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ABSTRACT

The fields of code and natural language processing are evolving rapidly, with
models becoming better at processing long context windows — supported con-
text sizes have increased by orders of magnitude over the last few years. How-
ever, there is a shortage of comprehensive benchmarks for code processing that
go beyond a single file of context, while the most popular ones are limited
to a single method. With this work, we aim to close this gap by introducing
BenchName, a suite of six benchmarks for code processing tasks that require
project-wide context. These tasks cover different aspects of code processing:
library-based code generation, CI builds repair, project-level code completion,
commit message generation, bug localization, and module summarization. For
each task, we provide a manually verified dataset for testing, an evaluation suite,
and open-source baseline solutions based on popular LLMs to showcase the us-
age of the dataset and to simplify adoption by other researchers. We publish the
benchmark page on HuggingFace Spaces with the leaderboard and links to Hug-
gingFace Hub for all the datasets: https://huggingface.co/spaces/
anon-iclr-submission/benchname. We also attach supplementary ma-
terials with baselines and evaluation code.

1 INTRODUCTION

The Machine Learning for Software Engineering (ML4SE) domain has gained popularity over
the recent years, with increasingly more powerful models for text and code processing becoming
available. According to a recent survey by Hou et al. (2023), the most common ML4SE tasks studied
in the literature are code generation, code completion, code summarization, and program repair.
Unfortunately, the majority of the existing benchmarks for assessing ML4SE models have two major
limitations: a short length of the available context and a limited resemblance of the practical use
cases (Hellendoorn et al., 2019; Kovalenko et al., 2018).

Two common approaches in modern natural language processing (NLP) are retrieval-augmented
generation (Gao et al., 2023) and utilization of long contexts (Tay et al., 2022). Retrieval-augmented
approaches (Borgeaud et al., 2022; Jiang et al., 2023b) can base their predictions on information from
large corpora of data using various search techniques, while the development of new architectures (Poli
et al., 2023; Fu et al., 2024; Gu & Dao, 2023) and techniques (Dao, 2023; Bertsch et al., 2024) allows
models to process tens of thousands or even millions of tokens. Both long-context and retrieval-
augmented models can in theory utilize information from an entire software project. However,
most existing ML4SE benchmarks operate with short code snippets — methods or at most files.
For example, two most popular code generation datasets—HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021)—require models to process fewer than 1,000 tokens and generate a short
function, usually no more than 100 tokens long.

A new direction of agentic ML4SE benchmarks requires models to work with long contexts: SWE-
bench (Jimenez et al., 2023) and its variations (Zan et al., 2024; Yang et al., 2025), Commit-0 (Zhao
et al., 2025), MLE-Bench (Chan et al., 2025), and others. Yet, as such benchmarks focus on agentic
solutions, they require models to do function calling and planning as well, not only processing of long
contexts. This makes them less suited for evaluation of processing long context and evaluation of
smaller models. Another type of existing ML4SE benchmarks that operates with long code sequences
is code completion at the repository level (Liu et al., 2023; Zhang et al., 2023). Unfortunately, the
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existing works do not account for the iterative nature of software development: while solving the
code completion task in a single file, the benchmarks allow models to use the rest of the project
without restrictions. At the same time, other parts of the project can be written after the studied file
and utilize its contents, giving the model hints that will not be present in the practical use-case.

In this work, we present BenchName, a suite of novel benchmarks for ML4SE models that cover six
tasks: library-based code generation, CI builds repair, project-level code completion, commit message
generation, bug localization, and module summarization. We design all the tasks and datasets in
such a way that they require models to use information from a project module or the entire project to
successfully complete the task, yet don’t require complex multi-step interactions. For all the tasks,
samples used for evaluation are rigorously filtered and then manually verified to ensure the best
possible data quality. The data for all the tasks comes from open-source repositories with permissive
licenses. We also provide baseline solutions for all the tasks based on popular models, although this
work does not aim at solving the tasks — baselines are provided solely to aid future research. Further
work is required to identify the best approaches to individual tasks and better collection strategies.

We open-source all the datasets on HuggingFace: https://huggingface.co/spaces/
anon-iclr-submission/benchname. The implementations of baselines and code for evalu-
ation are available in supplementary materials.

2 BENCHNAME BENCHMARKS

BenchName is a suite of six benchmarks that cover different aspects of code processing: generation,
repair, completion, summarization, processing diffs. For each task, we gather an evaluation dataset of
around a hundred to a thousand examples that requires models to operate with source code at the scale
of a module or an entire repository. For most tasks, we focus on Python code due to its popularity
and to manually verify the correctness of the samples. However, the collection methodology for all
the tasks allows extending the benchmarks with more languages in the future.

All the datasets we collect in BenchName are based on data from open-source GitHub repositories —
source code, commit history, issues, as well as build data from GitHub Actions. First, we extract a
common corpus of repositories for further processing. To do so, we get the list of repositories via
GitHub Search (Dabic et al., 2021) that pass the following filters used in other works to ensure the
quality of the data (Kalliamvakou et al., 2014): at least 1,000 commits, at least ten contributors, issues,
and stars, at least 10,000 lines of code, not a fork, last commit after 01.06.2023, and a permissive
license (we use the most popular permissive licenses (Vendome et al., 2017) — MIT, Apache-2.0,
BSD-3-Clause, and BSD-2-Clause). After the filtering, we are left with 4,343 repositories that we
then download via GitHub API along with issues and pull requests. For the CI builds repair task, we
also retrieve GitHub Actions logs for some repos, which we describe in Section D. The only task
we base on an existing dataset is commit message generation, for which we find samples with large
commits and long commit messages in the recent CommitChronicle dataset (Eliseeva et al., 2023).

After the initial data collection stage, we prepare evaluation datasets for each of the six tasks separately.
For this, we apply further task-specific filters to the collected data, and then manually examine the
samples to ensure their correctness. In the following two subsections, we present the task description,
data collection methodology, and the conducted experiments for library-based code generation and
project-level code completion. We choose these two tasks out of six as they require different kinds of
models: while code generation expects (possibly large) instruction-tuned models, code completion
requires smaller base models. The rest of the tasks put requirements on the models similar to those of
code generation. For them, we provide the task descriptions in Section 2.3 and further discuss data
collection and experiments for each task in-depth in the Supplementary Materials (Appendices D, E, F,
and G) due to the tight space restrictions.

2.1 LIBRARY-BASED CODE GENERATION

Task description. The first task we want to describe is a novel library-based code generation task.
Given a task description and access to the contents of a software library, the model should generate a
single file that solves the task utilizing methods from the given library. The problem is motivated by
the need of programmers to write code that utilizes the present dependencies and in-project APIs
rather than adding new dependencies and increasing project complexity.
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In contrast to library-based code generation, existing code generation benchmarks require models to
produce self-sufficient code snippets, such as solutions to algorithmic problems (Chen et al., 2021;
Austin et al., 2021; Hendrycks et al., 2021), domain-specific code (Ling et al., 2016), one-liners (Yin
et al., 2018), etc. Among the existing works, the setup of the library-based code generation task is
similar to repository-level code completion benchmarks that evaluate API completion (Liu et al.,
2023; Zhang et al., 2023). Contrary to them, our benchmark requires models to generate an entire
program based on an instruction in natural language instead of a single API call or a single line.

Collection methodology. To prepare the benchmark, we first extract usage examples from our Python
projects by finding directories in project roots that contain “examples” in their name. Such usage
examples are provided by the library authors to show the capabilities and use cases of their libraries.
After collecting the examples, we filter them as described in Section B.1, and get 150 files (usage
examples) from 62 libraries, with each file heavily relying on the APIs of the respective project.

To create instructions, we first run the selected 150 files through GPT-4 (Achiam et al., 2023),
prompting it to generate an instruction for generating the file. This leaves us with step-by-step
instructions that the LLM should follow to generate a script utilizing the library at hand. Then, we
manually fix each instruction to reduce hinting to specific library methods and ensure its correctness.

To build contexts for generation, benchmark users have access to contents of the libraries that include
on average 254 Python files with 2.5M characters and 2,242 unique class and method names. The
respective medians are 164 files, 1.4M characters, and 1,412 names. Also, the libraries contain from
136 to 7,846 API names with mean and median being 2,242 and 1,412, respectively.

Metrics. To assess the usage of the respective library, we propose a metric called API Recall. We
calculate it as the ratio of library-specific API calls (called functions, instantiated classes, used
constants) made in the ground truth solution, that also appear in the generated program. For example,
if the ground truth solution made 5 such calls and the model correctly guessed 3 of them, it will
receive API Recall = 60%. We treat APIs as library-specific if their name appears only in a single
library among all Python repositories that we collected.

Baselines. As baselines, we use models from OpenAI: GPT-3.5-turbo, GPT-4 (Achiam et al., 2023),
GPT-4o, GPT-4o-mini (OpenAI, 2024), reasoning models o1, o1-mini (OpenAI, 2024), and o3 (Ope-
nAI, 2025); from Anthropic: Claude-3.5-Sonnet, Claude-3.5-Haiku, Claude-3-Opus (Anthropic,
2024), Claude-3.7-Sonnet (Anthropic, 2025); from Mistral: Mistral-7B (Jiang et al., 2023a) and
Mixtral-8x7B (Jiang et al., 2024); from DeepSeek: V3 (DeepSeek-AI, 2024) and R1 (DeepSeek-AI,
2025); Qwen2.5-Coder-32B (Hui et al., 2024), and three versions of Llama-3.1 (Dubey et al., 2024)
with 8B, 70B, and 405B parameters.

For the context, we provide models with the list of available APIs from the target library, without
specifying which of them are library-specific, i.e., unique to this library and being used to compute
the metric. We do not provide implementations or usages for them, just names, as the full list of APIs
from a library can overflow a context window of 32,000 tokens. We sort each API list according
to BM-25 (Robertson et al., 2009), treating the respective instruction for generation as a query. To
compute the BM-25 score we split the names by snake_case and camelCase, remove punctuation
from them, and turn them into lower case. Then, we evaluate each model with different lengths of
context, providing 0, 20, 200, 2000, or all API names from the library at hand, and suggesting in the
prompt that they may be helpful. When selecting the API names, we pick the ones with the highest
BM-25 scores. Note that when provided with no context, the model will solely rely on its current
knowledge of the library.

Table 1 shows the results of evaluation for the baselines. Firstly, when provided with no information
about the given library aside from its name, Claude-3.7-Sonnet and DeepSeek-V3 show the best
results by far with 47% and 45% API Recall, respectively. These two models demonstrate their
coding capabilities and knowledge of the less popular libraries, with which other models struggle.
Moreover, they further increase their quality to 51% when given access to all the API names from the
library, showing the best quality of all evaluated models.

Interestingly, Llama-3.1-450B and GPT-4 perform with a similar quality, overcoming the newer
GPT-4o. The models show memorization capabilities, as these libraries should have appeared in the
training data. However, both Llama-3.1-405B and GPT-4 struggle to correctly identify useful APIs
when provided with long lists of them: the models improve the quality by 3% when given up to
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Table 1: API Recall of baselines for the library-based code generation task. Missing values are due
to the context being longer than the supported context window size of the model. The right-most
column shows the difference in quality between model working with no library-specific context and
maximum context that fits into the model.

#APIs in the context
None 20 200 2000 All ∆

Claude-3.7-Sonnet (Anthropic, 2024) 0.47 0.46 0.50 0.50 0.51 +0.04
DeepSeek-V3 (DeepSeek-AI, 2024) 0.45 0.44 0.50 0.50 0.51 +0.06
Claude-3-Opus (Anthropic, 2024) 0.43 0.45 0.46 0.50 0.49 +0.06
o3 (OpenAI, 2025) 0.39 0.39 0.46 0.49 0.49 +0.10
Claude-3.5-Sonnet (Anthropic, 2024) 0.44 0.43 0.47 0.48 0.48 +0.04
o1 (OpenAI, 2024) 0.29 0.28 0.36 0.44 0.44 +0.15
GPT-4o (OpenAI, 2024) 0.33 0.33 0.40 0.41 0.41 +0.08
Claude-3.5-Haiku (Anthropic, 2024) 0.27 0.30 0.37 0.40 0.40 +0.13
GPT-4 (Achiam et al., 2023) 0.37 0.36 0.40 0.40 0.38 +0.01
DeepSeek-R1 (DeepSeek-AI, 2025) 0.23 0.26 0.31 0.35 0.38 +0.14
Qwen2.5-Coder-32B (Hui et al., 2024) 0.29 0.31 0.38 0.38 - +0.09
Llama-3.1-405B (Dubey et al., 2024) 0.36 0.36 0.38 0.39 0.37 +0.01
o1-mini (OpenAI, 2024) 0.21 0.26 0.32 0.33 0.32 +0.11
gpt-4o-mini (OpenAI, 2024) 0.15 0.20 0.31 0.31 0.31 +0.16
GPT-3.5-turbo 0.17 0.19 0.23 0.25 - +0.08
Llama-3.1-70B (Dubey et al., 2024) 0.23 0.25 0.26 0.24 0.24 +0.01
Mistral-7B (Jiang et al., 2023a) 0.07 0.13 0.20 0.18 - +0.11
Mixtral-8x7B (Jiang et al., 2024) 0.11 0.13 0.19 0.14 - +0.03
Llama-3.1-8B (Dubey et al., 2024) 0.10 0.14 0.17 0.12 0.13 +0.03

2,000 library APIs. Furthermore, at the full context both models get confused and only show minimal
quality boosts. The results suggest that despite being able to use contexts beyond dozens of thousands
of tokens, Llama-3.1-405B and GPT-4 cannot efficiently utilize them for code generation.

On the other hand, the recently introduced reasoning models show their superior ability to navigate
long contexts. The models o3, o1, o1-mini, and DeepSeek-R1 do not show great results when used
without any information about the library: o3 is the only model among them to compete with other
top-tier models. Yet, all the reasoning models exhibit 10-16% API Recall improvements when given
the full list of library APIs. This suggests that such models can identify the required API names more
often than other models, while not being proficient in using the given libraries after the training stage.

Among the smaller models, Qwen-2.5-Coder-32B shows 38% API Recall when given 2,000 API
names in the context. The model does so while heavily relying on the context, as suggested by the
9% difference in the results compared to the empty context. At 32 billion parameters, Qwen-Coder
performs significantly better than the Llama-3.1-70B, despite being more than two times smaller. The
Llama-3.1 family of models does not show good utilization of long context across all three evaluated
model sizes. One possible reason for that is the lack of training on specialized code-related data,
which was performed for Qwen-Coder.

Based on the conducted experiments with the baselines, we conclude that our benchmark is not being
saturated with the modern models, and it can be used to assess their abilities in utilization of long
contexts, while simultaneously tracking models’ coding capabilities.

2.2 PROJECT-LEVEL CODE COMPLETION

Task description. The second task that we describe is project-level code completion of single lines.
We formulate the task as follows: given relevant information from the project, which we call context,
and a prefix of the completion file, one needs to generate the next line in this file. While there exist
other repository-level completion datasets (Zhang et al., 2023; Liu et al., 2023), we use project history
from Git to mimic the real-world use case and avoid possible data leakages between files that arise
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when files in the context are written after the completed file and rely on the completed code. On top
of that, we introduce a fine-grained classification of the completed lines by the used APIs.

Collection methodology. To create the dataset, we process the collected Python projects, traversing
their Git histories to collect commits that were done after 01.01.2022. We extract newly added files
from them, filtering out files with fewer than 200 lines or more than 2,000 lines. To collect the context
for each file, we checkout the respective parent commit and save the contents of all the code and text
files (e.g., build files, documentation), constituting the repository as it was when the commit was
made. Each datapoint contains the file for completion, a list of lines to complete with their categories
(see the categorization below), and a repository snapshot that can be used to build the context.

We split our dataset into four parts based on the total size of .py files in the repository snapshot.
As the reference for such a division, we chose the CodeLlama model (Roziere et al., 2023), which
has a context window of size 16K and about three characters per token. Based on this, we have
four sets of samples with the following limits on the total number of characters in the context .py
files: small-context set from 0 to 16K × 3 = 48K characters; medium-context set from 48K to 192K
characters; large-context set from 192K to 768K characters; huge-context set from 768K characters.
We downsample datapoints to five datapoints per repository, and the repositories to 75 per set to
ensure data diversity. The sizes of the four sets are 144, 224, 270, and 296 datapoints, respectively.

For each datapoint, we also provide a list of lines for completion—35 lines on average—since
evaluating a code model on every line of a file is extremely resource-consuming. Moreover, not
all lines are equally hard to complete; e.g., function declaration lines can be challenging due to
uncertainty, whereas loop definition can be straightforward. Taking this into account, we introduce a
classification of the code lines into six categories depending on the used functions and classes.

1. infile — lines that call functions/classes defined in the same file;
2. committed — lines that call functions/classes defined in other files in the commit introducing

the completion file;
3. inproject — lines that call functions/classes defined in the snapshot of the project before the

commit;
4. common — lines that contain common functions such as main or get;
5. non-informative — lines that are too short, too long, contain prints, etc. (see Section C.2 for

the full definition);
6. random — the rest of the lines.

Our main focus is on the first three categories, as they definitely require the utilization of context to
form a correct completion. While each line can fall into multiple categories based on the content, we
only assign the “most difficult” category to each line in the following order (from difficult to easy):
committed, inproject, infile, common. We then sample on average ten completion lines per datapoint
for the first four classes and five lines per datapoint for non-informative and random classes. Thus,
for each file in the dataset, we have multiple lines that the model should complete. The total numbers
of completion lines are 4,686, 8,676, 9,631, and 9,810 for each of four sets, respectively.

Metrics. The main metric for the project-level code completion task is the exact match of generated
lines per category. This is a proportion of correct predictions calculated separately for each of the
categories. The prediction is correct if it matches the ground truth after removing leading and trailing
whitespaces from both. Additionally, we compute models’ perplexity on the completion file to
estimate how well the provided context from the repository allows to model the completion file.

Baselines. We use the dataset to evaluate how well pre-trained code LLMs can utilize context from
the given repository. Here we provide the full evaluation results for CodeLlama-7B in Table 3. We
provide several context composers as baselines:

• Naive composer — all the files from the repository snapshot are concatenated into one string
with no specific order.

• Path distance composer — the order of the files is defined by the distance between files
in a project file tree: if the file from the repository is closer to the completion file, then its
content is closer in the context.
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Table 2: The perplexity values for CodeLlama-7B with different context composers. The lower
perplexity value suggests better modeling quality.

Additional context All files Only Python files Difference with FL
256 1,753 12,000 256 1,753 12,000

File-level (FL) 1.849 1.849 1.849 1.849 1.849 1.849 0.000
Naive 1.798 1.788 1.761 1.788 1.760 1.677 0.172
Path distance (PD) 1.783 1.727 1.607 1.782 1.726 1.601 0.248
Half hemory (HM) 1.799 1.789 1.743 1.789 1.765 1.670 0.179
HM + PD 1.782 1.730 1.636 1.783 1.729 1.636 0.213
File length 1.797 1.784 1.742 1.792 1.774 1.708 0.141
Imports First 1.791 1.769 1.732 1.785 1.751 1.666 0.183
Only declaration + PD1 1.785 1.741 1.710 1.785 1.739 1.708 0.141

• File length composer — the order of the files is defined by the length of a file: shorter files
are closer to the completion file.

• Half memory composer — each line from the repository files is removed with a probability
of 0.5, and the order of the files is the same as in the naive composer.

• Imports first composer — the order of the files is defined by import relation of first degree:
if any project files are imported in the completion file, they are closer to the completion file.

• Only declarations composer — some project files are left only with declaration lines, so we
keep only names from the repository files.

To compare different context composers, we compute model’s perplexity on the completion file
as a proxy for completion quality (lower perplexity should lead to better completions). We report
results for CodeLlama-7B and the medium-context dataset in Table 2. We vary the number of context
tokens coming from other repository files from 256 to 12,000 in order to check that the introduction
of the context is indeed helpful. For all the evaluated context composers, we see that additional
context helps, and Python files are more important for completion than the others (e.g., files in other
programming languages or docs). Out of the ones we evaluated, the composer based on Path Distance
performs the best with 0.25 drop in perplexity compared to the usage of a single file, so we use Path
Distance for further experiments. We leave further exploration for future work.

Table 3 shows the Exact Match for CodeLlama-7B with Path Distance and File-level composers. As
in the previous experiment, introduction of new context boosts the results across all datasets. We
observe the biggest quality improvements for the inproject completions, as they require information
from other project files to find relevant APIs. Completion for other line categories improves as well,
as the model is able to find similar snippets of code already written in the project.

In Section C.3, we report more experiments that further investigate the impact of the context size on
the completion quality and compare a wide range of models: CodeLlama-7B (Roziere et al., 2023),
DeepSeek-Coder (1.3B, 6.7B, 33B) (Guo et al., 2024), Llama (3.1-8B, 3.2-1B, 3B) (Dubey et al.,
2024), and Qwen2.5-Coder (0.5B, 3B, 14B, 32B) (Hui et al., 2024).

2.3 OTHER TASKS

Due to the lack of space, the thorough descriptions of the collected datasets and evaluated models for
the rest of the tasks can be found in the Appendix, while we provide the task formulations below.

CI Build Repair (see Section D) asks models to generate a patch that fixes a real-life issue in a
CI setup. The minimal set of data for the task consists of a repository snapshot at the commit that
caused the failure of the workflow and the logs of the failed step. The task can also be performed in a
simplified oracle setup. In this case, we put a list of relevant files and code blocks—extracted from
the ground truth commit—into the prompt. An important feature of this task is run-based evaluation:
we utilize GitHub Actions to run the generated fixes and assess their correctness.

1We leave only declarations in all files except for one.
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Table 3: Results of the project-level code completion for CodeLlama-7B. The metric is Exact Match
for the generated line.

Set Context infile inproject committed common non-informative random all

Small
File-level 0.35 0.16 0.33 0.32 0.28 0.42 0.35
Path Distance 16K 0.37 0.27 0.34 0.33 0.29 0.43 0.37
Difference +6% +68% +3% +3% +2% +2% +5%

Medium
File-level 0.37 0.32 0.38 0.31 0.31 0.50 0.39
Path Distance 16K 0.43 0.49 0.42 0.44 0.44 0.58 0.49
Difference +16% +53% +10% +42% +42% +16% +26%

Large
File-level 0.36 0.29 0.39 0.34 0.30 0.44 0.35
Path Distance 16K 0.46 0.44 0.55 0.46 0.42 0.54 0.47
Difference +27% +52% +41% +35% +40% +23% +35%

Huge
File-level 0.40 0.34 0.44 0.34 0.30 0.50 0.39
Path Distance 16K 0.44 0.43 0.54 0.41 0.40 0.54 0.45
Difference +10% +26% +22% +20% +36% +8% +17%

Commit Message Generation (see Section E) for large commits requires a model to generate
a natural language description of changes performed in a single commit. The changes can be
represented in different ways — in various diff formats, as separate versions of each file before and
after the changes took place, and others. Moreover, models can utilize information from unchanged
project files to better understand how changes impacted the project. CMG is a well-established task
in academic research (Tao et al., 2022) and a prominent feature in developer tools (Jemerov, 2024;
Houghton, 2024), however, researchers often limit the scope to short diffs (Eliseeva et al., 2023),
leaving the performance on larger commits unexplored. Moreover, the quality of commit messages
from open-source repositories—the most common data source—is notoriously mixed (Tian et al.,
2022). We bridge these two gaps with our novel CMG benchmark, manually curated and tailored for
larger commits.

Bug Localization (see Section F) can be formulated as follows: given an issue with a bug description
and a repository snapshot in a state where the bug is reproducible, identify the files within the
repository that need to be modified to address the reported bug. Although this is a subset of the larger
bug-fixing problem, partially covered by SWE-Bench (Jimenez et al., 2023), bug localization requires
its own separate evaluation. This independent assessment can provide a better understanding of the
various approaches and their efficiency in identifying the precise location of bugs in large code bases.

Module Summarization (see Section G) tasks a model to write textual documentation based
on the module’s or project’s source code and intent (a one-sentence description of the expected
documentation content). This task greatly increases the context size available to the models compared
to the existing benchmarks that cover method- or class-level summarization (Husain et al., 2019;
Lozhkov et al., 2024; Luo et al., 2024). The source of inspiration for the module summarization task
is the fact that large projects often include high-level materials, such as quick start guides, tutorials,
module documentation, and usage instructions. The task aims to alleviate the time-consuming and
routine process of creating these materials.

3 RESULTS ACROSS MULTIPLE TASKS

In addition to using BenchName as a set of independent benchmarks, it can be used to assess
capabilities of models across multiple tasks. This can be done by assessing models’ results on all
tasks but code completion. We exclude code completion here as it mainly targets base versions
of models, while other tasks expect instruction-tuned models. We conduct such assessment for
a set of nine models evaluated on the five tasks: the family of Llama-3.1 models (Dubey et al.,
2024), reasoning models OpenAI-o1 (OpenAI, 2024) and DeepSeek-R1 (DeepSeek-AI, 2025), and
proprietary LLMs Claude 3.5-Sonnet, Claude-3.5-Haiku (Anthropic, 2024), GPT-4o (OpenAI, 2024),
and Gemini-1.5-Pro (Team et al., 2024).

Table 4 shows the results of models and their mean rank (from one to nine) across five tasks. To
compute the mean ranks, we normalize the results across models for each task and treat the scores
different by less than 10% as the same to reduce the effects due to randomness. o1 outperforms other
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Figure 1: Correlation between models’ results on the benchmarks.

models on all tasks but library-based code generation, where Claude-3.5 Sonnet shows slightly better
results. The Llama-3.1 models lag significantly behind, despite the original report claiming the 405B
version having coding and long context processing capabilities similar or better than Claude-3.5
Sonnet. We observe that the bug localization and module summarization are the tasks where reasoning
models perform better, as these tasks require the most search capabilities. For module summarization,
GPT-4o performs very well, which we attribute to its proficiency in writing long coherent texts. To
further analyze task relations, we compute Spearman correlations between model scores on different
tasks based on the common subset of models (see Figure 1). We observe high correlations between
most tasks, which is expected given the wide gap in capabilities between some of the evaluated
models. Yet, the correlations suggest that benchmarks are complementing each other.

4 RELATED WORK

While there exist plenty of ML4SE datasets and even benchmark collections (Lu et al., 2021), most
of them require models to operate with rather short contexts, around the size of a single method,
which hinders the evaluation of novel long context models. Code generation datasets (Chen et al.,
2021; Austin et al., 2021; Liu et al., 2024; Hendrycks et al., 2021; Gu et al., 2024; Yin et al., 2018)
require models to process up to several paragraphs of the problem statement and then generate a short
program (one line to one file). Existing datasets for code summarization (Husain et al., 2019; Lu
et al., 2021) target documentation in a single method, meaning that both input and output size are

Table 4: Performance comparison across tasks for different models. BL: bug localization; CIR: CI
build repair; CMG: commit message generation; LB-CG: library-based code generation; MS: module
summarization.

Model Mean Rank BL CIR CMG LB-CG MS
o1 1.0 0.58 0.24 36.4 0.45 70.9
Claude-3.5 Sonnet 1.6 0.52 0.24 34.8 0.48 66.1
DeepSeek-R1 2.2 0.54 0.23 34.9 0.38 66.6
GPT-4o 2.8 0.53 0.10 34.8 0.41 67.0
Gemini-1.5 Pro 3.6 0.50 0.10 34.9 0.44 59.4
Llama-3.1 (405B) 5.2 0.47 0.04 34.8 0.37 59.6
Claude-3.5 Haiku 6.8 0.44 0.02 30.1 0.32 64.9
Llama-3.1 (70B) 7.0 0.35 0.05 33.5 0.24 58.5
Llama-3.1 (8B) 8.6 0.31 0.00 31.0 0.13 58.2
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below several hundred tokens. Previously developed commit message generation benchmarks (Tao
et al., 2022; Eliseeva et al., 2023; Schall et al., 2024) contain significantly shorter messages and diffs
compared to BenchName.

For code completion, recently, researchers introduced two benchmarks that operate at the repository
scale: RepoEval (Zhang et al., 2023) and RepoBench (Liu et al., 2023), also focusing on the
completion of a single line. Compared to these benchmarks, we introduce a fine-grained classification
of the completed lines and prevent possible data leakages by traversing Git history.

SWE-bench (Jimenez et al., 2023) and its extensions (Zan et al., 2024; Yang et al., 2025) are recent
benchmarks that require models to fix issues in real-world programming projects. Most solutions for
these benchmarks use agentic approaches (Yang et al., 2024; Wang et al., 2024; Zhang et al., 2024)
which require models being compared to be capable of complex multi-turn interactions, planning,
function calling. BenchName covers a more diverse set of tasks, the most similar being CI builds
repair, which focuses on builds in general rather than tests, and bug localization, which is a sub-task
of the SWE-bench objective that we evaluate on a broader set of languages: Python, Java, and Kotlin.
Yet, tasks in BenchName are less restrictive for the models under evaluation and can distinguish
between smaller models still being able to process long context windows.

The most notable benchmarks for long context models include Long Range Arena (Tay et al., 2020)
and Scrolls (Shaham et al., 2022). Our work builds the first such benchmark focusing on ML4SE
tasks, while Long Range Arena includes synthetic problems and Scrolls focuses on NLP.

5 LIMITATIONS AND FUTURE WORK

In order to gather benchmarks for BenchName, we had to make several design decisions that
can impact the generalizability. First, we base the benchmarks on open-source data. This allows
researchers to experiment with various context-collection techniques because they have access to
source code data. On the other hand, modern LLMs use most available open-source data for training,
and such reliance can lead to data contamination, which in turn can skew the evaluation results.

We argue that the tasks that we choose are less prone to models memorizing training data: there
is no direct link between answers to benchmark tasks and raw repository data that modern models
use for training. For example, while models could have seen documentation of specific libraries
during training, currently it is unlikely that it was present side by side with the source code of the
respective modules. The most memorization-prone task in our suite is code completion, but for it, we
use historic data from Git repositories, which may become changed or overridden by the moment
LLMs’ training data is scraped.

In order to allow for manual examination of the collected data and to keep the benchmarks consistent,
for most tasks we focus on datasets of Python code. Fortunately, the data preparation pipeline for all
the tasks can be reused to produce datasets for other languages. The most complex step in this case
will be manual verification and filtering of the data to ensure quality and correctness. In order to meet
the quality requirement, we leave extension of datasets to other languages for future work.

In addition to extending datasets to other programming languages, future work includes collecting
data for fine-tuning models for particular tasks and evaluating more models on the benchmarks. In
order to assist other researchers with the latter, we open-source the code for the baseline solutions.

6 CONCLUSION

In this paper, we present the BenchName. The goal of this work is to stimulate research in ML-based
solutions for realistic software engineering tasks. In particular, we design a series of tasks that
require taking a complex context into account, such as full projects, libraries and their usage, and
coarse-grained components. Our work presents six benchmarks related to code generation, repair,
completion, and summarization. For each task, we carefully design and manually curate evaluation
data, metrics for assessing the results, and baseline solutions based on the pre-trained models. Our
experiments show that the tasks are within reach, but far from solved. We hope and expect that our
BenchName will encourage researchers in ML4SE and NLP communities to advance the field of
ML-enabled software engineering.
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REPRODUCIBILITY STATEMENT

1. We publish the benchmark page on HuggingFace Spaces with the leaderboard and links
to HuggingFace Hub for all the datasets: https://huggingface.co/spaces/
anon-iclr-submission/benchname.

2. We also attach supplementary materials with baselines.

3. Detailed information about how each dataset was collected, processed, and manually vali-
dated is presented in the appendices below.

4. The authors maintain a collective email where we answer questions and update data in a
timely fashion (anonymized during sumbission).

This way, we openly release all the data and code of our work to ensure its full reproducibility.
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A LLM USAGE

In this work, LLMs are employed solely for writing assistance, including rephrasing, grammar and
syntax correction, and minor edits such as article insertion or removal.

B LIBRARY-BASED CODE GENERATION

B.1 DATASET COLLECTION AND PROCESSING

The resulting dataset consists of 150 samples, each representing an instruction that a machine
learning model should follow when generating a Python program, reference data for evaluation of the
generation quality, and relevant data that can be used to improve generation. This relevant data is
the source code of an entire Python library, based on a usage example from which we created the
instruction for generation.

The structure of the individual datapoints is presented in Table 5. The labels are available in two
forms: the reference program that was written by library authors as an example of library usage, and
the list of library-specific API calls that the reference program makes. Both the program itself and
the list of API calls can be used to assess the quality of a program generated by a machine learning
model under evaluation. The dataset is self-contained, as it provides the snapshots of all associated
repositories.

In order to collect the data, we use the following protocol:

1. We collect repositories from GitHub with at least 1,000 commits, at least ten contributors,
issues, and stars, at least 10,000 lines of code, not a fork, last commit after 01.06.2023,
and a permissive license (we use the most popular permissive licenses — MIT, Apache-2.0,
BSD-3-Clause, and BSD-2-Clause). For the library-specific code generation task, we leave
only repositories having Python as the main language.

2. For each repository, we detect the folder with usage examples: a folder with “.py” files that
contains “examples” in its name. If a repository does not have such a folder, we filter it out.
After this step, we are left with 883 repositories that have usage examples.
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Table 5: The structure of datapoints in the library-based code generation dataset.
Field Description

repo_full_name Concatenated repository name and owner
repo_name Library repository name
repo_owner Library repository owner
instruction Task for code generation
reference Reference program written by the library authors

clean_reference Reference program with comments removed
path_to_reference_file Path to the reference in the repository (removed in

repository snapshots to prevent data leakages)
path_to_examples_folder Path to the directory with examples in the reposi-

tory (removed in repository snapshots to prevent
data leakages)

n_unique_apis Number of calls to library-specific APIs in the ref-
erence program

unique_apis List of calls to library-specific APIs in the refer-
ence program

project_defined_elements All class and method names in the repository
api_calls All API calls in the reference program

internal_apis All API calls to the respective library in the refer-
ence program

3. We then identify library-specific APIs for each of the 883 repositories. We extract all
names of all methods, classes, and constants defined in these repositories, and treat as
“library-specific” the ones that appear only in a single repository.

4. We then collect all Python files from the folders with examples and filter them: (i) remove
examples shorter than 100 or longer than 40,000 characters (excluding comments), (ii)
remove examples that have fewer than 400 characters of comments in order to then write
high-quality instruction for generation, (iii) remove examples that use fewer than ten API
calls specific to the given library. These filters result in 150 files (usage examples) from 62
libraries, with each file heavily relying on the APIs of the respective project.

5. After we have the usage examples for libraries, we create instructions for generating them.
We first run the selected 150 files through GPT-4 (Achiam et al., 2023), prompting it
to generate an instruction for generating the respective file. You can see the prompt for
generation in Figure 2. This leaves us with step-by-step instructions that the LLM should
then follow to generate a script that utilizes the library at hand. Then, we manually fix each
instruction in order to reduce hinting to specific library methods and ensure their correctness.

C PROJECT-LEVEL CODE COMPLETION

C.1 DATAPOINT STRUCTURE

Each instance that comprises the dataset consists of three key elements: a repository snapshot, a
completion file, and target lines for the completion task. A repository snapshot is a list of all the
filenames and contents of all text files from the repository (code, documentation, etc.). The state
of the repository is before the commit where the completion file was added. A completion file is
a Python file added in a particular commit. Target lines are a list of lines from the completion file
that the model under evaluation should generate. Each line is also assigned one of classes that we
describe in the following subsection.

The structure of datapoints:

• repo – repository name in the format {GitHub_user_name}__{repository_name}
• commit_hash – hash of the commit where the completion file was added
• completion_file – dictionary with the completion file content in the following format:
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SYSTEM: We are developing a benchmark to assess quality of
code generation models. As a part of the benchmark, we include
the task of generating code based that uses the particular
library from a description in natural language. As a source of
data for this task we will use coding examples in Python
provided by library developers. Your task will be to generate
a text description of the provided Python code that will then
be used as an input for the generation task.

USER: Here is the code. You should write an instruction that
summarizes its contents and would allow another model to
generate this snippet of code, excluding the comments. Make
the instruction abstract, do not mention specific code
constructions that the generator should use. Be concise.
Generator will be able to access the contents of the following
library: [LIBRARY_NAME]. Use wording such as "Generate code
that ..." in your instruction.

[CODE]

Figure 2: Prompt for generating instructions from library usage examples.

– filename – path to the completion file
– content – content of the completion file

• completion_lines – dictionary where keys are categories of lines and values are a list
of integers (numbers of lines to complete). The categories are described in the following
subsection.

• repo_snapshot – dictionary with a snapshot of the repository before the commit. Has
the same structure as completion_file, but filenames and contents are organized as
lists.

• completion_lines_raw – the same as completion_lines, but before sampling.

Targets for the completion task are provided in the completion_lines field. To get a target line
for completion, split the completion file by newline characters and select lines using the provided
indices. Line categories are also provided.

C.2 DATASET COLLECTION AND PROCESSING

Starting with the common corpus of repositories, we then follow the following process to acquire the
data:

1. Traverse Git history: We collect commits that add at least one new .py file. These files
are candidates for the completion files.

2. Filtering collected commits: We filter the commits to retain only those with the potential
completion files containing between 200 and 2,000 lines, and with creation dates after
January 1st, 2022.

3. Extract repository snapshots: We create snapshots of the repositories based on the filtered
commits, ensuring that we capture the state of the repository before the collected commit.
The repository snapshots are intentionally not filtered to ensure that all possible information
could be utilized. As a result, the dataset includes sources of noise, such as auto-generated
files, CSV data, etc.

4. Split by the size of relevant context: We split all the data into four groups based on the
number of characters in .py files from the repository snapshots. The groups are: (i) small-
context: less than 48K characters; (ii) medium-context: from 48K to 192K characters;
(iii) large-context: from 192K to 768K characters; (iv) huge-context: more than 768K
characters;
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5. Sample datapoints: we randomly sample 5 datapoints for each repository, and we randomly
sample 75 repositories for each group. If fewer than 5 datapoints or 75 repositories are
available, we use all available datapoints or repositories. We keep all 80 repositories for the
medium-context dataset.

6. Classify lines: We perform line classification that is introduced in the paper and assign a
main category to each line of the completion file.

7. Sample completion lines: We sample lines from each category such that the average number
of lines is no more than 5 for non-informative and random categories, and no more than 10
for other categories.

Classification of the lines is done for each of the completion files. There are six categories of
completion lines according to various completion scenarios.

1. infile – a line contains at least one function or class that was declared in the completion file.

2. inproject – a line contains at least one function or class that was declared in the repository
snapshot files.

3. common – a line contains at least one function or class that was classified to be common,
e.g., main, get, etc.

4. committed – a line contains at least one function or class that was declared in the files that
were created in the same commit as the completion file (excluding the completion file).

5. non-informative – a line that satisfies at least on of the following criteria: (i) shorter than 5
characters or longer than 150 characters, (ii) a line with print, (iii) a line with import,
(iv) a declaration of a function or a class, (v) a comment or contains an inline comment.

6. random – all the lines that do not have any category.

Some lines may have more than one category after the classification. We additionally identify the
main category for each line based on the following approach.

• If a line has a committed category, then the main category is committed.

• If a line does not satisfy the previous condition, but has an inproject category, then the main
category is inproject.

• If a line does not satisfy previous conditions, but has an infile category, then the main
category is infile.

• If a line does not satisfy previous conditions, but has a common category, then the main
category is common.

• If a line has a non-informative category, then the main category is non-informative.

• If a line has a random category, then this is the only category for the line, and the main
category is random.

The dataset has been collected in December of 2023. Considering the filtering process, the data
within the dataset spans from January 2022 to December 2023.

We provide a distribution of lines for each set and each category in Table 6.

Table 6: Line counts for different sets in the project-level code completion dataset.

Set infile inproject common committed non-informative random all Avg. for one file
Small 1,430 95 500 1,426 532 703 4,686 32.5
Medium 2,224 2,236 779 1,495 858 1,084 8,676 38.7
Large 2,691 2,595 693 1,322 1,019 1,311 9,631 35.7
Huge 2,608 2,901 692 1,019 1,164 1,426 9,810 33.1
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Figure 3: Large Context set, File-level.

Figure 4: Large Context set, Path Distance composer, context window size is 16000.

C.3 EXTENSIVE EVALUATION

C.3.1 MODELS COMPARISON

We compare a variety of models: CodeLlama-7B (Roziere et al., 2023), DeepSeek-coder (1.3B, 6.7B,
33B) (Guo et al., 2024), Llama (3.1-8B, 3.2-1B, 3B) (Dubey et al., 2024), and Qwen2.5-coder (0.5B,
3B, 14B, 32B) (Hui et al., 2024). Comparison is made within the same setting: file-level completion,
path distance composer with 16K context window, and the relative difference in Exact Match scores.

Figure 3 demonstrates that as the model size increases, performance metrics improve accordingly.
Models effectively handle completion tasks across random, committed, and infile lines for the Large
Context set. It is expected for random and infile, but it is unusual for committed. It could be
an evidence that repositories from the large context set were in model’s training data or that the
committed API is too obvious.

Figure 4 shows that the Path Distance Composer enhances completion quality across all models,
regardless of their family or size. The distribution of Exact Match scores per line category changes
which supports our classification and the hypothesis behind it.

Figure 5 highlights the tendency that the bigger the model from a family the lower its completion
quality gain from the context. That can be related to a fact that bigger models know more factual
information, but smaller models successfully use in-context learning instead.

C.3.2 CONTEXT SIZE IMPACT

We compare results of Qwen2.5-coder 7B on all the sets with different context window sizes: from
256 to 32000. Figure 6 illustrates that completion quality is better for a longer context across every
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Figure 5: Large Context set, Difference between Path Distance 16K and File-level.

Figure 6: Qwen2.5-coder 7B, Path Distance context composer.

line category. There are a few rapid shifts, e.g., inproject category for medium context set or common
category for large context set. This behavior can be a result of a perfect file in the context.

An unexpected observation here is that inproject and infile categories improve with the same pace. So,
the file-level information is not enough for the highest quality completion even for the infile lines.

C.3.3 MODEL SIZE VS CONTEXT SIZE

One of the possible applications of the presented dataset is to identify if the model size or context
window matters the most. For example, Figure 7 shows that Qwen2.5-coder 32B with 32K context
window performs almost the same as Qwen2.5-coder 14B with 32K context window, and Qwen2.5-
coder 1.5B with 16K context window is equal to or better than any other Qwen2.5-coder model with
4K context window for most line types.

Overall, Figure 7 supports the general intuition that both context window size and model size
positively impact performance. For the Qwen2.5-coder family, increasing both context length and
model size leads to improved results across all task categories.

D CI BUILDS REPAIR

CI Build Repair asks models to generate a patch that fixes a real-life issue in a CI setup. The minimal
set of data for the task consists of a repository snapshot at the commit that caused the failure of the
workflow (failed commit hereafter) and the logs of the failed step. The task can also be performed in
a simplified oracle setup by prompting a model with a list of files and their content or code blocks in
them to change. In this case, the code blocks come from the ground-truth fixing diff provided in the
dataset. An important feature of this task is run-based evaluation: we utilize GitHub Actions to run
the generated fixes and assess their correctness.
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Figure 7: Qwen2.5-coder family of models with different context window sizes.

Table 7: The structure of datapoints in the CI builds repair dataset.
Field Description

contributor The username of the contributor that committed changes
difficulty The difficulty of the problem according to an assessor on

a 1–3 scale
diff Contents of the diff between the failed and the successful

commits
head_branch Name of the original branch that the commit was pushed

to
id Unique ID of the datapoint

language The main language of the repository
logs List of dictionaries with logs of the failed job and name

of the failed step in this job
repo_name Name of the original repository
repo_owner Owner of the original repository

sha_fail SHA of the failed commit
sha_success SHA of the successful commit

workflow Contents of the workflow file
workflow_filename The name of the workflow file (without full path)

workflow_name The name of the workflow
workflow_path The full path to the workflow file
changed_files List of files changed in the diff
commit_link URL to a commit corresponding to the failed job

D.1 DATASET COLLECTION AND PROCESSING

The final dataset consists of the datapoints with structure presented in Table 7. In order to collect and
process the data, we use the following protocol:

1. We limited ourselves to the 100 largest Python repositories (main language: Python, the
ratio of the main language > 0.95) with permissive licences. From each repository, we take
no more than three branches, for each branch — no more than three different workflows, and
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Table 8: Data split by the difficulty.
Difficulty # of datapoints Description

1 36 Issues with formatting
2 7 Local issues or issues with typing
3 25 Issues that require information about

other files in the repository

Total 68

for each workflow — no more than three datapoints. Thus, each repository could contribute
up to 27 datapoints.

2. For all the collected Python repositories, we get the full list of the actions run in the repository,
limited to last 90 days. Downloaded data contains action status (failed or successful) and
links to the action runs.

3. We gather a list of pairs of consecutive commits in which the first commit causes a failure of
a workflow but the next one makes it build successfully.

4. For each pair of commits, we download:

• logs of the failed step of the failed commit;
• diff between the failed and successful commit (correction diff );
• metadata of the failed commit.

During the download, we clean the data according to the following filters (on the fly, to
avoid excessive requests to GitHub API):

• To reduce the benchmarking time, we eliminate runs that take more than 10 minutes
(measured on successful action run).

• To minimize the number of actions that contain pure formatting issues, we filter out
datapoints, in which the names of the workflow, target, or failed step contain any of
the following substrings: {mypy, lint, flake8, black}. We allow these substrings in the
target name if there is more than one target in the action run.

• We remove runs for which the workflow file contains substrings {token, secret} to
ensure that we can run them without any prerequisites.

• We keep only datapoints for which the correction diff (i) contains at least one .py file,
and (ii) only contains files that match either of the following items: {code file, *.md,
*.rst, LICENSE*, readme*, doc/*}. We do so to ensure that there are no changes in
artifacts such as resources or data files, which the model cannot fix given the present
context.

5. To isolate the problem to a single issue per datapoint, when running the benchmark, we
delete all .yaml files in the .github/workflows/ directory, ensuring that only this
workflow would be run. We also remove workflows that contain links to other workflow
files to make sure that the target workflow is independent.

6. The human assessor assessed the datapoints to verify that logs contain all the necessary
information to fix the issue and graded the datapoints on a 1–3 scale according to their
difficulty. Table 8 describes the difficulty levels and the sizes of the available buckets.

7. In the last step, we run all datapoints through our benchmark at both the failed and the
successful commit. We then keep only the datapoints that remained failing / passing at the
respective commits. Moreover, we repeat the procedure after 14 months from the initial
procedure to ensure the durability of the dataset. This last step is crucial as it filtered out
50% of the datapoints: quite many passing workflows started failing due to changes in
library versions that were not specified by repository owners, connection issues, missing
remote files or certificates. Table 9 reports the number of filtered datapoints at each step.

Context-related statistics are presented in Table 10
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Table 9: Number of datapoints on each mining step.
Data mining step # of datapoints

Initial set of sampled workflows 336
Datapoints that passed assessor verification 210

Datapoints that passed GitHub Actions 144
Datapoints that passed GitHub Actions after 14 months 68

Table 10: Context-related statistics.
Context metric Mean Median
Symbols in logs 145K 6.5K

Files in repository 610 240
Lines in repository 170K 56K

Symbols in repository 7.5M 2.4M

D.2 EVALUATION

We implement the benchmark for using the CI builds repair dataset in our repository. The benchmark
requires a user-implemented function (fix_repo_function) that repairs locally stored repository, given
the logs of a failing build. The procedure is the following:

1. The benchmark clones each repository snapshot with depth equal to 1 to a local machine.
2. Then, the benchmark runs the model under evaluation, which takes a datapoint as input

(mainly — log and workflow files) and needs to repair the repository on the local machine
by editing or replacing files.

3. The benchmark edits the workflow files to run only one workflow.
4. Then, it pushes the current state of the repository to a new branch in the separate GitHub

organization.
5. When results of builds in GitHub Actions become available, the benchmark collects, ana-

lyzes, and returns them.

To use the benchmark, one needs to send a request to join the GitHub organization2 since the procedure
requires pushing changes to repositories in that organization. Moreover, keeping repositories as forks
in a separate organization ensures that they will remain available. The function fix_repo_function
takes the following (all optional) arguments:

1. datapoint: datapoint from the dataset
2. repo_path: path to the repository on the user’s machine
3. repo: git.Repo object from the GitPython library
4. out_folder: directory for outputting the benchmark results

Intermediate results contain datapoint ID and meta information, as well as the SHA of the commit
pushed to the target repository. After collecting the results, the benchmark adds the status of the
GitHub Actions build to this information.

We use the collected dataset to assess multiple LLMs in the CI builds repair task.

To make the task easier to tackle, we provide models with an oracle — when asking to fix the build,
we also provide the list of files and specific code blocks in them that should be fixed. The information
on which files need fixing comes from the ground truth commit that fixed the build. In the future, if
the task becomes too easy for the models, oracle can be simply removed to make the task even more
realistic and challenging.

2GitHub Organization for the benchmark: ANONYMIZED
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To avoid compatibility issues with external packages, we implemented time machine, which ensures
that installed package versions match those available at the time of the commit.

To prompt the models to solve the task, we use the following strategy. To prepare an instruction,
we locate the first occurrence of case-insensitive substring “error”, "failure", "failed" or "traceback"
in the logs and take a 200-line context around this occurrence (100 lines before and after). If the
substring is not found, we use 200 last log lines. The instruction then reads as follows:

Title: Tests Failed After New Commit

## Overview
A recent commit caused one or more tests to fail in the repository.
We need to investigate the relevant logs, determine the problem, and propose a fix.

## Relevant Logs
Below is a focused snippet of the CI logs surrounding the failure:

{relevant_logs}

We then prompt the LLM to modify the code blocks provided by an oracle to align with the given
instructions, and pass all the files in a single request in the following way:

[start of file.py]
...
[end of file.py]

LLM replies with a unified diff3. During evaluation of the benchmark results, these diffs are applied
and the patched version is sent to GitHub Actions to be tested. The statistics of the context length
(OpenAI models’ tokens (OpenAI, 2024)) is following: min = 859, max = 61,982, mean = 13,994,
std = 14,379, median = 9,726.

Table 11 shows the evaluation results for three independent runs of several models: proprietary
OpenAI GPT-4o (OpenAI, 2024), Anthropic Claude 3.5 Sonnet, 3 Opus, 3 Haiku (Anthropic, 2024),
and Google Gemini 1.5 Pro (Team et al., 2024) (max context length = 32,768 due to technical reasons),
as well as open-source DeepSeek-R1 (DeepSeek-AI, 2025) (max context length = 16384) and Llama
instruct models (Dubey et al., 2024): INT8 Llama 3.1 (8B, 70B, 405B). If not stated otherwise, all
models have context length ≥ 64,000 tokens.

Table 11: Pass@1 scores of the CI builds repair benchmark for various LLMs. Average of three runs.
Model Pass@1, %

DeepSeek-R1 23 ± 1
Claude-3.5-Sonnet 24 ± 1

GPT-o1 19 ± 1
Claude-3-Opus 14 ± 3
Claude-3-Haiku 2 ± 2
Gemini-pro-1.5 10 ± 3

GPT-4o 10 ± 1
Llama-3.1-405B 4 ± 1
Llama-3.1-70B 5 ± 3
Llama-3.1-8B 0

E COMMIT MESSAGE GENERATION

In Commit Message Generation (CMG) for large commits, a model should generate a natural language
description of changes performed in a single commit. The changes can be represented in different

3Aider: https://aider.chat/docs/unified-diffs.html
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Table 12: The structure of datapoints in the commit message generation dataset.
Field Description
repo The full name of the GitHub repository the

commit comes from
hash The SHA hash of the commit, serves as an

identifier inside individual repository
date The timestamp of the commit (from the

commit author)
license The type of the license in the repository of

the commit
message The ground truth commit message

mods The changes performed in a commit, rep-
resented as a list of per-file modifications,
where the structure of a per-file modifica-
tion is described in Table 13

Table 13: The structure of a per-file modification in the commit message generation dataset.
Field Description

change_type The type of change to the current file, one
of: ADD, COPY, RENAME, DELETE,
MODIFY, or UNKNOWN

old_path The path to file before the change (might be
empty if the file was created)

new_path The path to file after change (might be
empty if the file was deleted)

diff The changes to the current file, represented
in a Git diff format

ways — in various diff formats, as separate versions of each file before and after the changes took
place, and others. Moreover, models can utilize information from unchanged project files to better
understand how changes impacted the project. In this work, we present a manually curated dataset
for CMG tailored for larger commits.

E.1 DATASET STRUCTURE

Each instance in the dataset represents a commit from a GitHub repository, with metadata like commit
SHA and full repository name, ground truth commit message, and the list of performed changes
in the Git diff format. Additionally, the dataset includes snapshots of all associated repositories to
facilitate context construction. The detailed structure of each datapoint is presented in Table 12.

E.2 DATASET COLLECTION AND PROCESSING

We use the CommitChronicle dataset (Eliseeva et al., 2023) as the initial source of commits for
our dataset. We refer the reader to the work of Eliseeva et al. (2023) for the details about data
collection. In this work, we focus on Python language only and thus consider only the subset of the
CommitChronicle test set that includes changes to at least one .py file.

We perform extensive filtering, including manual validation, to select high-quality examples with
long diffs and commit messages. The exact data filtering steps are listed in Table 14. For the commit
message quality filter, we refine the dataset released in a recent study from Li and Ahmed to make
it more suitable for data filtering purposes, and fine-tune the CodeBERT (Feng et al., 2020) model.
After filtering, we retain 3,260 commits. Since we aim to target commits with larger changes, after
the initial filtering, we only keep samples where the number of characters in diffs related to .py
files is ≥ 3,000 characters. That leaves us with 858 commits that we further filter manually. The
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Table 14: Filters applied to the CommitChronicle subset to build the commit message generation
dataset from BenchName. *Since the Quality filter is based on a deep learning classifier, it was
applied only to the subset of 3,366 commits obtained by running all the other filters.

Filter Description Filter Details Number of commits
rejected by the filter
(% of initial sample)

Diff Filters

Hash Diffs Diff has whitespace-separated character-to-words
ratio ≤ 20 (Li et al., 2023).

437 (0.25%)

Modification Diff consists only of modifications of existing files
(no additions, deletions, renaming, or copying).

25,750 (14.95%)

Message Filters

Capitalization Message starts with an uppercase letter (Muen-
nighoff et al., 2023).

68,384 (39.70%)

Verbs Message starts with any of the curated set of verbs
from the recent work of Muennighoff et al. (2023).

90,696 (52.66%)

References Message does not contain external references
(URLs or references to issues/pull requests).

31,487 (18.28%)

Noise Message does not follow certain patterns consid-
ered automatically generated or trivial (Eliseeva
et al., 2023; Muennighoff et al., 2023).

6,304 (3.66%)

Min Words Message contains ≥ 4 words (whitespace-
separated).

24,474 (14.21%)

Min Lines Message contains ≥ 2 lines. 138,160 (80.22%)
Hash Messages Message has whitespace-separated character-to-

words ratio ≤ 20 (Li et al., 2023) and does not
contain any SHA hashes (Eliseeva et al., 2023).

12,540 (7.28%)

Quality Message is considered good by the commit mes-
sage quality classifier.

106 (3.14%)*

manual labeling is conducted by one of the authors. We employ a 5-point Likert scale and additionally
provide comments that elaborate on the reasoning for most of the samples. To facilitate further
research, we made all the labels and comments available in the dataset.

E.3 EVALUATION

We run multiple instruction-tuned LLMs on the presented commit message generation benchmark in
a zero-shot setting (i.e., no examples in the prompt, only a natural language instruction). We employ
the same prompt for all models. The prompt is presented in Figure 8. It was crafted through several
iterations, addressing the most frequent issues in the generated messages from pilot experiments. In
our main experiments, we only incorporate commit changes represented as diffs returned by the git
diff command to prompt the LLMs. Additionally, we run the CodeT5 (Wang et al., 2021) model
fine-tuned for commit message generation task on the training part of the CommitChronicle dataset.
This model only takes the commit diff as an input.

Write a commit message for a given diff. Start with a heading that
serves as a summary of the whole diff: a single sentence in an
imperative form, no more than 50 characters long. If you have details
to add, do it after a blank line. Do your best to be specific, do not
use ‘refactor’ unless you are absolutely sure that this change is ONLY
a refactoring. Your goal is to communicate what the change does
without having to look at the source code. Do not go into low-level
details like all the changed files, do not be overly verbose. Avoid
adding any external references like issue tags, URLs or emails. Diff:

[DIFF]

Commit message:

Figure 8: The primary prompt for the commit message generation task.

We access proprietary LLMs through the official APIs. For Mixtral, Mistral, DeepSeekCoder,
CodeLLaMA, and CodeT5, we use a single NVIDIA A100 GPU with default precision (except for
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Table 15: Results for the CMG benchmark from BenchName. R stands for ROUGE metric, BS stands
for BERTScore metric, where BS (norm.) is the normalized version. All model categories are sorted
by the ROUGE-1 metric. The best result in the category is highlighted in bold, and the second best
result is underlined. *CodeT5 is the only model fine-tuned for the CMG task as opposed to the
zero-shot setting for the rest of the models.

Model BLEU ChrF R-1 R-2 R-L BS BS
(norm.)

Proprietary

o1-preview (2024-09-12) 4.212 36.38 29.28 7.66 20.52 0.8635 0.191
Gemini 1.5 Pro 3.656 34.87 28.94 6.363 20.15 0.8593 0.1666
Claude 3.5 Sonnet 4.195 34.85 28.79 6.134 19.67 0.8626 0.1857
Claude 3 Opus 4.219 36.59 28.67 7.656 20.14 0.8583 0.1606
o1-mini (2024-09-12) 4.09 34.33 27.96 6.712 20.05 0.8605 0.1737
Gemini 1.5 Flash 2.918 34.64 27.38 5.865 18.68 0.8581 0.1595
GPT-4 Turbo (1106) 2.803 34.39 26.62 5.296 17.72 0.8559 0.1462
GPT-4o (2024-11-20) 3.066 34.81 26.07 5.548 17.65 0.854 0.1351
GPT-4o mini (2024-07-18) 2.841 34.12 25.66 5.158 17.33 0.8579 0.1583
GPT-4 (0613) 2.127 32.62 23.5 5.217 16.03 0.8522 0.1243
Claude 3 Haiku 1.957 30.12 21.01 5.045 14.38 0.843 0.0695
GPT-3.5 Turbo (0613) 2.101 26.664 19.976 4.227 14.447 0.846 0.087
GPT-3.5 Turbo (1106) 1.885 20.698 18.424 3.815 14.087 0.854 0.136

OSS (big)

DeepSeek-V3 (671B) 3.788 35.76 28.63 6.599 19.81 0.8625 0.1851
Llama-3.3 (70B) 3.751 33.54 28.38 6.415 20.12 0.8645 0.1969
Llama-3.1 (405B) 3.563 34.83 28.25 6.516 19.94 0.8626 0.1861
Llama-3.1 (70B) 3.634 34.66 27.62 6.626 19.27 0.8611 0.177
DeepSeek-R1 (671B) 4.19 34.94 27.07 5.94 18.94 0.8644 0.1962

OSS (medium)

Qwen2.5-Coder (32B) 3.415 33.74 27.93 6.038 20.1 0.8616 0.1797
Mixtral 8 bit (8x7B) 2.189 31.98 23.61 5.376 16.33 0.8476 0.09688
DeepSeek Coder (33B) 1.742 29.08 21.01 4.471 14.46 0.8425 0.06697
CodeLLaMA (34B) 1.586 24.632 17.817 3.684 13.114 0.844 0.073
QwQ (32B) 0.529 14.07 14.66 3.381 10.26 0.8275 -0.02194

OSS (small)

Llama-3.1 (8B) 2.409 31.02 23.66 4.768 16.67 0.8538 0.1335
Mistral (7B) 1.895 30.719 23.648 4.458 16.262 0.847 0.096
DeepSeek Coder (6.7B) 1.634 28.567 20.188 3.604 14.116 0.843 0.068
CodeLLaMA (13B) 1.727 23.099 18.207 3.642 13.479 0.844 0.075
CodeLLaMA (7B) 1.108 26.638 16.961 2.807 12.028 0.835 0.021

OSS (tiny)
Llama-3.2 (3B) 2.108 26.34 21.05 4.102 15.15 0.8461 0.088
DeepSeek Coder (1.3B) 0.75 22.449 13.815 2.029 9.753 0.822 -0.057
CodeT5* (220M) 0.355 11.862 13.615 2.633 11.439 0.845 0.083

Mixtral, where we use 8-bit precision) and FlashAttention-2 (Dao, 2023) enabled. For the rest of the
considered models, we use Together API.4 For all the models, we set the temperature to 0.8 and allow
them to generate up to 512 tokens. This upper bound is mostly set due to practical considerations, as
the maximum length of a commit message in our dataset is only 58 whitespace-separated words. The
results are presented in Table 15.

Additionally, we experiment with two alternative strategies for composing the context for the LLMs.
Among the models, we select o1-mini from OpenAI as the best compromise between speed and
quality among proprietary models and DeepSeek-V3, the highest-scoring OSS model in terms of
ROUGE-1. We use DeepSeek-V3 tokenizer to calculate the number of tokens through the rest of the
section. The first context gathering strategy is to pass the full contents of the modified files rather than
diffs. Similar setting was previously employed for commit message generation by (Muennighoff et al.,
2023). In our dataset, modified files for one commit take around 54k tokens on average, however, the
maximum value is 300k, which exceeds maximum context length of 128k tokens for both o1-mini
and for DeepSeek-V3. Hence, we limit the maximum allowed context length, truncating the modified
files up to max_num_tokens

num_files each. We consider several upper bounds in terms of maximum context length:
4k, 8k, 16k, 32k, 64k. Due to technical limitations, we were able to obtain results for DeepSeek-V3
with contexts only up to 16k tokens. The second context gathering strategy is to further extend the
prompt from our main experiments (Figure 8) with relevant context via retrieval. We use a simple
BM25 (Robertson et al., 2009) retriever among non-changed .py files in the corresponding repository,

4Together: https://www.together.ai/
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Table 16: Results with alternative contexts for the CMG benchmark from BenchName. R stands
for ROUGE metric, BS stands for BERTScore metric, where BS (norm.) is the normalized version.
The best result for the model is highlighted in bold, and the second best result is underlined. The
context size is reported in tokens from DeepSeek-V3 tokenizer. The context size for Diff context is
the average number of tokens in diffs in our dataset.

Model Context Type Context Size BLEU ChrF R-1 R-2 R-L BS BS
(norm.)

o1-mini

Diff 2.3k 4.09 34.33 27.96 6.712 20.05 0.8605 0.1737

Full File

4k 2.342 27.18 20.44 3.464 14.95 0.8457 0.0856
8k 2.646 29.92 22.71 4.241 16.67 0.8493 0.1071
16k 2.753 31.69 24.43 5.066 17.49 0.8512 0.1181
32k 2.572 31.89 24.36 4.85 17.41 0.8504 0.1137
64k 3.324 32.86 24.82 5.335 17.67 0.8525 0.1259

Diff + BM25
4k 3.454 34.42 27.84 6.229 19.75 0.8584 0.1613
8k 3.573 34.59 27.31 6.201 19.11 0.8564 0.1491
16k 3.364 33.85 27.28 6.355 19.08 0.8563 0.1488

DeepSeek-V3

Diff 2.3k 3.788 35.76 28.63 6.599 19.81 0.8625 0.1851

Full File
4k 2.229 28.88 21.76 3.507 15.45 0.8521 0.1237
8k 2.801 31.34 24.15 4.81 17.11 0.8552 0.1421
16k 3.345 33.59 26.47 5.647 18.77 0.859 0.1648

Diff + BM25
4k 3.457 34.85 28.97 6.955 20.11 0.8631 0.1888
8k 3.554 35.05 28.05 6.285 19.68 0.8627 0.1863
16k 3.697 34.98 28.35 6.419 20.03 0.8627 0.1862

similar to the setting adopted by Jimenez et al. (2023). We retrieve up to 50 most relevant files and
add them until the maximum context length in tokens is exceeded, possibly truncating the last file to
ensure it fits the restriction on the maximum length. We consider several upper bounds in terms of
maximum context length: 4k, 8k, 16k.

The results are presented in Table 16. We observe that neither of the alternative context gathering
strategies leads to substantial improvements compared to our primary approach using only the commit
diff. For Full File setting, the quality grows with the increase in the context size, but even at its
largest (64k tokens), it remains consistently inferior to the results achieved with diffs. One reason
for the inefficiency of the Full File is the large size of modifications in our dataset, which span 3.4
files on average. When including complete file contents, the input can reach up to 300k tokens.
Our naive truncation strategy likely discards critical information. While additional context that
facilitates better repository understanding could help generate more appropriate commit messages,
BM25 retrieval might fail to uncover relevant files, leading to insignificant improvements or even
degradation. Interestingly, unlike (Jimenez et al., 2023), we do not observe stable decrease in quality
with the growth of BM25 context. We leave the exploration of more efficient and sophisticated
context gathering strategies to future research.

F BUG LOCALIZATION

Bug Localization task can be formulated as follows: given an issue with a bug description and a
repository snapshot in a state where the bug is reproducible, identify the files within the repository
that need to be modified to address the reported bug. Although this is a subset of the larger bug-fixing
problem, partially covered by SWE-Bench, bug localization requires its own separate evaluation.
This independent assessment can provide a better understanding of the various approaches and their
efficiency in identifying the precise location of bugs within the large code bases.

F.1 DATASET STRUCTURE

The bug localization dataset includes real issues that describe bugs, together with the respective pull
requests (PRs) that fix them. Each datapoint contains three key elements: the bug description, the
state of the repository where the bug is reproducible, and the list of files that need to be modified to
resolve the bug. The bug description represents the body of the issue that was assigned a bug-related
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Table 17: Description of datapoints in the bug localization dataset.
Field Description

id Datapoint ID
repo_owner Bug issue repository owner
repo_name Bug issue repository name

text_id Datapoint text ID
issue_url GitHub link to issue
issue_title Issue title
issue_body Issue body with bug description
issue_labels List of labels assigned to issue

pull_url GitHub link to PR
pull_create_at Date of PR creation in format of yyyy-mm-ddThh:mm:ssZ

base_sha PR base SHA
head_sha PR head SHA
diff_url PR diff URL between base and head SHA

diff PR diff content
changed_files List of changed files parsed from diff

link_url GitHub link to issue or PR comment from which the link was
parsed

links_count Number of links between the issue and the PR, equals 2 if the
link is mutual, 1 if it is one-sided

link_keyword "Fix"-related keyword which surrounds the issue link
stars Number of repository stars

language Main programming language for repository

label. The repository state is represented by the commit SHA. The list of files that should be modified
comes from the pull request that resolves the respective bug report. The full datapoint structure is
presented in the Table 17

The final dataset contains 7,479 datapoints in total divided, between three sets by language:

• py — change contains only Python files (4,339 datapoints);

• java — change contains only Java files (2,522 datapoints);

• kt — change contains only Kotlin files (618 datapoints).

For each language 50 datapoints are manually verified in order to form a test subset for model
evaluation (150 datapoints in total).

Based on the core fields, we calculated the number of statistics and attached them to each datapoint.
The additional fields are presented in Table 18. We excluded test files from the experiment because
their modifications typically only support program repairs and do not contain the actual bugs. Thus,
all metrics are calculated on all project files except for the test files.

F.2 DATASET COLLECTION AND PREPROCESSING

To collect the data, we use the following protocol:

1. Collect issues, pull requests, comments. We start with the common corpus of collected
GitHub repositories. Then, for each repository, we download information about all issues,
pull requests, and comments using the GitHub API. As a result, we download more than 8M
issues, 7M pull requests, and 34.4M comments.

2. Match issues with pull requests. GitHub API does not provide information about relations
between issues and pull requests. We obtain these relations by parsing references from
descriptions or comments. To do so, we write regular expressions for extracting all possible
referencing formats as provided in GitHub documentation. To also collect the context around
the reference, we capture one “fix”-related keyword (e.g., close, closes, closed, fix,
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Table 18: Description of additional metrics calculated on the bug localization dataset.
Metric Description

issue_symbols_count Number of symbols in issue description
issue_tokens_count Number of tokens in issue description
issue_words_count Number of words in issue description
issue_lines_count Number of lines in issue description

issue_code_blocks_count Number of triple quotes blocks parsed in
issue description

issue_links_count Number of links parsed in issue description

diff_symbols_count Number of symbols in diff
diff_tokens_count Number of tokens in diff
diff_words_count Number of words in diff
issue_lines_count Number of lines in diff

changed_files_count Number of all changed files mentioned in
diff

changed_files_without_test_count Number of changed files not including test
files mentioned in diff

code_changed_files_count Number of files written in Python, Java, or
Kotlin mentioned in diff

py_changed_files_count Number of Python files mentioned as
changed in diff

java_changed_files_count Number of Java files mentioned as changed
in diff

kt_changed_files_count Number of Kotlin files mentioned as
changed in diff

repo_symbols_count Total number of symbols in repository’s
files

repo_tokens_count Total number of tokens in repository’s files.
repo_words_count Total number of words in repository’s files
repo_lines_count Total number of lines in repository’s files
repo_files_count Total number of files in repository

repo_files_without_test_count Total number of files without tests in the
repository

fixes, fixed, resolve, resolves, resolved, solve, solves, solved) before
and after the link with the regular expressions. We also check if references are mutual (if
the issue refers to the pull request and vice versa) or not (if only a single link from either the
issue or the pull request exists).

3. Sort by stars. We sort all issue-PR pairs by the number of stars in the respective repository
and assign each pair an ID based on its index in the sorted order. We populate the diff
field by running a git command in a locally cloned repository to get the diff in a text format.
Unfortunately, this method does not work for pull requests created from forks, so we save a
null value for such cases.

To enhance the quality of our data, first, we apply several empirical filters and preprocessing steps
based on the fields from the dataset:

1. Select bug issues. We retain only issues with “bug” mentioned in the labels and non-empty
descriptions. Additionally, we remove issues containing links to media, as they may include
crucial data visualizations that are inaccessible through other means. To ensure that most
models can use the dataset for evaluation, we only keep issues written in English.

2. Select processable changes. For pull requests, we filter out those introducing new files and
retain only pull requests modifying existing files, provided their diffs could be extracted
from the cloned repository. Furthermore, to facilitate the future manual labeling process, we
leave only pull requests written in Python, Java, or Kotlin, as these are languages known
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Table 19: Empirical filters applied to the bug localization dataset.
Field Description Number of data-

points rejected by
the filter (% of the
initial set)

issue_labels At least one label should include "bug" as a sub-
string

3,472,057 (79.8%)

issue_body Description should not be empty 16,265 (0.37%)
issue_body Description should contain only text without at-

tached media
145,225 (3.34%)

issue_body Description should be written mostly in English 35,942 (0.83%)

diff Diff can be extracted and should not be empty or
corrupted

475,447 (10.93%)

diff Diff should consist only of modifications of exist-
ing files and no introduction of new files

30,572 (0.7%)

diff Diff should include at least one file in either Python,
Java, or Kotlin

138,653 (3.19%)

diff Diff should include only UTF-8 files to filter out
unreadable or graphical objects

18 (≤ 0.01%)

base_commit Repository content on base commit can be ex-
tracted and should not be empty or corrupted

6,198 (0.14%)

pull_url PR should refer to no more than one issue 7,376 (0.17%)
issue_url Issue should refer to no more than one pull request 1,934 (0.04%)

link_keyword "fix"-related keyword should stay before or after
link in the issue description.

10,406 (0.24%)

well to authors. To work with diffs and patches, as well as to extract the changed files and
their modification modes, we use the unidiff package.5 Additionally, we avoid pull requests
that include changes to media files with non-UTF-8 encoding, as such changes are often
difficult to reproduce. The most crucial filter ensures that each pull request is associated with
exactly one issue, and vice versa, to maintain the relevance of changes to issue descriptions
and to prevent situations where a pull request addresses multiple issues or an issue is fixed
by several pull requests.
The dataset size reduction after applying these empirical filters is summarized in Table 19.
As a result of these filtering steps, 10,195 datapoints remain in the dataset.

3. Filter outliers. On top of the previous filtering step, we remove outliers for several
numerical fields, including changed_files_count, changed_lines_count, and
issue_tokens_count. Table 20 shows the result of removing outliers.

4. Data analysis. After data filtration, we are left with 7,479 datapoints that comprise the
entire dataset. Table 21 presents statistics of the dataset, with the difference in statistics
between languages being negligible.

5. Manual data labelling. After the analysis of the dataset, we carry out manual data labeling
and verification process to select the subset of high-quality datapoints for evaluation. First,
we sort the datapoints by the number of stars in the respective repositories, assuming that
popular repositories have better processes and quality for issue tracking and bug reporting.
Then, we go through datapoints of each repository, selecting ones that meet the following
criteria:

• The issue describes a single bug completely and exhaustively.
• The pull request is linked to the issue and resolves this issue alone.
• All changes are relevant to the described issue, with no extra functionality or side

refactorings included.
• The changes were reviewed and accepted.

5Undiff: https://pypi.org/project/unidiff/
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Table 20: Outlier filters applied to the bug localization dataset.
Field Description Number of data-

points rejected by
the filter (% of
initial set)

changed_files_count Number of changed files should not be more than
22 (0.99 quantile)

100 (≤ 0.01%)

changed_lines_count Number of changed lines should not be more than
594 (0.99 quantile)

102 (≤ 0.01%)

issue_tokens_count Issue description can be tokenized using GPT-4
tokenizer

43 (≤ 0.01%)

issue_tokens_count Issue description should contain at least 13 tokens
(0.01 quantile)

85 (≤ 0.01%)

issue_tokens_count Issue description should contain no more than
4,500 tokens (0.99 quantile)

103 (≤ 0.01%)

Table 21: Final statistics of the dataset.
Field Min Median Mean Max

repo_files_count 16 331 1,077 33,644
repo_lines_count 9 52,743 145,377 8,687,912

repo_tokens_count 78 488,286 1,684,619 225,649,725

changed_files_count 1 1 2 21
changed_lines_count 1 15 37 594

changed_tokens_count 1 158 608 837,626

issue_words_count 1 106 149 1,806
issue_lines_count 1 22 33 586

issue_tokens_count 13 227 432 4,491

issue_links_count 0 0 0.80 56
issue_code_blocks_count 0 1 0.99 31

If a datapoint does not meet these criteria, we go to another one from the same repository, or
if none are left, we move on to the next repository by the number of stars, until we select 50
good datapoints per language. To keep the distribution of the number of changed files, for
each repository, we try to pick one datapoint with a single changed file and one datapoint
with two or more changed files. This strategy allows us to collect a diverse set of datapoints
from different repositories and keep the distribution of the number of changed files similar
to the complete set of issues.

F.3 EVALUATION

We evaluate several LLMs on the bug localization task using the presented dataset.

For all models, we adopted a unified prompt structure (Figure 9), which includes the repository name,
issue title, and description, along with optional additional context.

First, we evaluate two context-filling strategies to understand how context influences the quality of
bug localization and how it can be optimized for more efficient use by LLMs in solving this particular
task:

• Only issue description context. This configuration only considers the issue description as
context to determine whether it contains sufficient information for bug localization. It also
serves to analyze the potential impact of data contamination.

• Repo file paths list. This strategy adds a list of all files in the repository as context, enabling
the model to utilize structural information from the codebase. This approach assesses
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SYSTEM:
You are an AI assistant specialized in software bug localization.
Your task is to identify the MOST likely files to be modified to
fix the given bug. You will be provided with the repository name and
a GitHub bug issue description*. Analyze the issue description and
determine the files in the repository that are MOST likely to require
modification to resolve the issue. Provide the output in JSON format
with the list of file paths under the key "files".
Provide JSON ONLY without any additional comments.

USER:
GitHub repo name:
[REPO_OWNER/REPO_NAME]

Issue description:
[ISSUE_TITLE]
[ISSUE_BODY]

[CONTEXT]

Figure 9: Prompt for bug localization. ∗Can slightly vary to describe the content and structure of the
context provided.

whether the mere presence of file names aids effective bug localization. To prioritize the
most relevant file paths in the context, we employed the following algorithm:

1. Ranking. We use a simple NLTK tokenizer and BM25 to rank the files in the repository
based on their lexical similarity to the issue description.

2. Filling. Based on the ranking, we concatenate the context for each file (file path along
with imports).

3. Cutting. Since the context appears last in the prompt, we trim the final message to fit
the total context size of each model.

The expected output of the LLMs is a list of files which contain bugs. To measure the quality of this
output and compare it with the expected list of buggy files, we calculate the following metrics:

• P (Precision). This metric shows how many predicted files were correct.
• R (Recall). This metric shows how many actual bugged files were correct.
• FPR (False Positive Rate). This metric shows how many non-buggy files were incorrectly

predicted.
• F1-score. The balance between Precision and Recall.
• All correct. The percentage of cases where all files were correctly identified.
• All incorrect. The percentage of cases where all files were incorrectly identified.
• # Output. The average number of buggy files detected.

All results are presented in two separate tables: Table 22 reports results for the small-context setting,
while Table 23 presents results for the large-context setting. The evaluation demonstrated that even a
simple additional context can double the effectiveness of bug localization. In small-context settings,
the average token usage is less than 1k (minimum: 149, maximum: 149), whereas, in large-context
settings, it reaches approximately 10k (minimum: 251, maximum: > 200,000). This indicates that,
for certain data points, even larger contexts can be provided, potentially leading to higher scores.

However, we observed an interesting pattern in LLaMA-based models: increasing the context size
adversely affected their performance. Specifically, with larger contexts, these models often produced
excessively long lists of files or failed to generate JSON outputs in the correct format. This mean that
the context and the output format should be kind of model specific and not universal. This suggests
that both context handling and output formatting are model-specific rather than universally applicable.
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Table 22: The baseline results for the bug localization task without additional context.
Model Context Size P R F1-score FPR All correct All incorrect # Output

o1 128k 0.299 0.286 0.255 0.015 0.07 0.55 1.97
GPT-4o 128k 0.303 0.305 0.270 0.018 0.12 0.54 2.29
GPT-4o mini 128k 0.112 0.164 0.117 0.042 0.03 0.77 3.79
GPT-3.5 Turbo (1106) 16k 0.219 0.178 0.177 0.017 0.09 0.73 1.93
Gemini 1.5 Pro 1M 0.309 0.294 0.270 0.020 0.14 0.55 2.52
Claude 3 Opus 200k - - - - - - -
Claude 3 Haiku 200k - - - - - - -
Claude 3.5 Sonnet 200k 0.199 0.254 0.196 0.021 0.05 0.61 3.16
Claude 3.5 Haiku 200k 0.212 0.256 0.211 0.026 0.08 0.61 2.76

Llama-3.2 (3B) 128k 0.114 0.215 0.130 0.158 0.0 0.74 3.11
Llama-3.1 (8B) 128k 0.072 0.143 0.084 0.056 0.01 0.81 5.60
Llama-3.1 (70B) 128k 0.156 0.196 0.157 0.035 0.05 0.72 3.90
Llama-3.1 (405B) 128k - - - - - - -

Qwen2.5 (7B) 128k 0.172 0.141 0.140 0.016 0.08 0.79 2.00
Qwen2 (72B) 128k 0.191 0.157 0.159 0.023 0.09 0.76 2.45

DeepSeek R1 (671B) - - - - - - - -
DeepSeek V3 (671B) - - - - - - - -

Table 23: The baseline results for the bug localization task with file paths list context.
Model Context Size P R F1-score FPR All correct All incorrect # Output

o1 128k 0.622 0.630 0.576 0.010 0.28 0.15 2.22
GPT-4o 128k 0.535 0.635 0.527 0.012 0.23 0.12 2.85
GPT-4o mini 128k 0.350 0.666 0.416 0.035 0.07 0.13 5.44
GPT-3.5 Turbo (1106) 16k 0.436 0.497 0.421 0.021 0.17 0.31 3.35
Gemini 1.5 Pro 1M 0.471 0.671 0.501 0.015 0.17 0.09 3.55
Claude 3 Opus 200k 0.471 0.637 0.481 0.018 0.2 0.1 3.77
Claude 3 Haiku 200k 0.429 0.59 0.441 0.029 0.13 0.2 4.04
Claude 3.5 Sonnet 200k 0.461 0.748 0.523 0.017 0.13 0.11 3.48
Claude 3.5 Haiku 200k 0.553 0.741 0.583 0.038 0.22 0.1 2.88

Llama-3.2 (3B) 128k 0.268 0.748 0.321 0.204 0.14 0.1 18.10
Llama-3.1 (8B) 128k 0.234 0.737 0.305 0.145 0.05 0.1 16.03
Llama-3.1 (70B) 128k 0.287 0.664 0.351 0.041 0.05 0.13 8.37
Llama-3.1 (405B) 128k 0.432 0.639 0.465 0.025 0.16 0.14 4.36

Qwen2.5 (7B) 128k 0.559 0.572 0.517 0.013 0.25 0.22 2.79
Qwen2 (72B) 128k 0.431 0.686 0.483 0.026 0.14 0.1 5.16

DeepSeek R1 (671B) 128k 0.529 0.68 0.538 0.021 0.2 0.1 3.04
DeepSeek V3 (671B) 128k 0.489 0.697 0.523 0.025 0.19 0.08 3.61

G MODULE SUMMARIZATION

For the Module Summarization task, the model should write textual documentation based on the mod-
ule’s or project’s source code and intent (a one-sentence description of the expected documentation
content). This task greatly increases the context size available to the models compared to the existing
benchmarks that cover method- or class-level summarization.

G.1 DATASET COLLECTION AND PROCESSING

The dataset consists of the datapoints with their structure as in Table 24.
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Table 24: The structure of datapoints in the module summarization dataset.
Field Description
repo The full name of the GitHub repository the

commit comes from
docfile_name The name of the documentation file. May

be useful in the prompt
intent Small manually gathered intent that de-

scribes what we expect from the generated
documentation

license The type of the license in the repository of
the commit

path_to_docfile The path to file with documentation in the
repository

relevant_code_files List of paths in the repository to the poten-
tially relevant code files

relevant_code_dir Directory with relevant code, field can be
empty

target_text The text of the target documentation —
ground truth in our task

relevant_code_context Code context joined from relevant code files
and directories

To collect the data, we use the following protocol:

1. We start with the Python subset of the common corpus of GitHub repositories. For each
repository, we extract documentation files — files with extensions .md, .txt, and .rst,
located in the docs directory of the repository.

2. For each documentation file, we extract the associated source code. To do this, we parse the
target documentation and extract names of all code files and directories mentioned in it. If a
file does not contain any such mentions, we skip it.

3. To further filter the documentation files, we convert documentation into a plain text format
by removing specific Markdown syntax (as well as text between Markdown tags like code,
autosummary, etc.). We then ensure that each document contains valuable information and
has at least 10 lines of text remaining after cleaning. Since the filtering is quite strict, we
believe that only important documents remain after this stage.

4. We perform manual review of the datapoints to ensure that the content contains not only
information about the code but also summarizes the entire module or project. After manual
review, we leave 216 out of 461 files. Most of the files that we reject contain non-informative
text that is not related to code. Also, for each documentation file, we manually specify an
intent that the model under evaluation can use during generation.

• Manual verification is essential, as our experience with data frequently reveals instances
where a docfile lacks useful content or does not provide substantial information in the plain
text format, without special extensions that enrich documentation.

G.2 EVALUATION

• We run several LLMs on the collected module summarization dataset with different length of
the relevant code context. To assess the quality of the generated documentation, we introduce
a new metric called CompScore that uses LLM (Mistral-7B in our case) as an assessor.
CompScore feeds the assessor LLM relevant code and two versions of documentation: the
ground truth and the model-generated text. The LLM then evaluates which documentation
better explains and fits the code. To mitigate variance and potential ordering effects in
model responses, we calculate the probability that the generated documentation is superior
by averaging the results of two queries:
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Table 25: CompScore metric in the module summarization benchmark for various LLMs.
Model 128 tokens 512 tokens 1k tokens 2k tokens

Mistral-7B-v0.3 35.84 39.18 41.03 46.23
Mixtral-8x7B 34.63 38.48 39.96 40.89
Mixtral-8x22B 35.33 38.48 39.49 42.24
Llama2-7B 36.33 44.21 44.13 46.19
Llama2-13B 40.96 47.37 46.57 48.12
Llama2-70B 39.78 45.97 46.37 48.24
CodeLlama-7B 33.02 36.88 36.49 38.06
CodeLlama-70B 38.36 38.74 39.76 37.23
Llama3-8B 25.37 32.14 33.84 37.35
Llama3-70B 24.79 30.08 33.18 36.45
Gemma-2B 16.43 21.04 21.85 25.38
Gemma-7B 24.16 28.24 30.44 33.96
GPT-3.5 36.83 41.59 45.59 49.48
GPT-4 45.62 52.59 56.22 57.33
o1 63.53 63.99 65.10 66.33
gpt-4o 58.27 61.67 63.74 65.95
Llama3.3-70B-Instruct 51.03 54.30 56.49 59.67
Qwen2.5-72B-Instruct 59.27 63.15 65.14 66.37
deepseek-ai-DeepSeek-V3 59.27 63.15 65.14 66.37
deepseek-ai-DeepSeek-R1 61.53 62.49 64.20 64.87

CompScore =
P (pred | LLM(code, pred, gold)) + P (pred | LLM(code, gold, pred))

2

To count P (pred | LLM(code, pred, gold)), we follow several steps:

1. Construct the prompt and feed it into the assessor LLM (see Figure 10).

I have 2 different documentations about {intent}. Decide which
documentation is better: documentation A or documentation B.
My code: [TRIMMED_CODE_CONTEXT]
Documentation A: [PREDICTED_DOC]
Documentation B: [GROUND_TRUTH_DOC]
Better documentation is documentation

Figure 10: Prompt for the CompScore metric.

2. Get logits for the next token being “A” and “B” (logitA and logitB) and convert them
into probabilities:

probA, probB = exp (log_softmax([logitA, logitB ]))

3. P (pred | LLM(code, pred, gold)) = probA shows the probabilty that the predicted
documentation is better than the original from the perspective of the LLM assessor.

• For our experiments, we use Mistral-7B-Instruct-v0.2 as LLM assessor. We truncate
relevant code up to 6,000 tokens in the prompt for metric computation. We evaluate all the
models presented in Table 25 via OpenAI API or TogetherAI API with the same generation
parameters. We use zero temperature and predict up to 2,000 new tokens without any
penalties to get deterministic results during generation. Table 26 shows the results for all the
evaluated LLMs with varying length of available relevant code context.

• We observe that both increasing the context size and the size of the model leads to higher
quality. The o1 model outperforms the others, achieving a notable CompScore of 72.22.
Interestingly, the CodeLlama and Llama3 models show worse performance than the Llama2
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Table 26: CompScore metric in the module summarization benchmark for various LLMs on large
contexts.

Model 4k tokens 8k tokens 16k tokens 64k tokens 100k tokens
o1 68.36 69.93 70.93 71.53 72.22
gpt-4o 66.61 66.96 67.02 68.09 68.12
Llama3.3-Instruct 60.54 61.3 62.86 63.14 64.20
Qwen2.5-72B-Instruct 67.72 68.44 68.73 69.25 69.73
deepseek-ai-DeepSeek-R1 66.51 67.45 66.62 - -

model on small contexts. Although doubling the context size does not significantly impact
the CompScore, a substantial difference emerges when comparing the metrics for the
smallest and largest context windows. Investigating which context is most relevant for this
task, as well as exploring different context composition strategies, is left for future research.
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