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ABSTRACT

The recent paradigm shift to large-scale foundation models has brought about a
new era for deep learning that, while has found great success in practice, has also
been plagued by prohibitively expensive costs in terms of high memory consump-
tion and compute. To mitigate these issues, there has been a concerted effort in
post-hoc neural network pruning techniques that do not require costly retraining.
Despite the considerable progress being made, existing methods often exhibit a
steady drop in model performance as the compression increases. In this paper, we
present a novel approach to compressing large transformers, coined OATS, that
compresses the model weights by approximating each weight matrix as the sum
of a sparse matrix and a low-rank matrix1. Prior to the decomposition, the weights
are first scaled by the second moment of their input embeddings, so as to ensure
the preservation of outlier features recently observed in large transformer models.
Without retraining, OATS achieves state-of-the-art performance when compress-
ing large language models, such as Llama-3 and Phi-3, and vision transformers,
such as Google’s ViT and DINOv2, by up to 60%, all while speeding up the
model’s inference on a CPU by up to 1.37× compared to prior pruning methods.

1 INTRODUCTION

Large scale transformer-based models have found great success in a number of domains ranging
from image classification (Wu et al., 2020), language modelling (Devlin et al., 2019), and question
answering (Brown et al., 2020). However, these models contain billions of parameters making them
computationally expensive to train and deploy, which has lead to an increased demand for resource-
saving techniques like model quantization (Dettmers et al., 2022; Egiazarian et al., 2024), parameter
efficient fine-tuning (Hu et al., 2022; Zhao et al., 2024b), and, most relevant to this work, neural
network pruning (Frantar & Alistarh, 2023).

Pruning has been a key focus for model compression since the early days of deep neural networks
(Mozer & Smolensky, 1988; LeCun et al., 1989; Hassibi & Stork, 1992). Over the years, various
pruning techniques have emerged, introducing sparsity in the model parameters either before train-
ing (Lee et al., 2019; Wang et al., 2020; Tanaka et al., 2020; de Jorge et al., 2021), during training
(Zhu & Gupta, 2018; Evci et al., 2020), or post-training (Benbaki et al., 2023). In the context of large
foundation models, post-training pruning methods, particularly those requiring minimal (Xia et al.,
2022; Ma et al., 2023) or no re-training (Frantar & Alistarh, 2023; Sun et al., 2024b; Ashkboos et al.,
2024; Zhang et al., 2024b) are preferred for their computational efficiency. These techniques, when
compressing models by 50%, have demonstrated the ability to accelerate end-to-end CPU inference
by up to 1.8× (Frantar & Alistarh, 2023; Yin et al., 2024b) and GPU inference by up to 1.63× using
structured N:M sparsity (Mishra et al., 2021), highlighting their potential in reducing computational
costs during deployment.

Despite the significant advancements in pruning techniques, it was recently shown that current meth-
ods suffer from a consistent degradation in model performance as compression levels increase (Yin
et al., 2024a). Moreover, although structured pruning offers greater potential for acceleration com-
pared to unstructured pruning, it often imposes a much steeper trade-off in terms of model accuracy
and effectiveness (Chen et al., 2022). These challenges underscore the need for more sophisticated
pruning strategies that can achieve better performance as compression increases.

1Our code is available in the supplementary material.
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1.1 CONTRIBUTIONS

To mitigate these issues, we introduce Outlier-Aware Pruning Through Sparse and Low Rank De-
composition (OATS): a novel retraining-free method for compressing large transformers that ap-
proximates the model’s weight matrices as a sum of a sparse matrix and a low-rank matrix. In order
to emphasize the outliers recently observed in large transformer models and preserve model perfor-
mance (Kovaleva et al., 2021; Dettmers et al., 2022; Darcet et al., 2024; Sun et al., 2024a), OATS
first scales the weights by the second moment of their corresponding input embeddings.

We evaluate OATS on recent large language models (LLMs) – Phi-3 (Abdin et al., 2024) and Llama-
3 (Dubey et al., 2024) – and vision transformers – Google’s ViT (Wu et al., 2020) and DinoV2
(Oquab et al., 2023) – demonstrating that OATS achieves new state-of-the-art performance across
a wide range of commonly employed performance metrics. Furthermore, by combining structured
pruning with unstructured pruning, OATS accelerates CPU inference across all levels of compression
when compared to models that utilize just unstructured pruning.

To gain a deeper understanding of the sparse and low-rank terms found by OATS, we split the
compressed vision transformers (Wu et al., 2020) into two separate models, a sparse model and a
low-rank model, and visualize their respective attention heat maps utilizing attention rollout (Abnar
& Zuidema, 2020). These reveal a complementary relationship between the two models, with each
focusing on different key areas of the image, effectively segmenting it into distinct regions.

2 THE OATS ALGORITHM

The key observation behind the OATS algorithm is that the weight matrices, W ∈ Rdout×din , in a
transformer model can be faithfully approximated as a summation of a sparse and low-rank matrix
by solving the following optimization problem, commonly known as Robust PCA (Chandrasekaran
et al., 2009; 2011; Candès et al., 2011):

min
S,L∈Rdout×din

∥W − S −L∥2F s.t. Rank(L) ≤ r, ∥S∥0 ≤ k. (1)

2.1 ALTERNATING THRESHOLDING

To solve Equation 1, OATS leverages the alternating thresholding algorithms proposed by Zhou &
Tao (2011), Netrapalli et al. (2014) and Bertsimas et al. (2024) that iteratively alternates between
solving for the low-rank term L, through singular-value thresholding, and for the sparse term S,
through hard-thresholding. Given a matrix A ∈ Rm×n, singular-value thresholding, also known as
truncated SVD, is defined as:

TRUNCATEDSVD(A, r) = UrΣrV
⊤
r ,

where Ur,Σr,V
⊤
r correspond to the matrices formed by retaining only the top-r singular vectors

and singular values from the full SVD of A. Hard-thresholding, which succeeds the singular-value
thresholding step, is defined as:

HARDTHRESHOLD(A, k) = M ⊙A,

Algorithm 1 ALTERNATINGTHRESHOLD

1: Inputs:
2: Weight Matrix: W ∈ Rdout×din

3: Iterations: N
4: Rank: r
5: Nonzeros: k

6: Procedure:
7: S = 0
8: for t = 1 to N do
9: L = TRUNCATEDSVD(W − S, r)

10: S = HARDTHRESHOLD(W −L, k)
11: end for
12: return: S, L

where M ∈ Rm×n is a binary matrix with k
non-zero entries coinciding with the k largest
entries in magnitude in A. These steps are
summarized in Algorithm 1 on the right. To
optimize memory usage, the low-rank term L
is stored through its two low-rank components:
Ur and ΣrV

⊤
r .

2.2 ALTERNATIVE SPARSITY PATTERNS

When performing the hard-threshold step, var-
ious restrictions can be enforced on the spar-
sity pattern of the sparse term of the decompo-
sition for enhanced performance or speed-up.
The following are two important cases:
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Row-Wise Thresholding The hard-thresholding can be performed row-wise rather than layer-
wise in which case M would be a binary matrix with m ·

⌊
k
m

⌋
non-zero entries coinciding with

the
⌊

k
m

⌋
largest entries in magnitude in each row of A. Sun et al. (2024b) have shown this leads to

better performance.

N:M Sparsity The hard-thresholding can be applied at an even more granular level using N:M
sparsity, where only the N largest entries by magnitude in every group of M entries in matrix A are
nonzero. Recently, NVIDIA’s sparse tensor cores have been able to exploit such sparsity patterns
for acceleration (Mishra et al., 2021).

2.3 INCORPORATING OUTLIER INFORMATION

The alternating thresholding on its own yields suboptimal results because the activations of large-
scale transformers exhibit a small number of large-magnitude features and altering these (for exam-
ple, through the sparse and low-rank approximation) negatively impacts model performance (Koval-
eva et al., 2021; Dettmers et al., 2022; Darcet et al., 2024; Sun et al., 2024a). OATS takes inspiration
from Wanda (Sun et al., 2024b) and computes a diagonal scaling matrix D ∈ Rdin×din that captures
the second moment of the input activations

D = diag
(√

X⊤X
)
,

where X ∈ RB×din and B is the product of the batch size and sequence length. This diagonal
matrix, containing large magnitudes for the outlier features, is used to amplify their significance in
the reconstruction error of Equation 1, leading to the following alternative optimization problem:

min
S,L∈Rdout×din

∥WD − S −L∥2F s.t. Rank(L) ≤ r, ∥S∥0 ≤ k.

The solution of the problem is given by:

S,L = ALTERNATINGTHRESHOLD (WD, N, r, k)

which gives a sparse plus low-rank approximation of WD ≈ S+L. OATS then applies the inverse
transformation to reach the final compressed weight:

Wcompressed = (S +L)D−1,

where it leverages the fact that D is diagonal so that it both preserves the sparsity pattern of S and is
easy to invert. The original weight matrix is replaced with three matrices: the sparse matrix SD−1,
and two matrices coinciding with the low-rank factorization of LD−1. Aligned with Frantar &
Alistarh (2023); Sun et al. (2024b), and Zhang et al. (2024b), the activations are calculated through
a calibration set that is propagated through the compressed layers.

2.4 OATS PARAMETERS

To determine the rank r and the number of nonzeros k, OATS takes in as input two hyperparameters:
the compression rate, ρ ∈ (0, 1), and the rank ratio, κ ∈ (0, 1). The compression rate coincides
with the sparsity rate required by existing pruning algorithms and is defined as:

ρ = 1− # of nonzero parameters in compressed layer
# of parameters in original layer

= 1− k + r(dout + din)

dout · din
.

The rank ratio represents the proportion of nonzero parameters that appear in the low-rank term:

κ =
# of parameters in low-rank term

# of nonzero parameters in compressed layer
=

r(dout + din)

(1− ρ)dout · din
.

Given a fixed compression rate ρ and rank ratio κ, the two equations above can be solved to obtain
the rank r and nonzeros k:

r =

⌊
κ · (1− ρ) · dout · din

dout + din

⌋
k = ⌊(1− κ) · (1− ρ) · dout · din⌋ . (2)

The complete OATS algorithm pseudocode can be found in Algorithm 2 below.
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Algorithm 2 OATS

1: Inputs:
2: Layer Inputs Propagated through Prior Compressed Layers: Xℓ ∈ RB×din

3: Layer Matrix: W ℓ ∈ Rdout×din

4: Compression Rate: ρ
5: Rank Ratio: κ
6: Iterations: N

7: Procedure:
8: r ←

⌊
κ · (1− ρ) · dout·din

dout+din

⌋
, k ← ⌊(1− κ) · (1− ρ) · dout · din⌋

9: D ← diag(
√
X⊤X)

10: L,S ← ALTERNATINGTHRESHOLD(WD, N, r, k)
11: W ← (L+ S)D−1

12: return: Xℓ+1 ←XℓW⊤

3 EXPERIMENTS ON LARGE LANGUAGE MODELS

3.1 EXPERIMENT SETUP

Models and Tasks We evaluate OATS on two state-of-the-art families of LLMs: Phi-3 (Ab-
din et al., 2024) and Llama-3 (Dubey et al., 2024). To gauge the algorithm’s performance
under various model sizes, we select Phi-3 Mini, a 3.8B parameter model, Phi-3 Medium, a
14B parameter model, Llama-3 8B, an 8B parameter model, and Llama-3 70B, a 70B pa-
rameter model. We utilize LM Harness developed by Gao et al. (2024) to evaluate five-
shot performance on the Massive Multitask Language Understanding benchmark by Hendrycks
et al. (2021), zero-shot performance on eight tasks, and language generation on WikiText-2.

Parameters Phi-3 Llama-3
Iterations 80 80
Rank Ratio 25% 30%

Table 1: Hyperparameters utilized for OATS across
model families. Both parameters are further ablated
in Section 3.3.

Pruning Benchmarks As OATS does
not require costly retraining after model
compression, we opt to benchmark it with
three current state-of-the-art algorithms
that similarly do not require such overhead:
SparseGPT by Frantar & Alistarh (2023),
Wanda by Sun et al. (2024b), and DSNoT2

by Zhang et al. (2024b). The parameters
utilized for OATS are depicted in Table 1.

Calibration Data Remaining consistent with Frantar & Alistarh (2023), Sun et al. (2024b), and
Zhang et al. (2024b), our calibration data consists of 128 sequences of length 2048 sampled from
the first shard of the C4 training set (Raffel et al., 2020). To ensure consistency, we utilize the same
calibration data for all pruning algorithms that we benchmark.

Layer-Wise Compression Rates We benchmark our algorithm across a wide range of compres-
sion rates: {0.3, 0.4, 0.5, 0.6}. For compression rates at or below 0.5, we compress all transformer
blocks uniformly. At the higher compression rate of 0.6, we utilize Outlier Weighed Layerwise
Sparsity Ratios (OWL) proposed by Yin et al. (2024b) which were shown to lead to significant per-
formance improvements at higher compression rates. All linear layers in a transformer block are
pruned uniformly to achieve the desired sparsity rate. We exclude pruning any linear layers that are
present in the model head and embeddings which conforms with prior works by Frantar & Alistarh
(2023), Sun et al. (2024b), and Zhang et al. (2024b).

Hardware Speedup We benchmark the CPU speedup of OATS over its competitors using the
DeepSparse Inference Engine developed by NeuralMagic (2021). For GPU speed-up, we include
structured N:M sparsity experiments where the rank ratio is varied to measure the trade-off between
compression and performance.

2DSNoT experiments are run with both SparseGPT and Wanda. We report the best results across the two.
Further details are in Appendix A.12.
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3.2 RESULTS

Five-shot MMLU Table 2, below, reports the MMLU accuracy of OATS relative to current state-
of-the-art pruning algorithms. OATS is able to outperform all prior methods, across all compression
rates, with an increasing gap as the compression rate increases. Notably, at 50% compression,
OATS surpasses previous pruning algorithms by a margin of 5.42% on Phi-3 Mini, 2.52% on Phi-3
Medium, 2.86% on Llama-3 8B, and 2.03% on Llama-3 70B.

Compression Method Phi-3 Llama-3
Mini (3.8B) Medium (14B) 8B 70B

0% Dense 70.34 76.78 64.97 79.63

30%
SparseGPT 68.31 74.12 64.25 78.28

Wanda 67.63 75.18 63.67 79.15
DSNoT 68.02 75.13 63.72 79.00
OATS 68.84 76.15 65.22 78.47

40%
SparseGPT 63.47 72.42 60.91 76.29

Wanda 64.15 73.34 60.33 77.16
DSNoT 63.57 73.20 59.99 77.70
OATS 65.75 74.99 62.46 77.89

50%
SparseGPT 53.22 67.63 53.60 72.47

Wanda 54.57 69.76 49.83 72.04
DSNoT 54.28 68.65 49.20 72.76
OATS 59.99 72.28 56.46 74.79

Table 2: Comparison of average five-shot accuracies (%) on MMLU under different compression
rates.

Zero-shot Tasks Table 3, below, reports the zero-shot accuracy of OATS relative to current state-
of-the-art pruning algorithms averaged across the following eight commonly used tasks: PIQA (Bisk
et al., 2020); HellaSwag (Zellers et al., 2019); Winogrande (Sakaguchi et al., 2021); OpenBookQA
(Mihaylov et al., 2018); RTE (Wang et al., 2018); BoolQ (Clark et al., 2019); ARC-e and ARC-
c (Clark et al., 2018). Mirroring the trend observed in the five-shot results, the improvement of
OATS over prior pruning algorithms increases with compression, culminating in a 2.05% advantage
over prior methods when compressing Phi-3 Mini to 50% of its size.

Compression Method Phi-3 Llama-3
Mini (3.8B) Medium (14B) 8B 70B

0% Dense 71.99 74.27 69.79 75.27

30%
SparseGPT 70.63 74.53 69.08 75.07

Wanda 70.66 74.05 68.63 75.19
DSNoT 71.20 74.03 68.98 75.54
OATS 71.48 74.04 69.34 75.24

40%
SparseGPT 69.18 74.40 67.58 74.63

Wanda 68.80 73.01 67.04 74.10
DSNoT 69.08 72.90 66.65 74.29
OATS 70.04 74.46 68.68 74.88

50%
SparseGPT 66.36 73.25 64.66 73.17

Wanda 65.03 70.96 63.27 72.85
DSNoT 65.33 71.12 62.74 72.91
OATS 68.41 73.39 65.71 73.30

Table 3: Comparison of average zero-shot accuracies (%) under different compression rates. Task-
specific scores can be found in Appendix A.11.
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Generation Task Table 4, below, reports the WikiText-2 perplexity of OATS relative to current
state-of-the-art pruning algorithms. At 50% compression, OATS results in an 8.49% reduction in
perplexity on the larger Phi-3 Medium model, and an even larger 8.99%, 9.04%, and 9.30% reduc-
tion on Phi-3 Mini, Llama-3 8B, and Llama-3 70B respectively.

Compression Method Phi-3 Llama-3
Mini (3.8B) Medium (14B) 8B 70B

0% Dense 9.50 6.21 10.17 2.68

30%

SparseGPT 11.19 7.48 9.71 3.24
Wanda 10.71 7.28 9.39 3.28
DSNoT 10.51 7.11 9.36 3.27
OATS 10.27 6.85 9.59 3.07

40%

SparseGPT 13.03 8.52 10.01 3.99
Wanda 12.59 8.49 9.74 4.08
DSNoT 12.17 8.24 9.60 4.10
OATS 11.53 7.70 9.24 3.68

50%

SparseGPT 16.80 9.89 11.95 5.27
Wanda 17.23 10.12 12.36 5.38
DSNoT 16.68 9.96 12.41 5.58
OATS 15.18 9.05 10.87 4.78

Table 4: Comparison of perplexity (lower is better) on WikiText-2 under different compression rates.

Method Phi-3 Llama-3 8B
Mini Medium

SparseGPT 46.20 57.91 39.48
Wanda 44.22 58.49 31.20
DSNoT 44.75 58.20 33.28
OATS 52.59 64.10 44.46

Table 5: MMLU accuracy (%) of models compressed
by 60% using OWL ratios.

Performance Under High Compression
Table 5, on the right, is the 5-shot MMLU
accuracy of models compressed to a higher
compression rate of 60%, utilizing OWL
ratios (Yin et al., 2024b). Following the
trend above, OATS continues to outper-
forms prior methods by a margin of 6.39%
on Phi-3 Mini, 5.61% on Phi-3 Medium,
and 4.98% on Llama-3 8B.

3.3 STUDIES AND HYPERPARAMETER EXPLORATION

We conduct ablation studies for OATS, on Phi-3 Mini at 40% compression rate with a rank ratio of
20%, to quantify the impact of the following design choices:

• Scaling the weights by the second moment of the input activations, D, versus not scaling.

• Pruning the weights per each output row in the matrix versus pruning layer-wise.

The results are shown in Table 6 below:

Ablation MMLU (↑) Zero-shot (↑) Perplexity (↓)

No Scaling Layer-Wise 62.46 67.58 19.21
Row-Wise 65.31 68.22 18.34

Scaling by D
Layer-Wise 64.44 70.52 11.68
Row-Wise 65.84 70.71 11.50

Table 6: Ablation results of OATS on Phi-3-Mini, at 40% compression rate, with a rank ratio of
20%. Scaling the weights by the second moment of the input activations and pruning row-wise
significantly improves the performance of OATS.
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In addition to the ablations, we perform additional experiments to examine the impact of the rank
ratio and the number of iterations on the performance of OATS. Figure 1 below shows the results.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
40

50

60

70

Rank Ratio

A
cc

ur
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y
(%

)

1 20 40 60 80 100 120 140 160
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Figure 1: The effect of varying the rank ratio and number of iterations on zero-shot and five-shot
accuracy.

The experiments reveal that a rank ratio between 25% to 30% leads to the best performance, with
degradation occurring at higher rank ratios. For the number of iterations, performance improves
sharply in the first 20 iterations, before leveling off and saturating at around 80 iterations.

3.4 HARDWARE SPEEDUP

CPU Speedup We benchmark, using the DeepSparse engine by NeuralMagic (2021), the CPU
throughput induced by OATS compared to models pruned with unstructured sparsity. We run end-
to-end inference on a compressed Phi-3 Medium 15B model for a single batch of 2048 tokens on
an Intel Xeon Gold 6148 CPU @ 2.40GHz with 32 cores. The achieved throughput and speedup
(over a dense model) are shown in Table 7 below. By trading unstructured sparsity for structured
sparsity through the low-rank terms, OATS achieves greater CPU speed-up compared to methods
that rely solely on unstructured pruning. Notably, at 40% compression, OATS is 1.37× faster than
unstructured pruning.

Compression Method Throughput Speedup

0% Dense 4.03 1.00×

30% Unstructured Pruning 4.32 1.07×
OATS 5.58 1.38×

40% Unstructured Pruning 5.08 1.26×
OATS 6.86 1.73×

50% Unstructured Pruning 7.16 1.78×
OATS 8.31 2.06×

Table 7: Comparison of throughput (tokens/second) and speedup achieved through OATS and un-
structured pruning methods relative to their dense counterparts.

N:M Performance We compare the performance of state-of-the-art pruning algorithms, using a
2:4 structured sparsity pattern, with the performance of OATS, using a 2:8 structured sparsity pattern
on the sparse term. OATS employs a sparser N:M pattern to compensate for its low-rank term that
remains dense. We experiment with rank ratios of {0.25, 0.3, 0.35, 0.4, 0.45, 0.5}. Unlike previous
pruning methods, where N:M structured sparsity enforces a fixed compression rate of N

M , OATS
allows for a flexible trade-off between compression and model performance by adjusting the rank
ratio. Figure 2, below, illustrates the compression ratio against the 5-shot MMLU accuracy for
various compression algorithms.
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Figure 2: Experiments evaluating OATS with 2:8 structured sparsity on the sparse terms against
2:4 sparsity of state-of-the pruning algorithms. The rank ratio for OATS is varied to capture the
performance across different compression rates.

Despite having a sparser structured sparsity pattern of 2:8, OATS is able to recover the model perfor-
mance through the presence of its low-rank term. Specifically, at a compression rate of 50%, OATS
is able to outperform all prior state-of-the-art by 6.34% on Phi-3 Mini. In the case of Llama-3 8B,
OATS not only surpasses previous methods by 9.2% at 50% compression, but it also outperforms
them by 2.86% at an even higher compression rate of 54%.

4 EXPERIMENTS ON VISION TRANSFORMERS

We run experiments on Google’s ViT-Base (Wu et al., 2020), an 86.6M parameter model trained
in a supervised manner on ImageNet-21k (Ridnik et al., 2021) and fine-tuned on ImageNet 2012
(Russakovsky et al., 2015), and DinoV2-Giant (Oquab et al., 2023), a 1.14B parameter model that
was trained through self-supervised learning.

We benchmark OATS against the same three pruning algorithms: SparseGPT, Wanda, and DSNoT,
by evaluating top-1 accuracy on the validation set of ImageNet (Russakovsky et al., 2015). A subset
of 2048 images from the training set of ImageNet is used for calibration and is maintained consis-
tent across all pruning experiments. All OATS experiments use a rank ratio of κ=20% and N=80
iterations. We exclude from compression the embedding and the classifier layers.

The results are shown in Table 8 below. Compared to LLMs, vision transformers show greater
resilience to pruning, with DinoV2 experiencing only a 0.41% drop in top-1 accuracy when com-
pressed by 50% using OATS.

Compression Method ViT-Base DinoV2-Giant
0% Dense 80.33 86.55

30%

SparseGPT 80.21 86.46
Wanda 80.28 86.47
DSNoT 80.16 86.46
OATS 80.15 86.52

40%

SparseGPT 79.58 86.39
Wanda 79.34 86.32
DSNoT 79.46 86.37
OATS 79.86 86.46

50%

SparseGPT 78.44 86.04
Wanda 76.19 85.81
DSNoT 76.90 85.93
OATS 78.77 86.14

Table 8: ImageNet validation accuracy (%).
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5 VISUALIZING AND INTERPRETING THE DECOMPOSITION

To develop a better understanding of how the sparse and low rank components individually con-
tribute to the flow of information through the model, we compute and visualize the attention rollout
(Abnar & Zuidema, 2020) of the compressed vision transformers when:

• All low-rank terms are set to zero and inputs are propagated through only the sparse terms.

• All sparse terms are set to zero and inputs are propagated through only the low-rank terms.

Figure 3 below provides a visualization of how the information would flow through a standard
transformer block for both settings.

Attention
Wk, Wq , Wv Compressed Wo Compressed

FFN
W1 Compressed W2 Compressed

Sk

Lk Lk

Sq

Lq Lq

Sv

Lv Lv

Multi-Head
Attention

So

Lv Lv

+

Inputs

+

+

Normalization

Activation
Function

S1

+

L1 L1

S2

L2 L2

+

+

(a) Sparse terms only
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(b) Low-rank terms only

Figure 3: A visualization of how the attention rollout is computed to isolate the contribution of the
sparse terms versus low-rank terms given by the OATS algorithm.

Figure 4 depicts the attention rollout for various images in the Microsoft COCO dataset (Lin et al.,
2014) passed to a ViT-B that was compressed by 50%, with a rank ratio of 20%.

Original:

Sparse:

Low-Rank:

Figure 4: Attention rollout visualization applied to various images on the Microsoft COCO dataset.

The rollout visualizations show that the sparse and low-rank terms capture distinct areas of the
image, effectively segmenting it. A careful analysis reveals three distinct partitioning patterns. The
first, which is also commonly exhibited in the classical setting (Candès et al., 2011), is when one
component (commonly sparse) captures the subject(s), while the other component (commonly low-
rank) captures the background. The second is when both components focus on different parts of the
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same subject, each capturing distinct features. The third behavior arises when the image contains
multiple subjects, with each component isolating a different subject. While these patterns provide
initial insights into how the components process visual information, further investigation is needed
to fully understand the mechanisms driving these behaviors.

6 RELATED WORKS

Connection with Wanda OATS utilizes the same outlier scaling as the the one that is employed
by Wanda (Sun et al., 2024b). In fact, Wanda can be seen as a special case of OATS when the
rank ratio κ=0. Indeed, in such a case, according to Equation 2, the low-rank term would become
the zero matrix and OATS would perform a single hard thresholding step that is equivalent to the
pruning step described by Wanda: Wcompressed = HARDTHRESHOLD(WD, k)D−1.

Sparse and Low-Rank Approximation in Transformers The emergence of sparse and low-rank
structures in transformers has recently become an area of both theoretical and practical interest. On
the theoretical front, Zhao et al. (2024c) showed that the logits of LLMs trained utilizing next token
prediction converge to a low rank and sparse structure. On the practical front, Scatterbrain proposed
by Chen et al. (2021a) shows that it is possible to approximate the entire attention mechanism with
a single sparse and low rank decomposition. Pruning-wise, LoRAP by Li et al. (2024) performs
structured pruning on the feed-forward linear layers and apply a low-rank decomposition to the
attention matrices using a scaling technique similar to OATS.

Structured Pruning and Low-Rank Adaptation Recent works, such as LoSparse (Li et al.,
2023), LoRAPrune (Zhang et al., 2024a), and APT (Zhao et al., 2024a), propose variations of ap-
plying structured pruning on the weights while incorporating a low-rank adapter that is trained via
gradient descent. These are markedly different than OATS, which does not employ any fine-tuning
with low-rank adapters, nor does it perform structured pruning (but rather a sparse plus low-rank
decomposition which can be thought of as a combination of structured and unstructured pruning).

Robust PCA Algorithms The search for Robust PCA algorithms has been a key area of interest
since the inception of the problem. Examples of other approaches include applying a convex relax-
ation, where the sparsity and low-rank constraints are replaced by ℓ1 and nuclear norm surrogates
(Zhou et al., 2010), or parameterizing the low-rank matrix as L = UV ⊤, and applying gradient
descent on U and V (Yi et al., 2016; Tong et al., 2021). While OATS utilizes the alternating thresh-
olding approach for its simplicity, future work might want to investigate the use of other algorithms.

Pruning and Interpretability An active area of research is understanding what pruning is pruning
and how it impacts model performance. Paganini (2020) show that pruning has a disproportionate
negative effect on underrepresented classes. In a similar vein, Yin et al. (2024a) showed that pruning
LLMs can irreversibly harm model performance on tasks that are more challenging. We postulate
that the low-rank term present in OATS might be able to mitigate the negative impacts of pruning.
Indeed, Tables 2 and 5 show that the gap between OATS and prior methods is larger at higher com-
pression, suggesting that the low-rank term plays a critical role in mitigating the loss in performance.

7 CONCLUSION

We have introduced OATS, an algorithm that without any re-training, compresses the model’s weight
matrices through a sparse and low-rank decomposition. Taking inspiration from prior works on the
emergence of outlier features, OATS first scales the weights by the second moment of their input
embeddings prior to applying an alternating thresholding algorithm. A comprehensive evaluation
shows that OATS is able to consistently outperform prior state-of-the-art on various performance
metrics across multiple compression rates, models, and modalities, while also improving on CPU
speed-up. Beyond just model compression, our visualizations on vision transformers indicate that
models exhibit sparse and low-rank structures that capture different segments of the image. This
work is the first to reveal the potential of sparse and low-rank decompositions for large-scale trans-
formers, setting the stage for future innovations that can harness this structure to improve model
efficiency, performance, and interpretability.
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A APPENDIX

A.1 ADDITIONAL RELATED WORKS

Sparse and Low-Rank Decomposition for Pruning Yu et al. (2017) introduced a method for
sparse and low-rank decomposition of CNNs, including AlexNet and GoogLeNet, by solving the
following optimization problem:

min
S,L∈Rdout×din

∥Y − (S +L)X∥22 s.t. ∥W − (S +L)∥2F ≤ γ,Rank(L) ≤ r, ∥S∥0 ≤ k

18

https://openreview.net/forum?id=9jsZiUgkCZP
https://openreview.net/forum?id=9KVT1e1qf7
https://openreview.net/forum?id=9KVT1e1qf7
https://openreview.net/forum?id=1ndDmZdT4g
https://openreview.net/forum?id=1ndDmZdT4g
https://openreview.net/forum?id=sb81Xl50JG
https://openreview.net/forum?id=AzqPyO22zt
https://openreview.net/forum?id=AzqPyO22zt
https://openreview.net/forum?id=qyilOnIRHI
https://openreview.net/forum?id=S1lN69AT-
https://arxiv.org/abs/2104.08500


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

where Y = WX . In contrast, OATS employs a different approach, solving:
min

S,L∈Rdout×din

∥W − S −L∥2F s.t. Rank(L) ≤ r, ∥S∥0 ≤ k.

A key distinction between these methods lies in their objectives: the former directly minimizes
reconstruction error, while OATS adopts a simpler formulation. One might question why not follow
the approach of minimizing reconstruction error. As noted in DSNoT (Zhang et al., 2024b), pruning
methods that prioritize minimizing reconstruction error can degrade model performance in large
transformers, particularly in the presence of outlier features. Their findings highlight the importance
of avoiding pruning weights within outlier channels. Since feature outliers are a phenomenon unique
to large transformer models (Dettmers et al., 2022), this issue would not have been relevant to the
work of Yu et al. (2017), which predates the transformer era.

Pruning Algorithms for Vision Transformers There are a number of pruning approaches that
have been specifically catered towards pruning vision transformers (Zhu et al., 2021; Chen et al.,
2021b; Chavan et al., 2022; Yu et al., 2022a;b; Yu & Xiang, 2023). However, as much of the
pruning literature developed on vision transformers involved models of much smaller scale than
the large language models employed in this study, almost all of the prominent pruning algorithms
require some form of training on the model parameters. As OATS was designed to require no
training, OATS and the aforementioned pruning algorithms would not be comparable.

Low-Rank Adapters during Pre-Training In Mozaffari et al. (2024), the authors propose
SLOPE, a novel method for accelerating the pre-training phase of LLMs by incorporating N:M
sparsity and adding low-rank components to the model weights to enhance model capacity. Similar
to OATS, SLOPE leads to a sparse plus low-rank structure in the model’s weight matrices, however,
the low-rank terms are introduced during the final phase of pre-training and are actively trained on
the model loss function. In contrast, OATS is designed as a lightweight method to accelerate in-
ference. OATS does not require any training or fine-tuning, but instead approximates pre-trained
weight matrices by solving the Robust PCA problem.

Quantized Sparse Low-Rank Approximation An independent and concurrent work with OATS
proposes SLIM (Mozaffari & Dehnavi, 2024), a novel pipeline that combines pruning and quantiza-
tion. To restore lost performance from compression, SLIM derives a low-rank term using singular-
value thresholding and adopts a scaling technique akin to OATS. However, instead of the L2 norm,
SLIM utilizes the average absolute value across the batch and sequence dimensions. As a further
deviation from OATS, SLIM is also not performing an alternating thresholding algorithm. Instead,
they perform a single quantization and pruning step to initialize the quantized and sparse terms,
followed by a single singular value thresholding step to establish the low-rank term.

A.2 TIME COMPLEXITY AND WALL-CLOCK TIME FOR OATS

The time complexity for OATS is O(LNα) where L is the number of transformer blocks, N is
number of iterations, and

α = max
W

dWout · dWin · rW

where the max is taken over the weight matrices, W ∈ RdW
out×dW

in , in a transformer block and rW

is the rank of the low-rank term for that weight matrix. The value α represents the time complexity
needed to perform the singular value thresholding in OATS.

Table 9 below reports the wall-clock time needed to perform a single iteration of the alternating
threshold algorithm for a single transformer block for the different models that were compressed.
All experiments utilized a single NVIDIA A40 with 48GB of GPU memory.

Phi-3 Llama-3
Mini (3.8B) Medium (14B) 8B 70B

8.85 26.02 17.10 152.80

Table 9: Wall-clock time (in seconds) needed to perform a single iteration of the alternating projec-
tion algorithm in OATS.
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While OATS does require more wall-clock time than prior pruning algorithms, in practice, model
compression would only need to be performed once before deployment. This trade-off is therefore
worthwhile given the substantial performance improvements, particularly on more challenging tasks
like MMLU (see Table 2). Furthermore, like prior pruning algorithms, compressing the layers within
a single transformer block can be done in parallel. For example, the time needed per transformer
block of Llama-3 70B can be reduced to 71.10 seconds by compressing in parallel across four
NVIDIA A40 GPUs.

The total wall-clock time can also be reduced by lowering the number of OATS iterations. Presented
in Table 10 is an exploratory experiment compressing Llama-3 70B by 50% with a rank ratio of 0.3
with only 20 iterations. Even with only a quarter of the iterations, OATS is still able to outperform
all prior pruning algorithms across all performance metrics.

MMLU (↑) Zero-shot (↑) Perplexity (↓)
74.02 73.41 4.95

Table 10: Exploratory experiment measuring the performance of OATS on Llama-3 70B with only
20 iterations.

A.3 USING A ROBUST SCALING MATRIX

To explore whether the scaling matrix D is truly related to the outlier information, we run the
following two experiments:

• Scaling by the square root of the features’ second moments, as is currently done in OATS.

• Scaling by the median of the features’ absolute values (computed along batch and sequence
dimensions):

Drobust = median(|X|)

The second experiment estimates the square root of the second moment of features in a manner that
is robust (insensitive) to outliers akin to the Median Absolute Deviation estimator from the robust
statistics literature (Huber, 1981). The results of the two experiments are presented in Table 11
below:

Scaling Matrix MMLU (↑) Zero-shot (↑) Perplexity (↓)
Drobust 55.54 65.77 18.59

D 59.99 68.41 15.18

Table 11: Results of OATS on Phi-3-Mini, at 50% compression rate, with a rank ratio of 25% using
different scaling matrices.

The findings show that using the robust scaling method results in significantly worse performance.
Hence, the scaling matrix D that is sensitive to the outlier features and captures their scale leads to
better compression.

A.4 SWITCHING THE ORDER OF THRESHOLDING

OATS opts to perform the singular-value thresholding first followed by the hard thresholding sim-
ilar to Zhou & Tao (2011). However, one might consider whether the alternative order could lead
to faster convergence or a better approximation. Presented in Table 12 below is an extension of
the ablation studies presented in Section 3.3, reporting the performance of OATS where the hard-
thresholding is performed first:
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First Thresholding Operation MMLU (↑) Zero-shot (↑) Perplexity (↓)
Hard-Thresholding 65.51 70.54 11.72

Singular Value Thresholding (OATS) 65.84 70.71 11.50

Table 12: Ablation results of switching of the order between the two thresholding operations. Ex-
periments were run on Phi-3-Mini, at 40% compression rate, with a rank ratio of 20%.

While the performance still remains competitive, across all performance metrics, the switched order
falls short of matching the original order presented in Algorithm 1.

A.5 MAGNITUDE-BASED PRUNING FOR THE SPARSE COMPONENT

Another question that we explored is whether it is sufficient to capture the outlier information en-
tirely in the low-rank term and determine the sparse term through a hard-thresholding that does not
depend on the scaling:

S = HARDTHRESHOLD((WD −L)D−1, k).

Presented in Table 13 below are the results:

Outlier Scaling MMLU (↑) Zero-shot (↑) Perplexity (↓)
Low-Rank Term Only 65.22 71.01 12.49
Both Terms (OATS) 65.84 70.71 11.50

Table 13: Ablation results of OATS on Phi-3-Mini, at 40% compression rate, with a rank ratio of
20% testing whether the outlier information can be entirely captured by the low-rank term.

A.6 ADDITIONAL HYPERPARAMETER TESTS FOR OATS

Presented in Table 14 below includes more hyperparameters that we experimented with for the Phi-3
Mini and Llama-3 8B models.

Model Compression Rank Ratio MMLU (↑) Zero-Shot (↑) Perplexity (↓)

Phi-3 Mini

30%
0.1 68.70 71.65 10.24
0.2 68.02 71.81 10.21
0.3 69.28 72.07 10.28

40%
0.1 65.75 69.94 11.57
0.2 65.84 70.71 11.50
0.3 66.81 70.54 11.60

50%
0.1 57.96 67.37 15.48
0.2 59.12 68.02 15.13
0.3 58.68 68.63 15.47

Llama-3 8B

30% 0.1 63.62 68.99 9.35
0.2 63.09 69.54 9.09

40% 0.1 61.44 68.23 9.23
0.2 61.97 68.43 9.09

50% 0.1 56.46 65.33 10.85
0.2 56.07 65.51 10.70

Table 14: Further experiments testing different hyperparameter configurations for OATS on the Phi-
3 Mini and Llama-3 8B models.

A.7 PERFORMANCE GAP BETWEEN OATS AND WANDA

To better understand the increase in performance induced by the addition of the low-rank term in
OATS, we have compiled in Table 15 below the performance gaps between OATS and Wanda.
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Model Compression MMLU (↑) Zero-Shot (↑) Perplexity (↓)

Phi-3 Mini
30% +1.21% +0.82% -0.44
40% +1.60% +1.24% -1.06
50% +5.42% +3.38% -2.05

Phi-3 Medium
30% +0.97% -0.01% -0.43
40% +1.65% +1.45% -0.79
50% +2.52% +2.43% -1.07

Llama-3 8B
30% +1.55% +0.71% +0.20
40% +2.13% +1.64% -0.50
50% +6.63% +2.44% -1.49

Llama-3 70B
30% -0.68% +0.05% -0.17
40% +0.73% +0.78% -0.40
50% +2.74% +0.45% -0.60

Table 15: The impact of including a low-rank term in OATS compared to Wanda.

A.8 QWEN 2.5 EXPERIMENTS

Presented in Table 16 below are additional experiments benchmarking OATS against prior pruning
algorithms on the Qwen 2.5 3B Instruct model (Qwen Team, 2024). All OATS experiments utilize
a rank ratio of 0.2 and 80 iterations.

Compression Method MMLU (↑) Zero-Shot (↑) Perplexity (↓)
0% Dense 65.99 68.49 11.02

30%

SparseGPT 65.65 67.91 11.55
Wanda 65.46 68.08 11.66
DSNoT 65.65 68.21 11.67
OATS 65.36 68.74 11.45

40%

SparseGPT 63.04 67.64 12.56
Wanda 61.88 67.14 12.89
DSNoT 62.26 67.42 12.91
OATS 64.30 68.76 12.31

50%

SparseGPT 57.43 64.36 14.92
Wanda 55.39 64.10 16.27
DSNoT 55.78 64.77 16.43
OATS 58.78 65.74 14.91

Table 16: Benchmarks for OATS on the Qwen 2.5 3B Instruct model.

A.9 MMLU SUBJECTS

We evaluate on the following MMLU subjects:

• Abstract Algebra

• Business Ethics

• College Computer Science

• College Mathematics

• Conceptual Physics

• Formal Logic

• Machine Learning

• Miscellaneous

• Philosophy
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• Global Facts

which aligns with the subset utilized in the codebase of Ashkboos et al. (2024) that can be found
here: https://github.com/microsoft/TransformerCompression.

A.10 ATTENTION ROLLOUT: DETAILS

To generate the attention rollout visualizations depicted in Section 5, we average the attention ma-
trices across the attention heads and discard the bottom 40% attention pixels. The act of discarding
the lowest value attention pixels was inspired by the following blog post by Gil (2021).

A.11 ZERO-SHOT TASK-SPECIFIC PERFORMANCE

Table 17, below, shows the task-specific performance for the zero-shot evaluation results presented
in Section 3.2 and Appendix A.12.

Model Compression Method PIQA HellaSwag WinoGrande OpenBookQA RTE BoolQ ARC-e ARC-c

Phi-3 Mini

0% Dense 81.23 77.50 73.56 46.80 75.81 85.32 78.45 57.25

30%

SparseGPT 78.94 76.94 69.85 49.60 73.29 84.13 76.39 55.89
Wanda 79.65 76.27 71.59 48.00 73.65 83.70 77.23 55.20

DSNoT w/ SparseGPT 80.09 75.61 72.22 47.40 74.37 84.22 77.86 54.69
DSNoT w/ Wanda 80.41 75.52 72.06 47.60 74.37 84.53 79.55 55.55

OATS 80.03 77.07 72.61 47.60 74.37 84.92 77.44 57.76

40%

SparseGPT 78.35 75.07 68.59 47.00 72.20 83.67 75.29 53.24
Wanda 78.35 73.87 69.30 45.40 71.84 83.18 76.52 51.96

DSNoT w/ SparseGPT 78.56 72.99 70.64 46.20 70.40 82.72 76.52 52.82
DSNoT w/ Wanda 79.33 73.06 70.88 44.00 70.76 83.79 77.40 53.41

OATS 79.38 75.86 70.01 46.60 72.56 83.98 76.85 55.12

50%

SparseGPT 77.20 70.63 66.46 45.20 70.76 83.06 70.58 47.01
Wanda 76.33 67.70 66.38 41.80 66.43 81.83 72.43 47.35

DSNoT w/ SparseGPT 76.28 67.16 65.90 42.20 63.90 81.56 72.90 48.04
DSNoT w/ Wanda 75.52 66.54 67.64 43.00 65.34 82.54 73.48 48.55

OATS 77.26 71.64 69.53 44.80 73.65 81.28 77.10 52.05

Phi-3 Medium

0% Dense 81.66 82.83 75.85 50.00 77.62 88.17 78.41 59.64

30%

SparseGPT 81.39 82.02 75.77 50.80 77.26 87.80 80.05 61.18
Wanda 81.39 80.88 76.01 49.40 76.90 87.74 79.59 60.49

DSNoT w/ SparseGPT 81.94 80.76 76.95 48.40 75.81 87.65 79.25 59.81
DSNoT w/ Wanda 81.66 81.03 77.27 49.20 76.53 87.80 78.96 59.81

OATS 81.07 82.09 74.43 51.20 78.34 88.38 78.16 58.70

40%

SparseGPT 80.41 80.70 75.53 51.20 77.26 88.32 81.23 60.58
Wanda 79.87 78.15 75.45 48.60 77.26 87.71 78.11 58.96

DSNoT w/ SparseGPT 79.82 78.07 75.37 47.00 76.53 87.98 77.31 58.19
DSNoT w/ Wanda 80.30 78.11 74.66 47.80 77.26 88.04 78.11 58.87

OATS 81.39 81.72 75.06 51.00 77.62 87.65 80.39 60.84

50%

SparseGPT 79.71 78.27 73.64 50.40 75.45 87.09 82.03 59.39
Wanda 78.29 74.07 74.03 45.00 75.81 85.72 77.44 57.34

DSNoT w/ SparseGPT 79.27 74.30 74.59 44.40 76.90 85.26 77.69 56.57
DSNoT w/ Wanda 78.56 73.81 75.14 43.60 75.81 86.33 77.53 58.02

OATS 81.07 79.18 76.09 50.20 74.73 87.77 80.05 58.02

Llama-3 8B

0% Dense 80.74 79.16 73.40 45.0 0 67.87 80.98 77.69 53.50

30%

SparseGPT 80.36 78.58 73.24 44.40 66.79 81.38 76.81 51.11
Wanda 79.98 78.00 73.64 44.40 64.26 81.62 76.18 50.94

DSNoT w/ SparseGPT 80.20 78.12 73.80 44.40 65.70 82.20 75.72 51.71
DSNoT w/ Wanda 79.82 77.99 73.09 44.80 63.18 81.80 77.06 51.37

OATS 80.03 78.75 73.64 45.20 66.06 81.13 76.94 52.99

40%

SparseGPT 79.16 76.74 73.32 41.80 64.26 81.31 74.71 49.32
Wanda 78.73 75.90 72.22 44.40 63.18 80.46 72.31 49.15

DSNoT w/ SparseGPT 78.29 75.92 73.32 42.60 58.48 80.86 73.11 47.70
DSNoT w/ Wanda 78.51 75.52 73.24 43.80 61.73 80.70 72.01 47.70

OATS 79.71 77.18 74.19 43.80 67.51 82.39 74.92 49.74

50%

SparseGPT 77.58 73.12 72.85 40.80 59.21 79.30 69.28 45.14
Wanda 77.53 69.34 70.24 40.00 61.73 76.57 66.96 43.77

DSNoT w/ SparseGPT 76.88 69.45 69.30 39.60 59.21 77.25 67.93 43.32
DSNoT w/ Wanda 77.09 68.57 69.77 38.60 57.76 76.27 67.34 43.43

OATS 77.75 73.17 71.74 41.00 64.98 79.66 72.35 45.05

Llama-3 70B

0% Dense 84.33 84.89 80.35 48.60 68.23 85.26 86.03 64.51

30%

SparseGPT 84.66 84.63 80.35 48.00 69.31 85.26 85.02 63.31
Wanda 84.39 83.97 80.58 48.40 70.04 85.29 85.06 63.82

DSNoT w/ SparseGPT 84.06 84.49 80.11 48.20 69.68 85.57 85.10 63.82
DSNoT w/ Wanda 84.55 84.48 81.22 47.80 71.12 85.93 85.06 64.16

OATS 84.28 84.40 80.66 48.40 69.31 85.32 85.90 63.65

40%

SparseGPT 83.62 83.77 80.03 47.80 69.68 85.69 84.47 61.95
Wanda 83.57 83.03 78.93 47.40 68.23 85.05 84.34 62.29

DSNoT w/ SparseGPT 82.37 83.21 78.85 46.20 66.43 85.20 83.75 60.07
DSNoT w/ Wanda 83.79 83.35 79.72 46.80 67.87 85.57 84.89 62.37

OATS 84.44 83.69 80.11 48.60 70.40 84.56 84.55 62.71

50%

SparseGPT 83.13 81.68 79.32 46.20 71.12 85.17 81.27 57.51
Wanda 83.08 81.12 78.22 48.00 69.31 84.22 81.61 57.25

DSNoT w/ SparseGPT 81.34 80.68 77.82 45.60 70.04 84.62 80.98 55.12
DSNoT w/ Wanda 85.24 81.64 78.45 46.80 69.31 85.23 81.52 57.76

OATS 83.41 82.16 79.01 47.40 68.59 85.47 82.11 58.28

Table 17: Task-Specific Zero-Shot Results
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A.12 PRUNING IMPLEMENTATION AND HYPERPARAMETERS

Our code and pruning method implementations are based on the following codebases:

• SliceGPT (Ashkboos et al., 2024): https://github.com/microsoft/TransformerCompression

• SparseGPT (Frantar & Alistarh, 2023): https://github.com/IST-DASLab/sparsegpt

• Wanda (Sun et al., 2024b): https://github.com/locuslab/wanda

• DSNoT (Zhang et al., 2024b): https://github.com/zyxxmu/DSnoT

• OWL (Yin et al., 2024b): https://github.com/luuyin/OWL

We utilize Huggingface’s Transformers library to implement the large language models and vision
transformers for our experiments (Wolf et al., 2020).

A.12.1 SPARSEGPT HYPERPARAMETERS

We utilize a blocksize of 128 across all experiments and a Hessian dampening of 0.01 and 0.1 where
the ladder is utilized only when faced with non-positive definiteness issues related with the Cholesky
decomposition.

A.12.2 DSNOT HYPERPARAMETERS

We run experiments utilizing DSNoT where the initial masks are generated by SparseGPT and
Wanda. All DSNoT experiments were run with 50 iterations and an update threshold of 0.1. Table
18, below, shows the results distinguishing between the two initial methods that were utilized.

Model Compression Method MMLU (↑) Zero-Shot(↑) Perplexity(↓)

Phi-3 Mini

30% DSNoT w/ SparseGPT 67.01 70.81 10.55
DSNoT w/ Wanda 68.02 71.20 10.51

40% DSNoT w/ SparseGPT 62.94 68.86 12.29
DSNoT w/ Wanda 63.57 69.08 12.17

50% DSNoT w/ SparseGPT 53.99 64.74 16.71
DSNoT w/ Wanda 54.28 65.33 16.68

Phi-3 Medium

30% DSNoT w/ SparseGPT 74.89 73.82 7.11
DSNoT w/ Wanda 75.13 74.03 7.11

40% DSNoT w/ SparseGPT 73.15 72.54 8.24
DSNoT w/ Wanda 73.20 72.90 8.27

50% DSNoT w/ SparseGPT 68.65 71.12 9.96
DSNoT w/ Wanda 68.12 71.10 10.02

Llama-3 8B

30% DSNoT w/ SparseGPT 62.99 68.98 9.37
DSNoT w/ Wanda 63.72 68.64 9.36

40% DSNoT w/ SparseGPT 58.97 66.28 9.60
DSNoT w/ Wanda 59.99 66.65 9.68

50% DSNoT w/ SparseGPT 49.15 62.74 12.41
DSNoT w/ Wanda 49.20 62.35 12.42

Llama-3 70B

30% DSNoT w/ SparseGPT 78.76 75.13 3.28
DSNoT w/ Wanda 79.00 75.54 3.27

40% DSNoT w/ SparseGPT 76.39 73.26 4.16
DSNoT w/ Wanda 77.70 74.29 4.10

50% DSNoT w/ SparseGPT 72.18 72.02 5.87
DSNoT w/ Wanda 72.76 72.91 5.58

Table 18: LLM performance metrics of DSNoT with different initial methods.

Table 19, below, shows the analogous results but for our vision transformer experiments:
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Model Compression Method Accuracy (%)

ViT-Base

30% DSNoT w/ SparseGPT 80.01
DSNoT w/ Wanda 80.16

40% DSNoT w/ SparseGPT 79.12
DSNoT w/ Wanda 79.46

50% DSNoT w/ SparseGPT 75.83
DSNoT w/ Wanda 76.90

DinoV2-Giant

30% DSNoT w/ SparseGPT 86.46
DSNoT w/ Wanda 86.45

40% DSNoT w/ SparseGPT 86.37
DSNoT w/ Wanda 86.30

50% DSNoT w/ SparseGPT 85.87
DSNoT w/ Wanda 85.93

Table 19: ImageNet Validation Accuracy of DSNoT with different initial methods.
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