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Fig. 1. (a) We fit our new Biomechanical Skeleton Model, BSM, to SMPL [Loper et al. 2015] mesh sequences from AMASS [Mahmood et al. 2019]. This gives
paired data enabling us to learn the mapping from skin to skeleton. (b) We use this to create SKEL, a parametric body model with skin and skeleton meshes,
driven by biomechanical pose parameters and incorporating the shape space of SMPL. SKEL is like SMPL but with more realistic degrees of freedom. Fitting
SKEL to DFAUST scans [Bogo et al. 2017] results in SKEL’s scapula sliding (c) and the forearms twisting appropriately (d).

Great progress has been made in estimating 3D human pose and shape from
images and video by training neural networks to directly regress the parame-
ters of parametric human models like SMPL. However, existing body models
have simplified kinematic structures that do not correspond to the true
joint locations and articulations in the human skeletal system, limiting their
potential use in biomechanics. On the other hand, methods for estimating
biomechanically accurate skeletal motion typically rely on complex motion
capture systems and expensive optimization methods. What is needed is
a parametric 3D human model with a biomechanically accurate skeletal
structure that can be easily posed. To that end, we develop SKEL, which
re-rigs the SMPL body model with a biomechanics skeleton. To enable this,
we need training data of skeletons inside SMPL meshes in diverse poses.
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We build such a dataset by optimizing biomechanically accurate skeletons
inside SMPL meshes from AMASS sequences. We then learn a regressor
from SMPL mesh vertices to the optimized joint locations and bone rota-
tions. Finally, we re-parametrize the SMPL mesh with the new kinematic
parameters. The resulting SKEL model is animatable like SMPL but with
fewer, and biomechanically-realistic, degrees of freedom. We show that
SKEL has more biomechanically accurate joint locations than SMPL, and the
bones fit inside the body surface better than previous methods. By fitting
SKEL to SMPL meshes we are able to “upgrade" existing human pose and
shape datasets to include biomechanical parameters. SKEL provides a new
tool to enable biomechanics in the wild, while also providing vision and
graphics researchers with a better constrained and more realistic model of
human articulation. The model, code, and data are available for research at
https://skel.is.tue.mpg.de.
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1 INTRODUCTION
Human motion is captured, modeled and studied in diverse fields, in-
cluding computer vision, graphics, gaming, biomechanics, medicine,
ergonomics and more. The tools and representations used, however,
vary significantly. Vision and graphics methods often represent the
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articulated body pose using an approximate 3D skeleton, whereas,
in biomechanics and sports medicine, an accurate kinematic skele-
ton is of paramount importance for disease diagnosis. The capture
methods also vary significantly. Computer vision focuses on esti-
mating 3D humans from images and videos while the biomechanics
community focuses on highly accurate marker-based motion cap-
ture (mocap) systems. This paper takes a step towards combining
the best of these disciplines, providing new and improved tools to
each; see Fig. 1.
Specifically, we focus on advances in computer vision that infer

the 3D pose and shape of the human body in the form of parametric
body models like SMPL [Loper et al. 2015]. The field has advanced
rapidly and the accuracy of markerless video-based 3D motion
capture is catching up with marker-based techniques. Unfortunately,
the kinematic structure of models such as SMPL is not physically
accurate, limiting applicability in biomechanics. On the other hand,
the biomechanics field has developed detailed skeletal models to
represent the anatomic motion of the knee, spine, shoulder, etc. The
vision and graphics communities are currently not benefiting from
these more accurate models of the body and its joints.

To address these issues, we unify the SMPL body model with BSM,
a new Biomechanical Skeleton Model. While previous work has
addressed the problem of putting skeletons inside 3D body models
[Ali-Hamadi et al. 2013; Kelc 2012; Keller et al. 2022; Shetty et al.
2023], such approaches have not addressed the problem of precisely
locating the skeleton within a moving body. The key challenge
is the lack of training data that pairs the posed 3D human body
shape with the ground-truth skeleton. We address this by creating
a novel dataset called BioAMASS. To create BioAMASS, we take
sequences of 3D bodies from the AMASS dataset [Mahmood et al.
2019] that cover a wide range of body shapes and challenging poses.
To obtain pseudo-ground-truth skeletons, we place virtual motion
capture markers on the body surface.We then use the recent method,
AddBiomechanics [Werling et al. 2022], to solve for the BSM skeleton
given the virtual markers.

With this paired dataset, we can now solve several problems that
were previously impossible. First, we train a regressor to estimate the
3D anatomical BSM joint locations of the body given a posed SMPL
mesh. Note that these locations significantly differ from the joints
in SMPL. This is useful for generating more relevant training data
for 2D or 3D joint detectors, as today, such methods are typically
trained from manually labeled joints or projected SMPL joints.

Next, we re-rig the SMPL body model with the BSM biomechani-
cal skeleton, i.e. we use the BSM parameters to drive a SMPL mesh,
and we call the resulting model SKEL, which is short for “Skeletal
Kinematics Enveloped by a Learned body model”. To do so, it is
critical that the skeleton is properly scaled, located and oriented
inside the SMPL body mesh. To that end, we propose a data-driven
strategy that places the bones inside the body while ensuring that
their orientations are compatible with the anatomic constraints of
the limbs. Like SMPL, SKEL provides a body surface but with a skele-
ton inside that has biomechanical degrees of freedom. For example,
the spine in SKEL is modeled by a spline derived from biomechanics.
Additionally, shoulders are a complicated structure that is typically
crudely approximated in vision and graphics models. SKEL replaces
the approximate shoulder of SMPL with a biomechanical shoulder

blade [Seth et al. 2016] that slides along an ellipsoid defined around
the thorax. The forearm rotation is another place where standard
graphics models like SMPL differ from biomechanics. Instead of a
simple rotation around the elbow, SKEL models the motion of the
radius and ulna bones to drive forearm pronation and supination.
SKEL has several uses. Specifically, we consider the problem of

taking a SMPL body model and computing the correct skeleton
inside. To do so, we simply fit SKEL to the posed SMPL mesh by
optimizing the SKEL pose to minimize the vertex-to-vertex distance
between the meshes. We apply this process to archival datasets
such as 3DPW [Von Marcard et al. 2018] and BEDLAM [Black et al.
2023]. This effectively upgrades existing computer vision datasets to
contain biomechanical ground truth, extending their use to biome-
chanics. For example, one could evaluate, or learn to directly regress
biomechanical parameters from video.

We evaluate two methods for estimating the skeleton from SMPL:
direct regression of BSM joints from SMPL and fitting SKEL to SMPL.
Accuracy is defined in terms of 3D joint location error. Since there is
no ground-truth for this task, we take the joint locations estimated
by AddBiomechanics as pseudo-ground-truth. We find that both of
our methods produce significantly more accurate joint predictions
than SMPL. We also provide extensive qualitative experiments that
show the articulated structure of SKEL and its use in upgrading
existing human motion datasets to support biomechanics.
SKEL can also be used in the other direction. Given an input

skeletonmesh obtained after fitting a biomechanical model tomocap
data, SKEL can be used to add a plausible skin surface; this is useful
for visualization of mocap data. Since there are an infinite number of
body shapes that are consistent with a given skeleton, the predicted
shape can be constrained, e.g. with the subject’s weight.
To the best of our knowledge, SKEL is the first model where

the body surface and anatomical skeleton are directly controlled by
the same set of shape and pose parameters (𝜷, q). The BioAMASS
dataset, the code to create it from the AMASS dataset, as well as the
SKEL model, are available for research purposes at https://skel.is.
tue.mpg.de.

2 RELATED WORK
The accurate representation and animation of human bodies play
an important role in computer graphics, vision, and biomechanics.
There have been significant recent advances in the creation of sta-
tistical body surface models, biomechanical anatomical models, and
techniques for extracting these models from motion capture data.
Body models. In vision and graphics, statistical body shape

models are widely used [Allen et al. 2003; Anguelov et al. 2005;
Loper et al. 2015; Osman et al. 2020, 2022; Pavlakos et al. 2019;
Wang et al. 2020; Xu et al. 2020]. These models are trained using 3D
scans of people with many body shapes in many poses and provide
an accurate representation of the human body surface. However,
their skeletal structure and their joint locations are not designed
to correspond to the anatomical functional joints of the body. For
example, their kinematic tree does not match the degrees of freedom
of the human anatomic skeleton. The knee and elbow flexion, the
spine, the elbow and the arm supination are typically modeled by
ball joints, while those functional joints have only one major degree
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of freedom or are more complex than a pure rotation, such as the
knee, spine, or the shoulder.

Predicting the location of joints, such as the femur head, from 2D
images of clothed individuals is inherently ill-posed because the joint
location is not directly observed. Instead of directly estimating joints
from video, one can fit, or regress, SMPL or SMPL-X body model
parameters [Kanazawa et al. 2018; Kocabas et al. 2020; Pavlakos
et al. 2019]. From SMPL one can then extract the 3D joint locations,
but unfortunately, SMPL joints are not anatomically correct. In this
paper, we quantify the error of the SMPL joint locations w.r.t. a
biomechanical model and learn a regressor that better predicts the
functional joint locations inside SMPL.
Biomechanical skeleton models. In contrast to body models,

skeletal models used in biomechanics, e.g. Rajagopal et al. [2016],
Seth et al. [2016], Nitschke et al. [2020], define the degrees of free-
dom of the human skeleton with a focus on anatomic realism. This
is critical for kinematic and kinetic analysis. The size and motion of
these skeleton models are computed from optical motion capture
data using optimization frameworks like OpenSim [Delp et al. 2007]
or AddBiomechanics [Werling et al. 2022]. This is the classical ap-
proach in biomechanics for measuring the precise location of the
functional joints.
Motion capture. While marker-based motion capture (mocap)

is the preferred method for analyzing movement, it is expensive,
invasive and time consuming. It is also hard to reproduce the exact
marker placement on different subjects and most methods assume
that the markers are rigidly attached to the body, which is not
true due to soft tissue motion. MoSh [Loper et al. 2014; Mahmood
et al. 2019] unifies mocap and statistical body models by fitting the
parameters of the model to match the marker data. This approach
can even mitigate the issues of soft tissue motion.
Traditional mocap, however, typically prevents subjects from

wearing normal clothing, complicating capture and limiting its ap-
plications. Consequently, many research and commercial solutions
for markerless motion capture exist [Bittner et al. 2022; Peng et al.
2023; Uhlrich et al. 2022]. For example, OpenCap [Uhlrich et al. 2022]
enables biomechanics from smartphone videos. They use OpenPose
[Cao et al. 2017] to detect the subject’s 2D joint locations in several
camera views and reconstruct their 3D locations. A biomechani-
cal skeleton model is then fit to these 3D joints. However, existing
2D joint detectors [Cao et al. 2017; Fang et al. 2023; Mathis et al.
2018] have limited biomechanical accuracy, since they are typically
trained using manually annotated 2D images. The “ground truth”
joint locations do not correspond to the actual functional 3D joint
locations. When the joints predicted from images are compared to
joint locations computed from motion capture systems [Needham
et al. 2021], the differences are as high as 30 to 50 mm for joints
such as the knee.

Bones inside bodies. Our goal is to properly place the skeleton
inside a parametric body model, providing the best of both worlds.
A common approach in previous work uses an anatomic skeleton
model and deforms it to register it to a target body mesh [Ali-
Hamadi et al. 2013; Gilles et al. 2010; Kadleček et al. 2016; Saito
et al. 2015; Zhu et al. 2015]. This registration is challenging as these
skeleton models do not, in contrast to SMPL, have a shape space

of deformations. Thus the applied deformations may create non-
plausible anatomies. In contrast, OSSO [Keller et al. 2022] learns to
predict the geometry of the bones from a SMPL body mesh. They
learn this 3D geometry from 2D medical images, where both the
surface of the person and the skeleton can be observed. Although
this approach gives a plausible skeleton shape that fits inside the
subject, the resulting skeleton model can not be easily animated as it
does not have a kinematic tree. For a lying pose, OSSO yields precise
skeletal geometry that is close to the ground truth scans, but the
reposing of the skeleton requires an optimization process that can
lead to biomechanically impossible poses. The recent BOSS model
[Shetty et al. 2023] improves on OSSO by learning a skin-bone-
organs model from segmented 3D medical data. While the skin and
skeleton model share the same shape space, their kinematic trees
used for rigging are different. This does not allow the synchronous
posing of both skin and skeleton and an expensive optimization
step is required.

Bodies from bones. Going in the other direction, one can infer
the body shape given a skeleton. For example, BASH [Schleicher
et al. 2021] uses the SCAPE body model [Anguelov et al. 2005] to
envelop a biomechanical skeletal and muscle model [Nitschke et al.
2020]. However, the SCAPE model is only scaled to match the limb
lengths of the skeleton. Shape accuracy is not critical because their
goal is to better visualize muscle activation by displaying it on the
human surface.

In contrast to prior work, SKEL provides a properly scaled skele-
ton inside any SMPL body model. Any optimization or regression
method that estimates SMPL parameters can now be used to pro-
duce biomechanical skeletal parameters. SKEL effectively connects
parametric shape models with biomechanical skeletons for the first
time to enable the integration of these technologies and fields.

3 METHOD OVERVIEW
Our driving goal is to create SKEL, a model that combines skin
and skeleton meshes in which both are synchronously rigged with
the same pose parameters q, and can be reshaped by inheriting
the SMPL shape space. To create this model, we must know the
location of the anatomic joints and bone rotations inside the human
body. There is no large-scale medical dataset of subjects in motion
where one can extract both the body and skeleton meshes, and static
medical scans do not fully constrain the skeleton in motion. For
this, we need bodies in motion and leverage the AMASS dataset
[Mahmood et al. 2019] to address this challenge. In Sec. 4 we first
present our new custom Biomechanical Skeleton Model, BSM, and
describe how to align it inside AMASS sequences of SMPL bodies in
motion to obtain the newBioAMASS dataset. Leveraging BioAMASS,
Sec. 5 shows how we learn the 𝑆𝐾𝐸𝐿(𝜷, q) model, which inherits
the shape space 𝜷 from SMPL and the pose vector q from the new
BSM biomechanical model. It enables direct animation of the skin
and the skeleton meshes using shape and pose parameters, 𝜷 and q,
respectively. Creating SKEL involves two important steps: learning
the bone locations and orientations (Sec. 5.1) inside the body, and
rigging the skin and bone motions to a common kinematic tree
parameterized by q (Sec. 5.2).
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4 THE BIOAMASS DATASET
The goal of the BioAMASS dataset is to enable the learning of the
location and orientation of the 3D bones inside a body surface in
motion. To create BioAMASS, we use the SMPL [Loper et al. 2015]
model for the body surface and a new biomechanical skeleton model,
BSM, for the bones. We first introduce these two models, and then
describe how we fit BSM to SMPL and create BioAMASS.

4.1 The SMPL body surface model
We model the 3D body surface using the SMPL function, which
takes as input shape parameters 𝜷 and pose parameters 𝜽 ∈ R72,
and outputs a 3D mesh with vertices v ∈ R6890×3. The SMPL model
includes a joint regressor defined in Eq. 10 of [Loper et al. 2015].
It computes the 3D joint locations of the kinematic tree for the
shape parameters 𝜷 . Each joint is parameterized by three degrees
of freedom in an axis-angle representation. The SMPL kinematic
tree is artist-defined and only approximately corresponds to the
human anatomy. The SMPL equation, summarized in Eq. 5 and 6 of
[Loper et al. 2015], first deforms a template mesh T using learned
deformations driven by the shape and pose parameters. Then linear
blend skinning (LBS) is used to pose the vertices and produce the
body mesh vertices.

4.2 The BSM skeletal model
To model the human skeleton, we create BSM, a custom skeleton
model using the OpenSim framework [Delp et al. 2007]; BSM is
described by a file in “.osim” format. BSM consists of 24 rigid groups
of bones with joints defined between them as well as a mesh repre-
senting the geometry of each bone group. On top of each bone, a
set of virtual markers is defined; these markers are used to fit BSM
to motion capture sequences.

The 𝐵𝑆𝑀 is represented by three functions that take scaling and
pose parameters as input. Using forward kinematics, these functions
output the skeleton joint locations, 𝐵𝑆𝑀 𝐽 (s, q), the bone meshes ver-
tices, 𝐵𝑆𝑀𝑣 (s, q), and the posed marker locations, 𝐵𝑆𝑀𝑚 (s, q,m0).
The scale parameter s ∈ R24×3 scales each of the 24 unposed bones
along the axis (x,y,z), while the pose parameters q ∈ R46 represent
the 46 degrees of freedom of the articulated model. The model mark-
ers are defined by designating their 3D coordinates m0 ∈ R𝑁𝑚×3

in the corresponding bone reference frame. Each marker is rigidly
attached to one bone and, when the bone is scaled with s, the marker
location is scaled accordingly. In contrast to SMPL, BSM has a more
realistic kinematic tree but lacks a shape space.
Body models like SMPL typically treat every joint as a ball joint

with three angular degrees of freedom. In reality, the joints of the
body differ significantly from this assumption. Consequently, for
BSM we use more realistic models of the spine, shoulder, and fore-
arm.
Lower body. For BSM’s lower body model, we use the model

from Rajagopal et al. [2016], which implements the knee flexion
model from Walker et al. [1988].
Spine.We extend the original OpenSim framework with a new

custom joint that we call “constant curvature”, to model the spine
bending with a constant length. Our BSM model’s spine is made of
3 such joints, enabling lumbar, thoracic, and cervical bending, as

(a) SMPL (b) Synthetic markers (c) BSM alignment

Fig. 2. Creation of the paired skeleton and body dataset. Given a SMPL
motion sequence (a), we generate synthetic markers (b), and fit a biome-
chanical model to the makers using AddBiomechanics [Werling et al. 2022]
(c).

illustrated in Fig. 9a. Given the parent joint location 𝐽𝑖−1 and a spine
curve of length 𝑙 , the child joint 𝐽𝑖 will move on a curve of constant
arc length and curvature, parameterized by one termination angle
q𝑖 = [𝑞𝑥 , 𝑞𝑧 , 𝑞𝑦] ∈ R3, represented as Euler-angles in XZY. The
child joint location is 𝐽𝑖 = 𝑅(q𝑖 ) · (𝐽𝑖−1 − 𝐽𝑖 ) + tspine (q𝑖 ), where

tspine (𝛼) =


𝑥 = (𝑟 − cos(𝛼)) ∗ −𝑠𝑖𝑛 (𝑞𝑧 )

𝑠𝑖𝑛 (𝛼)
𝑦 = 𝑟 · sin(𝛼)
𝑧 = (𝑟 − cos(𝛼)) ∗ 𝑐𝑜𝑠 (𝑞𝑧 )∗𝑠𝑖𝑛 (𝑞𝑥 )

𝑠𝑖𝑛 (𝛼)

with 𝛼 = arcsin
√︃
𝑠𝑖𝑛(𝑞𝑧)2 + (𝑐𝑜𝑠 (𝑞𝑧) ∗ 𝑠𝑖𝑛(𝑞𝑥 ))2, and 𝑟 =

𝑙

𝛼
.

(1)

Shoulder blades. In BSM we follow the Seth et al. [2016] model
and parameterize the shoulder blade joint such that it slides along
an ellipsoid defined around the thorax, making the scapula slide
along the ribs. The three degrees of freedom are linked to scapula
abduction, elevation, and upward rotation as illustrated in Fig. 9b.
Forearm. The forearm pronation and supination are modeled

by a single degree of freedom; which is distinct from the elbow
flexion, wrist flexion, and wrist deviation [Rajagopal et al. 2016].
The forearm is made of two bones: the radius and the ulna. The
ulna is linked to the humerus through a hinge joint, enabling the
elbow flexion. During the forearm pronation and supination, the
hand rotates while the ulna stays fixed. We model this by rotating
the radius along the axis defined by the ulna’s parent joint location
and the radius extremity as illustrated in Fig. 9c.

4.3 Fitting BSM to SMPL
To leverage the SMPL body meshes in AMASS, we define a mo-
cap marker set on the SMPL mesh and obtain synthetic sequences
of markers. We use these as input to fit our BSM skeleton using
AddBiomechanics [Werling et al. 2022], a recent biomechanical
optimization framework. Fig. 2 illustrates this pipeline.

4.3.1 Establishing marker correspondences with BSM. To fit BSM to
SMPL, we define the same markers on both models. Theoretically,
we could define each skin vertex of SMPL to be a marker attached
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Fig. 3. The markers defined on SMPL: bony in orange, soft in blue.

to BSM. But OpenSim rigidly attaches markers to the bones, hence
we define a set of markers that are mostly influenced by one bone
and not subject to significant soft tissue deformation.

Specifically, we define 57 bony markers that are close to the bones,
as typically done in motion capture. Each marker is defined on BSM
and SMPL by examining tight SMPL fits to 3D scans and identifying
specific SMPL vertices. Figure 3 shows all the bony markers on SMPL
in orange.
Although this marker set follows the rigidity assumption, is too

sparse in some areas to properly constrain the location of the bones.
So we introduce an additional 48 soft markers, located on soft body
parts (blue in Fig. 3). To define a new BSM marker, it needs to be
positioned on the BSM skeleton template.While this can be achieved
quite precisely for bony markers, it is harder to estimate at what
distance to the bones soft markers should lie. Moreover, this distance
varies significantly for different body shapes (e.g. due to adipose
tissue). Initializing markers close to the bones for subjects with
more adipose tissue can lead to AddBiomechanics over-stretching
the bones to fit the SMPL markers.
To address this marker offset issue, we propose a method to

automatically define markers on BSM with personalized offsets de-
pending on the body shape. We leverage the OSSO model [Keller
et al. 2022], which predicts the location and shape of the skeleton
inside SMPL. In contrast to BSM, OSSO models the geometry of
the skeleton with respect to the body shape and, as it was trained
on medical scans, it learned the offset between the bones and the
skin. We can thus use it to compute where skin markers should be
located with respect to the bone surface, given a body shape. We
first compute the relationship between the OSSO and BSM bones.
Precisely, we register each OSSO bone mesh to the corresponding
BSM bone mesh and effectively obtain all OSSO bones in the ref-
erence frames of the BSM bones. This relationship only needs to
be computed once. Then, for each AMASS subject, we use OSSO to
obtain their skeleton mesh. We use the lying down pose in which
OSSO is trained to obtain the best possible OSSO prediction. Now,
given a marker location on the SMPL mesh and the computed OSSO
bone mesh inside the body, we parameterize the marker location us-
ing the closest triangle on the OSSO bone mesh (Fig. 4a). This allows
us to transfer the marker location onto the OSSO bone mesh and,
consequently to the corresponding template BSM bone (Fig. 4b).

(a) Markers wrt OSSO (b) Markers in
the BSM bone
frame

(c) AddBiomechanics
fit result

Fig. 4. (a) The OSSO skeleton is aligned to the subject’s SMPL mesh. (b)
We deduce the personalized markers location m0 (𝜷) on the BSM bone
template. (c) On high BMI subjects, a shape-agnostic marker definition for
all subjects yields over-stretched bones (red). Using personalized marker
locationsm0 (𝜷) defined using OSSO prevents this over-stretching (green).

We use this method to generate a BSM model for each subject,
with personalized markersm0 (𝜷), thus avoiding over-stretching the
bones during the AddBiomechanics optimization, as shown Fig. 4c.
We experimented with different marker sets, adjusting their number
and placement, to obtain the best possible fits from AddBiomechan-
ics; i.e. minimizing the marker errors and yielding a satisfactory fit
visually.

4.3.2 Fitting BSM to motion data. With corresponding markers
defined on both SMPL and BSM, we can fit the BSM skeleton to
any SMPL mesh. Given a sequence of 𝑁𝑓 frames and 𝑁𝑚 target 3D
marker locations per frame, m𝑇

𝑘
(𝑘 ∈ {1, . . . , 𝑁𝑚}), extracted from

the sequence of SMPL meshes, we use AddBiomechanics [Werling
et al. 2022] to obtain the BSM scale parameters s and the 𝑁𝑓 poses
{q𝑓 }. We optimize a bi-level objective, to find the best s such that
inverse-kinematics with these scales yields poses {q𝑓 }with minimal
distance to the 𝑁𝑚 target markers:

argmin
s,𝜹

( ( 𝑁𝑓∑︁
𝑓 =1

argmin
q𝑓

𝑁𝑚∑︁
𝑘=1

𝜆𝑘 (BSM𝑚 (s, q𝑓 ,m0 (𝜷)+𝜹)𝑘−m𝑇
𝑘
)
)
+𝜆𝑝𝑃 (s, 𝜷)

)
,

(2)
where 𝜹 ∈ R𝑁𝑚×3 is a 3D per marker offset. The weighting factor
𝜆𝑘 ∈ R is set to a low value for soft markers and a high value for
bony markers to allow larger fitting errors due to secondary soft
tissue motions.

The prior 𝑃 regularizes the scale of the bones, given the subject’s
height, weight, and biological sex as in [Werling et al. 2022]. We
automatically estimate the height and weight of each subject from
their SMPL shape parameters 𝜷 , by assuming that the body has a
uniform density [Choutas et al. 2022; Pujades et al. 2019] and thus
re-parameterize this prior term as 𝑃 (s, 𝜷).

Despite the scale prior, using a generic marker set can lead to Ad-
dBiomechanics over-stretching the bones for heavy subjects. Defin-
ing personalized marker locations m0 (𝜷) on the skeleton template
as described in the previous section helps further regularize the
bone scales (Fig. 4c).
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We apply this optimization process to a subset of AMASS con-
sisting of 113 subjects and 2198 motion sequences, amounting to
over 9 hours of motion data. The paired SMPL meshes and BSM
skeletons form the BioAMASS dataset. For each subject 𝑝 there is
a SMPL body shape 𝜷𝑝 and the scaled personalized BSM model s𝑝 .
Further, for each motion frame 𝑓 it includes the bone angles q𝑓 as
well as the bone joint locations J𝐵

𝑓
. Figure 5 shows examples of the

BioAMASS dataset.

5 THE SKEL MODEL
Now we have BSM skeletons inside SMPL but we want to go fur-
ther and parameterize the 3D body model with the biomechanical
skeleton. To that end, we develop SKEL, which is designed to be
compatible with SMPL and posed like BSM. This allows us to lever-
age SMPL’s learned shape space as well as all the existing datasets
where SMPL bodies are estimated from different modalities. To cre-
ate SKEL, we must put SMPL vertices and the BSM skeleton together
in the same reference frame. We pose the BSM skeleton mesh inside
a SMPL body in T-pose, the zero-pose of the SMPL body model. To
that end, in Sec. 5.1, we learn to regress the anatomical joint loca-
tions from SMPL using the BioAMASS dataset. Then, in Sec. 5.2 we
describe how we rig the SMPL model using the BSM joint rotations.
Note that, in SMPL, all joint orientations are defined in a global

T-pose space with an axis-aligned frame of reference for each joint
as illustrated in Fig. 6 right. This means that SMPL assumes, for
example, that the elbow rotation axis is aligned with the world
y-axis, independent of the orientation of the humerus. The over-
parametrized nature of SMPL allows plausible arm articulation by
combining several axis rotations. But BSM, with its reduced degrees
of freedom for the rotations, requires the local frame on which the
rotation is applied to be precisely aligned with the anatomy in order
to obtain a proper anatomic rigging. In addition, the location and
orientation of the humerus and ulna bones have to be coherent with
the rotation axis. In SMPL this coherence does not exist: the joint ref-
erence frames are not aligned with the articulation axis. As shown
in Fig. 6, the elbow frame is not aligned with the segment defining
the humerus position. Hence, we first learn to predict the location of
the joints inside SMPL and, with these, we learn to properly orient
the bones inside a SMPL body mesh.

Fig. 5. BioAMASS: examples of BSM fits to AMASS poses.

Fig. 6. Left: SKEL kinematic tree with learned anatomical joint locations.
Right: SMPL’s kinematic tree.Middle: the superposition of both. In con-
trast to SMPL, which has axis-aligned rotation axes, SKEL’s rotation axes
are bone-aligned.

5.1 Establishing the bone locations and orientations
Anatomical joint locations. Given paired SMPL body meshes and

their corresponding BSM anatomic joint locations, we learn a func-
tion that predicts the joints from the body surface. We proceed
similarly to Loper et al. [2015] by learning a joint regressor J that
takes as input the SMPL mesh vertices vsmpl ∈ R6890×3 and predicts
the new anatomic joints J𝐵 ∈ R24×3. We follow the Keller et al.
[2022] OSSO methodology, by formulating a non-negative least
squares problem for each joint 𝑖 , and solving it with an active set
method [Lawson and Hanson 1995]. We train these regressors from
the posed vertices and joints of the BioAMASS dataset.

Figure 6 shows the new regressed kinematic tree in green. Notice
that the hip joint locations, corresponding to the femur heads, are
more anatomically correct than the ones in SMPL. The comparison
also shows significant differences at the shoulders, as well as more
subtle, but important, differences for the other joints.

Bone orientations. We aim to find the orientation of the bones
inside the SMPL T-pose mesh, i.e. find the rotation 𝑅𝑖 to apply to the
i-th BSM bone template mesh, to position it inside the SMPL T-pose
mesh. In BSM, the rest position of each individual bone template
is centered at the origin and oriented along the canonical axis x, y,
z. In the following, we refer to the “bone axis” as the axis passing
through the bone’s proximal and distal ends.
In contrast to BSM, in SMPL T-pose, the bones should be posi-

tioned and oriented between pairs of regressed anatomical joints.
This brings two challenges: (i) the rotation of the bone around its
bone axis is not known, and (ii) as the regressed joint location de-
pends on 𝜷 , the orientation of the bones also varies with 𝜷 .

To solve those two issues, we split the bone rotation 𝑅𝑖 (𝜷) into a
learned base rotation 𝑅𝑏𝑎𝑠𝑒

𝑖
and a shape-dependant rotation 𝑅𝜷

𝑖
(𝜷):

𝑅𝑖 (𝜷) = 𝑅𝜷𝑖 (𝜷) · 𝑅
𝑏𝑎𝑠𝑒
𝑖 , (3)

where 𝑅𝑏𝑎𝑠𝑒
𝑖

is learned to define the bone’s orientation around its
bone axis, ensuring that bones are properly orientated wrt their
parent bone. 𝑅𝜷

𝑖
(𝜷) is computed dynamically to align the bone to

the segment defined by its parent and child joints, so that the bone
stays in its socket regardless of the shape of the subject.
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Fig. 7. Left: Humerus template in the rest pose. We want to find its transfor-
mation to position it inside SMPL’s arm. On the right we show, in order: a)
the anatomical bone joints 𝐽 𝑟𝑒𝑔

𝑖
regressed from SMPL skin vertices (pink).

b) We center the bone on 𝐽
𝑟𝑒𝑔

𝑖
and orient it with 𝑅𝑏𝑎𝑠𝑒

𝑖
. This provides a

rough alignment, rotating the bone properly around its bone axis. c) We
then compute and apply the personalized rotation 𝑅

𝜷
𝑖
(𝜷) to perfectly align

the bone with the limb segment. Notice how the ulnar head now properly
fits in the humerus distal end.

First, we learn 𝑅𝑏𝑎𝑠𝑒
𝑖

from BioAMASS. For each bone 𝑖 , we can
define a corresponding SMPL joint and limb. For example, the right
humerus bone corresponds to the 17th joint and the right upper
arm of SMPL. Thus, for each frame 𝑓 of our dataset, we obtain the
bone BSM rotation 𝑅𝐵

𝑖,𝑓
and its SMPL rotation 𝑅𝑆

𝑖,𝑓
.

𝑅𝑏𝑎𝑠𝑒
𝑖

is the rotation that the bone needs to undergo so that when
chained to the SMPL rotation, the corresponding BSM rotation
is obtained. For each bone 𝑖 we learn its base rotation 𝑅𝑏𝑎𝑠𝑒

𝑖
by

minimizing

𝑁𝐹∑︁
𝑓 =1

(𝑅𝐵
𝑖,𝑓

− 𝑅𝑆
𝑖,𝑓
𝑅𝑏𝑎𝑠𝑒𝑖 )2 (4)

over the 𝑁𝐹 frames of the dataset.
This rotation properly orients the bone around its bone axis. But,

as shown in Fig. 7, this rotation alone does not guarantee that the
bones are aligned between their T-pose parent and child joints.

Thus we explicitly compute 𝑅𝜷
𝑖
(𝜷), a shape-dependent corrective

rotation that aligns the bone segment (𝑅𝑏𝑎𝑠𝑒
𝑖

(𝐽 𝑟𝑒𝑠𝑡
𝑖+1 − 𝐽 𝑟𝑒𝑠𝑡

𝑖
)) with

(𝐽 𝑟𝑒𝑔
𝑖+1 (𝜷) − 𝐽

𝑟𝑒𝑔

𝑖
(𝜷)), where 𝐽 𝑟𝑒𝑠𝑡

𝑖
is the location of joint 𝑖 in the bone

rest pose and 𝐽 𝑟𝑒𝑔
𝑖

(𝜷) is the shape-dependent regressed joint. The
rotation axis of 𝑅𝜷

𝑖
(𝜷) is computed from the cross-product of the

segments. As shown in Fig. 7, this effectively ensures a proper fit of
the bone geometry into the regressed joint location.
It is worth noting that computing a direct rotation between the

rest bone and the regressed segment (𝐽 𝑟𝑒𝑔
𝑖+1 (𝜷) − 𝐽

𝑟𝑒𝑔

𝑖
(𝜷)) leaves a

degree of rotation open: the rotation around the bone axis. With
the proposed approach, we obtain an anatomically coherent place-
ment of the skeleton. Thanks to BioAMASS, a consensus orientation
𝑅𝑏𝑎𝑠𝑒
𝑖

is found, which is then specialized per subject with 𝑅𝜷
𝑖
(𝜷).

Effectively, the per-joint 𝑅𝑏𝑎𝑠𝑒
𝑖

is learned from the dataset once and

Fig. 8. Left: Rigging the skeleton to the regressed joints and posing them
using SMPL parameters 𝜽 can yield unrealistic articulations. We see that
the humerus posed with the SMPL upper arm transformation does not yield
the correct humerus orientation. Right: BSM fit for the same frame.

kept fixed, and each per-joint 𝑅𝜷
𝑖
(𝜷) is recomputed when the shape

parameters change.

5.2 Building SKEL: A single rig for skin and bones
As we saw in Fig. 6, the SMPL kinematic tree is not suited to rig
the skeletal structure, as its joints do not match the anatomic ones.
Moreover, because of its over-parameterization, applying SMPL’s
transformation to the bones can yield unrealistic bone orientations,
as shown in Fig. 8.
Consequently, we re-rig SMPL with new anatomic degrees of

freedom using the learned bone locations and orientations (Sec. 5.1).

The SKEL function. The SKEL function takes as input a vector
of SMPL shape parameters, 𝜷 , and the q ∈ R46 pose parameters of
BSM. SKEL outputs (vskin, vskel, J) where vskin are the body surface
vertices, vskel the skeleton mesh vertices, and J the learned anatomic
joint locations.
Skin. SKEL builds on the additive approach of SMPL, starting

with a mean template mesh T ∈ R6890×3 and adding the learned dis-
placements 𝜷 ·𝑩𝑺 +𝐵𝑃 (q), where 𝑩𝑺 is the PCA shape basis learned
in Loper et al. [2015] and 𝐵𝑃 (q) are pose dependent displacements.
The posed SKEL body vertices vskin are then computed with the
following linear blend skinning equation:

vskin (𝜷, q) =

𝑁 𝐽∑︁
𝑖=1

𝑊 skin
𝑖 𝐺skin

𝑖 (q, 𝜷)
 (T + 𝜷 · 𝑩𝑺 + 𝐵𝑃 (q)) (5)

where 𝐺skin
𝑖

(q, 𝜷) is a rigid transformation that will be defined in
Eq. (6). It translates and rotates the vertices associated with the
i-th limb depending on the pose parameter q.𝑊 skin

𝑖
is a 6890 × 24

matrix of skinning weights indicating how the vertices of the SMPL
mesh are affected by each rigid transformation 𝑖 . Those weights are
inherited from SMPL, by defining a corresponding SMPL joint for
each of the 𝑁 𝐽 = 24 joints of SKEL.
To define the transformations 𝐺skin

𝑖
we use the composition of

rigid transformations 𝑇 (R, t) defined by a rotation matrix R and a
translation t, as well as per-joint local transformations 𝐺𝐵

𝑘
(q𝑖 , 𝜷),

which are pure rotations for most joints, and a combination of rota-
tion and translation for the spine and shoulder blades as explained
in Sec. 4.2. The global transformation to apply to the skin vertices
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is computed as 𝐺skin
𝑖

(q, 𝜷) =

𝑖∏
𝑘=0

𝑇 (𝑅𝑘 (𝜷), J𝑘 (𝜷)) 𝐺𝐵
𝑘
(q𝑘 , 𝜷) 𝑇 (𝑅𝑘 (𝜷), 0)−1 𝑇 (0, J𝑘 (𝜷))−1 (6)

The green term transforms the i-th limb vertices back to the un-
posed bone space, by centering it on its joint location𝑇 (0, J𝑘 (𝜷))−1,
and undoing the T-pose bone rotation 𝑇 (𝑅𝑘 (𝜷), 0)−1. Then, the
joint-specific transformation 𝐺𝐵

𝑘
(q𝑘 , 𝜷) is applied. Finally, the bone

vertices are posed back to SMPL’s posed space by applying the rota-
tion 𝑅𝑘 (𝜷) and the translation J𝑘 (𝜷). J𝑘 (𝜷) is the k-th joint location
in T-pose (q = 0) as defined in Eq. (7). The leading product enforces
the kinematic tree structure.
The pose-dependent deformations of SKEL are inherited from

SMPL. For each degree of freedom of SKEL, we define a correspond-
ing degree of freedom of SMPL and transfer the pose-dependent
deformations 𝐵𝑃 𝑖 (q𝑖 ). For SKEL’s joints that do not have an equiva-
lent joint in SMPL, we default to linear blend skinning with no pose
correctives. While this transfer is not optimal and creates artifacts
in extreme poses (see Sup. Video), SKEL can match SMPL meshes
with an average vertex-to-vertex error below 3 cm; see Fig. 12. We
leave the learning of SKEL-specific pose-dependent deformations
using BioAMASS for future work.
Joints. SKEL’s unposed joints are regressed from the unposed

skin vertices vskin (𝜷, q = 0) with the learned anatomical joint re-
gressor J , to get the unposed joints J𝐵 (𝜷). Those joints are then
posed with the parameter q, like the skin vertices, by applying the
rigid transformations 𝐺𝑠𝑘𝑖𝑛

𝑖
:

J(𝜷, q) =

𝑁 𝐽∑︁
𝑖=1

𝑊
𝐽
𝑖
𝐺𝑠𝑘𝑖𝑛
𝑖 (q, 𝜷)

 J𝐵 (𝜷) (7)

only with different weights𝑊 𝐽
𝑖
that ensure that the proper joint

is affected by the transformation. Note that for SKEL we use a
simplified hinge joint at the knee.

Skeleton. To obtain the shaped and posed skeleton mesh, a sim-
ilar equation is used. We name the initial skeleton template mesh
T𝐵 in which every bone mesh is axis-aligned and has its parent
joint at the world’s origin (Fig. 4b right shows the unposed template
femur). This mesh is scaled using 𝑠 (J𝐵 (𝜷)), a per-bone scaling factor
defined by the regressed joint locations, namely the limb lengths
they define. Then the scaled vertices are posed to obtain the posed
skeleton vertices

vskel (q, 𝜷) =

𝑁 𝐽∑︁
𝑖=1

𝑊 skel
𝑖 𝐺skel

𝑖 (q, 𝜷)
 (𝑠 (J𝐵 (𝜷)) · T𝐵) (8)

where𝑊 skel
𝑖

are boolean per-bone weights, except for the spine
and rib cage where the weights are interpolated to be 0 at the
bottom of the spine section and 1 at the top. The skeleton vertex
transformations are computed with

𝐺skel
𝑖 (q, 𝜷) =

𝑖∏
𝑘=0

𝑇 (0, J𝑘 (𝜷)) 𝑇 (𝑅𝑘 (𝜷), 0) 𝐺𝐵
𝑘
(q𝑘 , 𝜷) (9)

(a) Lumbar flexion, thorax extension, and head twist.

(b) Scapula’s abduction, elevation, and upward rotation.

(c) Left: axis of rotation of the radius (lateral view). Right: forearm
supination and pronation (top view).

Fig. 9. Illustration of SKEL’s degrees of freedom. The bone and body surface
meshes are controlled by the same kinematic tree.

in which the unposed bone mesh is transformed by the joint trans-
formation 𝐺𝐵

𝑘
(q𝑘 , 𝜷), then oriented with 𝑅𝑘 (𝜷) to be aligned with

the limb’s skin and translated to its T-pose joint J𝑘 (𝜷).
Finally, we define the range of possible angles for specific degrees

of freedom like the shoulder blades, knee, arms, and spine motions.
Figure 9 illustrates SKEL’s degrees of freedom for the spine, shoulder
blades, and arm pronation. Note that the deformation of the body
surface (pink) is driven by the BSM pose, thus combining the SMPL
surface model with an anatomical skeleton.

6 EVALUATION
In this section, we evaluate the fit accuracy of the BioAMASS dataset,
the learned anatomical joint regressors, and the skeleton meshes
obtained by fitting SKEL to SMPL meshes.

6.1 Evaluating BioAMASS fits
In Sec. 4 we simulate optical motion capture markers on SMPL
sequences and fit the BSM biomechanical skeleton to them. We
evaluate these fits by computing the Mean Absolute Error (MAE)
between the target and the fitted markers. In Tab. 1, for each subset
of AMASS, we report the average error of bony and soft markers
across all frames. For comparison, these distances are similar to the
body shape reconstruction error from markers reported in [Loper
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Fig. 10. Anatomical joints regression error over the female DFAUST dataset.

et al. 2014] and significantly more accurate than the held-out marker
error [Loper et al. 2014].

6.2 Joint regressors
We evaluate the regressors learned in Sec. 5.1 on unseen body
meshes by comparing the regressed values with the reference BSM
alignment. We train our anatomical joint regressors on the CMU
[CMU Graphics Lab 2000] and MPI_Limits [Akhter and Black 2015]
datasets, which are part of AMASS [Mahmood et al. 2019]. CMU con-
tains good variation in body shape, while MPI_Limits contains ex-
treme poses. Once trained, we evaluate our regressor on the DFAUST
dataset [Bogo et al. 2017], with various motion sequences for 10
subjects with diverse BMIs; DFAUST contains precise SMPL fits to
3D scan sequences.
For each frame of the DFAUST dataset, BioAMASS provides the

anatomical joint locations J𝐵 that we consider ground truth. Then,
from the frame’s SMPL mesh, we use our learned joint regressor to
regress the anatomical joint location J𝑟𝑒𝑔 . In Fig. 10 we report the
per joint regression errors |J𝑟𝑒𝑔

𝑖
− J𝐵

𝑖
|, which are below a centimeter

for most joints. Some joints, such as the humerus, have higher errors.
We inspected the outlying frames and observed some failure cases of
the AddBiomechanics fits for the shoulder joints, which explains the
higher values. The regressed anatomical joints are, in these cases,
more plausible than those obtained with BSM, as we show in the
supplementary video.

Table 1. Marker fitting error of the BSM model on the AMASS dataset.

MAE in (cm) Bony markers Soft markers

DFAUST 1.54 2.00
CMU 1.70 2.37
MPI_Limits 1.70 2.37

Further, we evaluate the femur and tibia joint location given by
different methods as shown in Fig. 11. We consider J𝐵 as the ground
truth joint locations and compute the 3D Euclidean distance error
of the joints given by SMPL, J𝑠𝑚𝑝𝑙 , the anatomical joints we regress
from SMPL, J𝑟𝑒𝑔 , and the anatomical joints, J𝑠𝑘𝑒𝑙 , obtained by fitting
fit SKEL to the SMPL mesh. As expected, the SMPL joints have
higher error compared to the learned anatomical ones.
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Fig. 11. On DFAUST female subjects, we predict the joint locations and show
the Euclidean distance errors wrt the “ground truth” BSM joint location for
the right femur (left) and right tibia (right). We compare 3 methods: J𝑠𝑚𝑝𝑙 :
using the joints directly from the SMPL fit to the DFAUST bodies. J𝑟𝑒𝑔 : joint
regressed from the SMPL mesh using our learned anatomical joint regressor.
J𝑠𝑘𝑒𝑙 : anatomical joints obtained by fitting SKEL to the SMPL mesh.

6.3 SKEL fits to SMPL
Since SKEL has the same surface mesh topology and shape param-
eters 𝜷 as SMPL, it can be directly fit to existing SMPL meshes by
optimizing its pose parameters to minimize the vertex-to-vertex
error.

To quantitatively evaluate how similar SKEL shapes are to SMPL,
we consider motion sequences from the DFAUST dataset and their
SMPL fits with 10 shape parameters. We fit SKEL to each of these
SMPL meshes by optimizing its pose parameters q. To evaluate the
mesh fits, we compute the mean absolute difference (MAD) between
SKEL skin vertices and the target SMPL vertices, and then average
over all the frames. For males, we find an average difference of
1.1 cm and an average max difference of 2.5 cm, while for females
we obtain an average mean difference of 0.9 cm and max of 1.9
cm. A visualization of these differences on the SMPL body mesh
is shown in Fig. 12. The larger differences can be explained by the
approximate pose-dependant blend shapes inherited from SMPL,
which could be retrained in future work.

Fitting SKEL to SMPL provides joint locations with similar accu-
racy as the regressed ones, as reported on Fig. 11. Let us note that
direct joint regression is faster than estimating the SKEL model fit.
Applications that require the joint locations but not the skeleton
pose parameters, and for which time is critical, should prefer the
direct regression approach.
Upgrading SMPL datasets with SKEL. Since SKEL is compatible

with SMPL, we can fit SKEL to SMPLmeshes from the 3DPW dataset
[Von Marcard et al. 2018] and the synthetic BEDLAM [Black et al.
2023] dataset (Fig. 13) . The full sequences are shown in the supple-
mentary video. This effectively upgrades these datasets to include
biomechanical pose parameters.
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Fig. 12. Average per vertex distance between SKEL and SMPL fit to the
females of the DFAUST dataset. Blue: 0 cm, Red 2cm.

Fig. 13. SKEL can be fit to existing SMPL datasets to upgrade them with
biomechanical pose parameters. Left: SKEL skeleton mesh on a frame of
3DPW [Von Marcard et al. 2018]. Right: SKEL skeleton mesh on a frame of
BEDLAM [Black et al. 2023].

6.4 Qualitative comparisons with OSSO
SKEL fits to SMPL also yield anatomically correct orientations of
the bones. To illustrate this we compare the SKEL predictions to
OSSO skeletons [Keller et al. 2022] on the MOYO dataset [Tripathi
et al. 2023]. The SKEL skeletons yield more anatomically correct
joint location and biomechanically relevant bone angles, as visible
in Fig. 14; see, for example, the knee orientation as well as arm
supination. See Sup. Mat. and Sup. Video for more examples.

6.5 Disentangling body shape and bone lengths
Since our skeletonmesh is fully defined by the joint segment lengths,
we can modify the body shape of a person, while maintaining their
skeletal identity. This can be helpful for generating a plausible skin
mesh from a given biomechanical skeleton. As illustrated in Fig. 15,
we optimize the SKEL shape parameters 𝜷 to fit a subject’s limb
lengths with different target weights. This results in body meshes
with different body shapes but the same bone lengths.

7 DISCUSSION AND CONCLUSION
In this paper we describe SKEL, a new parametric 3D human body
shape model driven by anatomically sound parameters, providing
consistent skin and bone geometries. SKEL is learned from BioA-
MASS, a new dataset of skeletons inside SMPL meshes in diverse

Fig. 14. Qualitative comparison between the OSSO and SKEL skeletons
fitted to MOYO SMPL meshes [Tripathi et al. 2023]. From left to right: Input
SMPL mesh, OSSO skeleton, SKEL skeleton. First row: Due to the anatomic
degrees of freedom of SKEL, the humerus and femur orientation are properly
recovered, while OSSO fails. Second row: OSSO does not model the forearm
supination: the radius is not properly rotated with respect to the ulna. The
forearm bones have an anatomically correct orientation inside SKEL.

Fig. 15. Given an input skeleton, and a target weight, SKEL can generate
plausible skins while preserving the skeletal structure. From left to right,
we set the weight to be 70, 100, and 130 kg.

AMASS poses. We build BioAMASS by optimizing BSM, a new
biomechanically accurate skeleton model, to fit inside SMPL mesh
sequences. Using this paired internal and external data we then
learn a regressor from SMPL mesh vertices to the anatomic joint
locations and bone orientations. SKEL inherits the shape space from
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SMPL and the new anatomic kinematic parameters from BSM. From
the point of view of vision and graphics, the new model can be used
in place of SMPL and it has fewer and more anatomically sound
pose parameters (46 for SKEL vs 72 for SMPL). This is advanta-
geous, for instance, to regress more accurate anatomic joints from
video compared to current approaches solely based on SMPL joints.
From the biomechanics point of view, SKEL provides a shape space,
which is advantageous to adapt the model to varied body shapes
without overstretching certain bones. In addition, it provides an
animatable model that can take BSM poses and add a SMPL skin for
visualization.

BioAMASS accuracy limitation. Although the skeletal structures
and joint locations computed by AddBiomechanics are anatomically
plausible, they should not be considered as actual ground truth, but
rather a pseudo-ground truth. Obtaining actual ground-truth bone
measurements of people in motion is not technically feasible. Thus
we rely on marker-based motion capture to obtain estimates of bone
motion; this is the current “gold standard" in biomechanics. Thus
we inherit the accuracy limits of this method, especially for the
humerus head prediction, as shown in Fig. 10. A key next step is
to use SKEL in the diagnosis of disease and injury and to compare
this with traditional motion capture methods. This is necessary
to validate the clinical relevance of the model and methods. It is
worth noting that the learning and rigging pipeline described in
Sec. 5 are, in fact, independent of the biomechanical model. If a
new biomechanical model is clinically validated, one can rerun our
approach with it to obtain an improved dataset and model.

SKEL extensions and future work. There are several directions
for extending and improving SKEL. For instance, in the current
model the hands of SKEL are rigid. Using a biomechanical model
with more expressive hands, our approach could be used to put
it in correspondence inside SMPL-X [Pavlakos et al. 2019]. The
bone locations could also be supervised with static medical data
observations, such as the ones provided by [Wang et al. 2019].

Additionally, the current SKELmodel inherits the skinningweights
and pose-dependent blend shapes from SMPL. These could be re-
trained from the BioAMASS dataset to make the skin surface de-
formation more accurate. Ideally, the pose-correctives should be
retrained from 3D scan data with BSM as the native parameteri-
zation. This would allow the pose-corrective offsets to be directly
learned as a function of BSM parameters.
Finally, SKEL is a step towards a more complete model of the

body in motion. A next step is to add muscle geometry and muscle
activation. For example, we can exploit the estimated BSM skeleton
to infer muscle activation using standard biomechanics techniques.
This would allow us to upgrade BioAMASS with estimated muscle
activity.

Conclusion. In summary, SKEL effectively connects data-driven
parametric body shape models with biomechanical skeletons for
the first time to enable the integration of these technologies and
fields, paving the way towards a new generation of body models
and methods that combine the best of both worlds.
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