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ABSTRACT

Transformer-based models have recently shown success in representation learn-
ing on graph-structured data beyond natural language processing and computer
vision. However, the success is limited to small-scale graphs due to the draw-
backs of full dot-product attention on graphs such as the quadratic complexity
with respect to the number of nodes and message aggregation from enormous
irrelevant nodes. To address these issues, we propose Deformable Graph Trans-
former (DGT) that performs sparse attention via dynamically selected relevant
nodes for efficiently handling large-scale graphs with a linear complexity in the
number of nodes. Specifically, our framework first constructs multiple node se-
quences with various criteria to consider both structural and semantic proximity.
Then, combining with our learnable Katz Positional Encodings, the sparse atten-
tion is applied to the node sequences for learning node representations with a
significantly reduced computational cost. Extensive experiments demonstrate that
our DGT achieves superior performance on 7 graph benchmark datasets with 2.5
∼ 449 times less computational cost compared to transformer-based graph models
with full attention.

1 INTRODUCTION

Transformer (Vaswani et al., 2017) has proven its effectiveness in modeling sequential data in vari-
ous tasks such as natural language understanding (Devlin et al., 2019; Yang et al., 2019; Brown et al.,
2020) and speech recognition (Zhang et al., 2020; Gulati et al., 2020). Beyond sequential data, recent
works (Dosovitskiy et al., 2021; Liu et al., 2021; Yang et al., 2021; Carion et al., 2020; Zhu et al.,
2021; Zhao et al., 2021) have successfully generalized Transformer to various computer vision tasks
such as image classification (Dosovitskiy et al., 2021; Liu et al., 2021; Yang et al., 2021), object
detection (Carion et al., 2020; Zhu et al., 2021; Song et al., 2021), and 3D shape classification (Zhao
et al., 2021). Inspired by the success of Transformer-based models, there have been recent efforts
to apply the Transformer to graph domains by using graph structural information through structural
encodings (Ying et al., 2021; Dwivedi & Bresson, 2020; Mialon et al., 2021; Kreuzer et al., 2021),
and they have achieved the best performance on various graph-related tasks.

However, most existing Transformer-based graph models have difficulty in learning representations
on large-scale graphs while they have shown their superiority on small-scale graphs. Since the
Transformer-based graph models perform self-attention by treating each input node as an input to-
ken, the computational cost is quadratic in the number of input nodes, which is problematic on
large-scale graphs. In addition, different from graph neural networks that aggregate messages from
local neighborhoods, Transformer-based graph models globally aggregate messages from numer-
ous nodes. So, on large-scale graphs, a huge number of messages from falsely correlated nodes
often overwhelm the information from relevant nodes. As a result, Transformer-based graph models
often exhibit poor generalization performance. A simple method to address these issues is per-
forming masked attention where the key and value pairs are restricted to neighborhoods of query
nodes (Dwivedi & Bresson, 2020). But, since the masked attention has a fixed small receptive field,
it struggles to learn representations on large-scale graphs that require a large receptive field.

In this paper, we propose a novel Transformer for graphs named Deformable Graph Trans-
former (DGT) that performs sparse attention with a small set of key and value pairs adaptively
selected considering both semantic and structural proximity. To be specific, our approach first gen-
erates multiple node sequences for each query node with diverse sorting criteria such as Personalized
PageRank (PPR) score, BFS, and feature similarity. Then, our Deformable Graph Attention (DGA),
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a key module of DGT, dynamically adjusts offsets to choose the key and value pairs on the gen-
erated node sequences and learns representations with selected key-value pairs. In addition, we
present simple and effective positional encodings to capture structural information. Motivated by
Katz index (Katz, 1953), which is used for measuring connectivity between nodes, we design Katz
Positional Encoding (Katz PE) to incorporate structural similarity and distance between nodes on a
graph into the attention. Our extensive experiments show that DGT achieved good performances on
7 benchmark datasets and outperformed existing Transformer-based graph models on all 8 datasets
at a significantly reduced computational cost.

Our contributions are as follows: (1) We propose Deformable Graph Transformer (DGT) that per-
forms sparse attention with a reduced number of keys and values for learning node representations,
which significantly improves the scalability and expressive power of Transformer-based graph mod-
els. (2) We design deformable attention for graph-structured data, Deformable Graph Attention
(DGA), that flexibly attends to a small set of relevant nodes based on various types of the prox-
imity between nodes. (3) We present learnable positional encodings named Katz PE to improve
the expressive power of Transformer-based graph models by incorporating structural similarity and
distance between nodes based on Katz index (Katz, 1953). (4) We validate the effectiveness of the
Deformable Graph Transformer with extensive experimental results that our DGT achieves the best
performance on 7 graph benchmark datasets with 2.5 ∼ 449 times less computational cost compared
to transformer-based graph models with full attention.

2 RELATED WORKS

Graph Neural Networks. Graph Neural Networks have become the de facto standard approaches
on various graph-related tasks (Kipf & Welling, 2017; Hamilton et al., 2017; Wu et al., 2019; Xu
et al., 2018; Gilmer et al., 2017). There have been several works that apply attention mechanisms
to graph neural networks (Rong et al., 2020; Veličković et al., 2018; Brody et al., 2022; Kim & Oh,
2021) motivated by the success of the attention. GAT (Veličković et al., 2018) and GATv2 (Brody
et al., 2022) adaptively aggregate messages from neighborhoods with the attention scheme. How-
ever, the previous works often show poor performance on heterophilic graphs due to their homophily
assumption that nodes within a small neighborhood have similar attributes and potentially the same
labels. So, recent works (Abu-El-Haija et al., 2019; Pei et al., 2020; Zhu et al., 2020; Park et al.,
2022) have been proposed to extended message aggregation beyond a few-hop neighborhood to cope
with both homophilic and heterophilic graphs. H2GCN (Zhu et al., 2020) separates input features
and aggregated features to preserve information of input features. Deformable GCN (Park et al.,
2022) improves the flexibility of convolution by performing deformable convolution.

Transformer-based Graph Models. Recently, (Ying et al., 2021; Dwivedi & Bresson, 2020; Mi-
alon et al., 2021; Kreuzer et al., 2021; Wu et al., 2021) have adopted the Transformer architecture
for learning on graphs. Graphormer (Ying et al., 2021) and GT (Dwivedi & Bresson, 2020) are
built upon the standard Transformer architectures by incorporating structural information of graphs
into the dot-product self-attention. However, these approaches, which we will refer to as ‘graph
Transformers’ for brevity, are not suitable for large-scale graphs. It is because referencing numerous
key nodes for each query node is prohibitively costly, and that hinders the attention module from
learning the proper function due to the noisy features from irrelevant nodes. Although restricting
the attention scope to local neighbors is a simple remedy to reduce the computational complexity,
it leads to a failure in capturing local-range dependency, which is crucial for large-scale or het-
erophilic graphs. To mitigate the shortcomings of existing Transformer-based graph models, we
propose DGT equipped with deformable sparse attention that dynamically selected relevant nodes
to efficiently learn powerful representations on both homophilic and heterophilic graphs with signif-
icantly improved scalability.

Sparse Transformers in Other Domains. Transformer (Vaswani et al., 2017) and its variants have
achieved performance improvements in various domains such as natural language processing (De-
vlin et al., 2019; Brown et al., 2020) and computer vision (Dosovitskiy et al., 2021; Carion et al.,
2020). However, these models require quadratic space and time complexity, which is especially
problematic with long input sequences. Recent works (Choromanski et al., 2021; Jaegle et al., 2021;
Kitaev et al., 2020) have studied this issue and proposed various efficient Transformer architectures.
(Choromanski et al., 2021; Xiong et al., 2021) study the low-rank approximation for attention to
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reduce the complexity. Perceiver (Jaegle et al., 2021; 2022) leverages a cross-attention mechanism
to iteratively distill inputs into latent vectors to scale linearly with the input size. Sparse Trans-
former (Child et al., 2019) uses pre-defined sparse attention patterns on keys by restricting the atten-
tion pattern to be fixed local windows. (Zhu et al., 2021) also proposes sparse attention that dynami-
cally samples a set of key/value pairs for each query without a fixed attention pattern. Inspired by the
deformable attention (Zhu et al., 2021), we propose deformable attention for graph-structured data
that flexibly attends to informative key nodes considering various types of the proximity between
nodes via multiple node sequences and our learnable Katz Positional Encondings.

3 METHODS

The goal of our architecture is to address the limitations of Transformer-based graph models and gen-
eralize Transformers on large-scale graphs. Specifically, existing Transformer-based graph models
suffer from multiple challenges: 1) a scalability issue caused by the quadratic computational cost
in regards to the number of nodes and 2) aggregation of distracting information since an enormous
number of nodes are aggregated. To address the challenges, we propose Deformable Graph Trans-
former (DGT). Our framework is composed of two main components: 1) deformable attention that
attends to only a small set of adaptively selected key nodes considering diverse relations between
nodes, and 2) positional encoding that captures structural similarity and distance between nodes. Be-
fore introducing our proposed architectures, we revisit the basic concepts of graph neural networks
and attention in Transformers.

3.1 PRELIMINARIES

Graph Neural Networks (GNNs). Consider an undirected graph G = (V, E) with a set of N
nodes V = {v1, v2, . . . , vN} and a set of edges E = {(vi, vj) | vi, vj ∈ V} where the nodes
vi, vj ∈ V are connected. Each node vi ∈ V has a feature vector xi ∈ RF , where F is the
dimensionality of the node feature, and a set of neighborhoods N (i) = {vj ∈ V|(vi, vj) ∈ E}.

Given a graph G and a set of node features {xi}Ni=1, Graph Neural Networks (GNNs) aim to learn
each node representation by an iterative aggregation of transformed representations of the node itself
and its neighborhoods as follows:

h(l)
i = σ

W(l)

c
(l)
ii h(l−1)

i +
∑

vj∈N (i)

c
(l)
ij h(l−1)

j

 , (1)

where h
(l)
i ∈ Rd(l)

is a hidden representation of node vi in the l-th GNN layer, h
(0)
i = xi,

W(l) ∈ Rd(l)×d(l−1)

is a learnable weight matrix at the l-th GNN layer, σ is a non-linear activation
function, c(l)ij and c

(l)
ii represent weights for aggregation characterized by each GNN. For example,

GCN Kipf & Welling (2017) can be represented as a form of (1) if cij = (deg(i)deg(j))−1/2 and
cii = (deg(i))−1, where deg(i) is the degree of node vi, and GAT Veličković et al. (2018) learns
c
(l)
ij and c

(l)
ii based on the attention mechanism.

Attention in Transformer. Transformers Vaswani et al. (2017) have shown their superior per-
formance based on multi-head self attention mechanisms. Given a query index q ∈ Ωq with a
corresponding vector zq ∈ Rc and a set of key/value vectors F = {fk}k∈Ωk

, where Ωq,Ωk are the
set of query and key indices, the Multi-Head Attention (MHA) is formulated as follows:

MHA (zq,F) =

M∑
m=1

Wm

[ ∑
k∈Ωk

Amqk ·W′
mfk

]
, (2)

where m is the index of M attention heads, Wm ∈ Rc×cv and W′
m ∈ Rcv×c are weight matrix

parameters. The attention weight Amqk between the query zq ∈ Rc and the key fk ∈ Rc, which

is generally calculated as Amqk =
exp[z⊤

q U⊤
mVmfk/

√
cv]

Z , where Z ∈ R is a normalization factor to
achieve

∑
k∈Ωk

Amqk = 1 and Um,Vm are weight matrices to compute queries and keys, respec-
tively. Although the multi-head attention operation contributes to the success of the Transformer-
based models, it has a known issue of substantial computational costs and large memory.
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Figure 1: Overview of the deformable graph attention module. In the pre-processing phase, NodeS-
ort module first constructs multiple node sequences {Sπq}π∈Π depending on query node vq by
sorting nodes through diverse criteria π ∈ Π. Then, the kernel-based interpolation is applied on
each offset to get values, whose offsets are computed by the queries with a linear projection. The
deformable graph attention module aggregates the values of each head with attention weights to
generate output.

This scalability issue has been extensively studied in the literature. However, most efficient atten-
tion methods have been developed by either limiting the attention within a local neighborhood or
approximating an attention map with a low-rank matrix. The former approaches are problematic
when neighbors belong to different classes as heterophilic graphs, and the latter approaches tend to
yield dense attention leading to enormous messages from irrelevant nodes. So, we adopt a more
flexible and efficient Deformable Attention Zhu et al. (2021); Xia et al. (2022) that performs a
sparse attention by dynamically sampling a small set of relevant keys without a predefined window.
Let f ∈ Rc×h×w be an input feature map and pq be a position of query zq . Then, the DeFormable
Attention (DFA) is defined as

DFA (zq,pq,F) =

M∑
m=1

Wm

[
K∑

k=1

Amqk ·W′
mf (pq +∆pmqk)

]
, (3)

where k is an index of sampled key vectors, and K is the total number of the key. The attention
weight Amqk of m-th attention head has a value between 0 and 1, normalized by

∑K
k=1 Amqk = 1

similar to the multi-head attention. ∆pmqk = Wmkzq is a sampling offset of the k-th sampling
key of the m-th attention head. Since the deformable attention module uses only a small set of
informative keys for each query, it has linear complexity in the number of inputs.

In recent, Transformer-based models Ying et al. (2021); Dwivedi & Bresson (2020) have been pro-
posed to harness the power of the standard multi-head attention for representing nodes in graphs.
Although they have shown superior performance on various tasks, they have difficulty in learning
representations on large-scale graphs. Since the large-scale graph has a vast number of nodes, the
scalability issue of the multi-head attention is dramatically exacerbated. Also, the enormous num-
ber of keys to attend per query node increases the risk of the aggregation of noisy information from
irrelevant key nodes. In this paper, we design a sparse attention module, Deformable Graph At-
tention, that attends to only a small number of relevant keys different from standard attention that
blindly aggregates irrelevant key nodes. By reducing the number of key nodes, it is possible to make
transformer-based architecture effective and efficient on large-scale graphs.

3.2 DEFORMABLE GRAPH ATTENTION

In this section, we present Deformable Graph Attention (DGA), a key module in our proposed De-
formable Graph Transformer (DGT). The overview of the deformable graph attention is illustrated
in Figure 1. The general idea of deformable graph attention is to design the deformable attention
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mechanism for graph-structured data, and therefore DGT performs the attention mechanism with
partially selected relevant key nodes, which makes the transformer-based architecture efficient and
effective on large-scale graphs. However, extending the deformable attention mechanism to graph
representation learning is non-trivial since the offset-based interpolation in the deformable attention
only works in Euclidean space whereas graphs are non-Euclidean data. Also, even when embed-
ding nodes in a graph into a low-dimensional space via graph embedding methods (e.g., Node2vec
(Grover & Leskovec, 2016)), nodes are irregularly distributed in the low-dimensional space, which
makes difficult to effectively deform an attention map.

To address this challenge, we propose a NodeSort module that converts a graph into a sorted se-
quence of nodes in a regular space. We define a base node vb as the first node in a sorted sequence
which is similar to an ego node in an ego graph. NodeSort differentially sorts nodes depending on
the base node. In other words, NodeSort provides a relative ordering that varies across base nodes
whereas conventional topological sort yields a single (absolute) ordering for a graph. Specifically,
given a base node, NodeSort sorts nodes and returns a sequence of their features as follows:

Sπb = NodeSortπ(G, vb, {xi}Ni=1) = [xσ−1
πb (i)]

N
i=1, (4)

where π denotes a specific criterion for sorting nodes and σπb is a bijective mapping from V to
V depending on a base node vb. To consider both structural and semantic proximity, we generate
multiple sorted node sequences for each node vb, {Sπb}π∈Π, from a set of diverse criteria Π, such
as Personalized PageRank (PPR) score, BFS, and feature similarity. More details on the NodeSort
module and criteria are in Section B.2. Note that σπb redefines neighbors of each node vb based on
various aspects π ∈ Π beyond 1-hop neighbors in the existing GNNs.

Now, we introduce our Deformable Graph Attention (DGA), which is a sparse attention by dynam-
ically sampling key/value pairs from the set of sorted sequences of node features. To benefit from
various properties of the graphs, the deformable graph attention module is designed to deal with
diverse node sequences. Different from existing methods based on deformable sampling modules
in computer vision, which only considers spatial proximity on a grid, DGA captures both structural
and semantic proximity. Given the set of sorted sequences {Sπq}π∈Π and features of query node zq ,
DGA is defined as

DGA (zq, {Sπq}π∈Π) =
∑
π∈Π

M∑
m=1

Wπm

[
K∑

k=1

Aπmqk ·W′
πmS̃πq (∆pπmqk)

]
, (5)

where S̃πq (∆pπmqk) denotes the representation of the k-th key, K denotes the number of keys,
Wπm ∈ Rc×cv and W′

πm ∈ Rcv×c are the learnable weight matrices for each criteria π ∈ Π and
the m-th attention head, Aπmqk = θatt

πmk(zq) denotes the attention weight from a linear function
θatt between the q-th query and the k-th key of the m-th attention head and criterion π, which is
normalized by

∑K
k=1 Aπmqk = 1 and the attention weight needs to be in a interval [0, 1].

∆pπmqk is a sampling offset of the k-th key for criterion π and m-th attention head, which is
generated by θoff

πmk(zq), where θoff is a linear function with an activation function. As the offset
∆pπmqk is fractional, we compute S̃πq (p) by kernel-based interpolation:

S̃πq (p) =
∑
i

g(p, i) · Sπq[i], g(a, b) =

{
exp

(
− (a−b)2

γ

)
, if |a− b| < ϵ

0, otherwise
(6)

where γ ∈ R++ denotes the bandwidth of the kernel, ϵ is a hyper-parameter for truncating the
kernel, and Sπq[i] is the node feature at a i-th index of the sequence Sπq .

A standard way of computing S̃πq (p) is calculating Eq. (6) by substituting g with g (a, b) =
max (0, 1− |a− b|). But, the existing way considers only two nodes whose coordinates are ceiling
and floor values of a point p. It might not be sufficient for the offsets ∆p to move to get relevant
information by looking at only two nodes. As the scale of the graph increases, a target node requires
much more nodes to learn its representation. So, we apply the Radial Basis Function kernel for
computing S̃πq as in Eq. (6) to look at a wide range of nodes for representing query nodes.

5



Under review as a conference paper at ICLR 2023

3.3 KATZ POSITIONAL ENCODING

Positional Encoding is a crucial component in Transformer to reflect domain-specific positional
information into its attention mechanism. A major issue with positional encoding on graphs is
the absence of absolute positions of nodes, unlike other domains. One remedy to this issue is to
encode relations between nodes. Here, we propose learnable positional encodings, Katz PE, for
Transformer-based graph models based on connectivity between nodes. To be specific, inspired by
the matrix of Katz indices (Katz, 1953) which counts all paths between nodes with the decaying
weight β to reflect the preference for shorter paths, i.e., Â =

∑∞
k=1 β

k−1Ak, our method learns
positional embeddings, PEi, of each node i by the nonlinear transform of Â as follows:

Katz PE(vi) = MLP(Â[vi]
T ), (7)

where MLP is a Multi-Layer Perceptron, and Â[vi] is the row vector of node vi in Â. We limit the
maximum k in Â to K, i.e., Â =

∑K
k=1 β

k−1Ak for the efficient calculation. In addition, when
N is large, then we sample N ′ anchor nodes with a high degree and utilize the submatrix of Katz
indices Â′ ∈ RN×N ′

. Our learnable Katz PE is simple yet more effective for both our DGT and
vanilla Transformer than existing pre-computed positional encodings. See Section 4.3, for more
details.

3.4 DEFORMABLE GRAPH TRANSFORMER

Finally, we introduce our Deformable Graph Transformer (DGT) built upon our proposed Graph
Deformable Attention and Positional Encoding. Deformable Graph Transformer first encodes node
feature xi with the learnable function fθ, which can be MLP, and combines with positional embed-
dings from Eq. (7) as

z
(0)
i = fθ(xi) + Katz PE(vi). (8)

Then, given a set of sorted sequences {Sπ
q }π∈Π from Eq. (5), each l-th Deformable Graph Attention

layer in DGT performs the attention mechanism with a small set of informative keys and applies
skip-connection and MLP to update node representations as follows:

ẑ
(l)
i = DGA

(
z
(l)
i , {Sπi}π∈Π,Z

(l−1)
)
+ z

(l−1)
i , z

(l)
i = MLP(ẑ(l)i ) + ẑ

(l)
i . (9)

After the stack of L Deformable Graph Attention blocks, each node representation z
(L)
i is

used for node classification on top and MLP followed by a softmax layer is used as ŷi =

Softmax(MLP(z(L)
i )). Our loss function is a cross-entropy on nodes that have ground truth labels.

3.5 COMPLEXITY ANALYSIS

We provide the comparison of computational complexity between the self-attention in most
Transformer-based graph models and the Deformable Graph Attention (DGA) in our DGT. As the
number of nodes N increases, our DGA with a linear complexity of N is more efficient than the
self-attention with a quadratic complexity of N . The details are in Sec A.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of our proposed Deformable Graph Transformer (DGT)
against state-of-the-art models on node classification benchmark datasets.

4.1 EXPERIMENTAL SETUP

Datasets. We validate the effectiveness of our model on node classification using four heterophilic
graph datasets and four homophilic graph datasets, which are distinguished by the edge-based ho-
mophily ratio (Zhu et al., 2020) defined as h =

|{(vi,vj):(vi,vj)∈E∧yi=yj}|
|E| . Each dataset has an edge-

based homophily ratio ranged from h = 0.22 (very heterophilic) to h = 0.81 (very homophilic).
For large-scale graphs, we evaluate our method on twitch-gamers, obgn-arxiv, and Reddit datasets.
More details about the datasets are in Sec F.1.
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Table 1: Evaluation results on node classification task (Mean accuracy (%) ± 95% confidence in-
terval). OOM denotes ‘out-of-memory’. Bold indicates the model with the best performance and
underline indicates the second best model.

Model Actor Squirrel Chameleon Cora Citeseer twitch-
gamers ogbn-arxiv Reddit Avg.

Rank
# Nodes 7,600 5,201 2,277 2,708 3,327 168,114 169,343 232,965
# Edges 26,659 198,353 31,371 5,278 4,552 6,797,557 1,166,243 11,606,919

Hom. ratio h 0.22 0.22 0.23 0.81 0.74 0.55 0.66 0.76
GNN-based Models

MLP 35.05±0.38 31.66±0.82 47.11±0.71 75.10±0.84 73.54±0.69 61.14±0.06 53.89±0.21 70.03±0.16 12.38
GCN 30.13±0.30 50.42±0.66 66.33±0.64 87.22±0.26 76.08±0.43 64.34±0.12 71.27±0.11 95.06±0.03 7.25
GAT 30.25±0.39 54.26±1.21 66.85±0.88 86.21±0.43 75.71±0.42 62.90±0.22 70.92±0.11 OOM 9.13

GraphSAGE 35.24±0.49 43.75±0.75 63.28±0.68 86.94±0.36 76.25±0.53 64.73±0.11 70.19±0.11 96.27±0.01 7.13
JKNet 30.39±0.35 55.17±0.62 67.81±0.86 87.17±0.33 76.33±0.53 65.08±0.07 71.00±0.15 95.28±0.02 6.25
SGC 29.43±0.41 35.07±0.51 49.95±1.15 87.33±0.39 75.47±0.56 60.47±0.14 66.56±0.01 94.72±0.00 11.25

GATv2 30.54±0.41 57.41±0.94 67.25±0.58 86.10±0.41 75.63±0.49 64.15±0.09 71.01±0.15 OOM 8.25
MixHop 35.79±0.33 38.78±0.86 59.27±0.83 87.16±0.38 75.95±0.57 65.20±0.12 71.47±0.15 96.23±0.04 6.25

Geom-GCN 31.53±0.31 37.98±0.42 60.70±0.91 85.38±0.55 76.57±0.56 N/A N/A N/A 10.50
H2GCN 35.32±0.34 36.89±0.80 58.21±0.70 87.73±0.64 76.88±0.54 OOM OOM OOM 8.50

DeformableGCN 36.53±0.42 62.09±0.68 71.03±0.57 87.32±0.44 76.67±0.43 OOM 70.22±0.19 OOM 6.00
Transformer-based Graph Models

Transformer 36.61±0.39 31.00±0.60 45.93±0.83 73.75±0.71 72.99±0.61 OOM OOM OOM 12.63
Graphormer 36.54±0.44 36.25±0.72 50.15±1.26 73.44±0.90 72.60±0.63 OOM OOM OOM 12.00

GT-full 34.53±0.38 32.33±0.64 49.07±1.25 69.51±1.01 70.18±0.67 OOM OOM OOM 13.63
GT-sparse 34.69±0.35 44.22±0.67 64.82±0.57 85.63±0.44 75.49±0.58 63.09±0.71 71.45±0.14 OOM 8.75

DGT-light (Ours) 36.86±0.53 62.58±0.57 73.04±0.65 86.60±0.60 75.72±0.40 65.59±0.25 71.18±0.13 96.14±0.05 4.38
DGT (Ours) 36.93±0.39 63.78±0.59 73.48±0.88 87.55±0.59 77.04±0.57 66.09±0.22 71.77±0.10 96.32±0.02 1.13

Table 2: Efficiency comparisons on Transformer-based graph models. † denotes the performance
measured by CPU implementation.

Chameleon Cora Citeseer Squirrel twitch-gamers ogbn-arxiv

# Nodes 2,277 2,708 3,327 5,201 168,114 169,343
# Edges 31,371 5,278 4,552 198,353 6,797,557 1,166,243

Model FLOPs Acc. FLOPs Acc. FLOPs Acc. FLOPs Acc. FLOPs Acc. FLOPs Acc.

Transformer 1.06G 45.93±0.83 1.26G 73.75±0.71 2.29G 72.99±0.61 4.29G 31.00±0.60 3622G† 59.85† OOM OOM
Graphormer 1.78G 50.15±1.26 2.26G 73.44±0.90 3.79G 72.60±0.63 7.88G 36.25±0.72 OOM OOM OOM OOM

GT-full 1.07G 49.07±1.25 1.27G 69.51±1.01 2.31G 70.18±0.67 4.31G 32.33±0.64 3623G† 59.18† OOM OOM
GT-sparse 0.43G 64.82±0.57 0.43G 85.63±0.44 0.99G 75.49±0.58 1.49G 44.22±0.67 17.04G 63.09±0.71 20.24G 71.45±0.14

DGT-light (Ours) 0.43G 73.04±0.65 0.36G 86.60±0.60 0.87G 75.72±0.40 1.24G 62.58±0.57 8.05G 65.59±0.25 5.02G 71.18±0.13

DGT (Ours) 0.49G 73.48±0.88 0.65G 87.55±0.59 1.05G 77.04±0.57 2.63G 63.78±0.59 16.19G 66.09±0.22 6.66G 71.77±0.10

Baselines. To demonstrate the effectiveness of our Deformable Graph Transformer (DGT), we
compare DGT with following baselines: (1) six standard GNNs: GCN (Kipf & Welling, 2017),
GAT (Veličković et al., 2018), GraphSAGE (Hamilton et al., 2017), JKNet (Xu et al., 2018),
SGC (Wu et al., 2019), GATv2 (Brody et al., 2022); (2) four GNNs designed for heterophilic set-
tings: MixHop (Abu-El-Haija et al., 2019), Geom-GCN (Pei et al., 2020), H2GCN (Zhu et al.,
2020), DeformableGCN (Park et al., 2022); (3) four Transformer-based architectures for graphs:
Transformer (Vaswani et al., 2017), Graphormer (Ying et al., 2021), GT-full (Dwivedi & Bresson,
2020), GT-sparse (Dwivedi & Bresson, 2020). (4) two variants of our proposed DGT: DGT-light
using a single sorting criterion (Π : BFS) and DGT using multiple sorting criteria (|Π| = 3).

4.2 EXPERIMENTAL RESULTS

Table 1 summarizes node classification results of our proposed DGT and DGT-light, GNN-based
models, and Transformer-based graph models. DGT consistently shows superior performance across
all eight datasets. Especially, our DGT significantly outperforms transformer-based baselines by a
large margin up to 106%. Surprisingly, existing Transformer-based graph models show poor per-
formance compared to GNN baselines except for Actor. This implies that Transformer-based graph
models failed to filter out irrelevant messages and focus on useful nodes. In addition, they are not
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Table 3: Performance comparisons on different ordering and criteria π for constructing node se-
quences.

Name Ordering Criteria (π) Cora Citeseer Chameleon Squirrel

AR Absolute Random 81.53±1.21 72.27±0.72 70.51±0.45 62.44±0.62

AB Absolute BFS 81.22±1.14 72.28±0.69 71.95±0.49 62.31±0.89

AM Absolute BFS,PPR,Feat 83.28±0.77 70.20±0.84 72.41±0.57 62.28±0.81

RB Relative BFS 86.60±0.60 75.72±0.40 73.04±0.65 62.58±0.57

RM Relative BFS,PPR,Feat 87.55±0.59 77.04±0.57 73.48±0.88 63.78±0.59

Table 4: Effects of different positional encodings.

Model Positional Encoding Cora Citeseer Chameleon Squirrel
Transformer w/o PE 73.75±0.71 72.99±0.61 45.93±0.83 31.00±0.60

Node2Vec 81.52±0.68 72.07±0.58 49.00±0.82 39.15±0.53

Laplacian Eigvecs 69.51±1.01 70.18±0.67 49.07±1.25 32.33±0.64

RWPE 79.46±0.55 71.94±0.63 53.81±0.65 40.82±0.68

Katz PE (ours) 81.44±1.16 73.02±0.71 72.13±0.60 59.79±0.76

DGT (ours) w/o PE 86.32±0.52 76.61±0.61 59.44±0.87 46.59±0.75

Node2Vec 86.80±0.51 75.36±0.54 62.02±0.63 50.26±0.54

Laplacian Eigvecs 83.94±0.67 76.21±0.61 58.02±0.91 43.86±0.67

RWPE 87.08±0.60 76.71±0.56 61.48±0.83 49.56±0.67

Katz PE (ours) 87.55±0.59 77.04±0.57 73.48±0.88 63.78±0.59

applicable to large-scale graphs such as ogbn-arxiv, twitch-gamers, and Reddit due to their huge
computational costs.

On the other hand, our DGT consistently outperforms both GNNs and Transformer-based graph
models on almost all datasets and efficiently handles large-scale graphs by utilizing a small set of
relevant nodes. GNNs generally perform well in homophilic graphs such as Cora and Citeseer, but
show relatively inferior performance in heterophilic graphs such as Actor, Squirrel, Chameleon,
and twitch-gamers. This is because most GNNs utilize directly connected nodes for aggregation
even in heterophilic graphs. Instead, our DGT and DGT-light show larger performance gain in
heterophilic graph datasets since it captures long-range dependency, which is important for learning
on heterophilic graphs.

We also compare our DGT and DGT-light with other Transformer-based architectures to validate
the efficiency (FLOPs) of our DGT in Table 2. The table shows that our DGT and DGT-light
improves not only the performance but also the efficiency with deformable graph attention on various
datasets. As the number of nodes increases, the gap between Transformer and variants of DGT with
respect to FLOPS becomes bigger. In particular, on the twitch-gamers, DGT-light (8.05G) reduces
computational costs by × 449 compared to Transformer (3622G).

4.3 QUANTITATIVE ANALYSIS

Here, we provide quantitative results of additional experiments to demonstrate the contribution of
each component of our Deformable Graph Transformer. We first provide the ablation study of the
NodeSort module and examine the effectiveness of our positional encoding comparing with popular
positional encoding methods.

NodeSort module. We conduct an ablation study of the NodeSort module to study the effect of
the relative ordering that varies depending on base nodes and various sorting criteria. We compare
several constructions: absolute ordering with random permutation (AR), absolute ordering with BFS
(AB), absolute ordering with multiple criteria (AM), relative ordering with BFS (RB), and relative
ordering with multiple criteria (RM). From Table 3, the absolute ordering approaches (AR, AB,
AM) show poor performance. The absolute ordering with BFS (AB) shows no performance gain
compared to a randomly permuted absolute ordering (AR) on three datasets. This shows that a
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(a) Graphormer (b) DGT (ours)

Figure 2: Visualization of the 20 most important key nodes for a given query node vq in (a)
Graphormer and (b) DGT on Chameleon validation set. Red nodes denote nodes with the same
label as the query node’s label whereas blue nodes have different labels. Orange dashed lines repre-
sent connections between the query node and key nodes with the same label as the query node and
gray dashed lines represent the connections between nodes with different labels.

single absolute node sequence is not sufficient to learn complex relationships between nodes. On
the other hand, the relative ordering with BFS (RB) shows a significant performance improvement
up to 5.07(%). Further, the relative ordering with multiple criteria (RM) consistently shows superior
performance compared to the relative ordering with BFS (RB).

Positional encoding. To validate the effectiveness of our positional encoding, we compare our
proposed PE methods with models without positional encodings (w/o PE) and various encoding
methods such as Node2Vec (Grover & Leskovec, 2016), Laplacian Eigvecs used in GT (Dwivedi
& Bresson, 2020), and RWPE Dwivedi et al. (2022) on four datasets. We use Transformer and
DGT for the base models. Table 4 demonstrates that our positional encoding is effective on both
base models. In particular, it improves the performance by 17.19(%) compared to DGT without
positional encoding on Squirrel.

4.4 QUALITATIVE ANALYSIS

We provide qualitative analysis to understand why DGT is effective. We visualize the top 20 key
nodes with high attention scores for a given query node vq in Graphormer and DGT. In DGT, we
compute attention scores of each node, vi by wi =

∑
k Aπmqk · g(∆pπmqk, i). As shown in

Figure 2, a within 1-hop neighborhood of the given query node vq , 6 out of 7 neighbors have different
labels. So, both DGT and Graphormer aggregate messages (dashed lines) from remote nodes beyond
1-hop neighbors through the attention mechanism. 17 of the top 20 nodes in DGT are nodes with
the same label whereas only 4 out of 20 nodes have the same label in Graphormer. Also, the ratio of
the attention scores for the nodes with the same label, i.e.,

∑
{vi:vi∈V∧yq=yi} wi/

∑
vi∈V wi is 0.97

for DGT and 0.21 for Graphormer. This evidences that our DGT effectively performs the sparse
attention by focusing on a small set of relevant key nodes compared to Graphormer.

5 CONCLUSION

We propose Deformable Graph Transformer (DGT) that performs sparse attention, named De-
formable Graph Attention (DGA) for learning node representations on large-scale graphs. With
Deformable Graph Attention, our model can address two limitations of Transformer-based graph
models such as a scalability issue and aggregation of noisy information. Different from standard
deformable attention (Zhu et al., 2021; Xia et al., 2022), the Deformable Graph Attention considers
both structural and semantic proximity based on diverse node sequences. Also, we design simple
and effective positional encodings for graph Transformers. Our extensive experiments demonstrate
that DGT outperforms existing Transformer-based graph models on eight graph datasets. We hope
our work paves the way for generalizing Transformers on large-scale graphs.
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A COMPLEXITY FOR DEFORMABLE GRAPH ATTENTION

Self-Attention in most Transformer-based graph models (Vaswani et al., 2017; Ying et al.,
2021; Dwivedi & Bresson, 2020). Suppose that N is the number of nodes, C is the dimensionality
of hidden representations. The self-attention operation requires a huge computation cost with the
complexity of O

(
N2C +NC2

)
, where C is the dimensionality of hidden representations.

Deformable Graph Attention. Consider M is the number of heads, K is the number of keys, T
is the number of critera, and W is the number of nonzero values of g in Eq. (6). In the Deformable
Graph Attention (Eq. (5)), calculating the sampling offsets ∆pπmqk and attention weights Aπmqk

requires the complexity of O(NCMKT ). Then, given the sampling offsets and attention weights,
the complexity of calculating Eq. (5) is O(NC2T+NKC2T+WNKCT ), where W is the number
of nonzero values of S̃πq(∆pπmqk), and the factor W is because of the kernel-based interpolation.
We can calculate the linear transformation of the interpolated features W′

πmS̃πq(∆pπmqk) by in-
terpolation of the linear transformed features W′

πmX. So, the complexity of calculating Eq. (5)
become as O(NC2T + WNKCT ). In the results, the overall complexity of Deformable Graph
Attention is O(N · (C2T +WKCT + CMKT )). In our implementation, we set M = 4,K = 4
and C = 64 as a default, thus MK < C and the complexity is of O(N · (C2T +WKCT )) ,which
is a linear complexity with respect to the number of nodes N ≫ W,K,C, T .

B ADDITIONAL EXPERIMENTS

Here, we provide additional experimental results to analyze the contributions of each component
of our Deformable Graph Transformer (DGT) including the ablation study of the NodeSort module
and our kernel-based interpolation.

B.1 NODESORT MODULE.

We conduct an ablation study for the NodeSort module to validate the effectiveness of a single
node sequence with each criterion and multiple node sequences. We use three criteria for sorting:
Breadth-first Search (BFS), Personalized PageRank score (PPR), and Feature similarity (Feature).
As shown in Table 5, when multiple node sequences are applied, DGT shows good performance on
four datasets. In particular, on the cora dataset, multiple node sequences improve 3.46 (%) over the
model with the Feature similarity criterion.

Table 5: Performance comparisons on different criteria for constructing node sequences.

Criteria
Squirrel Chameleon Cora Citeseer

BFS PPR Feature

✓ 62.58±0.57 73.04±0.65 86.60±0.60 75.72±0.40

✓ 62.57±0.59 72.66±0.77 86.31±0.45 75.42±0.64

✓ 62.66±0.73 72.67±0.80 84.09±0.62 75.31±0.61

✓ ✓ ✓ 63.78±0.59 73.48±0.88 87.55±0.59 77.04±0.57

B.2 KERNEL-BASED INTERPOLATION.

In Figure 3, we conduct an ablation study of our kernel-based interpolation according to ϵ =
1, 2, 3, 4, 5, 6, 7, 8 in g on the Cora dataset. The model shows the worst performance when ϵ = 1. As
the value of ϵ increases, the model shows better performance. We believe that the value of ϵ needs
to be appropriately big to find out relevant nodes for a query node.

We also compare the performance of bilinear interpolation used in (Zhu et al., 2021) and kernel-
based interpolation in Table 6. As shown in the table, our kernel-based interpolation improves
learnabality of offsets compared to the bilinear interpolation.
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Table 6: Performance comparisons on different interpolation methods.
Method Cora Citeseer Chameleon Squirrel twitch-gamers

Bilinear interpolation 86.02±0.53 76.61±0.56 68.51±0.86 61.69±0.65 65.30±0.15

Kernel-based interpolation (Ours) 87.55±0.59 77.04±0.57 63.78±0.59 73.48±0.88 66.09±0.22

Table 7: Evaluation results on graph regression task.

Model ZINC

GCN 0.367
GAT 0.384

GraphSAGE 0.398
GT-full 0.226

Graphormer 0.122
DGT (Ours) 0.158

B.3 EXPERIMENTAL RESULTS ON GRAPH REGRESSION TASK.

To validate the effectiveness of Deformable Graph Transformer (DGT), we additionally conduct
experiment on graph regression task with ZINC dataset Dwivedi et al. (2020) Table 7. Even though
DGT mainly focus on node classification tasks, our DGT shows better performance compared to
GT-full, which has been proposed for dealing with graph regression/classification tasks.

Figure 3: Analysis of our kernel-based interpolation according to ϵ in g.

C DETAILS OF NODESORT MODULE

Our NodeSort module converts a graph into a sorted sequence of nodes to embed nodes in the regular
space without using learnable parameters. The criteria indicate how to sort our nodes. We use three
criteria: BFS, Personalized PageRank (PPR) score, and Feature similarity.

• Breadth First Search (BFS): Breadth First Search is a widely used algorithm for searching
on graph-structured dataset. Given the graph and the base node, we set the base node as a
root node and do breadth first search to get the sequence of nodes.

• Personalized PageRank score : Personalized PageRank score is a score that encodes
the local neighborhood for root node. We use approximated personalized pagerank
score Klicpera et al. (2019) for NodeSort module. Given the graph and the base node,
we calculate personalized page rank score as π(k+1)

ppr (ix) = (1−α)Âπ
(k)
ppr (ix)+απ

(k)
ppr (ix),

where the x is the base node. Then, we sort nodes in descending order of personalized page
rank score.
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Figure 4: Visualization of the position of ∆(pπqk)) (stars) in Section 3 on sequence generated via
BFS with Actor dataset. Color is different according to the query node vq .

• Feature similarity : We use cosine similarity to compute inout feature similarity between
nodes. Given the input features of nodes and the base node, we measure the similarity score
between the input feature of base node and other nodes through the cosine similarity. Then,
we sort nodes in descending order of similarity score.

BFS and PPR are used to generate node sequences based on structural similarity. In BFS, nodes
with low shortest path distances from the base node are located in front of the sequence, and in
PPR, nodes with high random walk scores from the base node are located in front of the sequence.
Conversely, feature similarity is used for semantic proximity between nodes, and nodes with high
semantic proximity to the base node are located in front of the sequence. By adopting diverse criteria
for NodeSort module, our deformable graph attention simultaneously consider both semantic and
structure proximity to design node sequences.

D COMPARISON OF KATZPE WITH RWPE

Our Katz PE is different from Random Walk Positional Encoding (RWPE) (Connectivity between
two nodes under k-th hop v.s. Landing probability of a node to itself on k-th hop). We clarify the
difference in the below:

Random Walk Positional Encoding (RWPE) of i-th node is defined as

pRWPE
i =

[
RWii,RW2

ii, · · · ,RWk
ii

]
∈ Rk, (10)

where RW = AD−1 is the random walk operator. So, RWPE expresses the landing probability of
node i to itself on k-th hop. On the other hand, our Katz PEs are defined as

KatzPE(vi) = MLP(Â[vi]
T ), (11)

where Â =
∑K

k=1 β
k−1Ak and it represents connectivity between nodes with the decaying weight

β to reflect the preference of path lengths. The equations clearly show that KatzPE does NOT have
D−1 and RW does NOT have βk−1 and summation.

E COMPARISON OF DGT WITH DEFORMABLE DETR

Our deformable graph attention addresses the challenges of applying deformable attention to graph-
structured data. Since the deformable attention mechanism can only work on the regular space,
it is not directly applicable to graph data. We address the challenge by transforming an irregular
space into a set of regular spaces using our NodeSort module. Our NodeSort module is novel in the
following aspects:

• Locality : Deformable attention in Deformable DETR is defined on only one global grid
whereas our deformable graph attention utilizes node sequences locally defined on each
neighborhood (ego graph).

• Multiple relations : Our Deformable Graph Attention (DGA) module uses diverse criteria
(e.g. bfs, feature similarity, ppr) even in a neighborhood for constructing multiple node
sequences to consider various relations in a graph.

• Semantic space : We extended the deformable attention from a physical space to semantic
space by performing NodeSort based on node feature similarity.
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We also improve learnability of offsets by replacing bilinear interpolation in deformable DETR with
our kernel-based interpolation (Eq. (6)). Although this technique is simple, it largely improves the
performance as shown in Table 6.

F EXPERIMENTAL DETAILS

F.1 DATASETS

We use four heterophilic graph datasets and four homophilic graph datasets for our experiments. To
the best of our knowledge, all the datasets for our experiments do not contain personally identifi-
able information or offensive contents.

For homophilic graphs, we use two Planetoid datasets (Citeseer and Cora) (Sen et al., 2008), OGB
node classification dataset (ogbn-arxiv)1 (Hu et al., 2020), and Reddit (Hamilton et al., 2017). Plan-
etoid and ogbn-arxiv datasets are citation networks whose nodes represent papers and edges indicate
citations between papers. Node labels are the topics of each paper and node features are the bag-
of-words of papers in Planetoid datasets and word2vec of papers in ogbn-arxiv. Reddit dataset is
composed of Reddit posts and the node label is community, which a post belongs to.

For heterophilic graphs, we use four graph datasets: Squirrel2 (Rozemberczki et al., 2021),
Chameleon2 (Rozemberczki et al., 2021), Actor3 (Tang et al., 2009), and twitch-gamers4 (Lim et al.,
2021; Rozemberczki & Sarkar, 2021). Squirrel and Chameleon are web page datasets collected from
Wikipedia (Rozemberczki et al., 2021), where the nodes are web pages, edges are links between
them, node features are keywords of the pages, and labels are five categories based on the monthly
traffic of the web pages. Actor is an actor co-occurrence network, where nodes are actors, edges
represent co-occurrence on the same Wikipedia page, node features are keywords in the Wikipedia
pages, and labels are five categories in terms of words of actor’s Wikipedia. twitch-gamers is an
online social network (Lim et al., 2021; Rozemberczki & Sarkar, 2021), where nodes are Twitch
users, edges are mutual follower relationships between them, and node features include a number of
views, creation and update dates, language, life time, and whether the account is dead. Node labels
denote whether the channel has explicit content.

F.2 IMPLEMENTATION DETAILS

As written in Section 4.1 in the main paper, all the models including baselines and our DGT are
optimized using Adam optimizer (Kingma & Ba, 2015). The experiments are conducted on a single
GPU (RTX 2080 Ti or A6000). For all cases, learning rates and weight decay are optimized in
the same search space: learning rate in {0.05, 0.01, 0.005}, weight decay in {1e-3, 5e-4, 5e-5}.
The hidden dimension is fixed with 64 and for all the cases. Also, the dropout (Srivastava et al.,
2014) is applied and the epochs are 1000 with patience 100 for early stopping. The best model on
the validation split is used for reporting the performance. We adopt the splits (48%/ 32%/ 20%)
of nodes per class for (train/ validation/ test) following (Pei et al., 2020; Zhu et al., 2020) and the
experiments are repeated 30 times on Actor, Squirrel, Chameleon, Cora, and Citeseer datasets. For
twitch-gamers, ogbn-arxiv, and Reddit, the experiments are conducted with the splits provided by
(Lim et al., 2021), (Hu et al., 2020), and (Hamilton et al., 2017), respectively and repeated 10 times.

Implementation details of Baselines. We implement the baselines using Pytorch5 Paszke et al.
(2017), geometric deep learning library Torch-Geometric6 Fey & Lenssen (2019), and Deep Graph
Library7 Wang et al. (2019). The detailed experimental settings for each baseline models are in
Table 8.

1Copyright (c) 2019 OGB Team. Licensed under MIT License
2Copyright (c) 2007 Free Software Foundation, Inc. under GNU GENERAL PUBLIC LICENSE
3Copyright (c) Wikipedia:Text of Creative Commons Attribution. under ShareAlike 3.0 Unported License
4Copyright (c) 2019 Benedek Rozemberczki. Licensed under MIT License
5Copyright (c) 2016- Facebook, Inc (Adam Paszke). Licensed under BSD-3-Clause License
6Copyright (c) 2020 Matthias Fey. Licensed under MIT License
7Copyright (c) 2019 DGL. Licensed under Apache License, Version 2.0
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Table 8: The hyper-parameter settings for our experiments

Model Hyper-parameters

MLP learning rate in {0.05, 0.01, 0.005}, weight decay in {1e-3, 5e-4, 5e-5}

GCN8 learning rate in {0.05, 0.01, 0.005}, weight decay in {1e-3, 5e-4, 5e-5}
layer in {1, 2, 3, 4}

GAT9 learning rate in {0.05, 0.01, 0.005}, weight decay in {1e-3, 5e-4, 5e-5},
layer in {1, 2, 3, 4}, the number of heads in {1,4}

GraphSAGE10 learning rate in {0.05, 0.01, 0.005}, weight decay in {1e-3, 5e-4, 5e-5},
layer in {1, 2, 3, 4}

JKNet
learning rate in {0.05, 0.01, 0.005}, weight decay in {1e-3, 5e-4, 5e-5},
layer in {1, 2, 3, 4}

SGC11 learning rate in {0.05, 0.01, 0.005}, weight decay in {1e-3, 5e-4, 5e-5},
K in {1, 2, 3, 4}

GATv2
12 learning rate in {0.05, 0.01, 0.005}, weight decay in {1e-3, 5e-4, 5e-5},

layer in {1, 2, 3, 4}, the number of heads in {1,4}

MixHop
13 learning rate in {0.05, 0.01, 0.005}, weight decay in {1e-3, 5e-4, 5e-5},

layer in {1, 2, 3, 4}, and maximum value of P is 2

Geom-GCN14 learning rate in {0.05, 0.01, 0.005}, weight decay in {1e-3, 5e-4, 5e-5}

H2GCN
learning rate in {0.05, 0.01, 0.005}, weight decay in {1e-3, 5e-4, 5e-5},
K in {1, 2}

DeformableGCN
learning rate in {0.05, 0.01, 0.005}, weight decay in {1e-3, 5e-4, 5e-5},
block in {1, 2}, the number of neighbors in {5,10,15,20,25}

Transformer15 learning rate in {0.05,0.01,0.005}, weight decay in {1e-3,5e-4,5e-5},
the number of blocks in {1,2,3}, the number of heads in {1,4}

Graphormer16 learning rate in {0.05,0.01,0.005}, weight decay in {1e-3,5e-4,5e-5},
the number of blocks in {1,2,3}, and the number of heads in {1,4}

GT-full17 learning rate in {0.05,0.01,0.005}, weight decay in {1e-3,5e-4,5e-5},
the number of blocks in {1,2,3}, the number of heads in {1,4}

GT-sparse18 learning rate in {0.05,0.01,0.005}, weight decay in {1e-3,5e-4,5e-5},
the number of blocks in {1,2,3}, the number of heads in {1,4}

DGT-light (Ours) learning rate in {0.05, 0.01, 0.005}, weight decay in {1e-3, 5e-4, 5e-5},
the number of blocks in {1, 2}, γ in {1,2,4,8,16,32,64,128,256}

DGT (Ours) learning rate in {0.05, 0.01, 0.005}, weight decay in {1e-3, 5e-4, 5e-5},
the number of blocks in {1, 2}, γ in {1,2,4,8,16,32,64,128,256}

Ours. We implement our model (DGT and DGT-light) using Pytorch and Torch-Geometric. For
constructing node sequences, we employ three criteria such as BFS, sorting based on Personalized
PageRank score, and sorting based on feature similarity between a base node and nodes in a graph.
The detailed hyperparameter settings are in Table 8.
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G DISCUSSION

Negative societal impacts. Deformable Graph Transformer (DGT) is a graph Transformer for
learning node representations on large-scale graphs. We believe that this paper has no direct negative
societal impacts. However, similar to other neural networks for graph-structured datasets such as
Graph Neural Networks (GNNs), DGT can be utilized for malicious applications. Graph neural
networks can be applied to predict unknowable information such as religions, political views, and
personal preferences based on graph information. If this technology is applied to identifying the
personalities of voters and influencing their behaviors, it might cause interference in the elections.
To mitigate these societal problems, illegal data collection and data harvest should be prevented and
benchmark datasets should be released without any private information.

Limitations. Deformable Graph Transformer (DGT) performs deformable attention based on di-
verse node sequences. The node sequences play the role of coordinates in 2D images. However,
different from the works based on deformable attention in computer vision Zhu et al. (2021); Xia
et al. (2022), nodes in graphs do not have the exact positions. So, the position of each node needs
to be defined with appropriate mechanisms based on the properties of graphs. In this paper, we
utilize multiple criteria for generating node sequences to capture various properties of the graphs for
node classification. In other tasks such as link prediction and graph classification, other criteria for
generating node sequences could lead to more powerful representations on graphs. We leave it for
our future work.
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