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ABSTRACT

Graph Representation Learning (GRL) has made great progress by optimizing
node representations through constructing multiple views and employing mutual
information maximization or contrastive learning methods. However, existing
methods typically rely on graph augmentation to construct node- and graph-level
views by maximizing inter-view consistency. This strategy tends to force dif-
ferent views toward homogeneity, and may discard critical information in the
graph data. Meanwhile, views at different hierarchical levels exhibit inherent
limitations: node-level views are sensitive to noise, and graph-level views over-
look local structural information. In this work, we propose Multi-view Graph
Representation Learning with Disentanglement via joint contrastive optimiza-
tion (MGDRL). Multi-view graph disentanglement (MGD) promotes divergence
among representations across different views, forming decoupled views. How-
ever, disentanglement alone may lead to meaningless representations. Therefore,
we employ fuzzy self-attention mechanism to construct an aggregation graph and
achieve synergistic constraints between the aggregation graph and MGD through
joint contrastive optimization. Joint contrastive optimization guides decoupled
views toward distinct and diverse information while also extending contrastive
learning to the subgraph-level of the aggregation graph, integrating local and
global information. Experimental results on benchmark datasets demonstrate the
superior performance of MGDRL.

1 INTRODUCTION

Graph Neural Networks (GNNs) propagate information between nodes through a message-passing
mechanism, modeling local structural patterns, and have demonstrated exceptional performance in
tasks such as node classification (Shen et al., 2025), link prediction (Cai et al., 2021), and graph
classification (Zhang et al., 2018). Most existing GNNs are trained in a supervised manner, but they
often rely on large amounts of labeled data, which limits their applicability in tasks such as protein
function prediction (Zhang et al., 2024c) where expert annotations are scarce, and as network depth
increases, they become prone to over-smoothing, reducing their discriminative ability (Li et al.,
2018).

Graph Representation Learning (GRL) combines view-invariance learning with graph structural
properties (Zhao et al., 2025), using self-supervised methods to extract salient information from the
data and thereby reduce the model’s dependence on labeled examples. As one of the core paradigms
of GRL, Graph Contrastive Learning (GCL) aims to learn representations by constructing different
views of samples and comparing positive and negative instances in the embedding space (Zhang
et al., 2023; Li et al., 2023; Zhang et al., 2024a).

To enhance the generalization and robustness of representation learning on graph-structured data,
GCL employs various graph augmentation techniques to generate augmented views (Ding et al.,
2022), such as feature masking (Zhu et al., 2021; You et al., 2020), edge perturbationRong et al.
(2020), node dropping (You et al., 2020), subgraph samplingQiu et al. (2020). After obtaining
different views, most GCL methods learn discriminative and invariant essential representations in
graph data by maximizing mutual information (Veličković et al., 2019). Mutual information maxi-
mization methods can be categorized into two types (Zhao et al., 2025). The first (Veličković et al.,
2019; Peng et al., 2020; Zhao et al., 2023) constructs positive and negative sample pairs between

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

node representations and a global graph or a local summary. The second maximizes a lower bound
on mutual information (Gutmann & Hyvärinen, 2010; Oord et al., 2018; Sohn, 2016). Despite the
flourishing development of GCL, this paradigm still has some drawbacks.

Theoretical and empirical research both indicate that effective augmented views should exhibit diver-
sity while preserving the integrity of task-relevant information (Tian et al., 2020; Gong et al., 2023).
However, most existing GCL methods employ manual graph augmentation strategies (Ding et al.,
2022), which cannot guarantee that task-relevant information is preserved and may even severely dis-
rupt graph topologies highly related to downstream tasks, resulting in low-quality embeddings (Zhu
et al., 2021).

On the other hand, existing GCL methods focus on generating node- and graph-level contrastive
views (Zhao et al., 2025). Node-level views can effectively capture feature information for individual
nodes. However, they are highly sensitive to feature perturbations and node noise (Ju et al., 2024).
Graph-level views provide a global representation, but because they rely on global pooling, they
struggle to preserve structural patterns such as functional modules or intra-community dependencies,
resulting in ambiguity in local semantics (Ying et al., 2018). In addition, existing GCL methods treat
corresponding nodes across different views as positive pairs (Shen et al., 2023), which drives the
representations of the views to converge toward similarity and fails to fully exploit the multi-view
capacity to capture diverse representations.

To obtain more diverse representations without applying graph perturbations and to overcome the
limitations of contrastive views, we propose MGDRL, a graph representation learning framework
that performs multi-view graph disentanglement (MGD) via joint contrastive optimization. In MG-
DRL, we employ MGD to generate three decoupled views of graph data, enabling diverse repre-
sentations across the decoupled views without compromising critical graph information. However,
the driving force provided by disentanglement alone is insufficient and may lead to meaningless
representations. Therefore, we propose joint contrastive optimization, utilizing contrastive learning
as a constraint for MGD to drive decoupled views to learn diverse semantic information. First, we
aggregate the decoupled views through fuzzy self-attention to obtain the aggregation graph. Based
on their distinct roles in the aggregation process, these decoupled views are designated as the transi-
tion (t), readout (r) and embedding (e) views, respectively. Then, we use the aggregation graph and
decoupled view e as contrastive objectives to perform node-subgraph and subgraph-subgraph level
comparisons, which we refer to as subgraph contrastive learning. Using joint contrastive optimiza-
tion not only encourages the decoupled views to focus on distinct and diverse information, but also
extends the contrastive objective to subgraph-level views, thereby achieving a integration between
local and global information. The main contributions of this work are as follows:

• We construct MGD to obtain decoupled views that capture diverse information without
graph augmentation.

• We propose subgraph contrastive learning, which extends the contrastive objective to the
node-subgraph and subgraph-subgraph levels, enabling the aggregation graph to integrate
local and global information.

• We propose joint contrastive optimization, which uses fuzzy self-attention aggregation as
a bridge between MGD and subgraph contrastive learning, to obtain diverse information
across decoupled views and comprehensive node- and graph-level representations in the
aggregation graph.

• Experimental results on multiple datasets show that MGDRL performs excellently on semi-
supervised node classification and node clustering tasks, even outperforming some super-
vised GNNs.

2 RELATED WORK

Graph Augmentation In GRL, before performing contrastive learning, the original graph is aug-
mented in various ways to obtain multiple augmented views. For example, GraphCL (You et al.,
2020) systematically introduced four basic augmentation operations, namely feature masking (Zhu
et al., 2021; You et al., 2020), edge perturbation (Rong et al., 2020), node dropping (You et al.,
2020) and subgraph sampling (Qiu et al., 2020), to construct augmented views. GRACE (Zhu et al.,
2020) and CCA-SSG (Zhang et al., 2021) use random edge perturbation and feature masking to
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generate two views. MVGRL (Hassani & Khasahmadi, 2020) constructs augmented views using
graph diffusion. SubgDiff (Zhang et al., 2024b) incorporates molecular subgraph information into
diffusion to enhance the awareness of the denoising network of molecular substructures. To better
align graph augmentations with downstream tasks, adaptive augmentation methods have gradually
emerged. GCA (Zhu et al., 2021) applies selective augmentations based on graph structure and node
feature importance, assigning higher masking probability to less important elements. AutoGCL (Yin
et al., 2022) adjusts perturbation strength dynamically to balance diversity and the integrity of task-
relevant information. GOUDA (Zhuo et al., 2024) employs a learnable unified graph augmentation
module to simulate arbitrary explicit graph augmentations. To avoid information loss and reduced
generalization from handcrafted augmentations, GraphACL (Xiao et al., 2023) captures 1-hop local
neighborhood information and two-hop monophily similarity without augmentation. S3GCL (Wan
et al., 2024) generates low-pass and high-pass biased views using cosine parameterized Chebyshev
polynomial filters.

Contrastive Methods The contrastive method in GRL comprises two components, contrastive
views and contrastive objectives. Contrastive views determine the structural and semantic levels the
model can capture, while contrastive objectives determine how the model measures sample similar-
ity and carries out optimization (Zhao et al., 2025). Contrastive objectives primarily focus on com-
parisons at the node-node and node-graph levels (Xie et al., 2022). At the node–graph level, methods
commonly optimize local–global mutual information using the Bayes–Shannon lower bound or the
Jensen–Shannon divergence. For instance, DGI (Veličković et al., 2019) maximizes the mutual in-
formation between the node embeddings of the original graph and the global graph summary and
uses the corrupted graph as the negative sample. MVGRL (Hassani & Khasahmadi, 2020) performs
multi-view contrast by comparing two sets of node-level views with the global graph summary in
order to maximize inter-view mutual information. Node-node level contrast typically uses noise
contrastive estimation (InfoNCE) or normalized temperature-scaled cross-entropy (NT-Xent) loss
to bring positive sample pairs closer in the embedding space while pushing negative sample pairs
farther apart. For example, NCLA (Shen et al., 2023) introduces a neighbor contrastive loss that
regards the anchor and its neighbor nodes across different augmented node views as positive pairs,
and all other nodes as negative pairs. GTCA (Liang et al., 2025) proposes a multi-positive sample
contrastive loss that uses the intersection of k nearest neighbor sets from multiple views as positive
samples, treating all remaining samples as negative samples.

3 PRELIMINARIES

Let G = (V, E) denote a graph, where V = {v1, · · · , vN}, E ⊆ V × V represent the node set and
the edge set respectively. X ∈ RN×F and A ∈ {0, 1}N×N denote the node feature matrix and the
symmetric adjacency matrix, where xi ∈ RF is the feature vector of vi and Aij = 1 iff (vi, vj) ∈ E ,
otherwise Aij = 0. Ni represents the first-order neighbors of node i in the graph. Si = Ni ∪ {vi}
denotes the subgraph centered on node i and containing its 1-hop neighbors. Given X and A as
the input, the proposed model employs the GNN encoder f(X,A) to learn the representations of
nodes H = f(X,A) ∈ RN×F ′

, F ′ ≪ F . The aggregation graph is generated by aggregating the
decoupled views. These views are learned by optimizing the joint contrastive loss, without access to
the labels of downstream tasks.

4 METHODOLOGY

In this section, we describe the MGDRL in detail from three perspectives, including multi-view
graph disentanglement, fuzzy self-attention aggregation and subgraph contrastive learning. Finally,
we analyze the time complexity of MGDRL. Figure 1 shows the overall architecture of MGDRL.

4.1 MULTI-VIEW GRAPH DISENTANGLEMENT

Graph disentanglement can promote the distinctiveness and diversity of the decoupled views, with-
out relying on any prior knowledge or manually defined data augmentation strategies. In MGDRL,
we employ multi-view graph disentanglement (MGD) to generate three decoupled views for all
benchmark datasets. Based on their respective functions described in the Section 4.2, we designate
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Multi-View Graph Disentanglement

membership prototype

positive sample

negative sample

Fuzzy Self-Attention 
Aggregation

Subgraph Contrastive Learning

Joint Contrastive Optimization

edge

Decoupling

Figure 1: The overall architecture of MGDRL. The original graph generates three decoupled views
t, r and e via MGD. For each subgraph Si, the fuzzy self-attention weights are computed from the
fuzzy membership between the local readout of view r and the subgraph’s nodes in view t. Then,
the fuzzy self-attention aggregation is performed on view e to produce aggregation graph (s) and the
subgraph contrastive learning is conducted between view e and view s. Finally, we employ MGD
and subgraph contrastive learning to jointly optimize the aggregation graph and decoupled views.

the three decoupled views as transition (t), readout (r) and embedding (e). For each decoupled view
z ∈ {t, r, e}, the edge coefficient between two connected nodes, say vi and vj , can be learned as

αz
ij =

exp(LeakyReLUρ(az[Wzxi∥Wzxj ]))∑
vp∈Si

exp(LeakyReLUρ(az[Wzxi∥Wzxp]))
, (1)

where αz
ij = 0 if Aij = 0, az ∈ R2F ′

is the learnable attention vector of the head z, Wz ∈ RF ′×F

is the learnable weight matrix of the head z which maps each input node feature xi ∈ RF to an
F ′-dimensional hidden representation, ∥ is the concatenation operation, and LeakyReLUρ(·) is the
LeakyReLU nonlinearity with negative slope ρ. Then, representation diffusion over the adjacency
matrix is employed to capture the local readout of view r, as

R̃ = D̂−1 ÂHr , (2)

where R̃ ∈ RN×F ′
is the local readout matrix of the view r, Hr is the embedding matrix of view

r, Â = A+ IN ∈ RN×N is the adjacency matrix augmented with self-loops, D̂i,i =
∑N

j=1 Âi,j is
the corresponding degree matrix.

Graph disentanglement loss. Using the local readout r̃ as an anchor, we simultaneously maximize
its similarity with the embedding of view r and minimize its similarity with the embedding of view
e. This contrasting constraint forces the embeddings of view r and view e to separate in the vector
space, thereby reducing their inter-view correlation and achieving graph disentanglement. The graph
disentanglement loss is defined as

Ld = − 1

N

N∑
i=1

[
log σ

(
φ(r̃i, h

r
i )
)
+ log

(
1− σ(φ(r̃i, h

e
i ))

)]
, (3)

where r̃i is the local readout for node i of the decoupled view r, φ(u,v) = u⊤ Wd v is a bilin-
ear discriminator with parameters Wd ∈ RF ′×F ′

, σ(·) is a sigmoid function. hr
i and he

i are the
embeddings of node i in view r and view e, respectively.

4.2 FUZZY SELF-ATTENTION AGGREGATION

After obtaining the decoupled views, we aggregate these views into an aggregation graph, which
serves as a bridge for the joint contrastive optimization of MGD and subgraph contrastive learning
(described in Section 4.3). Considering the fuzzy and overlapping nature of community structure in
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graphs, we adopt local membership degrees as fuzzy self-attention weights to aggregate the decou-
pled views into the aggregation graph. In this approach, we assign three decoupled views distinct
roles: view t serves as the foundational view to obtain basic features, while view r provides lo-
cal readout for computing fuzzy self-attention weights. The node embeddings of view e are then
aggregated using the fuzzy self-attention weights to yield the embeddings of the aggregation graph.

Specifically, in view t, each node j ∈ Si acts as a membership prototype, and the local readout
vector r̃i serves as the query to be assigned. The fuzzy self-attention weight is then defined as

uij =

∥∥r̃i − ht
j

∥∥− 2
m−1

2∑
k∈S(i)

∥∥r̃i − ht
k

∥∥− 2
m−1

2

, (4)

where
∑

j∈Si
uij = 1, ∥ · ∥2 is the L2 norm, m is the fuzziness weighting exponent that controls the

fuzziness degree of clustering outcomes.

Then, we aggregate the node embeddings in view e by the fuzzy self-attention weights to obtain the
embeddings of aggregation graph, which we denote as s. Although there are no explicit edge rela-
tionships between the embeddings of aggregation graph, the homophily principle of networks sug-
gests that similar subgraphs are closely related (McPherson et al., 2001). In MGDRL, we consider
subgraph pairs with intersections as “closely connected subgraphs” and establish an edge between
their embedding pairs. The embedding for each subgraph is obtained as

hs
i =

∑
j∈S(i)

uij h
e
j . (5)

The edge relationship of the aggregation graph is defined as Ẽs = {(hs
i ,h

s
j) | Si ∩ Sj ̸= ∅ , i ̸= j},

and the set of subgraphs that intersect with subgraph i is defined as Pi = {Sj | Si∩Sj ̸= ∅ , i ̸= j}.
Since Si is a 1-hop neighborhood subgraph for node i, its adjacency matrix coincides exactly with
that of the original graph G, i.e., Ãs = A ∈ {0, 1}N×N . Then, the aggregation graph can be defined
as G̃s = (Hs, Ãs, Ẽs).

4.3 SUBGRAPH CONTRASTIVE LEARNING

Our experiments indicate that a single graph disentanglement loss does not provide sufficient guid-
ance for the model to generate meaningful features. Therefore, it is necessary to combine disentan-
glement with other pretext tasks to constrain the correlations among the decoupled views. To ad-
dress these issues, we propose subgraph contrastive learning. Traditional node-node and node-graph
level contrastive learning methods suffer from limitations such as node-level noise and the lack of
localized structural features. The proposed subgraph contrastive learning extends the contrastive
objective to the subgraph-level and achieves a integration between local and global information.

Subgraph contrastive loss. Subgraph contrastive learning uses subgraph-level and node-level views
for intra-view and inter-view comparison. Therefore, the aggregation graph embedding hs

i derives
its positive samples from two sources:

•
{
hs
j | Sj ∈ Pi

}
, the aggregation graph embedding of the subgraph j that intersects sub-

graph i.
• {he

k | vk ∈ Si}, the node embedding of the node k contained in subgraph i.

Then, the intra-view subgraph contrastive loss, which can be regarded as subgraph-subgraph level
comparison, can be formulated as

ℓintra(h
s
i ) = − log

∑
vk∈Ni

exp
(
θ(hs

i ,h
s
k)/τ

)∑
i̸=j exp

(
θ(hs

i ,h
s
j)/τ

) , (6)

and the inter-view subgraph contrastive loss, which can be regarded as node-subgraph level compar-
ison, can be formulated as

ℓinter(h
s
i ) = − log

∑
vk∈Si

exp
(
θ(hs

i ,h
e
k)/τ

)∑
j exp

(
θ(hs

i ,h
e
j)/τ

) , (7)
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where τ is a temperature parameter, θ(·) is the cosine similarity. The terms in the denominator of
Eq. (6) and Eq. (7) can be decomposed as∑

i̸=j

exp(θ(hs
i ,h

s
j)/τ) =

∑
Sj∈Pi

exp(θ(hs
i ,h

s
j)/τ)︸ ︷︷ ︸

intra−view pos

+
∑

Sj /∈Pi

exp(θ(hs
i ,h

s
j)/τ)︸ ︷︷ ︸

intra−view neg

,

∑
j

exp(θ(hs
i ,h

e
j)/τ) =

∑
vj∈Si

exp(θ(hs
i ,h

e
j)/τ)︸ ︷︷ ︸

inter−view pos

+
∑
vj /∈Si

exp(θ(hs
i ,h

e
j)/τ)︸ ︷︷ ︸

inter−view neg

,

where the non-connected aggregation graph embeddings and non-containing nodes of subgraph i
are regarded as negative pairs, respectively. Minimizing Eq. (6) and Eq. (7) would maximize the
agreement between positive pairs and minimize that of negative pairs. The final subgraph contrastive
loss is defined as

Ls =
1

N

N∑
i=1

(ℓintra (h
s
i ) + ℓinter (h

s
i )) . (8)

Joint contrastive optimization. Joint contrastive optimization is a dynamic and coordinated pro-
cess between MGD and subgraph contrastive learning. Connected via fuzzy self-attention aggre-
gation, MGD produces distinct and diverse decoupled views, while subgraph contrastive learning
simultaneously constrains MGD and enables these views to integrate both local and global informa-
tion. The final joint contrastive loss is defined as

LJ = Ld + λ · Ls , (9)

where λ is a tunable constraint weight parameter.

4.4 TIME COMPLEXITY

For MGD to produce K views, the time complexity is O((NFF ′ + |E|F ′)K), where N and |E|
are the number of nodes and edges in graph G, with F and F ′ denoting the input feature dimension
and the output embedding dimension. The time complexity of the graph disentanglement loss is
O(NF ′2 + |E|F ′). Let M = |E|

N denote the average node degree, the time complexity of fuzzy
self-attention aggregation is O(NMF ′) and the time complexity of subgraph contrastive learning is
O(N(M+N)F ′). Thus, the time complexity of MGDRL is O(NFF ′K+ |E|F ′(K+1)+NF ′2+
N(M + N)F ′). Since |E| ≪ N2 and M ≪ F ′ ≪ F , the overall time complexity of MGDRL is
O(NFF ′K + N2F ′). Note K is very small (e.g., 3) in our experiments, so the time complexity
of MGDRL is comparable to the representative node-node GRL methods, e.g., GRACE (Zhu et al.,
2020).

5 EXPERIMENTS

5.1 DATASETS

In our experiments, we evaluate our method on seven widely-used datasets for semi-supervised node
classification, including three citation networks, i.e., Cora, Citeseer, Pubmed (Sen et al., 2008), a
reference network constructed based on Wikipedia, i.e., Wiki-CS (Mernyei & Cangea, 2020), a co-
authorship network, i.e., Coauthor-CS (Shchur et al., 2018), and two product co-purchase networks,
i.e., Amazon-Computers and Amazon-Photo (Shchur et al., 2018). Datasets Cora, Citeseer and
Pubmed were also used to evaluate performance on the node clustering task.

5.2 BASELINES

We thoroughly consider 20 state-of-the-art methods for comparison on semi-supervised node clas-
sification and node clustering tasks. Baselines trained with labels: GCN (Kipf & Welling, 2017),
GAT (Velickovic et al., 2017), CGPN (Wan et al., 2021b), CG3 (Wan et al., 2021a). Baselines
trained without labels: DGI (Veličković et al., 2019), GMI (Peng et al., 2020), MVGRL (Hassani &
Khasahmadi, 2020), GRACE (Zhu et al., 2020), GCA (Zhu et al., 2021), ProGCL (Xia et al., 2021),
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Table 1: Node classification performance. X,A, Y denote the node attributes, adjacency matrix,
and labels in the datasets. S,E denote the diffusion matrix and edge feature matrix. OOM signifies
out-of-memory.

Methods Available Data Datasets
Cora Citeseer Pubmed CS Photo Computers WikiCS

GCN X,A, Y 79.6±1.8 66.0±1.2 79.0±2.5 90.0±0.6 86.3±1.6 76.4±1.8 67.3±1.5
GAT X,A, Y 81.2±1.6 68.9±1.8 78.5±1.8 90.9±0.7 86.5±2.1 77.9±1.8 68.6±1.9
CGPN X,A, Y 74.0±1.7 63.7±1.6 73.3±2.5 83.5±1.4 84.1±1.5 74.7±1.3 66.1±2.1
CG3 X,A, Y 80.6±1.6 70.9±1.5 78.9±2.6 90.6±1.0 89.4±1.9 77.8±1.7 68.0±1.5

DGI X,A 82.1±1.3 71.6±1.2 78.3±2.4 92.0±0.5 83.5±1.2 78.8±1.1 69.1±1.4
GMI X,A 79.4±1.2 66.9±2.2 76.8±2.3 88.5±0.8 86.7±1.5 76.1±1.2 67.8±1.8
MVGRL X,S,A 82.4±1.5 71.1±1.4 79.5±2.2 91.5±0.6 89.7±1.2 78.7±1.7 69.2±1.2
GRACE X,A 79.6±1.4 67.0±1.7 74.6±3.5 90.0±0.7 87.9±1.4 76.8±1.7 67.8±1.4
GCA X,A 79.0±1.4 65.6±2.4 81.5±2.5 90.9±1.1 87.0±1.9 76.9±1.4 67.6±1.3
AFGRL X,A 78.6±1.3 70.8±2.1 76.4±2.5 91.4±0.6 89.2±1.1 77.7±1.1 68.0±1.7
SUGRL X,A 81.3±1.2 71.0±1.8 80.5±1.6 91.2±0.9 90.5±1.9 78.2±1.2 68.7±1.1
ARIEL X,A 81.3±1.3 70.9±1.4 74.2±2.5 90.2±0.9 90.6±1.8 81.3±1.4 70.5±2.1
NCLA X,A 82.2±1.6 71.7±0.9 82.0±1.4 91.5±0.7 90.2±1.3 79.8±1.5 70.3±1.7
GraphACL X,A 82.0±1.1 71.5±1.4 78.6±1.9 86.9±1.2 90.0±1.0 - -
PiGCL X,A 80.0±1.5 71.2±1.1 76.5±3.5 91.0±0.7 71.8±3.4 - -
AFECL X,E,A 82.1±1.3 71.3±1.3 81.2±1.7 90.9±1.3 89.2±1.2 - -
GTCA X,A 82.5±1.3 68.3±1.4 OOM 92.5±0.6 90.5±1.2 79.2±1.4 69.7±1.5

MGDRL(Ours) X,A 83.1±1.4 72.3±1.1 82.0±1.2 92.0±0.3 91.4±0.9 81.4±1.4 73.7±1.9

Table 2: Node clustering performance. OOM signifies out-of-memory.

Method Cora Citeseer Pubmed
NMI ARI NMI ARI NMI ARI

DGI 0.5370 0.4469 0.4185 0.4140 0.3188 0.3165
GRACE 0.4758 0.3633 0.3960 0.3977 0.3508 0.3286
GCA 0.4510 0.3104 0.3737 0.3675 0.3307 0.2919
ProGCL 0.5131 0.3434 0.4115 0.4219 OOM OOM
Local-GCL 0.5386 0.4479 0.4508 0.4494 0.3469 0.3304
AFGRL 0.3525 0.2465 0.3896 0.3958 0.3689 0.2474
SUGRL 0.2977 0.2766 0.4454 0.4507 0.2977 0.2766
NCLA 0.6089 0.5750 0.4553 0.4610 0.2523 0.2383
PiGCL 0.5494 0.4670 0.4581 0.4720 0.3784 0.3612
UniFilter 0.5212 0.4744 0.4422 0.4318 0.3145 0.2773
GTCA 0.5588 0.5063 0.3392 0.3125 OOM OOM

MGDRL(Ours) 0.6190 0.6076 0.4594 0.4732 0.3643 0.3459

Local-GCL (Zhang et al., 2022), AFGRL (Lee et al., 2022), SUGRL (Mo et al., 2022), ARIEL (Feng
et al., 2022), NCLA (Shen et al., 2023), GraphACL (Xiao et al., 2023), PiGCL (He et al., 2024),
UniFilter (Huang et al., 2024), GTCA (Liang et al., 2025), AFECL (Li et al., 2025).

5.3 EXPERIMENTAL SETTINGS

The proposed MGDRL was implemented using PyTorch 2.5.1 (Paszke et al., 2019) and Deep Graph
Library 2.0.0 (Wang et al., 2019), and trained by the Adam optimizer on all datasets. For the node
classification task, we allow GRL baselines and MGDRL to learn embeddings in an unsupervised
manner, then use these embeddings to train and test a L2-regularized logistic regression (LR) clas-
sifier for semi-supervised node classification. For Cora, Citeseer and Pubmed, we followed (Yang
et al., 2016) to randomly select 20 nodes per class for training, 500 nodes for validation and the
remaining nodes for test. For Coauthor-CS and Amazon-Photo, we followed Liu et al. (2020) to
randomly select 20 nodes per class for training, 30 nodes per class for validation, and the remaining
nodes for testing. Note that for the GRL baselines and MGDRL, which learn embeddings from un-
labeled data, the validation set was just used to tune the hyperparameters of the LR classifier, rather
than the GRL models. For each dataset, we conducted 20 random splits of training/validation/test,
and reported the averaged performance of all algorithms on the same random splits. For the node
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Table 3: Ablation study of MGDRL for node classification on all seven datasets.

Variants Ld Ls Li Cora Citeseer Pubmed CS Photo Computers WikiCS
Raw data 63.0±1.7 51.5±1.9 72.5±2.2 87.8±0.7 87.7±1.5 75.8±1.7 70.6±2.4

Variant 1 ✔ 64.8±1.9 56.0±2.0 72.6±2.6 84.7±1.1 84.1±2.2 73.6±1.3 71.8±1.4

Variant 2 ✔ 81.8±1.3 70.4±1.5 80.2±1.9 90.3±0.8 89.9±2.2 80.6±1.5 71.6±2.0

Variant 3 ✔ 63.3±2.1 66.2±2.2 71.8±2.0 77.5±1.3 78.9±1.5 69.4±2.1 63.5±1.8

Variant 4 ✔ ✔ 76.4±1.5 68.8±1.5 71.3±2.3 80.1±1.3 81.5±1.9 65.6±2.2 59.7±2.1

MGDRL ✔ ✔ 83.1±1.4 72.3±1.1 82.0±1.2 92.0±0.3 91.4±0.9 81.4±1.4 73.7±1.9

clustering task, we followed He et al. (2024) to directly input the obtained embedding into a ran-
domly initialized K-Means predictor with up to 500 iterations. We ran this process 10 times and
reported the average NMI and ARI.

5.4 OVERALL PERFORMANCE

Node Classification. Table 1 presents the node classification accuracy of MGDRL on seven bench-
mark datasets. These node classification results demonstrate MGDRL’s robust performance across
all seven datasets and validate the superiority of MGD with joint contrastive optimization in fea-
ture extraction. Compared to supervised GNNs, our method achieves an average improvement of
3.9% over GCN and GAT. When evaluated against other supervised methods like CGPN and CG3,
MGDRL comprehensively outperforms them with gains of up to 9.1%. In comparison with self-
supervised GRL methods that employ graph augmentation and node- and graph-level contrastive
learning, such as GRACE, NCLA and PiGCL, our approach achieves comprehensive leading per-
formance. MGDRL also maintains advantages over other methods without graph augmentation,
including GraphACL, AFECL and GTCA.

Node Clustering. Table 2 shows the node clustering performance of MGDRL on the Cora, Cite-
seer and Pubmed datasets. MGDRL demonstrates strong clustering performance on the Cora and
Citeseer datasets, achieving average improvements of 10.33% in NMI and 15.99% in ARI over the
baseline GRACE. MGDRL also achieved the third-best NMI and second-best ARI performance on
Pubmed. Compared to methods without graph augmentation such as GTCA, MGDRL utilizes joint
contrastive learning to enable the representations to integrate local and global information, thereby
facilitating the formation of distinct clusters for nodes with different labels.

5.5 ABLATION STUDY

Table 3 presents the ablation study results of MGDRL on all seven datasets. “Raw data” denotes the
results obtained by directly processing the raw graph data through GAT without any modifications.
Variants 1, 2, and MGDRL demonstrate the impact of MGD (Ld) and subgraph contrastive learning
(Ls) in the joint contrastive optimization. The performance of Variant 1 is highly unstable, with
accuracy significantly decreasing in three datasets compared to the raw data, indicating that MGD
alone fails to effectively capture meaningful representations. To more intuitively illustrate the con-
straining effect of subgraph contrastive learning on MGD, we introduced InfoNCE (Li) as a control,
resulting in Variants 3 and 4. From Variants 1, 3, and 4, it can be observed that traditional contrastive
learning methods cannot provide effective driving force for MGD, instead, they may even lead to
mutual performance degradation. The ablation results collectively demonstrate the effectiveness of
the joint contrastive optimization.

5.6 VISUALIZATION AND HYPERPARAMETER ANALYSIS

Visualization. We use t-SNE (Van der Maaten & Hinton, 2008) for visualization to more intuitively
show the embedding distributions obtained by variants of MGDRL and four other baseline methods
on Cora, as shown in Figure 2. The visualization of Variant 1 also indicates that using MGD alone
leads the model to learn largely uninformative representations. The comparison between Variants
1 and 2 reveals how MGD and subgraph contrastive learning produce different representations:
MGD encourages views to capture disentangled information, resulting in widely dispersed node
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Figure 2: Visualization of variants and four baseline GRL embeddings on Cora with t-SNE.
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Figure 3: Sensitivity analysis of the hyperparameters λ, F ′, τ and lr on MGDRL.

embeddings, whereas subgraph contrastive learning encourages nodes to integrate local and global
information, thereby forming cluster structures. Compared with Variant 4 and the other baselines,
MGDRL both pushes nodes of different classes farther apart and preserves cluster structure, which
is a consequence of the joint contrastive optimization.

Hyperparameter analysis. We conducted sensitivity analysis on Cora, Citeseer, and Photo across
four parameters: constraint weight λ, hidden layer dimension F ′, temperature parameter τ , and
learning rate lr. The results in Figure 3 demonstrate that MGDRL exhibits highly stable performance
on Cora and Citeseer. For the Photo dataset, MGDRL continues to perform well with respect to λ
and τ . However, performance degradation occurs when using larger values for F ′ and lr.

6 CONCLUSION

Existing GRL methods employ graph augmentation to construct views and utilize node- and graph-
level contrastive learning for optimization. However, artificial perturbations result in the loss of
critical information in graph data, while node- and graph-level contrastive learning suffers from
noise sensitivity and an inability to perceive local structure. To address these issues, we propose
MGDRL, a graph representation learning framework that performs MGD via joint contrastive op-
timization. MGD generates decoupled views, which are used to generate the aggregation graph by
fuzzy self-attention aggregation. Then, the decoupled view (embedding) and the aggregation graph
are used for node-subgraph and subgraph-subgraph level comparisons in subgraph contrastive learn-
ing. By jointly optimizing the MGD and subgraph contrastive learning, the decoupled views learn
distinct and diverse representations, while the aggregation graph integrates both local and global
information. Experiments on benchmark datasets demonstrate the effectiveness of MGDRL.
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