the
training data. However, both Llama-3.1-405B and GPT-4 struggle to correctly identify useful APIs
when provided with long lists of them: the models improve the quality by 3% when given up to

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: API Recall of baselines for the library-based code generation task. Missing values are due
to the context being longer than the supported context window size of the model. The right-most
column shows the difference in quality between model working with no library-specific context and
maximum context that fits into the model.

#APIs in the context
None 20 200 2000 All ∆

Claude-3.7-Sonnet (Anthropic, 2024) 0.47 0.46 0.50 0.50 0.51 +0.04
DeepSeek-V3 (DeepSeek-AI, 2024) 0.45 0.44 0.50 0.50 0.51 +0.06
Claude-3-Opus (Anthropic, 2024) 0.43 0.45 0.46 0.50 0.49 +0.06
o3 (OpenAI, 2025) 0.39 0.39 0.46 0.49 0.49 +0.10
Claude-3.5-Sonnet (Anthropic, 2024) 0.44 0.43 0.47 0.48 0.48 +0.04
o1 (OpenAI, 2024) 0.29 0.28 0.36 0.44 0.44 +0.15
GPT-4o (OpenAI, 2024) 0.33 0.33 0.40 0.41 0.41 +0.08
Claude-3.5-Haiku (Anthropic, 2024) 0.27 0.30 0.37 0.40 0.40 +0.13
GPT-4 (Achiam et al., 2023) 0.37 0.36 0.40 0.40 0.38 +0.01
DeepSeek-R1 (DeepSeek-AI, 2025) 0.23 0.26 0.31 0.35 0.38 +0.14
Qwen2.5-Coder-32B (Hui et al., 2024) 0.29 0.31 0.38 0.38 - +0.09
Llama-3.1-405B (Dubey et al., 2024) 0.36 0.36 0.38 0.39 0.37 +0.01
o1-mini (OpenAI, 2024) 0.21 0.26 0.32 0.33 0.32 +0.11
gpt-4o-mini (OpenAI, 2024) 0.15 0.20 0.31 0.31 0.31 +0.16
GPT-3.5-turbo 0.17 0.19 0.23 0.25 - +0.08
Llama-3.1-70B (Dubey et al., 2024) 0.23 0.25 0.26 0.24 0.24 +0.01
Mistral-7B (Jiang et al., 2023a) 0.07 0.13 0.20 0.18 - +0.11
Mixtral-8x7B (Jiang et al., 2024) 0.11 0.13 0.19 0.14 - +0.03
Llama-3.1-8B (Dubey et al., 2024) 0.10 0.14 0.17 0.12 0.13 +0.03

2,000 library APIs. Furthermore, at the full context both models get confused and only show minimal
quality boosts. The results suggest that despite being able to use contexts beyond dozens of thousands
of tokens, Llama-3.1-405B and GPT-4 cannot efficiently utilize them for code generation.

On the other hand, the recently introduced reasoning models show their superior ability to navigate
long contexts. The models o3, o1, o1-mini, and DeepSeek-R1 do not show great results when used
without any information about the library: o3 is the only model among them to compete with other
top-tier models. Yet, all the reasoning models exhibit 10-16% API Recall improvements when given
the full list of library APIs. This suggests that such models can identify the required API names more
often than other models, while not being proficient in using the given libraries after the training stage.

Among the smaller models, Qwen-2.5-Coder-32B shows 38% API Recall when given 2,000 API
names in the context. The model does so while heavily relying on the context, as suggested by the
9% difference in the results compared to the empty context. At 32 billion parameters, Qwen-Coder
performs significantly better than the Llama-3.1-70B, despite being more than two times smaller. The
Llama-3.1 family of models does not show good utilization of long context across all three evaluated
model sizes. One possible reason for that is the lack of training on specialized code-related data,
which was performed for Qwen-Coder.

Based on the conducted experiments with the baselines, we conclude that our benchmark is not being
saturated with the modern models, and it can be used to assess their abilities in utilization of long
contexts, while simultaneously tracking models’ coding capabilities.

2.2 PROJECT-LEVEL CODE COMPLETION

Task description. The second task that we describe is project-level code completion of single lines.
We formulate the task as follows: given relevant information from the project, which we call context,
and a prefix of the completion file, one needs to generate the next line in this file. While there exist
other repository-level completion datasets (Zhang et al., 2023; Liu et al., 2023), we use project history
from Git to mimic the real-world use case and avoid possible data leakages between files that arise

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

when files in the context are written after the completed file and rely on the completed code. On top
of that, we introduce a fine-grained classification of the completed lines by the used APIs.

Collection methodology. To create the dataset, we process the collected Python projects, traversing
their Git histories to collect commits that were done after 01.01.2022. We extract newly added files
from them, filtering out files with fewer than 200 lines or more than 2,000 lines. To collect the context
for each file, we checkout the respective parent commit and save the contents of all the code and text
files (e.g., build files, documentation), constituting the repository as it was when the commit was
made. Each datapoint contains the file for completion, a list of lines to complete with their categories
(see the categorization below), and a repository snapshot that can be used to build the context.

We split our dataset into four parts based on the total size of .py files in the repository snapshot.
As the reference for such a division, we chose the CodeLlama model (Roziere et al., 2023), which
has a context window of size 16K and about three characters per token. Based on this, we have
four sets of samples with the following limits on the total number of characters in the context .py
files: small-context set from 0 to 16K × 3 = 48K characters; medium-context set from 48K to 192K
characters; large-context set from 192K to 768K characters; huge-context set from 768K characters.
We downsample datapoints to five datapoints per repository, and the repositories to 75 per set to
ensure data diversity. The sizes of the four sets are 144, 224, 270, and 296 datapoints, respectively.

For each datapoint, we also provide a list of lines for completion—35 lines on average—since
evaluating a code model on every line of a file is extremely resource-consuming. Moreover, not
all lines are equally hard to complete; e.g., function declaration lines can be challenging due to
uncertainty, whereas loop definition can be straightforward. Taking this into account, we introduce a
classification of the code lines into six categories depending on the used functions and classes.

1. infile — lines that call functions/classes defined in the same file;
2. committed — lines that call functions/classes defined in other files in the commit introducing

the completion file;
3. inproject — lines that call functions/classes defined in the snapshot of the project before the

commit;
4. common — lines that contain common functions such as main or get;
5. non-informative — lines that are too short, too long, contain prints, etc. (see Section C.2 for

the full definition);
6. random — the rest of the lines.

Our main focus is on the first three categories, as they definitely require the utilization of context to
form a correct completion. While each line can fall into multiple categories based on the content, we
only assign the “most difficult” category to each line in the following order (from difficult to easy):
committed, inproject, infile, common. We then sample on average ten completion lines per datapoint
for the first four classes and five lines per datapoint for non-informative and random classes. Thus,
for each file in the dataset, we have multiple lines that the model should complete. The total numbers
of completion lines are 4,686, 8,676, 9,631, and 9,810 for each of four sets, respectively.

Metrics. The main metric for the project-level code completion task is the exact match of generated
lines per category. This is a proportion of correct predictions calculated separately for each of the
categories. The prediction is correct if it matches the ground truth after removing leading and trailing
whitespaces from both. Additionally, we compute models’ perplexity on the completion file to
estimate how well the provided context from the repository allows to model the completion file.

Baselines. We use the dataset to evaluate how well pre-trained code LLMs can utilize context from
the given repository. Here we provide the full evaluation results for CodeLlama-7B in Table 3. We
provide several context composers as baselines:

• Naive composer — all the files from the repository snapshot are concatenated into one string
with no specific order.

• Path distance composer — the order of the files is defined by the distance between files
in a project file tree: if the file from the repository is closer to the completion file, then its
content is closer in the context.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: The perplexity values for CodeLlama-7B with different context composers. The lower
perplexity value suggests better modeling quality.

Additional context All files Only Python files Difference with FL
256 1,753 12,000 256 1,753 12,000

File-level (FL) 1.849 1.849 1.849 1.849 1.849 1.849 0.000
Naive 1.798 1.788 1.761 1.788 1.760 1.677 0.172
Path distance (PD) 1.783 1.727 1.607 1.782 1.726 1.601 0.248
Half hemory (HM) 1.799 1.789 1.743 1.789 1.765 1.670 0.179
HM + PD 1.782 1.730 1.636 1.783 1.729 1.636 0.213
File length 1.797 1.784 1.742 1.792 1.774 1.708 0.141
Imports First 1.791 1.769 1.732 1.785 1.751 1.666 0.183
Only declaration + PD1 1.785 1.741 1.710 1.785 1.739 1.708 0.141

• File length composer — the order of the files is defined by the length of a file: shorter files
are closer to the completion file.

• Half memory composer — each line from the repository files is removed with a probability
of 0.5, and the order of the files is the same as in the naive composer.

• Imports first composer — the order of the files is defined by import relation of first degree:
if any project files are imported in the completion file, they are closer to the completion file.

• Only declarations composer — some project files are left only with declaration lines, so we
keep only names from the repository files.

To compare different context composers, we compute model’s perplexity on the completion file
as a proxy for completion quality (lower perplexity should lead to better completions). We report
results for CodeLlama-7B and the medium-context dataset in Table 2. We vary the number of context
tokens coming from other repository files from 256 to 12,000 in order to check that the introduction
of the context is indeed helpful. For all the evaluated context composers, we see that additional
context helps, and Python files are more important for completion than the others (e.g., files in other
programming languages or docs). Out of the ones we evaluated, the composer based on Path Distance
performs the best with 0.25 drop in perplexity compared to the usage of a single file, so we use Path
Distance for further experiments. We leave further exploration for future work.

Table 3 shows the Exact Match for CodeLlama-7B with Path Distance and File-level composers. As
in the previous experiment, introduction of new context boosts the results across all datasets. We
observe the biggest quality improvements for the inproject completions, as they require information
from other project files to find relevant APIs. Completion for other line categories improves as well,
as the model is able to find similar snippets of code already written in the project.

In Section C.3, we report more experiments that further investigate the impact of the context size on
the completion quality and compare a wide range of models: CodeLlama-7B (Roziere et al., 2023),
DeepSeek-Coder (1.3B, 6.7B, 33B) (Guo et al., 2024), Llama (3.1-8B, 3.2-1B, 3B) (Dubey et al.,
2024), and Qwen2.5-Coder (0.5B, 3B, 14B, 32B) (Hui et al., 2024).

2.3 OTHER TASKS

Due to the lack of space, the thorough descriptions of the collected datasets and evaluated models for
the rest of the tasks can be found in the Appendix, while we provide the task formulations below.

CI Build Repair (see Section D) asks models to generate a patch that fixes a real-life issue in a
CI setup. The minimal set of data for the task consists of a repository snapshot at the commit that
caused the failure of the workflow and the logs of the failed step. The task can also be performed in a
simplified oracle setup. In this case, we put a list of relevant files and code blocks—extracted from
the ground truth commit—into the prompt. An important feature of this task is run-based evaluation:
we utilize GitHub Actions to run the generated fixes and assess their correctness.

1We leave only declarations in all files except for one.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Results of the project-level code completion for CodeLlama-7B. The metric is Exact Match
for the generated line.

Set Context infile inproject committed common non-informative random all

Small
File-level 0.35 0.16 0.33 0.32 0.28 0.42 0.35
Path Distance 16K 0.37 0.27 0.34 0.33 0.29 0.43 0.37
Difference +6% +68% +3% +3% +2% +2% +5%

Medium
File-level 0.37 0.32 0.38 0.31 0.31 0.50 0.39
Path Distance 16K 0.43 0.49 0.42 0.44 0.44 0.58 0.49
Difference +16% +53% +10% +42% +42% +16% +26%

Large
File-level 0.36 0.29 0.39 0.34 0.30 0.44 0.35
Path Distance 16K 0.46 0.44 0.55 0.46 0.42 0.54 0.47
Difference +27% +52% +41% +35% +40% +23% +35%

Huge
File-level 0.40 0.34 0.44 0.34 0.30 0.50 0.39
Path Distance 16K 0.44 0.43 0.54 0.41 0.40 0.54 0.45
Difference +10% +26% +22% +20% +36% +8% +17%

Commit Message Generation (see Section E) for large commits requires a model to generate
a natural language description of changes performed in a single commit. The changes can be
represented in different ways — in various diff formats, as separate versions of each file before and
after the changes took place, and others. Moreover, models can utilize information from unchanged
project files to better understand how changes impacted the project. CMG is a well-established task
in academic research (Tao et al., 2022) and a prominent feature in developer tools (Jemerov, 2024;
Houghton, 2024), however, researchers often limit the scope to short diffs (Eliseeva et al., 2023),
leaving the performance on larger commits unexplored. Moreover, the quality of commit messages
from open-source repositories—the most common data source—is notoriously mixed (Tian et al.,
2022). We bridge these two gaps with our novel CMG benchmark, manually curated and tailored for
larger commits.

Bug Localization (see Section F) can be formulated as follows: given an issue with a bug description
and a repository snapshot in a state where the bug is reproducible, identify the files within the
repository that need to be modified to address the reported bug. Although this is a subset of the larger
bug-fixing problem, partially covered by SWE-Bench (Jimenez et al., 2023), bug localization requires
its own separate evaluation. This independent assessment can provide a better understanding of the
various approaches and their efficiency in identifying the precise location of bugs in large code bases.

Module Summarization (see Section G) tasks a model to write textual documentation based
on the module’s or project’s source code and intent (a one-sentence description of the expected
documentation content). This task greatly increases the context size available to the models compared
to the existing benchmarks that cover method- or class-level summarization (Husain et al., 2019;
Lozhkov et al., 2024; Luo et al., 2024). The source of inspiration for the module summarization task
is the fact that large projects often include high-level materials, such as quick start guides, tutorials,
module documentation, and usage instructions. The task aims to alleviate the time-consuming and
routine process of creating these materials.

3 RESULTS ACROSS MULTIPLE TASKS

In addition to using BenchName as a set of independent benchmarks, it can be used to assess
capabilities of models across multiple tasks. This can be done by assessing models’ results on all
tasks but code completion. We exclude code completion here as it mainly targets base versions
of models, while other tasks expect instruction-tuned models. We conduct such assessment for
a set of nine models evaluated on the five tasks: the family of Llama-3.1 models (Dubey et al.,
2024), reasoning models OpenAI-o1 (OpenAI, 2024) and DeepSeek-R1 (DeepSeek-AI, 2025), and
proprietary LLMs Claude 3.5-Sonnet, Claude-3.5-Haiku (Anthropic, 2024), GPT-4o (OpenAI, 2024),
and Gemini-1.5-Pro (Team et al., 2024).

Table 4 shows the results of models and their mean rank (from one to nine) across five tasks. To
compute the mean ranks, we normalize the results across models for each task and treat the scores
different by less than 10% as the same to reduce the effects due to randomness. o1 outperforms other

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1 0 , 8 9 0 , 8 6 0 , 8 6 0 , 9 3

0 , 8 9 1 0 , 8 5 0 , 8 5 0 , 7 8

0 , 8 6 0 , 8 5 1 0 , 8 4 0 , 6 8

0 , 8 6 0 , 8 5 0 , 8 4 1 0 , 6 7

0 , 9 3 0 , 7 8 0 , 6 8 0 , 6 7 1

B u g l o c a l i
z a t i

o n

C I b u i l d r e p
a i r

C M G
L i b r a r y

- b a s e
d C G

M o d u l e s
u m m a r i z

a t i o
n

B u g l o c a l i z a t i o n

C I b u i l d r e p a i r

C M G

L i b r a r y - b a s e d C G

M o d u l e s u m m a r i z a t i o n
0 , 6

0 , 7

0 , 8

0 , 8

0 , 9

1

S p e a r m a n
c o r r e l a t i o n

Figure 1: Correlation between models’ results on the benchmarks.

models on all tasks but library-based code generation, where Claude-3.5 Sonnet shows slightly better
results. The Llama-3.1 models lag significantly behind, despite the original report claiming the 405B
version having coding and long context processing capabilities similar or better than Claude-3.5
Sonnet. We observe that the bug localization and module summarization are the tasks where reasoning
models perform better, as these tasks require the most search capabilities. For module summarization,
GPT-4o performs very well, which we attribute to its proficiency in writing long coherent texts. To
further analyze task relations, we compute Spearman correlations between model scores on different
tasks based on the common subset of models (see Figure 1). We observe high correlations between
most tasks, which is expected given the wide gap in capabilities between some of the evaluated
models. Yet, the correlations suggest that benchmarks are complementing each other.

4 RELATED WORK

While there exist plenty of ML4SE datasets and even benchmark collections (Lu et al., 2021), most
of them require models to operate with rather short contexts, around the size of a single method,
which hinders the evaluation of novel long context models. Code generation datasets (Chen et al.,
2021; Austin et al., 2021; Liu et al., 2024; Hendrycks et al., 2021; Gu et al., 2024; Yin et al., 2018)
require models to process up to several paragraphs of the problem statement and then generate a short
program (one line to one file). Existing datasets for code summarization (Husain et al., 2019; Lu
et al., 2021) target documentation in a single method, meaning that both input and output size are

Table 4: Performance comparison across tasks for different models. BL: bug localization; CIR: CI
build repair; CMG: commit message generation; LB-CG: library-based code generation; MS: module
summarization.

Model Mean Rank BL CIR CMG LB-CG MS
o1 1.0 0.58 0.24 36.4 0.45 70.9
Claude-3.5 Sonnet 1.6 0.52 0.24 34.8 0.48 66.1
DeepSeek-R1 2.2 0.54 0.23 34.9 0.38 66.6
GPT-4o 2.8 0.53 0.10 34.8 0.41 67.0
Gemini-1.5 Pro 3.6 0.50 0.10 34.9 0.44 59.4
Llama-3.1 (405B) 5.2 0.47 0.04 34.8 0.37 59.6
Claude-3.5 Haiku 6.8 0.44 0.02 30.1 0.32 64.9
Llama-3.1 (70B) 7.0 0.35 0.05 33.5 0.24 58.5
Llama-3.1 (8B) 8.6 0.31 0.00 31.0 0.13 58.2

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

below several hundred tokens. Previously developed commit message generation benchmarks (Tao
et al., 2022; Eliseeva et al., 2023; Schall et al., 2024) contain significantly shorter messages and diffs
compared to BenchName.

For code completion, recently, researchers introduced two benchmarks that operate at the repository
scale: RepoEval (Zhang et al., 2023) and RepoBench (Liu et al., 2023), also focusing on the
completion of a single line. Compared to these benchmarks, we introduce a fine-grained classification
of the completed lines and prevent possible data leakages by traversing Git history.

SWE-bench (Jimenez et al., 2023) and its extensions (Zan et al., 2024; Yang et al., 2025) are recent
benchmarks that require models to fix issues in real-world programming projects. Most solutions for
these benchmarks use agentic approaches (Yang et al., 2024; Wang et al., 2024; Zhang et al., 2024)
which require models being compared to be capable of complex multi-turn interactions, planning,
function calling. BenchName covers a more diverse set of tasks, the most similar being CI builds
repair, which focuses on builds in general rather than tests, and bug localization, which is a sub-task
of the SWE-bench objective that we evaluate on a broader set of languages: Python, Java, and Kotlin.
Yet, tasks in BenchName are less restrictive for the models under evaluation and can distinguish
between smaller models still being able to process long context windows.

The most notable benchmarks for long context models include Long Range Arena (Tay et al., 2020)
and Scrolls (Shaham et al., 2022). Our work builds the first such benchmark focusing on ML4SE
tasks, while Long Range Arena includes synthetic problems and Scrolls focuses on NLP.

5 LIMITATIONS AND FUTURE WORK

In order to gather benchmarks for BenchName, we had to make several design decisions that
can impact the generalizability. First, we base the benchmarks on open-source data. This allows
researchers to experiment with various context-collection techniques because they have access to
source code data. On the other hand, modern LLMs use most available open-source data for training,
and such reliance can lead to data contamination, which in turn can skew the evaluation results.

We argue that the tasks that we choose are less prone to models memorizing training data: there
is no direct link between answers to benchmark tasks and raw repository data that modern models
use for training. For example, while models could have seen documentation of specific libraries
during training, currently it is unlikely that it was present side by side with the source code of the
respective modules. The most memorization-prone task in our suite is code completion, but for it, we
use historic data from Git repositories, which may become changed or overridden by the moment
LLMs’ training data is scraped.

In order to allow for manual examination of the collected data and to keep the benchmarks consistent,
for most tasks we focus on datasets of Python code. Fortunately, the data preparation pipeline for all
the tasks can be reused to produce datasets for other languages. The most complex step in this case
will be manual verification and filtering of the data to ensure quality and correctness. In order to meet
the quality requirement, we leave extension of datasets to other languages for future work.

In addition to extending datasets to other programming languages, future work includes collecting
data for fine-tuning models for particular tasks and evaluating more models on the benchmarks. In
order to assist other researchers with the latter, we open-source the code for the baseline solutions.

6 CONCLUSION

In this paper, we present the BenchName. The goal of this work is to stimulate research in ML-based
solutions for realistic software engineering tasks. In particular, we design a series of tasks that
require taking a complex context into account, such as full projects, libraries and their usage, and
coarse-grained components. Our work presents six benchmarks related to code generation, repair,
completion, and summarization. For each task, we carefully design and manually curate evaluation
data, metrics for assessing the results, and baseline solutions based on the pre-trained models. Our
experiments show that the tasks are within reach, but far from solved. We hope and expect that our
BenchName will encourage researchers in ML4SE and NLP communities to advance the field of
ML-enabled software engineering.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

1. We publish the benchmark page on HuggingFace Spaces with the leaderboard and links
to HuggingFace Hub for all the datasets: https://huggingface.co/spaces/
anon-iclr-submission/benchname.

2. We also attach supplementary materials with baselines.

3. Detailed information about how each dataset was collected, processed, and manually vali-
dated is presented in the appendices below.

4. The authors maintain a collective email where we answer questions and update data in a
timely fashion (anonymized during sumbission).

This way, we openly release all the data and code of our work to ensure its full reproducibility.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Anthropic. The Claude 3 model family: Opus, Sonnet, Haiku, 2024. URL https://www.
anthropic.com. Accessed: 2024-12-01.

Anthropic. Claude 3.7 sonnet and claude code, 2025. URL https://www.anthropic.com/
news/claude-3-7-sonnet. Accessed: 2025-05-01.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Amanda Bertsch, Uri Alon, Graham Neubig, and Matthew Gormley. Unlimiformer: Long-range
transformers with unlimited length input. Advances in Neural Information Processing Systems, 36,
2024.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican,
George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
Improving language models by retrieving from trillions of tokens. In International conference on
machine learning, pp. 2206–2240. PMLR, 2022.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, Aleksander Madry, and Lilian Weng. MLE-
bench: Evaluating machine learning agents on machine learning engineering. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=6s5uXNWGIh.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Ozren Dabic, Emad Aghajani, and Gabriele Bavota. Sampling projects in GitHub for MSR studies.
In 18th IEEE/ACM International Conference on Mining Software Repositories, MSR 2021, pp.
560–564. IEEE, 2021.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

DeepSeek-AI. Deepseek-v3 technical report, 2024. URL https://arxiv.org/abs/2412.
19437.

Daya Guo et al. DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

10

https://huggingface.co/spaces/anon-iclr-submission/benchname
https://huggingface.co/spaces/anon-iclr-submission/benchname
https://www.anthropic.com
https://www.anthropic.com
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://openreview.net/forum?id=6s5uXNWGIh
https://openreview.net/forum?id=6s5uXNWGIh
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2501.12948

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The Llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Aleksandra Eliseeva, Yaroslav Sokolov, Egor Bogomolov, Yaroslav Golubev, Danny Dig, and Timofey
Bryksin. From commit message generation to history-aware commit message completion. In
2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp.
723–735. IEEE, 2023.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, et al. CodeBERT: A pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155, 2020.

Dan Fu, Simran Arora, Jessica Grogan, Isys Johnson, Evan Sabri Eyuboglu, Armin Thomas, Benjamin
Spector, Michael Poli, Atri Rudra, and Christopher Ré. Monarch Mixer: A simple sub-quadratic
GEMM-based architecture. Advances in Neural Information Processing Systems, 36, 2024.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023.

GitHub Actions, 2024. https://github.com/features/actions.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I.
Wang. CRUXEval: A benchmark for code reasoning, understanding and execution. arXiv preprint
arXiv:2401.03065, 2024.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y Wu, YK Li, et al. DeepSeek-Coder: When the large language model meets programming–the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Vincent J Hellendoorn, Sebastian Proksch, Harald C Gall, and Alberto Bacchelli. When code
completion fails: A case study on real-world completions. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pp. 960–970. IEEE, 2019.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence
with APPS. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2), 2021.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John
Grundy, and Haoyu Wang. Large language models for software engineering: A systematic literature
review. arXiv preprint arXiv:2308.10620, 2023.

Jessie Houghton, 2024. https://devblogs.microsoft.com/visualstudio/
write-your-git-commits-with-github-copilot/.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2.5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt.
CodeSearchNet challenge: Evaluating the state of semantic code search. arXiv preprint
arXiv:1909.09436, 2019.

Dmitry Jemerov, 2024. https://blog.jetbrains.com/idea/2023/06/
ai-assistant-in-jetbrains-ides/.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023a.

11

 https://github.com/features/actions
 https://devblogs.microsoft.com/visualstudio/write-your-git-commits-with-github-copilot/
 https://devblogs.microsoft.com/visualstudio/write-your-git-commits-with-github-copilot/
 https://blog.jetbrains.com/idea/2023/06/ai-assistant-in-jetbrains-ides/
 https://blog.jetbrains.com/idea/2023/06/ai-assistant-in-jetbrains-ides/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
Jamie Callan, and Graham Neubig. Active retrieval augmented generation. arXiv preprint
arXiv:2305.06983, 2023b.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. SWE-bench: Can language models resolve real-world GitHub issues? arXiv preprint
arXiv:2310.06770, 2023.

Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M German, and Daniela
Damian. The promises and perils of mining GitHub. In Proceedings of the 11th working conference
on mining software repositories, pp. 92–101, 2014.

Vladimir Kovalenko, Nava Tintarev, Evgeny Pasynkov, Christian Bird, and Alberto Bacchelli. Does
reviewer recommendation help developers? IEEE Transactions on Software Engineering, 46(7):
710–731, 2018.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. StarCoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Wang Ling, Phil Blunsom, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiskỳ, Fumin
Wang, and Andrew Senior. Latent predictor networks for code generation. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 599–609, 2016.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
ChatPGT really correct? Rigorous evaluation of large language models for code generation.
Advances in Neural Information Processing Systems, 36, 2024.

Tianyang Liu, Canwen Xu, and Julian McAuley. RepoBench: Benchmarking repository-level code
auto-completion systems. arXiv preprint arXiv:2306.03091, 2023.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. StarCoder 2 and The Stack v2:
The Next Generation. arXiv preprint arXiv:2402.19173, 2024.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. CodeXGLUE: A machine learning bench-
mark dataset for code understanding and generation. arXiv preprint arXiv:2102.04664, 2021.

Qinyu Luo, Yining Ye, Shihao Liang, Zhong Zhang, Yujia Qin, Yaxi Lu, Yesai Wu, Xin Cong,
Yankai Lin, Yingli Zhang, et al. RepoAgent: An LLM-powered open-source framework for
repository-level code documentation generation. arXiv preprint arXiv:2402.16667, 2024.

Niklas Muennighoff, Qian Liu, Armel Randy Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue
Zhuo, Swayam Singh, Xiangru Tang, Leandro Von Werra, and Shayne Longpre. OctoPack:
instruction tuning code large language models. In The Twelfth International Conference on
Learning Representations, 2023.

OpenAI. Hello GPT-4o, 2024. URL https://openai.com/index/hello-gpt-4o/. Ac-
cessed: 2024-12-01.

OpenAI. Openai o1 system card, 2024. URL https://arxiv.org/abs/2412.16720.

OpenAI. Tiktoken: Fast bpe tokenizer for openai’s models, 2024. URL https://github.com/
openai/tiktoken. Accessed: 2024-11-08.

OpenAI. Openai o3 system card, 2025. URL https://cdn.openai.com/pdf/
2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.
pdf.

12

https://openai.com/index/hello-gpt-4o/
https://arxiv.org/abs/2412.16720
https://github.com/openai/tiktoken
https://github.com/openai/tiktoken
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. In International Conference on Machine Learning, pp. 28043–28078. PMLR,
2023.

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: BM25 and beyond.
Foundations and Trends® in Information Retrieval, 3(4):333–389, 2009.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code Llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Maximilian Schall, Tamara Czinczoll, and Gerard de Melo. CommitBench: A benchmark for commit
message generation. arXiv preprint arXiv:2403.05188, 2024.

Uri Shaham, Elad Segal, Maor Ivgi, Avia Efrat, Ori Yoran, Adi Haviv, Ankit Gupta, Wenhan Xiong,
Mor Geva, Jonathan Berant, et al. SCROLLS: standardized comparison over long language
sequences. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pp. 12007–12021, 2022.

Wei Tao, Yanlin Wang, Ensheng Shi, Lun Du, Shi Han, Hongyu Zhang, Dongmei Zhang, and
Wenqiang Zhang. A large-scale empirical study of commit message generation: models, datasets
and evaluation. Empirical Software Engineering, 27(7):198, 2022.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. arXiv preprint arXiv:2011.04006, 2020.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. ACM
Computing Surveys, 55(6):1–28, 2022.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Yingchen Tian, Yuxia Zhang, Klaas-Jan Stol, Lin Jiang, and Hui Liu. What makes a good commit
message? In Proceedings of the 44th International Conference on Software Engineering, pp.
2389–2401, 2022.

Christopher Vendome, Gabriele Bavota, Massimiliano Di Penta, Mario Linares-Vásquez, Daniel
German, and Denys Poshyvanyk. License usage and changes: A large-scale study on GitHub.
Empirical Software Engineering, 22:1537–1577, 2017.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. OpenHands: An Open Platform for AI Software
Developers as Generalist Agents, 2024. URL https://arxiv.org/abs/2407.16741.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. CodeT5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation. In Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing, pp. 8696–8708, 2021.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik R Narasimhan,
and Ofir Press. SWE-agent: Agent-computer interfaces enable automated software engineering.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://arxiv.org/abs/2405.15793.

John Yang, Carlos E Jimenez, Alex L Zhang, Kilian Lieret, Joyce Yang, Xindi Wu, Ori Press,
Niklas Muennighoff, Gabriel Synnaeve, Karthik R Narasimhan, Diyi Yang, Sida Wang, and
Ofir Press. Swe-bench multimodal: Do ai systems generalize to visual software domains? In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=riTiq3i21b.

13

https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2405.15793
https://openreview.net/forum?id=riTiq3i21b
https://openreview.net/forum?id=riTiq3i21b

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and Graham Neubig. Learning to
mine aligned code and natural language pairs from Stack Overflow. In Proceedings of the 15th
international conference on mining software repositories, pp. 476–486, 2018.

Daoguang Zan, Zhirong Huang, Ailun Yu, Shaoxin Lin, Yifan Shi, Wei Liu, Dong Chen, Zongshuai
Qi, Hao Yu, Lei Yu, Dezhi Ran, Muhan Zeng, Bo Shen, Pan Bian, Guangtai Liang, Bei Guan,
Pengjie Huang, Tao Xie, Yongji Wang, and Qianxiang Wang. Swe-bench-java: A github issue
resolving benchmark for java, 2024. URL https://arxiv.org/abs/2408.14354.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou,
and Weizhu Chen. RepoCoder: repository-level code completion through iterative retrieval and
generation. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 2471–2484, 2023.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Autonomous
program improvement. In Proceedings of the 33rd ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2024, pp. 1592–1604, New York, NY, USA, 2024.
Association for Computing Machinery. ISBN 9798400706127. doi: 10.1145/3650212.3680384.
URL https://doi.org/10.1145/3650212.3680384.

Wenting Zhao, Nan Jiang, Celine Lee, Justin T Chiu, Claire Cardie, Matthias Gallé, and Alexander M
Rush. Commit0: Library generation from scratch. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
MMwaQEVsAg.

A LLM USAGE

In this work, LLMs are employed solely for writing assistance, including rephrasing, grammar and
syntax correction, and minor edits such as article insertion or removal.

B LIBRARY-BASED CODE GENERATION

B.1 DATASET COLLECTION AND PROCESSING

The resulting dataset consists of 150 samples, each representing an instruction that a machine
learning model should follow when generating a Python program, reference data for evaluation of the
generation quality, and relevant data that can be used to improve generation. This relevant data is
the source code of an entire Python library, based on a usage example from which we created the
instruction for generation.

The structure of the individual datapoints is presented in Table 5. The labels are available in two
forms: the reference program that was written by library authors as an example of library usage, and
the list of library-specific API calls that the reference program makes. Both the program itself and
the list of API calls can be used to assess the quality of a program generated by a machine learning
model under evaluation. The dataset is self-contained, as it provides the snapshots of all associated
repositories.

In order to collect the data, we use the following protocol:

1. We collect repositories from GitHub with at least 1,000 commits, at least ten contributors,
issues, and stars, at least 10,000 lines of code, not a fork, last commit after 01.06.2023,
and a permissive license (we use the most popular permissive licenses — MIT, Apache-2.0,
BSD-3-Clause, and BSD-2-Clause). For the library-specific code generation task, we leave
only repositories having Python as the main language.

2. For each repository, we detect the folder with usage examples: a folder with “.py” files that
contains “examples” in its name. If a repository does not have such a folder, we filter it out.
After this step, we are left with 883 repositories that have usage examples.

14

https://arxiv.org/abs/2408.14354
https://doi.org/10.1145/3650212.3680384
https://openreview.net/forum?id=MMwaQEVsAg
https://openreview.net/forum?id=MMwaQEVsAg

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: The structure of datapoints in the library-based code generation dataset.
Field Description

repo_full_name Concatenated repository name and owner
repo_name Library repository name
repo_owner Library repository owner
instruction Task for code generation
reference Reference program written by the library authors

clean_reference Reference program with comments removed
path_to_reference_file Path to the reference in the repository (removed in

repository snapshots to prevent data leakages)
path_to_examples_folder Path to the directory with examples in the reposi-

tory (removed in repository snapshots to prevent
data leakages)

n_unique_apis Number of calls to library-specific APIs in the ref-
erence program

unique_apis List of calls to library-specific APIs in the refer-
ence program

project_defined_elements All class and method names in the repository
api_calls All API calls in the reference program

internal_apis All API calls to the respective library in the refer-
ence program

3. We then identify library-specific APIs for each of the 883 repositories. We extract all
names of all methods, classes, and constants defined in these repositories, and treat as
“library-specific” the ones that appear only in a single repository.

4. We then collect all Python files from the folders with examples and filter them: (i) remove
examples shorter than 100 or longer than 40,000 characters (excluding comments), (ii)
remove examples that have fewer than 400 characters of comments in order to then write
high-quality instruction for generation, (iii) remove examples that use fewer than ten API
calls specific to the given library. These filters result in 150 files (usage examples) from 62
libraries, with each file heavily relying on the APIs of the respective project.

5. After we have the usage examples for libraries, we create instructions for generating them.
We first run the selected 150 files through GPT-4 (Achiam et al., 2023), prompting it
to generate an instruction for generating the respective file. You can see the prompt for
generation in Figure 2. This leaves us with step-by-step instructions that the LLM should
then follow to generate a script that utilizes the library at hand. Then, we manually fix each
instruction in order to reduce hinting to specific library methods and ensure their correctness.

C PROJECT-LEVEL CODE COMPLETION

C.1 DATAPOINT STRUCTURE

Each instance that comprises the dataset consists of three key elements: a repository snapshot, a
completion file, and target lines for the completion task. A repository snapshot is a list of all the
filenames and contents of all text files from the repository (code, documentation, etc.). The state
of the repository is before the commit where the completion file was added. A completion file is
a Python file added in a particular commit. Target lines are a list of lines from the completion file
that the model under evaluation should generate. Each line is also assigned one of classes that we
describe in the following subsection.

The structure of datapoints:

• repo – repository name in the format {GitHub_user_name}__{repository_name}
• commit_hash – hash of the commit where the completion file was added
• completion_file – dictionary with the completion file content in the following format:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

SYSTEM: We are developing a benchmark to assess quality of
code generation models. As a part of the benchmark, we include
the task of generating code based that uses the particular
library from a description in natural language. As a source of
data for this task we will use coding examples in Python
provided by library developers. Your task will be to generate
a text description of the provided Python code that will then
be used as an input for the generation task.

USER: Here is the code. You should write an instruction that
summarizes its contents and would allow another model to
generate this snippet of code, excluding the comments. Make
the instruction abstract, do not mention specific code
constructions that the generator should use. Be concise.
Generator will be able to access the contents of the following
library: [LIBRARY_NAME]. Use wording such as "Generate code
that ..." in your instruction.

[CODE]

Figure 2: Prompt for generating instructions from library usage examples.

– filename – path to the completion file
– content – content of the completion file

• completion_lines – dictionary where keys are categories of lines and values are a list
of integers (numbers of lines to complete). The categories are described in the following
subsection.

• repo_snapshot – dictionary with a snapshot of the repository before the commit. Has
the same structure as completion_file, but filenames and contents are organized as
lists.

• completion_lines_raw – the same as completion_lines, but before sampling.

Targets for the completion task are provided in the completion_lines field. To get a target line
for completion, split the completion file by newline characters and select lines using the provided
indices. Line categories are also provided.

C.2 DATASET COLLECTION AND PROCESSING

Starting with the common corpus of repositories, we then follow the following process to acquire the
data:

1. Traverse Git history: We collect commits that add at least one new .py file. These files
are candidates for the completion files.

2. Filtering collected commits: We filter the commits to retain only those with the potential
completion files containing between 200 and 2,000 lines, and with creation dates after
January 1st, 2022.

3. Extract repository snapshots: We create snapshots of the repositories based on the filtered
commits, ensuring that we capture the state of the repository before the collected commit.
The repository snapshots are intentionally not filtered to ensure that all possible information
could be utilized. As a result, the dataset includes sources of noise, such as auto-generated
files, CSV data, etc.

4. Split by the size of relevant context: We split all the data into four groups based on the
number of characters in .py files from the repository snapshots. The groups are: (i) small-
context: less than 48K characters; (ii) medium-context: from 48K to 192K characters;
(iii) large-context: from 192K to 768K characters; (iv) huge-context: more than 768K
characters;

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

5. Sample datapoints: we randomly sample 5 datapoints for each repository, and we randomly
sample 75 repositories for each group. If fewer than 5 datapoints or 75 repositories are
available, we use all available datapoints or repositories. We keep all 80 repositories for the
medium-context dataset.

6. Classify lines: We perform line classification that is introduced in the paper and assign a
main category to each line of the completion file.

7. Sample completion lines: We sample lines from each category such that the average number
of lines is no more than 5 for non-informative and random categories, and no more than 10
for other categories.

Classification of the lines is done for each of the completion files. There are six categories of
completion lines according to various completion scenarios.

1. infile – a line contains at least one function or class that was declared in the completion file.

2. inproject – a line contains at least one function or class that was declared in the repository
snapshot files.

3. common – a line contains at least one function or class that was classified to be common,
e.g., main, get, etc.

4. committed – a line contains at least one function or class that was declared in the files that
were created in the same commit as the completion file (excluding the completion file).

5. non-informative – a line that satisfies at least on of the following criteria: (i) shorter than 5
characters or longer than 150 characters, (ii) a line with print, (iii) a line with import,
(iv) a declaration of a function or a class, (v) a comment or contains an inline comment.

6. random – all the lines that do not have any category.

Some lines may have more than one category after the classification. We additionally identify the
main category for each line based on the following approach.

• If a line has a committed category, then the main category is committed.

• If a line does not satisfy the previous condition, but has an inproject category, then the main
category is inproject.

• If a line does not satisfy previous conditions, but has an infile category, then the main
category is infile.

• If a line does not satisfy previous conditions, but has a common category, then the main
category is common.

• If a line has a non-informative category, then the main category is non-informative.

• If a line has a random category, then this is the only category for the line, and the main
category is random.

The dataset has been collected in December of 2023. Considering the filtering process, the data
within the dataset spans from January 2022 to December 2023.

We provide a distribution of lines for each set and each category in Table 6.

Table 6: Line counts for different sets in the project-level code completion dataset.

Set infile inproject common committed non-informative random all Avg. for one file
Small 1,430 95 500 1,426 532 703 4,686 32.5
Medium 2,224 2,236 779 1,495 858 1,084 8,676 38.7
Large 2,691 2,595 693 1,322 1,019 1,311 9,631 35.7
Huge 2,608 2,901 692 1,019 1,164 1,426 9,810 33.1

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 3: Large Context set, File-level.

Figure 4: Large Context set, Path Distance composer, context window size is 16000.

C.3 EXTENSIVE EVALUATION

C.3.1 MODELS COMPARISON

We compare a variety of models: CodeLlama-7B (Roziere et al., 2023), DeepSeek-coder (1.3B, 6.7B,
33B) (Guo et al., 2024), Llama (3.1-8B, 3.2-1B, 3B) (Dubey et al., 2024), and Qwen2.5-coder (0.5B,
3B, 14B, 32B) (Hui et al., 2024). Comparison is made within the same setting: file-level completion,
path distance composer with 16K context window, and the relative difference in Exact Match scores.

Figure 3 demonstrates that as the model size increases, performance metrics improve accordingly.
Models effectively handle completion tasks across random, committed, and infile lines for the Large
Context set. It is expected for random and infile, but it is unusual for committed. It could be
an evidence that repositories from the large context set were in model’s training data or that the
committed API is too obvious.

Figure 4 shows that the Path Distance Composer enhances completion quality across all models,
regardless of their family or size. The distribution of Exact Match scores per line category changes
which supports our classification and the hypothesis behind it.

Figure 5 highlights the tendency that the bigger the model from a family the lower its completion
quality gain from the context. That can be related to a fact that bigger models know more factual
information, but smaller models successfully use in-context learning instead.

C.3.2 CONTEXT SIZE IMPACT

We compare results of Qwen2.5-coder 7B on all the sets with different context window sizes: from
256 to 32000. Figure 6 illustrates that completion quality is better for a longer context across every

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 5: Large Context set, Difference between Path Distance 16K and File-level.

Figure 6: Qwen2.5-coder 7B, Path Distance context composer.

line category. There are a few rapid shifts, e.g., inproject category for medium context set or common
category for large context set. This behavior can be a result of a perfect file in the context.

An unexpected observation here is that inproject and infile categories improve with the same pace. So,
the file-level information is not enough for the highest quality completion even for the infile lines.

C.3.3 MODEL SIZE VS CONTEXT SIZE

One of the possible applications of the presented dataset is to identify if the model size or context
window matters the most. For example, Figure 7 shows that Qwen2.5-coder 32B with 32K context
window performs almost the same as Qwen2.5-coder 14B with 32K context window, and Qwen2.5-
coder 1.5B with 16K context window is equal to or better than any other Qwen2.5-coder model with
4K context window for most line types.

Overall, Figure 7 supports the general intuition that both context window size and model size
positively impact performance. For the Qwen2.5-coder family, increasing both context length and
model size leads to improved results across all task categories.

D CI BUILDS REPAIR

CI Build Repair asks models to generate a patch that fixes a real-life issue in a CI setup. The minimal
set of data for the task consists of a repository snapshot at the commit that caused the failure of the
workflow (failed commit hereafter) and the logs of the failed step. The task can also be performed in
a simplified oracle setup by prompting a model with a list of files and their content or code blocks in
them to change. In this case, the code blocks come from the ground-truth fixing diff provided in the
dataset. An important feature of this task is run-based evaluation: we utilize GitHub Actions to run
the generated fixes and assess their correctness.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 7: Qwen2.5-coder family of models with different context window sizes.

Table 7: The structure of datapoints in the CI builds repair dataset.
Field Description

contributor The username of the contributor that committed changes
difficulty The difficulty of the problem according to an assessor on

a 1–3 scale
diff Contents of the diff between the failed and the successful

commits
head_branch Name of the original branch that the commit was pushed

to
id Unique ID of the datapoint

language The main language of the repository
logs List of dictionaries with logs of the failed job and name

of the failed step in this job
repo_name Name of the original repository
repo_owner Owner of the original repository

sha_fail SHA of the failed commit
sha_success SHA of the successful commit

workflow Contents of the workflow file
workflow_filename The name of the workflow file (without full path)

workflow_name The name of the workflow
workflow_path The full path to the workflow file
changed_files List of files changed in the diff
commit_link URL to a commit corresponding to the failed job

D.1 DATASET COLLECTION AND PROCESSING

The final dataset consists of the datapoints with structure presented in Table 7. In order to collect and
process the data, we use the following protocol:

1. We limited ourselves to the 100 largest Python repositories (main language: Python, the
ratio of the main language > 0.95) with permissive licences. From each repository, we take
no more than three branches, for each branch — no more than three different workflows, and

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 8: Data split by the difficulty.
Difficulty # of datapoints Description

1 36 Issues with formatting
2 7 Local issues or issues with typing
3 25 Issues that require information about

other files in the repository

Total 68

for each workflow — no more than three datapoints. Thus, each repository could contribute
up to 27 datapoints.

2. For all the collected Python repositories, we get the full list of the actions run in the repository,
limited to last 90 days. Downloaded data contains action status (failed or successful) and
links to the action runs.

3. We gather a list of pairs of consecutive commits in which the first commit causes a failure of
a workflow but the next one makes it build successfully.

4. For each pair of commits, we download:

• logs of the failed step of the failed commit;
• diff between the failed and successful commit (correction diff);
• metadata of the failed commit.

During the download, we clean the data according to the following filters (on the fly, to
avoid excessive requests to GitHub API):

• To reduce the benchmarking time, we eliminate runs that take more than 10 minutes
(measured on successful action run).

• To minimize the number of actions that contain pure formatting issues, we filter out
datapoints, in which the names of the workflow, target, or failed step contain any of
the following substrings: {mypy, lint, flake8, black}. We allow these substrings in the
target name if there is more than one target in the action run.

• We remove runs for which the workflow file contains substrings {token, secret} to
ensure that we can run them without any prerequisites.

• We keep only datapoints for which the correction diff (i) contains at least one .py file,
and (ii) only contains files that match either of the following items: {code file, *.md,
.rst, LICENSE, readme*, doc/*}. We do so to ensure that there are no changes in
artifacts such as resources or data files, which the model cannot fix given the present
context.

5. To isolate the problem to a single issue per datapoint, when running the benchmark, we
delete all .yaml files in the .github/workflows/ directory, ensuring that only this
workflow would be run. We also remove workflows that contain links to other workflow
files to make sure that the target workflow is independent.

6. The human assessor assessed the datapoints to verify that logs contain all the necessary
information to fix the issue and graded the datapoints on a 1–3 scale according to their
difficulty. Table 8 describes the difficulty levels and the sizes of the available buckets.

7. In the last step, we run all datapoints through our benchmark at both the failed and the
successful commit. We then keep only the datapoints that remained failing / passing at the
respective commits. Moreover, we repeat the procedure after 14 months from the initial
procedure to ensure the durability of the dataset. This last step is crucial as it filtered out
50% of the datapoints: quite many passing workflows started failing due to changes in
library versions that were not specified by repository owners, connection issues, missing
remote files or certificates. Table 9 reports the number of filtered datapoints at each step.

Context-related statistics are presented in Table 10

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 9: Number of datapoints on each mining step.
Data mining step # of datapoints

Initial set of sampled workflows 336
Datapoints that passed assessor verification 210

Datapoints that passed GitHub Actions 144
Datapoints that passed GitHub Actions after 14 months 68

Table 10: Context-related statistics.
Context metric Mean Median
Symbols in logs 145K 6.5K

Files in repository 610 240
Lines in repository 170K 56K

Symbols in repository 7.5M 2.4M

D.2 EVALUATION

We implement the benchmark for using the CI builds repair dataset in our repository. The benchmark
requires a user-implemented function (fix_repo_function) that repairs locally stored repository, given
the logs of a failing build. The procedure is the following:

1. The benchmark clones each repository snapshot with depth equal to 1 to a local machine.
2. Then, the benchmark runs the model under evaluation, which takes a datapoint as input

(mainly — log and workflow files) and needs to repair the repository on the local machine
by editing or replacing files.

3. The benchmark edits the workflow files to run only one workflow.
4. Then, it pushes the current state of the repository to a new branch in the separate GitHub

organization.
5. When results of builds in GitHub Actions become available, the benchmark collects, ana-

lyzes, and returns them.

To use the benchmark, one needs to send a request to join the GitHub organization2 since the procedure
requires pushing changes to repositories in that organization. Moreover, keeping repositories as forks
in a separate organization ensures that they will remain available. The function fix_repo_function
takes the following (all optional) arguments:

1. datapoint: datapoint from the dataset
2. repo_path: path to the repository on the user’s machine
3. repo: git.Repo object from the GitPython library
4. out_folder: directory for outputting the benchmark results

Intermediate results contain datapoint ID and meta information, as well as the SHA of the commit
pushed to the target repository. After collecting the results, the benchmark adds the status of the
GitHub Actions build to this information.

We use the collected dataset to assess multiple LLMs in the CI builds repair task.

To make the task easier to tackle, we provide models with an oracle — when asking to fix the build,
we also provide the list of files and specific code blocks in them that should be fixed. The information
on which files need fixing comes from the ground truth commit that fixed the build. In the future, if
the task becomes too easy for the models, oracle can be simply removed to make the task even more
realistic and challenging.

2GitHub Organization for the benchmark: ANONYMIZED

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

To avoid compatibility issues with external packages, we implemented time machine, which ensures
that installed package versions match those available at the time of the commit.

To prompt the models to solve the task, we use the following strategy. To prepare an instruction,
we locate the first occurrence of case-insensitive substring “error”, "failure", "failed" or "traceback"
in the logs and take a 200-line context around this occurrence (100 lines before and after). If the
substring is not found, we use 200 last log lines. The instruction then reads as follows:

Title: Tests Failed After New Commit

Overview
A recent commit caused one or more tests to fail in the repository.
We need to investigate the relevant logs, determine the problem, and propose a fix.

Relevant Logs
Below is a focused snippet of the CI logs surrounding the failure:

{relevant_logs}

We then prompt the LLM to modify the code blocks provided by an oracle to align with the given
instructions, and pass all the files in a single request in the following way:

[start of file.py]
...
[end of file.py]

LLM replies with a unified diff3. During evaluation of the benchmark results, these diffs are applied
and the patched version is sent to GitHub Actions to be tested. The statistics of the context length
(OpenAI models’ tokens (OpenAI, 2024)) is following: min = 859, max = 61,982, mean = 13,994,
std = 14,379, median = 9,726.

Table 11 shows the evaluation results for three independent runs of several models: proprietary
OpenAI GPT-4o (OpenAI, 2024), Anthropic Claude 3.5 Sonnet, 3 Opus, 3 Haiku (Anthropic, 2024),
and Google Gemini 1.5 Pro (Team et al., 2024) (max context length = 32,768 due to technical reasons),
as well as open-source DeepSeek-R1 (DeepSeek-AI, 2025) (max context length = 16384) and Llama
instruct models (Dubey et al., 2024): INT8 Llama 3.1 (8B, 70B, 405B). If not stated otherwise, all
models have context length ≥ 64,000 tokens.

Table 11: Pass@1 scores of the CI builds repair benchmark for various LLMs. Average of three runs.
Model Pass@1, %

DeepSeek-R1 23 ± 1
Claude-3.5-Sonnet 24 ± 1

GPT-o1 19 ± 1
Claude-3-Opus 14 ± 3
Claude-3-Haiku 2 ± 2
Gemini-pro-1.5 10 ± 3

GPT-4o 10 ± 1
Llama-3.1-405B 4 ± 1
Llama-3.1-70B 5 ± 3
Llama-3.1-8B 0

E COMMIT MESSAGE GENERATION

In Commit Message Generation (CMG) for large commits, a model should generate a natural language
description of changes performed in a single commit. The changes can be represented in different

3Aider: https://aider.chat/docs/unified-diffs.html

23

https://aider.chat/docs/unified-diffs.html

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 12: The structure of datapoints in the commit message generation dataset.
Field Description
repo The full name of the GitHub repository the

commit comes from
hash The SHA hash of the commit, serves as an

identifier inside individual repository
date The timestamp of the commit (from the

commit author)
license The type of the license in the repository of

the commit
message The ground truth commit message

mods The changes performed in a commit, rep-
resented as a list of per-file modifications,
where the structure of a per-file modifica-
tion is described in Table 13

Table 13: The structure of a per-file modification in the commit message generation dataset.
Field Description

change_type The type of change to the current file, one
of: ADD, COPY, RENAME, DELETE,
MODIFY, or UNKNOWN

old_path The path to file before the change (might be
empty if the file was created)

new_path The path to file after change (might be
empty if the file was deleted)

diff The changes to the current file, represented
in a Git diff format

ways — in various diff formats, as separate versions of each file before and after the changes took
place, and others. Moreover, models can utilize information from unchanged project files to better
understand how changes impacted the project. In this work, we present a manually curated dataset
for CMG tailored for larger commits.

E.1 DATASET STRUCTURE

Each instance in the dataset represents a commit from a GitHub repository, with metadata like commit
SHA and full repository name, ground truth commit message, and the list of performed changes
in the Git diff format. Additionally, the dataset includes snapshots of all associated repositories to
facilitate context construction. The detailed structure of each datapoint is presented in Table 12.

E.2 DATASET COLLECTION AND PROCESSING

We use the CommitChronicle dataset (Eliseeva et al., 2023) as the initial source of commits for
our dataset. We refer the reader to the work of Eliseeva et al. (2023) for the details about data
collection. In this work, we focus on Python language only and thus consider only the subset of the
CommitChronicle test set that includes changes to at least one .py file.

We perform extensive filtering, including manual validation, to select high-quality examples with
long diffs and commit messages. The exact data filtering steps are listed in Table 14. For the commit
message quality filter, we refine the dataset released in a recent study from Li and Ahmed to make
it more suitable for data filtering purposes, and fine-tune the CodeBERT (Feng et al., 2020) model.
After filtering, we retain 3,260 commits. Since we aim to target commits with larger changes, after
the initial filtering, we only keep samples where the number of characters in diffs related to .py
files is ≥ 3,000 characters. That leaves us with 858 commits that we further filter manually. The

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 14: Filters applied to the CommitChronicle subset to build the commit message generation
dataset from BenchName. *Since the Quality filter is based on a deep learning classifier, it was
applied only to the subset of 3,366 commits obtained by running all the other filters.

Filter Description Filter Details Number of commits
rejected by the filter
(% of initial sample)

Diff Filters

Hash Diffs Diff has whitespace-separated character-to-words
ratio ≤ 20 (Li et al., 2023).

437 (0.25%)

Modification Diff consists only of modifications of existing files
(no additions, deletions, renaming, or copying).

25,750 (14.95%)

Message Filters

Capitalization Message starts with an uppercase letter (Muen-
nighoff et al., 2023).

68,384 (39.70%)

Verbs Message starts with any of the curated set of verbs
from the recent work of Muennighoff et al. (2023).

90,696 (52.66%)

References Message does not contain external references
(URLs or references to issues/pull requests).

31,487 (18.28%)

Noise Message does not follow certain patterns consid-
ered automatically generated or trivial (Eliseeva
et al., 2023; Muennighoff et al., 2023).

6,304 (3.66%)

Min Words Message contains ≥ 4 words (whitespace-
separated).

24,474 (14.21%)

Min Lines Message contains ≥ 2 lines. 138,160 (80.22%)
Hash Messages Message has whitespace-separated character-to-

words ratio ≤ 20 (Li et al., 2023) and does not
contain any SHA hashes (Eliseeva et al., 2023).

12,540 (7.28%)

Quality Message is considered good by the commit mes-
sage quality classifier.

106 (3.14%)*

manual labeling is conducted by one of the authors. We employ a 5-point Likert scale and additionally
provide comments that elaborate on the reasoning for most of the samples. To facilitate further
research, we made all the labels and comments available in the dataset.

E.3 EVALUATION

We run multiple instruction-tuned LLMs on the presented commit message generation benchmark in
a zero-shot setting (i.e., no examples in the prompt, only a natural language instruction). We employ
the same prompt for all models. The prompt is presented in Figure 8. It was crafted through several
iterations, addressing the most frequent issues in the generated messages from pilot experiments. In
our main experiments, we only incorporate commit changes represented as diffs returned by the git
diff command to prompt the LLMs. Additionally, we run the CodeT5 (Wang et al., 2021) model
fine-tuned for commit message generation task on the training part of the CommitChronicle dataset.
This model only takes the commit diff as an input.

Write a commit message for a given diff. Start with a heading that
serves as a summary of the whole diff: a single sentence in an
imperative form, no more than 50 characters long. If you have details
to add, do it after a blank line. Do your best to be specific, do not
use ‘refactor’ unless you are absolutely sure that this change is ONLY
a refactoring. Your goal is to communicate what the change does
without having to look at the source code. Do not go into low-level
details like all the changed files, do not be overly verbose. Avoid
adding any external references like issue tags, URLs or emails. Diff:

[DIFF]

Commit message:

Figure 8: The primary prompt for the commit message generation task.

We access proprietary LLMs through the official APIs. For Mixtral, Mistral, DeepSeekCoder,
CodeLLaMA, and CodeT5, we use a single NVIDIA A100 GPU with default precision (except for

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 15: Results for the CMG benchmark from BenchName. R stands for ROUGE metric, BS stands
for BERTScore metric, where BS (norm.) is the normalized version. All model categories are sorted
by the ROUGE-1 metric. The best result in the category is highlighted in bold, and the second best
result is underlined. *CodeT5 is the only model fine-tuned for the CMG task as opposed to the
zero-shot setting for the rest of the models.

Model BLEU ChrF R-1 R-2 R-L BS BS
(norm.)

Proprietary

o1-preview (2024-09-12) 4.212 36.38 29.28 7.66 20.52 0.8635 0.191
Gemini 1.5 Pro 3.656 34.87 28.94 6.363 20.15 0.8593 0.1666
Claude 3.5 Sonnet 4.195 34.85 28.79 6.134 19.67 0.8626 0.1857
Claude 3 Opus 4.219 36.59 28.67 7.656 20.14 0.8583 0.1606
o1-mini (2024-09-12) 4.09 34.33 27.96 6.712 20.05 0.8605 0.1737
Gemini 1.5 Flash 2.918 34.64 27.38 5.865 18.68 0.8581 0.1595
GPT-4 Turbo (1106) 2.803 34.39 26.62 5.296 17.72 0.8559 0.1462
GPT-4o (2024-11-20) 3.066 34.81 26.07 5.548 17.65 0.854 0.1351
GPT-4o mini (2024-07-18) 2.841 34.12 25.66 5.158 17.33 0.8579 0.1583
GPT-4 (0613) 2.127 32.62 23.5 5.217 16.03 0.8522 0.1243
Claude 3 Haiku 1.957 30.12 21.01 5.045 14.38 0.843 0.0695
GPT-3.5 Turbo (0613) 2.101 26.664 19.976 4.227 14.447 0.846 0.087
GPT-3.5 Turbo (1106) 1.885 20.698 18.424 3.815 14.087 0.854 0.136

OSS (big)

DeepSeek-V3 (671B) 3.788 35.76 28.63 6.599 19.81 0.8625 0.1851
Llama-3.3 (70B) 3.751 33.54 28.38 6.415 20.12 0.8645 0.1969
Llama-3.1 (405B) 3.563 34.83 28.25 6.516 19.94 0.8626 0.1861
Llama-3.1 (70B) 3.634 34.66 27.62 6.626 19.27 0.8611 0.177
DeepSeek-R1 (671B) 4.19 34.94 27.07 5.94 18.94 0.8644 0.1962

OSS (medium)

Qwen2.5-Coder (32B) 3.415 33.74 27.93 6.038 20.1 0.8616 0.1797
Mixtral 8 bit (8x7B) 2.189 31.98 23.61 5.376 16.33 0.8476 0.09688
DeepSeek Coder (33B) 1.742 29.08 21.01 4.471 14.46 0.8425 0.06697
CodeLLaMA (34B) 1.586 24.632 17.817 3.684 13.114 0.844 0.073
QwQ (32B) 0.529 14.07 14.66 3.381 10.26 0.8275 -0.02194

OSS (small)

Llama-3.1 (8B) 2.409 31.02 23.66 4.768 16.67 0.8538 0.1335
Mistral (7B) 1.895 30.719 23.648 4.458 16.262 0.847 0.096
DeepSeek Coder (6.7B) 1.634 28.567 20.188 3.604 14.116 0.843 0.068
CodeLLaMA (13B) 1.727 23.099 18.207 3.642 13.479 0.844 0.075
CodeLLaMA (7B) 1.108 26.638 16.961 2.807 12.028 0.835 0.021

OSS (tiny)
Llama-3.2 (3B) 2.108 26.34 21.05 4.102 15.15 0.8461 0.088
DeepSeek Coder (1.3B) 0.75 22.449 13.815 2.029 9.753 0.822 -0.057
CodeT5* (220M) 0.355 11.862 13.615 2.633 11.439 0.845 0.083

Mixtral, where we use 8-bit precision) and FlashAttention-2 (Dao, 2023) enabled. For the rest of the
considered models, we use Together API.4 For all the models, we set the temperature to 0.8 and allow
them to generate up to 512 tokens. This upper bound is mostly set due to practical considerations, as
the maximum length of a commit message in our dataset is only 58 whitespace-separated words. The
results are presented in Table 15.

Additionally, we experiment with two alternative strategies for composing the context for the LLMs.
Among the models, we select o1-mini from OpenAI as the best compromise between speed and
quality among proprietary models and DeepSeek-V3, the highest-scoring OSS model in terms of
ROUGE-1. We use DeepSeek-V3 tokenizer to calculate the number of tokens through the rest of the
section. The first context gathering strategy is to pass the full contents of the modified files rather than
diffs. Similar setting was previously employed for commit message generation by (Muennighoff et al.,
2023). In our dataset, modified files for one commit take around 54k tokens on average, however, the
maximum value is 300k, which exceeds maximum context length of 128k tokens for both o1-mini
and for DeepSeek-V3. Hence, we limit the maximum allowed context length, truncating the modified
files up to max_num_tokens

num_files each. We consider several upper bounds in terms of maximum context length:
4k, 8k, 16k, 32k, 64k. Due to technical limitations, we were able to obtain results for DeepSeek-V3
with contexts only up to 16k tokens. The second context gathering strategy is to further extend the
prompt from our main experiments (Figure 8) with relevant context via retrieval. We use a simple
BM25 (Robertson et al., 2009) retriever among non-changed .py files in the corresponding repository,

4Together: https://www.together.ai/

26

https://www.together.ai/

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 16: Results with alternative contexts for the CMG benchmark from BenchName. R stands
for ROUGE metric, BS stands for BERTScore metric, where BS (norm.) is the normalized version.
The best result for the model is highlighted in bold, and the second best result is underlined. The
context size is reported in tokens from DeepSeek-V3 tokenizer. The context size for Diff context is
the average number of tokens in diffs in our dataset.

Model Context Type Context Size BLEU ChrF R-1 R-2 R-L BS BS
(norm.)

o1-mini

Diff 2.3k 4.09 34.33 27.96 6.712 20.05 0.8605 0.1737

Full File

4k 2.342 27.18 20.44 3.464 14.95 0.8457 0.0856
8k 2.646 29.92 22.71 4.241 16.67 0.8493 0.1071
16k 2.753 31.69 24.43 5.066 17.49 0.8512 0.1181
32k 2.572 31.89 24.36 4.85 17.41 0.8504 0.1137
64k 3.324 32.86 24.82 5.335 17.67 0.8525 0.1259

Diff + BM25
4k 3.454 34.42 27.84 6.229 19.75 0.8584 0.1613
8k 3.573 34.59 27.31 6.201 19.11 0.8564 0.1491
16k 3.364 33.85 27.28 6.355 19.08 0.8563 0.1488

DeepSeek-V3

Diff 2.3k 3.788 35.76 28.63 6.599 19.81 0.8625 0.1851

Full File
4k 2.229 28.88 21.76 3.507 15.45 0.8521 0.1237
8k 2.801 31.34 24.15 4.81 17.11 0.8552 0.1421
16k 3.345 33.59 26.47 5.647 18.77 0.859 0.1648

Diff + BM25
4k 3.457 34.85 28.97 6.955 20.11 0.8631 0.1888
8k 3.554 35.05 28.05 6.285 19.68 0.8627 0.1863
16k 3.697 34.98 28.35 6.419 20.03 0.8627 0.1862

similar to the setting adopted by Jimenez et al. (2023). We retrieve up to 50 most relevant files and
add them until the maximum context length in tokens is exceeded, possibly truncating the last file to
ensure it fits the restriction on the maximum length. We consider several upper bounds in terms of
maximum context length: 4k, 8k, 16k.

The results are presented in Table 16. We observe that neither of the alternative context gathering
strategies leads to substantial improvements compared to our primary approach using only the commit
diff. For Full File setting, the quality grows with the increase in the context size, but even at its
largest (64k tokens), it remains consistently inferior to the results achieved with diffs. One reason
for the inefficiency of the Full File is the large size of modifications in our dataset, which span 3.4
files on average. When including complete file contents, the input can reach up to 300k tokens.
Our naive truncation strategy likely discards critical information. While additional context that
facilitates better repository understanding could help generate more appropriate commit messages,
BM25 retrieval might fail to uncover relevant files, leading to insignificant improvements or even
degradation. Interestingly, unlike (Jimenez et al., 2023), we do not observe stable decrease in quality
with the growth of BM25 context. We leave the exploration of more efficient and sophisticated
context gathering strategies to future research.

F BUG LOCALIZATION

Bug Localization task can be formulated as follows: given an issue with a bug description and a
repository snapshot in a state where the bug is reproducible, identify the files within the repository
that need to be modified to address the reported bug. Although this is a subset of the larger bug-fixing
problem, partially covered by SWE-Bench, bug localization requires its own separate evaluation.
This independent assessment can provide a better understanding of the various approaches and their
efficiency in identifying the precise location of bugs within the large code bases.

F.1 DATASET STRUCTURE

The bug localization dataset includes real issues that describe bugs, together with the respective pull
requests (PRs) that fix them. Each datapoint contains three key elements: the bug description, the
state of the repository where the bug is reproducible, and the list of files that need to be modified to
resolve the bug. The bug description represents the body of the issue that was assigned a bug-related

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 17: Description of datapoints in the bug localization dataset.
Field Description

id Datapoint ID
repo_owner Bug issue repository owner
repo_name Bug issue repository name

text_id Datapoint text ID
issue_url GitHub link to issue
issue_title Issue title
issue_body Issue body with bug description
issue_labels List of labels assigned to issue

pull_url GitHub link to PR
pull_create_at Date of PR creation in format of yyyy-mm-ddThh:mm:ssZ

base_sha PR base SHA
head_sha PR head SHA
diff_url PR diff URL between base and head SHA

diff PR diff content
changed_files List of changed files parsed from diff

link_url GitHub link to issue or PR comment from which the link was
parsed

links_count Number of links between the issue and the PR, equals 2 if the
link is mutual, 1 if it is one-sided

link_keyword "Fix"-related keyword which surrounds the issue link
stars Number of repository stars

language Main programming language for repository

label. The repository state is represented by the commit SHA. The list of files that should be modified
comes from the pull request that resolves the respective bug report. The full datapoint structure is
presented in the Table 17

The final dataset contains 7,479 datapoints in total divided, between three sets by language:

• py — change contains only Python files (4,339 datapoints);

• java — change contains only Java files (2,522 datapoints);

• kt — change contains only Kotlin files (618 datapoints).

For each language 50 datapoints are manually verified in order to form a test subset for model
evaluation (150 datapoints in total).

Based on the core fields, we calculated the number of statistics and attached them to each datapoint.
The additional fields are presented in Table 18. We excluded test files from the experiment because
their modifications typically only support program repairs and do not contain the actual bugs. Thus,
all metrics are calculated on all project files except for the test files.

F.2 DATASET COLLECTION AND PREPROCESSING

To collect the data, we use the following protocol:

1. Collect issues, pull requests, comments. We start with the common corpus of collected
GitHub repositories. Then, for each repository, we download information about all issues,
pull requests, and comments using the GitHub API. As a result, we download more than 8M
issues, 7M pull requests, and 34.4M comments.

2. Match issues with pull requests. GitHub API does not provide information about relations
between issues and pull requests. We obtain these relations by parsing references from
descriptions or comments. To do so, we write regular expressions for extracting all possible
referencing formats as provided in GitHub documentation. To also collect the context around
the reference, we capture one “fix”-related keyword (e.g., close, closes, closed, fix,

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 18: Description of additional metrics calculated on the bug localization dataset.
Metric Description

issue_symbols_count Number of symbols in issue description
issue_tokens_count Number of tokens in issue description
issue_words_count Number of words in issue description
issue_lines_count Number of lines in issue description

issue_code_blocks_count Number of triple quotes blocks parsed in
issue description

issue_links_count Number of links parsed in issue description

diff_symbols_count Number of symbols in diff
diff_tokens_count Number of tokens in diff
diff_words_count Number of words in diff
issue_lines_count Number of lines in diff

changed_files_count Number of all changed files mentioned in
diff

changed_files_without_test_count Number of changed files not including test
files mentioned in diff

code_changed_files_count Number of files written in Python, Java, or
Kotlin mentioned in diff

py_changed_files_count Number of Python files mentioned as
changed in diff

java_changed_files_count Number of Java files mentioned as changed
in diff

kt_changed_files_count Number of Kotlin files mentioned as
changed in diff

repo_symbols_count Total number of symbols in repository’s
files

repo_tokens_count Total number of tokens in repository’s files.
repo_words_count Total number of words in repository’s files
repo_lines_count Total number of lines in repository’s files
repo_files_count Total number of files in repository

repo_files_without_test_count Total number of files without tests in the
repository

fixes, fixed, resolve, resolves, resolved, solve, solves, solved) before
and after the link with the regular expressions. We also check if references are mutual (if
the issue refers to the pull request and vice versa) or not (if only a single link from either the
issue or the pull request exists).

3. Sort by stars. We sort all issue-PR pairs by the number of stars in the respective repository
and assign each pair an ID based on its index in the sorted order. We populate the diff
field by running a git command in a locally cloned repository to get the diff in a text format.
Unfortunately, this method does not work for pull requests created from forks, so we save a
null value for such cases.

To enhance the quality of our data, first, we apply several empirical filters and preprocessing steps
based on the fields from the dataset:

1. Select bug issues. We retain only issues with “bug” mentioned in the labels and non-empty
descriptions. Additionally, we remove issues containing links to media, as they may include
crucial data visualizations that are inaccessible through other means. To ensure that most
models can use the dataset for evaluation, we only keep issues written in English.

2. Select processable changes. For pull requests, we filter out those introducing new files and
retain only pull requests modifying existing files, provided their diffs could be extracted
from the cloned repository. Furthermore, to facilitate the future manual labeling process, we
leave only pull requests written in Python, Java, or Kotlin, as these are languages known

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 19: Empirical filters applied to the bug localization dataset.
Field Description Number of data-

points rejected by
the filter (% of the
initial set)

issue_labels At least one label should include "bug" as a sub-
string

3,472,057 (79.8%)

issue_body Description should not be empty 16,265 (0.37%)
issue_body Description should contain only text without at-

tached media
145,225 (3.34%)

issue_body Description should be written mostly in English 35,942 (0.83%)

diff Diff can be extracted and should not be empty or
corrupted

475,447 (10.93%)

diff Diff should consist only of modifications of exist-
ing files and no introduction of new files

30,572 (0.7%)

diff Diff should include at least one file in either Python,
Java, or Kotlin

138,653 (3.19%)

diff Diff should include only UTF-8 files to filter out
unreadable or graphical objects

18 (≤ 0.01%)

base_commit Repository content on base commit can be ex-
tracted and should not be empty or corrupted

6,198 (0.14%)

pull_url PR should refer to no more than one issue 7,376 (0.17%)
issue_url Issue should refer to no more than one pull request 1,934 (0.04%)

link_keyword "fix"-related keyword should stay before or after
link in the issue description.

10,406 (0.24%)

well to authors. To work with diffs and patches, as well as to extract the changed files and
their modification modes, we use the unidiff package.5 Additionally, we avoid pull requests
that include changes to media files with non-UTF-8 encoding, as such changes are often
difficult to reproduce. The most crucial filter ensures that each pull request is associated with
exactly one issue, and vice versa, to maintain the relevance of changes to issue descriptions
and to prevent situations where a pull request addresses multiple issues or an issue is fixed
by several pull requests.
The dataset size reduction after applying these empirical filters is summarized in Table 19.
As a result of these filtering steps, 10,195 datapoints remain in the dataset.

3. Filter outliers. On top of the previous filtering step, we remove outliers for several
numerical fields, including changed_files_count, changed_lines_count, and
issue_tokens_count. Table 20 shows the result of removing outliers.

4. Data analysis. After data filtration, we are left with 7,479 datapoints that comprise the
entire dataset. Table 21 presents statistics of the dataset, with the difference in statistics
between languages being negligible.

5. Manual data labelling. After the analysis of the dataset, we carry out manual data labeling
and verification process to select the subset of high-quality datapoints for evaluation. First,
we sort the datapoints by the number of stars in the respective repositories, assuming that
popular repositories have better processes and quality for issue tracking and bug reporting.
Then, we go through datapoints of each repository, selecting ones that meet the following
criteria:

• The issue describes a single bug completely and exhaustively.
• The pull request is linked to the issue and resolves this issue alone.
• All changes are relevant to the described issue, with no extra functionality or side

refactorings included.
• The changes were reviewed and accepted.

5Undiff: https://pypi.org/project/unidiff/

30

https://pypi.org/project/unidiff/

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 20: Outlier filters applied to the bug localization dataset.
Field Description Number of data-

points rejected by
the filter (% of
initial set)

changed_files_count Number of changed files should not be more than
22 (0.99 quantile)

100 (≤ 0.01%)

changed_lines_count Number of changed lines should not be more than
594 (0.99 quantile)

102 (≤ 0.01%)

issue_tokens_count Issue description can be tokenized using GPT-4
tokenizer

43 (≤ 0.01%)

issue_tokens_count Issue description should contain at least 13 tokens
(0.01 quantile)

85 (≤ 0.01%)

issue_tokens_count Issue description should contain no more than
4,500 tokens (0.99 quantile)

103 (≤ 0.01%)

Table 21: Final statistics of the dataset.
Field Min Median Mean Max

repo_files_count 16 331 1,077 33,644
repo_lines_count 9 52,743 145,377 8,687,912

repo_tokens_count 78 488,286 1,684,619 225,649,725

changed_files_count 1 1 2 21
changed_lines_count 1 15 37 594

changed_tokens_count 1 158 608 837,626

issue_words_count 1 106 149 1,806
issue_lines_count 1 22 33 586

issue_tokens_count 13 227 432 4,491

issue_links_count 0 0 0.80 56
issue_code_blocks_count 0 1 0.99 31

If a datapoint does not meet these criteria, we go to another one from the same repository, or
if none are left, we move on to the next repository by the number of stars, until we select 50
good datapoints per language. To keep the distribution of the number of changed files, for
each repository, we try to pick one datapoint with a single changed file and one datapoint
with two or more changed files. This strategy allows us to collect a diverse set of datapoints
from different repositories and keep the distribution of the number of changed files similar
to the complete set of issues.

F.3 EVALUATION

We evaluate several LLMs on the bug localization task using the presented dataset.

For all models, we adopted a unified prompt structure (Figure 9), which includes the repository name,
issue title, and description, along with optional additional context.

First, we evaluate two context-filling strategies to understand how context influences the quality of
bug localization and how it can be optimized for more efficient use by LLMs in solving this particular
task:

• Only issue description context. This configuration only considers the issue description as
context to determine whether it contains sufficient information for bug localization. It also
serves to analyze the potential impact of data contamination.

• Repo file paths list. This strategy adds a list of all files in the repository as context, enabling
the model to utilize structural information from the codebase. This approach assesses

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

SYSTEM:
You are an AI assistant specialized in software bug localization.
Your task is to identify the MOST likely files to be modified to
fix the given bug. You will be provided with the repository name and
a GitHub bug issue description*. Analyze the issue description and
determine the files in the repository that are MOST likely to require
modification to resolve the issue. Provide the output in JSON format
with the list of file paths under the key "files".
Provide JSON ONLY without any additional comments.

USER:
GitHub repo name:
[REPO_OWNER/REPO_NAME]

Issue description:
[ISSUE_TITLE]
[ISSUE_BODY]

[CONTEXT]

Figure 9: Prompt for bug localization. ∗Can slightly vary to describe the content and structure of the
context provided.

whether the mere presence of file names aids effective bug localization. To prioritize the
most relevant file paths in the context, we employed the following algorithm:

1. Ranking. We use a simple NLTK tokenizer and BM25 to rank the files in the repository
based on their lexical similarity to the issue description.

2. Filling. Based on the ranking, we concatenate the context for each file (file path along
with imports).

3. Cutting. Since the context appears last in the prompt, we trim the final message to fit
the total context size of each model.

The expected output of the LLMs is a list of files which contain bugs. To measure the quality of this
output and compare it with the expected list of buggy files, we calculate the following metrics:

• P (Precision). This metric shows how many predicted files were correct.
• R (Recall). This metric shows how many actual bugged files were correct.
• FPR (False Positive Rate). This metric shows how many non-buggy files were incorrectly

predicted.
• F1-score. The balance between Precision and Recall.
• All correct. The percentage of cases where all files were correctly identified.
• All incorrect. The percentage of cases where all files were incorrectly identified.
• # Output. The average number of buggy files detected.

All results are presented in two separate tables: Table 22 reports results for the small-context setting,
while Table 23 presents results for the large-context setting. The evaluation demonstrated that even a
simple additional context can double the effectiveness of bug localization. In small-context settings,
the average token usage is less than 1k (minimum: 149, maximum: 149), whereas, in large-context
settings, it reaches approximately 10k (minimum: 251, maximum: > 200,000). This indicates that,
for certain data points, even larger contexts can be provided, potentially leading to higher scores.

However, we observed an interesting pattern in LLaMA-based models: increasing the context size
adversely affected their performance. Specifically, with larger contexts, these models often produced
excessively long lists of files or failed to generate JSON outputs in the correct format. This mean that
the context and the output format should be kind of model specific and not universal. This suggests
that both context handling and output formatting are model-specific rather than universally applicable.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 22: The baseline results for the bug localization task without additional context.
Model Context Size P R F1-score FPR All correct All incorrect # Output

o1 128k 0.299 0.286 0.255 0.015 0.07 0.55 1.97
GPT-4o 128k 0.303 0.305 0.270 0.018 0.12 0.54 2.29
GPT-4o mini 128k 0.112 0.164 0.117 0.042 0.03 0.77 3.79
GPT-3.5 Turbo (1106) 16k 0.219 0.178 0.177 0.017 0.09 0.73 1.93
Gemini 1.5 Pro 1M 0.309 0.294 0.270 0.020 0.14 0.55 2.52
Claude 3 Opus 200k - - - - - - -
Claude 3 Haiku 200k - - - - - - -
Claude 3.5 Sonnet 200k 0.199 0.254 0.196 0.021 0.05 0.61 3.16
Claude 3.5 Haiku 200k 0.212 0.256 0.211 0.026 0.08 0.61 2.76

Llama-3.2 (3B) 128k 0.114 0.215 0.130 0.158 0.0 0.74 3.11
Llama-3.1 (8B) 128k 0.072 0.143 0.084 0.056 0.01 0.81 5.60
Llama-3.1 (70B) 128k 0.156 0.196 0.157 0.035 0.05 0.72 3.90
Llama-3.1 (405B) 128k - - - - - - -

Qwen2.5 (7B) 128k 0.172 0.141 0.140 0.016 0.08 0.79 2.00
Qwen2 (72B) 128k 0.191 0.157 0.159 0.023 0.09 0.76 2.45

DeepSeek R1 (671B) - - - - - - - -
DeepSeek V3 (671B) - - - - - - - -

Table 23: The baseline results for the bug localization task with file paths list context.
Model Context Size P R F1-score FPR All correct All incorrect # Output

o1 128k 0.622 0.630 0.576 0.010 0.28 0.15 2.22
GPT-4o 128k 0.535 0.635 0.527 0.012 0.23 0.12 2.85
GPT-4o mini 128k 0.350 0.666 0.416 0.035 0.07 0.13 5.44
GPT-3.5 Turbo (1106) 16k 0.436 0.497 0.421 0.021 0.17 0.31 3.35
Gemini 1.5 Pro 1M 0.471 0.671 0.501 0.015 0.17 0.09 3.55
Claude 3 Opus 200k 0.471 0.637 0.481 0.018 0.2 0.1 3.77
Claude 3 Haiku 200k 0.429 0.59 0.441 0.029 0.13 0.2 4.04
Claude 3.5 Sonnet 200k 0.461 0.748 0.523 0.017 0.13 0.11 3.48
Claude 3.5 Haiku 200k 0.553 0.741 0.583 0.038 0.22 0.1 2.88

Llama-3.2 (3B) 128k 0.268 0.748 0.321 0.204 0.14 0.1 18.10
Llama-3.1 (8B) 128k 0.234 0.737 0.305 0.145 0.05 0.1 16.03
Llama-3.1 (70B) 128k 0.287 0.664 0.351 0.041 0.05 0.13 8.37
Llama-3.1 (405B) 128k 0.432 0.639 0.465 0.025 0.16 0.14 4.36

Qwen2.5 (7B) 128k 0.559 0.572 0.517 0.013 0.25 0.22 2.79
Qwen2 (72B) 128k 0.431 0.686 0.483 0.026 0.14 0.1 5.16

DeepSeek R1 (671B) 128k 0.529 0.68 0.538 0.021 0.2 0.1 3.04
DeepSeek V3 (671B) 128k 0.489 0.697 0.523 0.025 0.19 0.08 3.61

G MODULE SUMMARIZATION

For the Module Summarization task, the model should write textual documentation based on the mod-
ule’s or project’s source code and intent (a one-sentence description of the expected documentation
content). This task greatly increases the context size available to the models compared to the existing
benchmarks that cover method- or class-level summarization.

G.1 DATASET COLLECTION AND PROCESSING

The dataset consists of the datapoints with their structure as in Table 24.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 24: The structure of datapoints in the module summarization dataset.
Field Description
repo The full name of the GitHub repository the

commit comes from
docfile_name The name of the documentation file. May

be useful in the prompt
intent Small manually gathered intent that de-

scribes what we expect from the generated
documentation

license The type of the license in the repository of
the commit

path_to_docfile The path to file with documentation in the
repository

relevant_code_files List of paths in the repository to the poten-
tially relevant code files

relevant_code_dir Directory with relevant code, field can be
empty

target_text The text of the target documentation —
ground truth in our task

relevant_code_context Code context joined from relevant code files
and directories

To collect the data, we use the following protocol:

1. We start with the Python subset of the common corpus of GitHub repositories. For each
repository, we extract documentation files — files with extensions .md, .txt, and .rst,
located in the docs directory of the repository.

2. For each documentation file, we extract the associated source code. To do this, we parse the
target documentation and extract names of all code files and directories mentioned in it. If a
file does not contain any such mentions, we skip it.

3. To further filter the documentation files, we convert documentation into a plain text format
by removing specific Markdown syntax (as well as text between Markdown tags like code,
autosummary, etc.). We then ensure that each document contains valuable information and
has at least 10 lines of text remaining after cleaning. Since the filtering is quite strict, we
believe that only important documents remain after this stage.

4. We perform manual review of the datapoints to ensure that the content contains not only
information about the code but also summarizes the entire module or project. After manual
review, we leave 216 out of 461 files. Most of the files that we reject contain non-informative
text that is not related to code. Also, for each documentation file, we manually specify an
intent that the model under evaluation can use during generation.

• Manual verification is essential, as our experience with data frequently reveals instances
where a docfile lacks useful content or does not provide substantial information in the plain
text format, without special extensions that enrich documentation.

G.2 EVALUATION

• We run several LLMs on the collected module summarization dataset with different length of
the relevant code context. To assess the quality of the generated documentation, we introduce
a new metric called CompScore that uses LLM (Mistral-7B in our case) as an assessor.
CompScore feeds the assessor LLM relevant code and two versions of documentation: the
ground truth and the model-generated text. The LLM then evaluates which documentation
better explains and fits the code. To mitigate variance and potential ordering effects in
model responses, we calculate the probability that the generated documentation is superior
by averaging the results of two queries:

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table 25: CompScore metric in the module summarization benchmark for various LLMs.
Model 128 tokens 512 tokens 1k tokens 2k tokens

Mistral-7B-v0.3 35.84 39.18 41.03 46.23
Mixtral-8x7B 34.63 38.48 39.96 40.89
Mixtral-8x22B 35.33 38.48 39.49 42.24
Llama2-7B 36.33 44.21 44.13 46.19
Llama2-13B 40.96 47.37 46.57 48.12
Llama2-70B 39.78 45.97 46.37 48.24
CodeLlama-7B 33.02 36.88 36.49 38.06
CodeLlama-70B 38.36 38.74 39.76 37.23
Llama3-8B 25.37 32.14 33.84 37.35
Llama3-70B 24.79 30.08 33.18 36.45
Gemma-2B 16.43 21.04 21.85 25.38
Gemma-7B 24.16 28.24 30.44 33.96
GPT-3.5 36.83 41.59 45.59 49.48
GPT-4 45.62 52.59 56.22 57.33
o1 63.53 63.99 65.10 66.33
gpt-4o 58.27 61.67 63.74 65.95
Llama3.3-70B-Instruct 51.03 54.30 56.49 59.67
Qwen2.5-72B-Instruct 59.27 63.15 65.14 66.37
deepseek-ai-DeepSeek-V3 59.27 63.15 65.14 66.37
deepseek-ai-DeepSeek-R1 61.53 62.49 64.20 64.87

CompScore =
P (pred | LLM(code, pred, gold)) + P (pred | LLM(code, gold, pred))

2

To count P (pred | LLM(code, pred, gold)), we follow several steps:

1. Construct the prompt and feed it into the assessor LLM (see Figure 10).

I have 2 different documentations about {intent}. Decide which
documentation is better: documentation A or documentation B.
My code: [TRIMMED_CODE_CONTEXT]
Documentation A: [PREDICTED_DOC]
Documentation B: [GROUND_TRUTH_DOC]
Better documentation is documentation

Figure 10: Prompt for the CompScore metric.

2. Get logits for the next token being “A” and “B” (logitA and logitB) and convert them
into probabilities:

probA, probB = exp (log_softmax([logitA, logitB]))

3. P (pred | LLM(code, pred, gold)) = probA shows the probabilty that the predicted
documentation is better than the original from the perspective of the LLM assessor.

• For our experiments, we use Mistral-7B-Instruct-v0.2 as LLM assessor. We truncate
relevant code up to 6,000 tokens in the prompt for metric computation. We evaluate all the
models presented in Table 25 via OpenAI API or TogetherAI API with the same generation
parameters. We use zero temperature and predict up to 2,000 new tokens without any
penalties to get deterministic results during generation. Table 26 shows the results for all the
evaluated LLMs with varying length of available relevant code context.

• We observe that both increasing the context size and the size of the model leads to higher
quality. The o1 model outperforms the others, achieving a notable CompScore of 72.22.
Interestingly, the CodeLlama and Llama3 models show worse performance than the Llama2

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Table 26: CompScore metric in the module summarization benchmark for various LLMs on large
contexts.

Model 4k tokens 8k tokens 16k tokens 64k tokens 100k tokens
o1 68.36 69.93 70.93 71.53 72.22
gpt-4o 66.61 66.96 67.02 68.09 68.12
Llama3.3-Instruct 60.54 61.3 62.86 63.14 64.20
Qwen2.5-72B-Instruct 67.72 68.44 68.73 69.25 69.73
deepseek-ai-DeepSeek-R1 66.51 67.45 66.62 - -

model on small contexts. Although doubling the context size does not significantly impact
the CompScore, a substantial difference emerges when comparing the metrics for the
smallest and largest context windows. Investigating which context is most relevant for this
task, as well as exploring different context composition strategies, is left for future research.

36

	Introduction
	BenchName Benchmarks
	Library-based Code Generation
	Project-Level Code Completion
	Other Tasks

	Results Across Multiple Tasks
	Related Work
	Limitations and Future Work
	Conclusion
	LLM Usage
	Library-Based Code Generation
	Dataset Collection and Processing

	Project-Level Code Completion
	Datapoint Structure
	Dataset Collection and Processing
	Extensive Evaluation
	Models Comparison
	Context Size Impact
	Model Size vs Context Size

	CI Builds Repair
	Dataset Collection and Processing
	Evaluation

	Commit Message Generation
	Dataset Structure
	Dataset Collection and Processing
	Evaluation

	Bug Localization
	Dataset Structure
	Dataset Collection and Preprocessing
	Evaluation

	Module Summarization
	Dataset Collection and Processing
	Evaluation

