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ABSTRACT

Embedding models trained separately on similar data often produce representations
that encode stable information but are not directly interchangeable. This lack of
interoperability raises challenges in several practical applications, such as model
retraining, partial model upgrades, and multimodal search. Driven by these chal-
lenges, we study when two sets of embeddings can be aligned by an orthogonal
transformation. We show that if pairwise dot products are approximately preserved,
then there exists an isometry that closely aligns the two sets, and we provide a
tight bound on the alignment error. This insight yields a simple alignment recipe,
Procrustes post-processing, that makes two embedding models interoperable while
preserving the geometry of each embedding space. Empirically, we demonstrate
its effectiveness in three applications: maintaining compatibility across retrain-
ings, combining different models for text retrieval, and improving mixed-modality
search, where it achieves state-of-the-art performance.

1 INTRODUCTION

Representing objects as dense vectors is central to many key applications of machine learning (Bengio
et al., 2013). In recommender systems, low-dimensional embeddings capture user preferences for
content (Koren et al., 2009). In text or image search applications, embedding models enable efficient
semantic similarity and relevance computation (Deerwester et al., 1990; Reimers & Gurevych, 2019).

Embedding models are typically trained to capture notions of similarity between objects as geometric
relationships in Euclidean space. Specifically, loss functions underpinning representation learning
methods usually depend only on distances or dot-products between embeddings. Such loss functions
are therefore orthogonally invariant: any rotation and reflection of the embedding space yields an
identical loss function value. This invariance makes embeddings under-specified. Two distinct
models might capture similar geometrical relationships but produce embeddings that are not directly
comparable. This becomes problematic when multiple embedding models are used together.

Model retraining. To capture concept drift, it is sometimes necessary to retrain the embedding
model on fresh data, resulting in successive versions of an embedding space (Shiebler et al.,
2018; Steck et al., 2021). Because the spaces are not aligned, downstream systems trained
on embeddings from one version cannot be used with embeddings from another version.
This creates challenges when embedding models and downstream systems are retrained at
different cadences (Hu et al., 2022).

Partial upgrades. In retrieval, relevance is often predicted by the dot product between query and
document embeddings. A practical difficulty arises when the query model is upgraded but
document embeddings cannot be recomputed, either because the raw documents are not
available (Morris et al., 2023; Huang et al., 2024), or recomputation is too costly (Shen et al.,
2020; Arora et al., 2020).

Multimodal embeddings. Models such as CLIP (Radford et al., 2021) and SigLIP (Zhai et al., 2023)
embed text and images into a shared space, enabling cross-modal comparison. Yet these
models have been observed to exhibit a modality gap, where embeddings cluster by modality
into distinct regions of Euclidean space (Liang et al., 2022). This prevents meaningful
comparison of dot products across heterogeneous pairs of modalities, and degrades the
performance of mixed-modality search (Li et al., 2025).
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Figure 1: We start with two sets of embeddings X and Y that approximately preserve distances but
are unaligned (left). We find X̄ by apply the orthogonal Procrustes transformation to X (center). X̄
retains the exact geometry of X but the embeddings are now aligned with Y (right).

Driven by these practical settings, we consider the problem of aligning two sets of vectors that
approximately preserve geometry. Specifically, we study the orthogonal Procrustes problem (Hurley
& Cattell, 1962; Schönemann, 1966), which asks for an orthogonal transformation that minimizes
the average squared distance between corresponding vectors in each set. In this paper, we ask
the question: How well does the optimal orthogonal transformation align the two sets of vectors,
assuming only that dot products are approximately preserved across the two sets? In Section 3, we
address this question by providing a tight bound on the average distance between a vector from the
first set and the aligned version of the corresponding vector in the second set. In the regime of interest,
our bound improves on the state of the art (Tu et al., 2016; Arias-Castro et al., 2020; Pumir et al.,
2021), and settles a conjecture of Arias-Castro et al. (2020, Remark 1).

These results suggest a simple recipe to make two embedding models interoperable: Post-process
embeddings produced by one model by applying the orthogonal Procrustes transformation with
respect to the other model. This maximizes cross-model alignment without affecting the geometry
of the embeddings produced by each model. We illustrate this procedure in Figure 1. In Section 4,
we empirically evaluate the effectiveness of Procrustes post-processing across the three applications
introduced above. We find that it successfully addresses the corresponding challenges, without
any modification to the underlying representation learning method. Among others, we find that
a) post-processing successive model versions effectively solves the version mismatch problem,
b) using a more powerful query embedding can dramatically improve text retrieval performance,
but only once it is aligned with the document embedding model, and c) Procrustes post-processing
provides state-of-the art performance on a mixed-modality search benchmark, outperforming recent
work by Li et al. (2025).

Contributions. Our main contribution is a theoretical result establishing that if two embedding
models approximately preserve dot products, they can be aligned through an orthogonal transfor-
mation, enabling interoperability. While orthogonal alignment is a well-established technique and
is already used in practice, we believe its theoretical underpinnings and broad applicability remain
underappreciated. To this end, we complement our analysis with experiments in three real-world
applications, both reinforcing prior empirical findings and providing new insights.

1.1 PRELIMINARIES AND NOTATION

We consider two sets of N vectors in RD, arranged into DˆN source and target embedding matrices
X “ rx1 ¨ ¨ ¨ xN s and Y “ ry1 ¨ ¨ ¨ yN s, respectively. We assume that the ith vector encodes
the same object across both embeddings. For example, xi and yi consist of the same text passed
through two different text embedding models, or they represent the same user in a recommender
system application. Given a function f : RD Ñ R, we denote its empirical average over the
embeddings as Eirfpxiqs

.
“ p1{Nq

řN
i“1 fpxiq.

We say that the D ˆ D matrix Q is orthogonal if QJQ “ ID, where ID is the identity matrix, and
we denote the set of D-dimensional orthogonal matrices by OD. Orthogonal transformations are
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Algorithm 1 Orthogonal Procrustes (Schönemann, 1966)
Require: X,Y P RDˆN

Ensure: Q‹ P argminQ∥QX ´ Y ∥F subject to QJQ “ I

1: UΣV J Ð singular value decomposition of Y XJ

2: Q‹ Ð UV J

isometries, i.e., they preserve distances and dot products exactly.1 We would like to find an orthogonal
transformation Q P OD such that x̄i

.
“ Qxi for all i P rN s and ∥yi ´ x̄i∥2 is small, on average.

Intuitively, we think of Q as aligning X and Y . Formally, we seek to solve

Q‹ P argminQPO∥QX ´ Y ∥F , (1)

where ∥¨∥F is the Frobenius norm. This is known as the orthogonal Procrustes problem (Hurley &
Cattell, 1962), and ∥Q‹X ´ Y ∥F is referred to as the Procrustes distance between X and Y . In
a seminal paper, Schönemann (1966) introduces a simple, computationally-efficient procedure for
solving (1), which we describe in Algorithm 1.

2 RELATED WORK

Isometries and approximate isometries. If X and Y approximately preserve geometry, we can
view the mapping xi ÞÑ yi through the lens of approximate isometries. The Mazur-Ulam theorem
states that every exact isometry in Euclidean space is an affine transformation (Mazur & Ulam, 1932).
Building on this, Hyers & Ulam (1945) show that mappings that preserves distances approximately
can be well-approximated by exact isometries, but their result applies only to mappings that are
defined on entire vector spaces, e.g., all of RD. Fickett (1982) and Alestalo et al. (2001) study
extensions of this result to bounded subsets of RD, but the resulting guarantees are impractical.

Theory of orthogonal Procrustes. Söderkvist (1993) derives a perturbation bound for orthogonal
Procrustes in the special case where the alignment is restricted to rotations (orthogonal matrices with
positive determinant). Tu et al. (2016) introduce the first practical bound on the Procrustes distance
in terms of the distance between Gram matrices, later refined by Pumir et al. (2021). Arias-Castro
et al. (2020) independently obtain a similar result and study applications to multi-dimensional scaling.
As we discuss in Section 3, our bounds are significantly tighter in the regime of interest. Recently,
Harvey et al. (2024) relate several representational similarity measures, including the Procrustes
distance, and develop a result similar to ours but restricted to centered embedding matrices.

Applications of embedding alignment. Shiebler et al. (2018) and Steck et al. (2021) discuss
practical challenges of embedding models in large-scale online services. Both highlight the need for
periodic retraining to combat concept drift and difficulties created by misaligned successive versions,
including organizational challenges. To address these, El-Kishky et al. (2022), Hu et al. (2022),
and Gan et al. (2023) propose modifications to training procedures to produce aligned embeddings
for recommender systems. A different line of work studies embedding alignment for visual search,
aiming to avoid costly backfilling (recomputing embeddings for existing images under a new model).
Shen et al. (2020) and Meng et al. (2021) introduce training objectives that promote compatibility
across successive model versions.

Embedding alignment with orthogonal Procrustes. Singer et al. (2019) and Tagowski et al.
(2021) apply orthogonal Procrustes to align successive node embeddings in time-varying graphs,
demonstrating effectiveness for node classification and link prediction. In natural language processing,
alignment methods are widely used to relate word embeddings across languages. Early work employs
unconstrained linear transformations (Mikolov et al., 2013), but subsequent papers (Xing et al., 2015;
Artetxe et al., 2016) show the importance of preserving each language’s embedding geometry. Grave
et al. (2019) address a harder problem where no dictionary is available, requiring joint optimization
of word mapping and embedding alignment. For a comprehensive overview, we refer the reader to
Ruder et al. (2019). In recommender systems, concurrent work by Zielnicki & Hsiao (2025) explores

1For example, it is easy to verify that for any Q P OD and any u,v P RD , we have pQuq
JQv “ uJv.
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orthogonal Procrustes for aligning successive embedding model versions, closely related to our study
in Section 4.1.

3 UPPER BOUND ON THE PROCRUSTES DISTANCE

Our motivating applications require combining two embedding models that encode similar geometric
relationships but are not directly aligned. This raises the question: Under what conditions can two
embedding matrices be well-aligned by an orthogonal transformation? We answer this question by
providing a tight upper bound on the Procrustes distance, assuming only that pairwise dot products
are approximately preserved across the two sets of vectors.

Theorem 1. Let X,Y P RDˆN , and let ε “ ∥XJX ´ Y JY ∥F . Then,

min
QPOD

∥QX ´ Y ∥F ď p2Dq1{4
?
ε.

Proof (sketch). The key idea is to identify a suitable canonical factorization of the Gram matrix
XJX . We find that the matrix absolute value |X| .

“ pXJXq1{2 provides the appropriate notion.
An extension of the Powers-Størmers inequality (Kittaneh, 1986) allows us to bound ∥|X|´ |Y |∥2F as
a function of ∥XJX ´ Y JY ∥F . With some more work, we show how to bound minQPOD

∥QX ´

Y ∥F as a function of ∥|X| ´ |Y |∥F . The full proof is provided in Appendix A.1.

Intuitively, the condition ∥XJX ´ Y JY ∥F ď ε measures how closely dot products are preserved
across X and Y . Theorem 1 shows that this stability of dot products translates directly into stability
under alignment: the optimal orthogonal transformation mapping X close to Y has alignment error
at most Op

?
εq. In particular, small deviations in dot products guarantee small distances between

corresponding vectors once they are aligned. The dependence of Theorem 1 on both D and ε is
tight, and in Appendix A.2 we provide an explicit example that achieves equality. The next corollary
reformulates the theorem in terms of the average squared error in dot products, providing a measure
of stability that is easier to interpret.

Corollary 1. Let X,Y P RDˆN , and let δ2 “ Ei,j

“

pxJ
i xj ´ yJ

i yjq2
‰

. Let Q‹ be the output of
Algorithm 1, and denote by x̄i

.
“ Q‹xi the embedding aligned with yi. Then,

Ei

“

∥x̄i ´ yi∥2
‰

ď
?
2Dδ.

Proof. Setting ε “ Nδ in Theorem 1 and using the definition of the Frobenius norm gives the result,
since Q‹ P argminQPOD

∥QX ´ Y ∥F .

Finally, an important special case arises when embeddings are normalized, i.e., ∥xi∥ “ ∥yi∥ “ 1, so
that dot products coincide with cosine similarities. In this setting, we can also bound the deviation of
cross-similarities x̄J

i yj with respect to both yJ
i yj and xJ

i xj .

Corollary 2. Let X,Y P RDˆN be embedding matrices with unit-norm columns, and let δ2 “

Ei,j

“

pxJ
i xj ´ yJ

i yjq2
‰

. Let Q‹ be the output of Algorithm 1, and denote by x̄i
.
“ Q‹xi the

embedding aligned with yi. Then,

Ei,j

“

∥x̄J
i yj ´ yJ

i yj∥2
‰

ď
?
2Dδ, Ei,j

“

∥x̄J
i yj ´ xJ

i xj∥2
‰

ď
?
2Dδ.

Proof. For the first result, we have

Ei,j

“

∥x̄J
i yj ´ yJ

i yj∥2
‰

“ p1{N2q∥pQ‹XqJY ´ Y JY ∥2F “ p1{N2q∥pQ‹X ´ Y qJY ∥2F
ď p1{N2q∥Q‹X ´ Y ∥2F ∥Y ∥2F ď

?
2Dδ,

where the first inequality follows from the Cauchy-Schwarz inequality, and the second inequality
follows from Corollary 1 and from the fact that, since Y has unit-norm columns, ∥Y ∥2F “ N . The
second result follows from the first by exchanging X and Y and noticing that x̄J

i yj “ xJ
i ȳj .
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Comparison to prior work. We briefly contrast our result with those of Tu et al. (2016) and
Arias-Castro et al. (2020). Under the additional assumption that X has full rank, they bound
minQPOD

∥QX ´Y ∥F by σ´1
minε (up to a constant factor), where σmin is the smallest singular value

of X . In contrast to theirs, our bound is entirely data-independent. Moreover, the setting most
relevant to our applications is ε “ Nδ with δ fixed and small but N large, in which case typically?
ε ! ε and our bound is tighter. This is highlighted in the framing of Corollary 1 where our bound

is independent of N , whereas their bound scales as OpNδ2q. In a different line of work, Harvey et al.
(2024) prove a bound similar to ours. Their result, however, applies only to centered embedding
matrices (Eirxis “ Eiryis “ 0). By contrast, our bound does not required centered embeddings.

4 EXPERIMENTAL EVALUATION

In this section, we take an empirical perspective. We investigate the effectiveness of orthogonal
Procrustes across three practical applications where distinct embedding models need to be aligned:
Model retraining (Sec. 4.1), partial upgrades (Sec. 4.2), and mixed-modality search (Sec. 4.3).

4.1 MAINTAINING COMPATIBILITY ACROSS RETRAININGS

In some representation learning applications, it is standard practice to periodically retrain embedding
models on fresh data in order to capture concept drift, i.e., evolving relationships between objects. To
study this setting, we consider the MovieLens-25M dataset, which consists of 25M movie ratings and
associated genre metadata from an online recommender system (Harper & Konstan, 2015). We train
low-dimensional user and item embeddings using a BPR matrix factorization model that predicts
positive movie ratings (Rendle et al., 2009). Details of training and hyperparameter selection are
provided in Appendix B.1. Successive model versions are obtained by training on data consisting of
all ratings in the six months preceding a given month t, for 4 consecutive months. This setup mirrors
a realistic scenario in which production recommender systems are retrained on a regular cadence.

Matrix factorization models are invariant to orthogonal transformations. Consequently, successive
versions of the embeddings are misaligned by default, which poses challenges for downstream
systems that consume embeddings as input. Such systems must either be retrained synchronously
with the embedding model (a stringent and often impractical requirement) or the embeddings must be
made interoperable across versions.

Orthogonal Procrustes post-processing provides a simple and attractive solution to this problem
(Zielnicki & Hsiao, 2025). By aligning embeddings from version t to those of a fixed reference
version t0, we obtain interoperability across retrainings without modifying the training objective or
distorting the geometry of individual embedding spaces. We compare this approach against several
alternatives.

Warmstart. Initialize embeddings of version t with those of version t0.
Autoencoding loss. Add a regularization term penalizing squared distances between the embeddings

of version t and t0 (El-Kishky et al., 2022).
BC-Aligner. The method of Hu et al. (2022), which jointly learns embeddings and a linear transfor-

mation aligning embeddings from t to t0 during training.
Linear. Post-process the embeddings with the best-fitting linear transformation. Relaxing the

orthogonality constraint allows improved alignment but sacrifices geometry preservation.

All of the competing methods introduce inductive biases, either through modifications to the loss
function or by altering the geometry of the embedding space after training. Orthogonal Procrustes is
unique that it does not introduce any additional inductive biases.

Similar movies retrieval. We first evaluate alignment methods on a similar-movie retrieval task.
We select the 5000 movies with the most ratings. For each movie i in an embedding space X
corresponding to t ą t0, we rank all other movies by decreasing dot product xJ

i xj and record the
top-100 most similar movies. Given the reference embeddings Y from t0, and aligned embeddings
X̄ from t, we approximate similarity as x̄J

i yj and report recall@100. Figure 2 (left) shows the
results. As expected, unaligned embeddings fail to recover similar movies. Orthogonal Procrustes

5
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Figure 2: Retraining experiments on the MovieLens dataset. Models trained on embeddings from
version t0 are combined with embeddings from version t ą t0.

achieves the best performance among alignment methods, likely owing to the fact that X̄ preserves
the geometry of X exactly.

Movie genre prediction. We also evaluate a downstream classification task: predicting the genres
of a movie from its embedding. To this end, we partition the movies into training and test sets. For
each genre, we train a binary logistic regression classifier on embeddings from version t0. We then
evaluate the these classifiers on embeddings from version t of the movies in the test set. Figure 2
(right) presents the area under the ROC curve averaged over the 19 genres (macro ROC-AUC).
Focusing on the two post-processing methods, we observe that orthogonal alignment outperforms
linear alignment. Interestingly, the three methods that modify the training procedure outperform
a) both post-processing methods and b) classifiers retrained on embeddings of version t, indicating
that the inductive biases introduced by these approaches can improve embedding quality beyond the
alignment problem itself—a subtle point that is beyond the scope of our work.

4.2 COMBINING DIFFERENT MODELS FOR TEXT RETRIEVAL

Next, we consider a text retrieval application in which documents and queries are embedded with
different models. This scenario arises when document embeddings are fixed and cannot be recom-
puted, e.g., because the raw documents are unavailable (Morris et al., 2023; Huang et al., 2024), but
the query embedding model can be updated. Our main question is: Can retrieval performance be
improved by upgrading the query embedding model, provided that embeddings are aligned?

We evaluate on three tasks from the retrieval subset of the MMTEB benchmark (Enevoldsen et al.,
2025), summarized in Table 2 in Appendix B.2. Each of the three datasets (HotpotQA-HN, FEVER-
HN, and TREC-COVID) consists of a corpus of text documents and a set of queries with ground-truth
relevance labels. For each query, documents are ranked by the dot product between query and
document embeddings. Performance is measured with the normalized discounted cumulative gain of
the top-ten retrieved documents (nDCG@10).

We consider seven text embedding models publicly available on HuggingFace2, varying in number
of parameters, dimensionality, training objective, and release date. Several models are trained with
Matryoshka representation learning (Kusupati et al., 2022), which enables truncation of embeddings
at test time to trade accuracy for computational cost. Figure 3 (left) visualizes the models using the
first two principal coordinates of the pairwise Procrustes distance matrix, computed on FEVER-HN
document embeddings. Figure 3 (right) plots normalized Procrustes distance against dot-product
preservation across all 21 model pairs. Empirically, the distances remain well below our theoretical
worst-case bound and appear to approximately follow the power-law trend suggested by theory.

For each ordered pair of models, we learn an orthogonal transformation Q‹ by sampling 10 000
documents uniformly at random from the corpus and solving the orthogonal Procrustes problem (1).
When models have different dimensionalities, we pad the smaller embeddings with zeros, thus
preserving their original geometry. We then embed all documents with the first model and all

2See: https://huggingface.co/models?pipeline_tag=sentence-similarity.
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Figure 3: Two-dimensional representation of the text embedding models reflecting approximate
Procrustes distances (left). Normalized Procrustes distance vs. geometry-preservation for all 21
pairwise model combinations (right).
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Figure 4: Retrieval performance (nDCG@10) for all query–document model combinations. Top:
raw embeddings. Bottom: query embeddings aligned with orthogonal Procrustes. Diagonal entries
correspond to the baseline case where the same model is used for both queries and documents.

queries with the second model, and evaluate retrieval performance in two settings, a) using raw query
embeddings (no alignment), and b) aligning query embeddings with Q‹ before retrieval. Figure 4
reports nDCG@10 for all 49 model pairs on the three tasks. Note that models are arranged in
decreasing order of baseline performance. Without alignment, cross-model retrieval fails almost
completely. After alignment, retrieval becomes feasible across models, and in two of the three tasks,
upgrading to a stronger query model can yield substantial performance gains. In particular, the lower
triangles in Figure 4 (bottom) show that replacing a weak query encoder with a stronger one, while
keeping document embeddings fixed, can sometimes dramatically improve retrieval performance.

Does the orthogonality constraint help? We compare Procrustes alignment with an unconstrained
linear alignment matrix A‹ that minimizes the Frobenius error without enforcing orthogonality.
By construction, the unconstrained solution cannot perform worse in terms of alignment error, as
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Figure 5: Difference in nDCG@10 between orthogonal Procrustes and unconstrained linear alignment.
Positive values indicate orthogonal Procrustes performs better.

101 102 103 104 105 106

Number of samples

100%

120%

140%

160%

Procrustes distance

101 102 103 104 105 106

Number of samples

0%

25%

50%

75%

100%
nDCG@10 on HotpotQA-HN

1

Figure 6: Performance vs. number of samples used to estimate Q‹ across 21 model pairs, normalized
by full-sample performance on HotpotQA. Brighter colors indicate more free parameters in Q‹.

minAPRDˆD∥AX ´ Y ∥F ď minQPO∥QX ´ Y ∥F . However, as shown in Figure 5, orthogonal
alignment consistently outperforms linear, especially when upgrading to a stronger query model.
This suggests that preserving the geometry of the stronger source model retains useful information
that would otherwise be lost by unconstrained linear alignment. Conversely, when downgrading to a
weaker query model (upper triangles), unconstrained alignment can help, but this case is less realistic.

How many samples are needed to learn Q‹? In order to learn the alignment matrix, we require a
sample of texts embedded with both source and target embedding models. Figure 6 shows Procrustes
distance and retrieval performance as a function of the number of training samples. For the models
we consider, performance gains appear to saturate after roughly 10 000 samples, indicating relatively
modest sample requirements for reliable alignment.

In Appendix B.2, we further analyze alignment matrices between models trained with Matryoshka
representation learning (MRL). MRL encourages representations in which the leading dimensions
capture most of the semantic variability. Consistent with this property, we find that Q‹ between two
Matryoshka models typically aligns the first 16–32 dimensions of one embedding space with the
corresponding leading dimensions of the other.

4.3 IMPROVING MIXED-MODALITY SEARCH

Lastly, we consider an application of Procrustes post-processing to multimodal embedding models.
Models such as CLIP and SigLIP train text and image encoders into a shared embedding space,
enabling cross-modal retrieval (Wang et al., 2016). This allows, e.g., retrieving the most relevant
images given a text query via dot-product comparisons, as in Section 4.2. Unlike the previous
applications, the text and image encoders are jointly trained and therefore nominally aligned. However,
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Figure 7: Retrieval performance (nDCG@10) on the four MixBench subsets. We evaluate four
multimodal embedding models under different post-processing methods.

these models exhibit a persistent modality gap: embeddings cluster by modality in disjoint regions of
RD (Liang et al., 2022). This modality gap hinders comparisons between heterogeneous modalities,
such as ranking a text-only and an image-only document with respect to a text query. This setting is
known as mixed-modality search.

To systematically evaluate retrieval performance in this setting, Li et al. (2025) introduced the
MixBench benchmark, building on four well-known multimodal text–image datasets. For each query
(text in most subsets, or an image and a question in the OVEN subset), the goal is to retrieve the most
relevant documents, which can be a) image-only, b) text-only, or c) an image–text pair. Embeddings
for queries or documents that combine image and text are formed as weighted combinations: x “

αxtext ` p1 ´ αqximage, where α is a hyperparameter. In their work, Li et al. demonstrate that
simply centering and renormalizing the underlying text and image embeddings significantly improves
retrieval, establishing the state of the art on MixBench. Note that centering modifies the dot-
product distributions but does not explicitly align modalities (c.f. Appendix B.3). We hypothesize
that explicitly aligning the embeddings of different modalities with orthogonal Procrustes can
further improve the performance. We thus compare four variants, a) baseline (original unprocessed
embeddings), b) orthogonal alignment only, c) centering only, and d) orthogonal alignment followed
by centering.

In Figure 7, we report results on four multimodal embedding models. In these experiments, mean
embeddings and alignment matrices are learned on held-out data derived from MixBench’s upstream
datasets. For mixed-modality queries and documents, we use α “ 0.5; results for a range of other
values of α (presented in Appendix B.3) confirm the same qualitative trends. Across all subsets
of MixBench and nearly all models, Procrustes post-processing improves mixed-modality retrieval.
Orthogonal alignment alone outperforms the original unprocessed embeddings, while the combination
of alignment and centering yields the best overall performance, consistently outperforming centering
alone.

5 CONCLUSION & FUTURE WORK

We have shown that approximate dot-product preservation implies that two embedding models can
be closely aligned by an orthogonal transformation, providing a principled justification for Procrustes
alignment. Beyond this theoretical insight, we have demonstrated that Procrustes post-processing
effectively addresses several practical challenges, including model retraining, partial upgrades, and
multimodal search. These results highlight the growing importance of embedding alignment as
machine learning systems increasingly interact in complex pipelines.

In future work, we plan to investigate alignment across modalities more deeply. Liang et al. (2022)
show that the modality gap exists even at random initialization; we hypothesize that aligning repre-
sentations at the start of training could improve optimization. More generally, we envision developing
an alignment layer, similarly to normalization layers (Ioffe & Szegedy, 2015; Zhang & Sennrich,
2019), to make embedding interoperability a standard component of representation learning.
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A PROOFS AND ADDITIONAL THEORY

In Section A.1, we provide a complete proof of Theorem 1. In Section A.2, we provide a concrete
example of a pair of embedding matrices that achieves the upper bound.

A.1 PROOF OF THEOREM 1

The Frobenius norm is a special case of the Schatten p-norm, which we will also make use of. Let
A “ raijs be a real-valued matrix of rank r, with non-zero singular values σ1pAq ě ¨ ¨ ¨ ě σrpAq.
For p P r1,8q, the Schatten p-norm is defined as

∥A∥p “ p
řr

i“1 σipAqpq
1{p

.

For p “ 8, it is defined as ∥A∥8 “ σ1pAq, in which case it coincides with the operator norm. We
recover the Frobenius norm by setting p “ 2.

In order to prove our bound, we will rely on a result first obtained by Powers & Størmer (1970,
Lemma 4.1) in the case p “ 1, and later extended to any p by Kittaneh (1986, Corollary 2).
Lemma 1 (Powers-Størmers-Kittaneh Inequality). Let A,B P RNˆN be positive semi-definite.
Then,

∥A ´ B∥22p ď ∥A2 ´ B2∥p.

We also need another lemma that shows that the optimal alignment matrix aligns the subspaces
spanned by the columns of A and B.
Lemma 2. Let A,B P RMˆN be such that rankpAq ď R and rankpBq ď R. There exists an
orthogonal matrix P P argminQPO∥QA ´ B∥F such that

rankpPA ´ Bq ď R.

Proof. Let UΣV J be a singular value decomposition of BAJ into M ˆ M orthogonal matrices
U ,V and an M ˆ M diagonal matrix Σ containing the singular values sorted by magnitude, from
largest to smallest. Schönemann (1966) shows that, for any such decomposition, the orthogonal matrix
P

.
“ UV J satisfies P P argminQPO∥QA ´ B∥F . We know that r .

“ rankpBAJq ď R ď M . If
r ă M , the last M´r elements of the diagonal of Σ are zero, and UV J is not unique. We will show
that there is at least one pair U ,V that satisfies the claim.

Let spanpSq be the linear subspace spanned by a set of vectors S. For a matrix M , let colpMq

be the linear subspace spanned by its columns, and nullpMq be its (right) nullspace. Assume that
rankpAq ď rankpBq and, without loss of generality, that rankpBq “ R. By properties of the
singular value decomposition and of the column space of matrix products, we have that

spanptu1, . . . ,uruq “ colpBAJq Ď colpBq,

We can thus choose columns r ` 1, . . . , R of U such that spanptu1, . . . ,uRuq “ colpBq. Similarly,
we know that

spanptvr`1, . . . ,vMuq “ nullpBAJq Ě nullpAJq,

and we can choose V such that spanptvR`1, . . . ,vMuq Ď nullpAJq. It follows that the last M´R
rows of V JA contain all zeros. Letting P

.
“ UV J, we have that colpPAq “ colpUV JAq Ď

spanptu1, . . . ,uRuq “ colB by construction. In turn, we have that colpPA ´ Bq Ď colpBq, and
we conclude that rankpPA ´ Bq ď rankpBq.

If rankpAq ą rankpBq, we can swap the matrices A and B in the argument above and find
G P argminQPO∥QB ´ A∥F such that rankpGB ´ Aq ď R. It is then easy to verify that setting
P

.
“ GJ verifies the claim.

It is interesting to note that this lemma holds for the Frobenius norm, but does not hold for all Schatten
p-norms. We discuss this in more details in Appendix A.2.

Equipped with these, we can prove our main result.
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Proof of Theorem 1. For a matrix A P RDˆN , define the matrix absolute value |A| “ pAJAq1{2

as the unique N ˆ N positive semidefinite matrix such that |A|J|A| “ AJA. The rank of |A| is
equal to the rank of A. We have that

∥XJX ´ Y JY ∥F ě ∥|X| ´ |Y |∥24 ě p2Dq´1{2∥|X| ´ |Y |∥2F . (2)

The first inequality follows from Lemma 1 with p “ 2. The second inequality comes from the fact
that, for any matrix A of rank r, with non-zero singular values σ1, . . . , σr,

∥A∥p “ pσp
1 ` ¨ ¨ ¨ ` σp

r q1{p “ p1J
“

σp
1 ¨ ¨ ¨ σp

r

‰

q1{p

ď

´?
r ¨

b

σ2p
1 ` ¨ ¨ ¨ ` σ2p

r

¯1{p

“ r1{2p∥A∥2p,

by the Cauchy-Schwarz inequality. In our case, A “ |X| ´ |Y |, and since rankp|X|q ď D and
rankp|Y |q ď D, the difference is of rank at most 2D.

Furthermore, Lemma 2 states that there is an orthogonal matrix G P RNˆN such that

∥G|X| ´ |Y |∥F ď ∥|X| ´ |Y |∥F (3)

and rankpG|X| ´ |Y |q ď D. This implies that there is an orthogonal matrix H P RNˆN such that
the last N´D rows of HpG|X| ´ |Y |q are all zeros. Let S,T P RDˆN be such that S coincides
with the D first rows of HG|X|, and T coincides with the D first rows of H|Y |. By unitary
invariance of the Frobenius norm and by construction of H , we have that

∥G|X| ´ |Y |∥F “ ∥HpG|X| ´ |Y |q∥F “ ∥S ´ T ∥F . (4)

Since SJS “ XJX , there is an orthogonal matrix U P RDˆD such that S “ UX . Similarly,
there is an orthogonal matrix V P RDˆD such that T “ V Y . By unitary invariance, we have that

∥S ´ T ∥F “ ∥UX ´ V Y ∥F “ ∥PX ´ Y ∥F , (5)

where P “ V JU . The claim follows by combining (2), (3), (4) and (5).

A.2 TIGHTNESS OF UPPER BOUND

In this section, we provide an explicit example of a pair of embedding matrices that achieves equality
in the upper-bound in Theorem 1. Let D “ 1, N “ 2, and let

X “

”b

ε
2

?
2

b

ε
2

?
2

ı

, Y “

”b

ε
2

?
2

´
b

ε
2

?
2

ı

.

There are only two possible orthogonal transformations (˘ r1s), both of which align X and Y equally
well. It is easy to verify that

∥XJX ´ Y JY ∥F “ ε, max
QPt˘r1su

∥QX ´ Y ∥F “ 21{4
?
ε.

This satisfies equality in the bound of Theorem 1. The example can be extended to D ą 1 as follows.
Let ei P RD be the ith standard basis vector, let N “ 2D, and let X and Y be such that, for
i “ 1, . . . , D,

x2i´1 “
b

ε
2

?
2D

ei, x2i “
b

ε
2

?
2D

ei,

y2i´1 “
b

ε
2

?
2D

ei, y2i “ ´
b

ε
2

?
2D

ei.

These embedding matrices also satisfy

∥XJX ´ Y JY ∥F “ ε, max
QPOD

∥QX ´ Y ∥F “ p2Dq1{4
?
ε.

For D “ 1, the bound holds for all Schatten-p norms, not only the Frobenius norm. However, for
D ą 1, this example can be used to show that the bound does not hold for general values of p.

B ADDITIONAL EXPERIMENTAL DETAILS

This appendix mirrors the structure of the main text, with Section B.1 covering model retraining,
Section B.2 covering partial upgrades, and Section B.3 covering multimodal embeddings.
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Table 1: MovieLens experiment data
Partition1
(2019-02 - 07)

Partition2
(2019-03 - 08)

Partition3
(2019-04 - 09)

Partition4
(2019-05 - 10)

Partition1
Ratings: 617,643
Users: 6,281
Movies: 9,537

Partition2
Overlapping
Users: 5,430
Movies: 8,949

Ratings: 610,480
Users: 6,132
Movies: 9,452

Partition3
Overlapping
Users: 4,591
Movies: 8,501

Overlapping
Users: 5,258
Movies: 8,738

Ratings: 610,296
Users: 6,091
Movies: 9,328

Partition4
Overlapping
Users: 3,944
Movies: 8,139

Overlapping
Users: 4,592
Movies: 8,320

Overlapping
Users: 5,391
Movies: 8,613

Ratings: 594,011
Users: 6,007
Movies: 9,080

B.1 MAINTAINING COMPATIBILITY ACROSS RETRAININGS

The experiments are conducted using the MovieLens-25M dataset, which contains 25 million ratings
from 162 541 users on 59 047 movies between 2008 and 2019. We ignore the rating values and treat
the ratings as binary implicit user feedback.

The core of our experiment involves training a matrix factorization-based BPR (Bayesian Personal-
ization Ranking) model. This model is well-suited for implicit feedback, as it frames the learning
process as a ranking task. During training, the model learns to rank an item the user has interacted
with (i.e., a movie a user has rated) higher than an item the user is unlikely to have interacted with
(i.e., a movie sampled uniformly at random from the set of movies the user has not rated). The model
is optimized using the following objective function:

ℓBPRpV ,Xq “ ´
ÿ

pu,i,jqPDs

lnσpvu ¨ xi ´ vu ¨ xjq ` λp∥V ∥2F ` ∥X∥2F q

Here, u denotes a user, i is a movie the user rated, and j is a movie the user did not rate. vu P RD

represents the learned embedding vector for user u, while xi,xj P RD represent the learned
embedding vectors for movies i and j, respectively. The equation represents the pairwise ranking
loss, which seeks to maximize the difference between the positive and negative preferences.

The primary objective of this experiment is to evaluate the compatibility of embeddings across
different training sessions. This phenomenon is particularly relevant in real-world scenarios where
models are periodically retrained using new data. We simulate this industry practice by conducting
multiple training runs on different time windows of the MovieLens-25M dataset.

Specifically, we create four distinct training partitions, each spanning a 6-month period. These
partitions are sequentially aligned to simulate a rolling time window, with the data preceding four
different months as the re-training time points: 2019-08 to 2019-11. For each partition, a standard
preprocessing step is applied to ensure data quality. We filter the data to only include users and
movies that have a minimum of 5 ratings within that specific partition. This preprocessing results in a
different number of users, movies, and ratings in each partition, reflecting the natural evolution of the
dataset over time. The counts for each partition and the overlapping between partitions are shown in
table 1.

Hyperparameter tuning for the model is conducted using a separate, distinct dataset split. The training
data for this process consists of 6 months of ratings between 2019-01 and 2019-06. Validation is
performed on a subsequent 1-month period of data from 2019-07. The model is optimized using
the Adam optimizer, with the number of training epochs fixed at 30. Hyperparameter tuning was
performed using a grid search over the following parameter space.

• batch size: t512, 1024, 2048, 4096u

• embedding dimensionality: t8, 16, 32, 64u
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• bias term for the movies: ttrue, falseu

• learning rate: t1, 0.1, 0.01, 0.001u

• weight decay: t0.1, 0.01, 0.001, 0u

The validation task is a retrieval problem. For each user in the validation set, the model ranks
all movies from the training data based on the dot product of the user and movie embeddings.
The performance is measured by the Hit Rate at K (HR@K), which quantifies whether a rated
movie from the validation set appears within the top K ranked movies for that user. Based on the
performance on the validation set, measured by the Hit Rate at 100 (HR@100), the best configuration
found was: batch size: 4096; embedding dimension size: 8; including movie bias: false; learning
rate: 0.01; weight decay: 0.

In addition to the four partitions trained from scratch as baseline setting, we introduce three alternative
training settings to explore methods for mitigating embedding drift and maintaining compatibility.
These scenarios use the embeddings from the first partition (trained on data starting from 2019-02) as
a reference point for the subsequent three partitions.

Warmstart: The training process for Partitions 2, 3, and 4 is initialized with the learned embeddings
(weights) from Partition 1. The hyperparameters keep same as the baseline setting except
the training epochs are decreased to 10.

Autoencoding loss: A regularization loss term is added to the training objective for Partitions 2,
3, and 4. This loss penalizes the distance between the newly learned embeddings and the
embeddings from Partition 1 (V0,X0), encouraging them to stay close to the reference. The
hyperparameters keep same as the baseline setting, and the regularization strength is set as
λauto “ 1.0.

ℓautopV ,Xq “ ℓBPR ` λautop∥V ´ V0∥2F ` ∥X ´ X0∥2F q

BC-Aligner: This method introduces a learnable transformation matrix, A, which is co-trained
with the user and movie embeddings for Partitions 2, 3 and 4. A regularization loss is
applied to minimize the distance between the transformed embeddings (AV and AX) and
the reference embeddings from Partition 1 (V0 and X0), thus explicitly aligning the new
embedding space with the first one. The hyperparameters keep same as the baseline setting,
and the regularization strength is set as λBC “ 1.0.

ℓBCpV ,Xq “ ℓBPR ` λBCp∥AV ´ V0∥2F ` ∥AX ´ X0∥2F q

For the movie genre classification task, we use the movie metadata information in the MovieLens-
25M dataset. It includes a genre list for each movie. The genres are selected from a list of 19 different
genre terms.

B.2 COMBINING DIFFERENT MODELS FOR TEXT RETRIEVAL

Table 2 introduces the three text retrieval tasks evaluated in Section 4.2, as well as two larger datasets
used to sample training data to learn alignment matrices. Table 3 provides summary statistics for
the text embedding models used in the experiments of that section. Figure 8 replicates the sample
complexity analysis of Section 4.2 on the FEVER dataset. Qualitatively, the conclusions do not differ
from those obtained on HotpotQA.

Figure 9 visualizes three alignment matrices, contrasting matrices that align two embeddings trained
with MRL with matrices that align embeddings not trained with MRL. MRL encourages representa-
tions in which the leading dimensions capture most of the semantic variability. Consistent with this
property, we find that Q‹ between two Matryoshka models typically aligns the first 16–32 dimensions
of one embedding space with the corresponding leading dimensions of the other.

B.3 IMPROVING MIXED-MODALITY SEARCH

This section provides additional details pertaining to Section 4.3 in the main text. We start by arguing
why centering is not necessarily a principled way to align different embedding spaces. Then, we
provide information on our experimental setup as well as additional results.
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Table 2: Summary statistics for the text retrieval datasets studied in Section 4.2. All datasets are part
of the MMTEB benchmark (Enevoldsen et al., 2025).

Name # queries # documents Reference

HotpotQA-HN 1000 225 621 Yang et al. (2018)
FEVER-HN 1000 163 698 Thorne et al. (2018)
TREC-COVID 50 171 332 Roberts et al. (2021)

HotpotQA — 5 233 329 Yang et al. (2018)
FEVER — 5 416 568 Thorne et al. (2018)

Table 3: Summary statistics of text embedding models used in the experiments of Section 4.2.

Name D Release date Resizeable Reference

nomic-embed-text-v1.5 768 2024-02 Yes Nussbaum et al. (2025)
bge-small-en-v1.5 384 2023-09 No Xiao et al. (2024)
Qwen3-Embedding-0.6B 1024 2025-06 Yes Zhang et al. (2025)
all-MiniLM-L6-v2 384 2021-08 No N/A
sentence-t5-base 768 2021-08 No Ni et al. (2022)
LaBSE 768 2020-07 No Feng et al. (2022)
rubert-tiny2 312 2021-10 No N/A

bge-base-en-v1.5 768 2023-09 No Xiao et al. (2024)
gte-base-en-v1.5 768 2024-04 Yes Li et al. (2023)

Centering does not imply alignment. Through an explicit example in two dimensions, we argue
that centering embedding spaces does not necessarily help aligning them. Let

x1 “

„

1
´ε

ȷ

, x2 “

„

1
`ε

ȷ

, y1 “

„

´ε
1

ȷ

, y2 “

„

`ε
1

ȷ

.

Letting µx “ px1 ` x2q{2 and µy “ py1 ` y2q{2, and denoting the centered embeddings by
x̃i “ xi ´ µx and ỹi “ yi ´ µy , we have that

x̃1 “

„

0
´ε

ȷ

, x̃2 “

„

0
`ε

ȷ

, ỹ1 “

„

´ε
0

ȷ

, ỹ2 “

„

`ε
0

ȷ

.

Clearly, X̃ and Ỹ are not aligned (X̃JỸ “ 02ˆ2), and arguably they are less aligned than the
original embeddings X and Y . On the other hand, observe that the orthogonal matrix

Q‹ “

„

0 1
1 0

ȷ

perfectly aligns the embeddings: X̄ .
“ Q‹X “ Y .

Description of the models. Table 4 provides a brief description of the different multimodal models
we consider.

Detailed experimental results. Figure 10 presents retrieval performance for the four methods we
consider as a function of the fusion weight α. We observe that while the choice of α does impact
absolute performance, the relative performance of different methods is relatively stable across a wide
range of values.

B.4 DATASETS AND TRAINING DETAILS

The MixBench benchmark (Li et al., 2025) builds on four large multimodal text-image datasets,
a) Google WIT (Srinivasan et al., 2021), b) OVEN (Hu et al., 2023), c) COCO (Lin et al., 2014),
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Figure 8: Performance vs. number of samples used to estimate Q‹ across 21 model pairs, normalized
by full-sample performance on FEVER. Brighter colors indicate more free parameters in Q‹.
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Figure 9: Visualization of orthogonal matrices aligning pairs of models. The matrix aligning nomic
to gte-base tends to align the first 16–32 dimensions of nomic embeddings with the corresponding
leading dimensions of gte-base embeddings.

and d) VisualNews (Liu et al., 2021). MixBench includes approximately 1000 multimodal query-
document pairs extracted from these datasets. Details about the preprocessing steps used to obtain
the final benchmark are provided in (Li et al., 2025, Appendix E).

To avoid estimating the cross-modality alignment matrix directly on the test data, we adopt the
following procedure. We replicate the MixBench preprocessing pipeline and apply it to the training
split of each of the four upstream datasets. From each dataset, we extract up to 10 000 unique
text–image pairs, resulting in approximately 40 000 pairs in total. Given a multimodal model,
we compute embeddings for all pairs and then fit a single alignment matrix using the orthogonal
Procrustes method. This matrix is subsequently used to produce that model’s experimental results on
all four MixBench subsets. Our procedure closely follows (Li et al., 2025, Appendix B).

B.5 ADDITIONAL PLOTS FOR REBUTTAL

Figures 11, 12, and 13 were added during the discussion phase.

C LLM USAGE

We have used LLMs as general-purpose assisting tools for grammar, spelling and word choice in our
manuscript, as well as for support with implementing code. No use of LLMs was made outside of
these assistive purposes.
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Table 4: Multimodal embedding models used for the experiments on MixBench.

Name D URL

CLIP-B/16 768 https://huggingface.co/openai/clip-vit-base-patch16

CLIP-L/14 768 https://huggingface.co/openai/clip-vit-large-patch14

OpenCLIP-L/14 768 https://huggingface.co/laion/CLIP-ViT-L-14-laion2B-s32B-b82K

SigLIP-400m 768 https://huggingface.co/google/siglip-so400m-patch14-384
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Figure 10: Retrieval performance (nDCG@10) on the four MixBench subsets, as a function of the
fusion weight α. We evaluate four multimodal embedding models under different post-processing
methods.
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Figure 11: Retrieval performance (recall @ 10 and MRR @ 10) for all query–document model
combinations. For presentation purposes, numbers are multiplied by 100. Top rows: raw embeddings.
Bottom rows: query embeddings aligned with orthogonal Procrustes. Diagonal entries correspond to
the baseline case where the same model is used for both queries and documents.
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Figure 12: Difference in nDCG@10 between orthogonal Procrustes and unconstrained, regularized
linear alignment. Rows correspond to different levels of ℓ2 regularization on the linear alignment
matrix. Positive values indicate orthogonal Procrustes performs better. No regularization (or very
low regularization) on the linear alignment matrix works best.
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Figure 13: Retrieval performance (nDCG@10) for all query–document model combinations, when
query embeddings are aligned with orthogonal Procrustes. Each row corresponds to a dataset that
is used to estimate the orthogonal alignment matrix. Each column corresponds to a task that we
evaluate on. Take-away: alignment matrices learned on HotpotQA generalize well to FEVER
and vice-versa.
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