

WHEN EMBEDDING MODELS MEET: PROCRUSTES BOUNDS AND APPLICATIONS

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

Embedding models trained separately on similar data often produce representations that encode stable information but are not directly interchangeable. This lack of interoperability raises challenges in several practical applications, such as model retraining, partial model upgrades, and multimodal search. Driven by these challenges, we study when two sets of embeddings can be aligned by an orthogonal transformation. We show that if pairwise dot products are approximately preserved, then there exists an isometry that closely aligns the two sets, and we provide a tight bound on the alignment error. This insight yields a simple alignment recipe, Procrustes post-processing, that makes two embedding models interoperable while preserving the geometry of each embedding space. Empirically, we demonstrate its effectiveness in three applications: maintaining compatibility across retrainings, combining different models for text retrieval, and improving mixed-modality search, where it achieves state-of-the-art performance.

1 INTRODUCTION

Representing objects as dense vectors is central to many key applications of machine learning (Bengio et al., 2013). In recommender systems, low-dimensional embeddings capture user preferences for content (Koren et al., 2009). In text or image search applications, embedding models enable efficient semantic similarity and relevance computation (Deerwester et al., 1990; Reimers & Gurevych, 2019).

Embedding models are typically trained to capture notions of similarity between objects as geometric relationships in Euclidean space. Specifically, loss functions underpinning representation learning methods usually depend only on distances or dot-products between embeddings. Such loss functions are therefore orthogonally invariant: any rotation and reflection of the embedding space yields an identical loss function value. This invariance makes embeddings under-specified. Two distinct models might capture similar geometrical relationships but produce embeddings that are not directly comparable. This becomes problematic when multiple embedding models are used together.

Model retraining. To capture concept drift, it is sometimes necessary to retrain the embedding model on fresh data, resulting in successive versions of an embedding space (Shiebler et al., 2018; Steck et al., 2021). Because the spaces are not aligned, downstream systems trained on embeddings from one version cannot be used with embeddings from another version. This creates challenges when embedding models and downstream systems are retrained at different cadences (Hu et al., 2022).

Partial upgrades. In retrieval, relevance is often predicted by the dot product between query and document embeddings. A practical difficulty arises when the query model is upgraded but document embeddings cannot be recomputed, either because the raw documents are not available (Morris et al., 2023; Huang et al., 2024), or recomputation is too costly (Shen et al., 2020; Arora et al., 2020).

Multimodal embeddings. Models such as CLIP (Radford et al., 2021) and SigLIP (Zhai et al., 2023) embed text and images into a shared space, enabling cross-modal comparison. Yet these models have been observed to exhibit a *modality gap*, where embeddings cluster by modality into distinct regions of Euclidean space (Liang et al., 2022). This prevents meaningful comparison of dot products across heterogeneous pairs of modalities, and degrades the performance of mixed-modality search (Li et al., 2025).

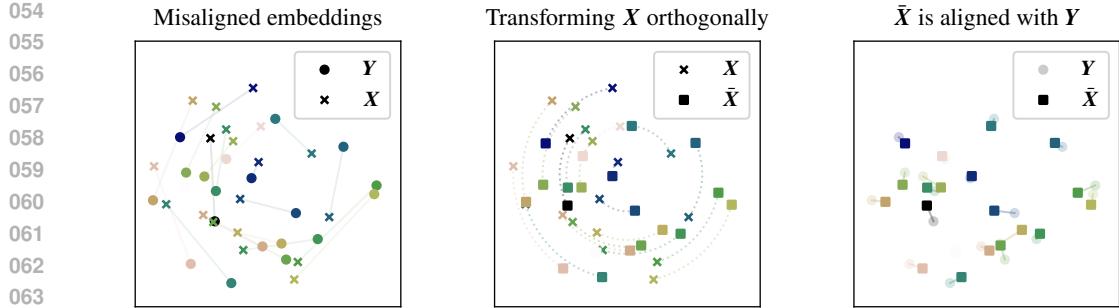


Figure 1: We start with two sets of embeddings \mathbf{X} and \mathbf{Y} that approximately preserve distances but are unaligned (left). We find $\bar{\mathbf{X}}$ by applying the orthogonal Procrustes transformation to \mathbf{X} (center). $\bar{\mathbf{X}}$ retains the exact geometry of \mathbf{X} but the embeddings are now aligned with \mathbf{Y} (right).

Driven by these practical settings, we consider the problem of aligning two sets of vectors that approximately preserve geometry. Specifically, we study the orthogonal Procrustes problem (Hurley & Cattell, 1962; Schönemann, 1966), which asks for an orthogonal transformation that minimizes the average squared distance between corresponding vectors in each set. In this paper, we ask the question: How well does the optimal orthogonal transformation align the two sets of vectors, assuming only that dot products are approximately preserved across the two sets? In Section 3, we address this question by providing a tight bound on the average distance between a vector from the first set and the aligned version of the corresponding vector in the second set. In the regime of interest, our bound improves on the state of the art (Tu et al., 2016; Arias-Castro et al., 2020; Pumir et al., 2021), and settles a conjecture of Arias-Castro et al. (2020, Remark 1).

These results suggest a simple recipe to make two embedding models interoperable: Post-process embeddings produced by one model by applying the orthogonal Procrustes transformation with respect to the other model. This maximizes cross-model alignment without affecting the geometry of the embeddings produced by each model. We illustrate this procedure in Figure 1. In Section 4, we empirically evaluate the effectiveness of Procrustes post-processing across the three applications introduced above. We find that it successfully addresses the corresponding challenges, without any modification to the underlying representation learning method. Among others, we find that *a*) post-processing successive model versions effectively solves the version mismatch problem, *b*) using a more powerful query embedding can dramatically improve text retrieval performance, but only once it is aligned with the document embedding model, and *c*) Procrustes post-processing provides state-of-the-art performance on a mixed-modality search benchmark, outperforming recent work by Li et al. (2025).

Contributions. Our main contribution is a theoretical result establishing that if two embedding models approximately preserve dot products, they can be aligned through an orthogonal transformation, enabling interoperability. While orthogonal alignment is a well-established technique and is already used in practice, we believe its theoretical underpinnings and broad applicability remain underappreciated. To this end, we complement our analysis with experiments in three real-world applications, both reinforcing prior empirical findings and providing new insights.

1.1 PRELIMINARIES AND NOTATION

We consider two sets of N vectors in \mathbf{R}^D , arranged into $D \times N$ source and target embedding matrices $\mathbf{X} = [\mathbf{x}_1 \ \cdots \ \mathbf{x}_N]$ and $\mathbf{Y} = [\mathbf{y}_1 \ \cdots \ \mathbf{y}_N]$, respectively. We assume that the i th vector encodes the same object across both embeddings. For example, \mathbf{x}_i and \mathbf{y}_i consist of the same text passed through two different text embedding models, or they represent the same user in a recommender system application. Given a function $f : \mathbf{R}^D \rightarrow \mathbf{R}$, we denote its empirical average over the embeddings as $\mathbf{E}_i[f(\mathbf{x}_i)] \doteq (1/N) \sum_{i=1}^N f(\mathbf{x}_i)$.

We say that the $D \times D$ matrix \mathbf{Q} is orthogonal if $\mathbf{Q}^\top \mathbf{Q} = \mathbf{I}_D$, where \mathbf{I}_D is the identity matrix, and we denote the set of D -dimensional orthogonal matrices by \mathcal{O}_D . Orthogonal transformations are

108 **Algorithm 1** Orthogonal Procrustes (Schönemann, 1966)

109 **Require:** $X, Y \in \mathbf{R}^{D \times N}$
110 **Ensure:** $Q^* \in \arg \min_Q \|QX - Y\|_F$ subject to $Q^\top Q = I$
111 1: $U\Sigma V^\top \leftarrow$ singular value decomposition of YX^\top
112 2: $Q^* \leftarrow UV^\top$
113

114
115 isometries, i.e., they preserve distances and dot products exactly.¹ We would like to find an orthogonal
116 transformation $Q \in \mathcal{O}_D$ such that $\bar{x}_i \doteq Qx_i$ for all $i \in [N]$ and $\|y_i - \bar{x}_i\|_2$ is small, on average.
117 Intuitively, we think of Q as aligning X and Y . Formally, we seek to solve
118

119
$$Q^* \in \arg \min_{Q \in \mathcal{O}} \|QX - Y\|_F, \quad (1)$$
120

121 where $\|\cdot\|_F$ is the Frobenius norm. This is known as the orthogonal Procrustes problem (Hurley &
122 Cattell, 1962), and $\|Q^*X - Y\|_F$ is referred to as the Procrustes distance between X and Y . In
123 a seminal paper, Schönemann (1966) introduces a simple, computationally-efficient procedure for
124 solving (1), which we describe in Algorithm 1.
125

2 RELATED WORK

126
127 **Isometries and approximate isometries.** If X and Y approximately preserve geometry, we can
128 view the mapping $x_i \mapsto y_i$ through the lens of *approximate isometries*. The Mazur-Ulam theorem
129 states that every exact isometry in Euclidean space is an affine transformation (Mazur & Ulam, 1932).
130 Building on this, Hyers & Ulam (1945) show that mappings that preserves distances approximately
131 can be well-approximated by exact isometries, but their result applies only to mappings that are
132 defined on entire vector spaces, e.g., all of \mathbf{R}^D . Fickett (1982) and Alestalo et al. (2001) study
133 extensions of this result to bounded subsets of \mathbf{R}^D , but the resulting guarantees are impractical.
134

135 **Theory of orthogonal Procrustes.** Söderkvist (1993) derives a perturbation bound for orthogonal
136 Procrustes in the special case where the alignment is restricted to rotations (orthogonal matrices with
137 positive determinant). Tu et al. (2016) introduce the first practical bound on the Procrustes distance
138 in terms of the distance between Gram matrices, later refined by Pumir et al. (2021). Arias-Castro
139 et al. (2020) independently obtain a similar result and study applications to multi-dimensional scaling.
140 As we discuss in Section 3, our bounds are significantly tighter in the regime of interest. Recently,
141 Harvey et al. (2024) relate several representational similarity measures, including the Procrustes
142 distance, and develop a result similar to ours but restricted to centered embedding matrices.
143

144 **Applications of embedding alignment.** Shiebler et al. (2018) and Steck et al. (2021) discuss
145 practical challenges of embedding models in large-scale online services. Both highlight the need for
146 periodic retraining to combat concept drift and difficulties created by misaligned successive versions,
147 including organizational challenges. To address these, El-Kishky et al. (2022), Hu et al. (2022),
148 and Gan et al. (2023) propose modifications to training procedures to produce aligned embeddings
149 for recommender systems. A different line of work studies embedding alignment for visual search,
150 aiming to avoid costly backfilling (recomputing embeddings for existing images under a new model).
151 Shen et al. (2020) and Meng et al. (2021) introduce training objectives that promote compatibility
152 across successive model versions.
153

154 **Embedding alignment with orthogonal Procrustes.** Singer et al. (2019) and Tagowski et al.
155 (2021) apply orthogonal Procrustes to align successive node embeddings in time-varying graphs,
156 demonstrating effectiveness for node classification and link prediction. In natural language processing,
157 alignment methods are widely used to relate word embeddings across languages. Early work employs
158 unconstrained linear transformations (Mikolov et al., 2013), but subsequent papers (Xing et al., 2015;
159 Artetxe et al., 2016) show the importance of preserving each language’s embedding geometry. Grave
160 et al. (2019) address a harder problem where no dictionary is available, requiring joint optimization
161 of word mapping and embedding alignment. For a comprehensive overview, we refer the reader to
Ruder et al. (2019). In recommender systems, concurrent work by Zielnicki & Hsiao (2025) explores

1¹For example, it is easy to verify that for any $Q \in \mathcal{O}_D$ and any $u, v \in \mathbf{R}^D$, we have $(Qu)^\top Qv = u^\top v$.

162 orthogonal Procrustes for aligning successive embedding model versions, closely related to our study
 163 in Section 4.1.

165 3 UPPER BOUND ON THE PROCRUSTES DISTANCE

168 Our motivating applications require combining two embedding models that encode similar geometric
 169 relationships but are not directly aligned. This raises the question: Under what conditions can two
 170 embedding matrices be well-aligned by an orthogonal transformation? We answer this question by
 171 providing a tight upper bound on the Procrustes distance, assuming only that pairwise dot products
 172 are approximately preserved across the two sets of vectors.

173 **Theorem 1.** *Let $\mathbf{X}, \mathbf{Y} \in \mathbf{R}^{D \times N}$, and let $\varepsilon = \|\mathbf{X}^\top \mathbf{X} - \mathbf{Y}^\top \mathbf{Y}\|_F$. Then,*

$$174 \min_{\mathbf{Q} \in \mathcal{O}_D} \|\mathbf{Q}\mathbf{X} - \mathbf{Y}\|_F \leq (2D)^{1/4} \sqrt{\varepsilon}.$$

177 *Proof (sketch).* The key idea is to identify a suitable canonical factorization of the Gram matrix
 178 $\mathbf{X}^\top \mathbf{X}$. We find that the matrix absolute value $|\mathbf{X}| \doteq (\mathbf{X}^\top \mathbf{X})^{1/2}$ provides the appropriate notion.
 179 An extension of the Powers-Størmers inequality (Kittaneh, 1986) allows us to bound $\||\mathbf{X}| - |\mathbf{Y}|\|_F^2$ as
 180 a function of $\|\mathbf{X}^\top \mathbf{X} - \mathbf{Y}^\top \mathbf{Y}\|_F$. With some more work, we show how to bound $\min_{\mathbf{Q} \in \mathcal{O}_D} \|\mathbf{Q}\mathbf{X} - \mathbf{Y}\|_F$
 181 as a function of $\||\mathbf{X}| - |\mathbf{Y}|\|_F$. The full proof is provided in Appendix A.1. \square

184 Intuitively, the condition $\|\mathbf{X}^\top \mathbf{X} - \mathbf{Y}^\top \mathbf{Y}\|_F \leq \varepsilon$ measures how closely dot products are preserved
 185 across \mathbf{X} and \mathbf{Y} . Theorem 1 shows that this stability of dot products translates directly into stability
 186 under alignment: the optimal orthogonal transformation mapping \mathbf{X} close to \mathbf{Y} has alignment error
 187 at most $O(\sqrt{\varepsilon})$. In particular, small deviations in dot products guarantee small distances between
 188 corresponding vectors once they are aligned. The dependence of Theorem 1 on both D and ε is
 189 tight, and in Appendix A.2 we provide an explicit example that achieves equality. The next corollary
 190 reformulates the theorem in terms of the average squared error in dot products, providing a measure
 191 of stability that is easier to interpret.

191 **Corollary 1.** *Let $\mathbf{X}, \mathbf{Y} \in \mathbf{R}^{D \times N}$, and let $\delta^2 = \mathbf{E}_{i,j}[(\mathbf{x}_i^\top \mathbf{x}_j - \mathbf{y}_i^\top \mathbf{y}_j)^2]$. Let \mathbf{Q}^* be the output of
 192 Algorithm 1, and denote by $\bar{\mathbf{x}}_i \doteq \mathbf{Q}^* \mathbf{x}_i$ the embedding aligned with \mathbf{y}_i . Then,*

$$194 \mathbf{E}_i [\|\bar{\mathbf{x}}_i - \mathbf{y}_i\|^2] \leq \sqrt{2D}\delta.$$

196 *Proof.* Setting $\varepsilon = N\delta$ in Theorem 1 and using the definition of the Frobenius norm gives the result,
 197 since $\mathbf{Q}^* \in \arg \min_{\mathbf{Q} \in \mathcal{O}_D} \|\mathbf{Q}\mathbf{X} - \mathbf{Y}\|_F$. \square

200 Finally, an important special case arises when embeddings are normalized, i.e., $\|\mathbf{x}_i\| = \|\mathbf{y}_i\| = 1$, so
 201 that dot products coincide with cosine similarities. In this setting, we can also bound the deviation of
 202 cross-similarities $\bar{\mathbf{x}}_i^\top \mathbf{y}_j$ with respect to both $\mathbf{y}_i^\top \mathbf{y}_j$ and $\mathbf{x}_i^\top \mathbf{x}_j$.

203 **Corollary 2.** *Let $\mathbf{X}, \mathbf{Y} \in \mathbf{R}^{D \times N}$ be embedding matrices with unit-norm columns, and let $\delta^2 =$
 204 $\mathbf{E}_{i,j}[(\mathbf{x}_i^\top \mathbf{x}_j - \mathbf{y}_i^\top \mathbf{y}_j)^2]$. Let \mathbf{Q}^* be the output of Algorithm 1, and denote by $\bar{\mathbf{x}}_i \doteq \mathbf{Q}^* \mathbf{x}_i$ the
 205 embedding aligned with \mathbf{y}_i . Then,*

$$207 \mathbf{E}_{i,j} [\|\bar{\mathbf{x}}_i^\top \mathbf{y}_j - \mathbf{y}_i^\top \mathbf{y}_j\|^2] \leq \sqrt{2D}\delta, \quad \mathbf{E}_{i,j} [\|\bar{\mathbf{x}}_i^\top \mathbf{y}_j - \mathbf{x}_i^\top \mathbf{x}_j\|^2] \leq \sqrt{2D}\delta.$$

209 *Proof.* For the first result, we have

$$211 \mathbf{E}_{i,j} [\|\bar{\mathbf{x}}_i^\top \mathbf{y}_j - \mathbf{y}_i^\top \mathbf{y}_j\|^2] = (1/N^2) \|(\mathbf{Q}^* \mathbf{X})^\top \mathbf{Y} - \mathbf{Y}^\top \mathbf{Y}\|_F^2 = (1/N^2) \|(\mathbf{Q}^* \mathbf{X} - \mathbf{Y})^\top \mathbf{Y}\|_F^2 \\ 212 \leq (1/N^2) \|\mathbf{Q}^* \mathbf{X} - \mathbf{Y}\|_F^2 \|\mathbf{Y}\|_F^2 \leq \sqrt{2D}\delta,$$

214 where the first inequality follows from the Cauchy-Schwarz inequality, and the second inequality
 215 follows from Corollary 1 and from the fact that, since \mathbf{Y} has unit-norm columns, $\|\mathbf{Y}\|_F^2 = N$. The
 216 second result follows from the first by exchanging \mathbf{X} and \mathbf{Y} and noticing that $\bar{\mathbf{x}}_i^\top \mathbf{y}_j = \mathbf{x}_i^\top \bar{\mathbf{y}}_j$. \square

216 **Comparison to prior work.** We briefly contrast our result with those of Tu et al. (2016) and
 217 Arias-Castro et al. (2020). Under the additional assumption that \mathbf{X} has full rank, they bound
 218 $\min_{\mathbf{Q} \in \mathcal{O}_D} \|\mathbf{Q}\mathbf{X} - \mathbf{Y}\|_F$ by $\sigma_{\min}^{-1} \varepsilon$ (up to a constant factor), where σ_{\min} is the smallest singular value
 219 of \mathbf{X} . In contrast to theirs, our bound is entirely data-independent. Moreover, the setting most
 220 relevant to our applications is $\varepsilon = N\delta$ with δ fixed and small but N large, in which case typically
 221 $\sqrt{\varepsilon} \ll \varepsilon$ and our bound is tighter. This is highlighted in the framing of Corollary 1 where our bound
 222 is independent of N , whereas their bound scales as $O(N\delta^2)$. In a different line of work, Harvey et al.
 223 (2024) prove a bound similar to ours. Their result, however, applies only to centered embedding
 224 matrices ($\mathbf{E}_i[\mathbf{x}_i] = \mathbf{E}_i[\mathbf{y}_i] = \mathbf{0}$). By contrast, our bound does not require centered embeddings.
 225

226 4 EXPERIMENTAL EVALUATION

228 In this section, we take an empirical perspective. We investigate the effectiveness of orthogonal
 229 Procrustes across three practical applications where distinct embedding models need to be aligned:
 230 Model retraining (Sec. 4.1), partial upgrades (Sec. 4.2), and mixed-modality search (Sec. 4.3).
 231

232 4.1 MAINTAINING COMPATIBILITY ACROSS RETRAININGS

234 In some representation learning applications, it is standard practice to periodically retrain embedding
 235 models on fresh data in order to capture concept drift, i.e., evolving relationships between objects. To
 236 study this setting, we consider the MovieLens-25M dataset, which consists of 25M movie ratings and
 237 associated genre metadata from an online recommender system (Harper & Konstan, 2015). We train
 238 low-dimensional user and item embeddings using a BPR matrix factorization model that predicts
 239 positive movie ratings (Rendle et al., 2009). Details of training and hyperparameter selection are
 240 provided in Appendix B.1. Successive model versions are obtained by training on data consisting of
 241 all ratings in the six months preceding a given month t , for 4 consecutive months. This setup mirrors
 242 a realistic scenario in which production recommender systems are retrained on a regular cadence.

243 Matrix factorization models are invariant to orthogonal transformations. Consequently, successive
 244 versions of the embeddings are misaligned by default, which poses challenges for downstream
 245 systems that consume embeddings as input. Such systems must either be retrained synchronously
 246 with the embedding model (a stringent and often impractical requirement) or the embeddings must be
 247 made interoperable across versions.

248 Orthogonal Procrustes post-processing provides a simple and attractive solution to this problem
 249 (Zielnicki & Hsiao, 2025). By aligning embeddings from version t to those of a fixed reference
 250 version t_0 , we obtain interoperability across retrainings without modifying the training objective or
 251 distorting the geometry of individual embedding spaces. We compare this approach against several
 252 alternatives.

253 **Warmstart.** Initialize embeddings of version t with those of version t_0 .

254 **Autoencoding loss.** Add a regularization term penalizing squared distances between the embeddings
 255 of version t and t_0 (El-Kishky et al., 2022).

256 **BC-Aligner.** The method of Hu et al. (2022), which jointly learns embeddings and a linear transfor-
 257 mation aligning embeddings from t to t_0 during training.

258 **Linear.** Post-process the embeddings with the best-fitting linear transformation. Relaxing the
 259 orthogonality constraint allows improved alignment but sacrifices geometry preservation.

261 All of the competing methods introduce inductive biases, either through modifications to the loss
 262 function or by altering the geometry of the embedding space after training. Orthogonal Procrustes is
 263 unique that it does not introduce any additional inductive biases.

265 **Similar movies retrieval.** We first evaluate alignment methods on a similar-movie retrieval task.
 266 We select the 5000 movies with the most ratings. For each movie i in an embedding space \mathbf{X}
 267 corresponding to $t > t_0$, we rank all other movies by decreasing dot product $\mathbf{x}_i^\top \mathbf{x}_j$ and record the
 268 top-100 most similar movies. Given the reference embeddings \mathbf{Y} from t_0 , and aligned embeddings
 269 $\tilde{\mathbf{X}}$ from t , we approximate similarity as $\tilde{\mathbf{x}}_i^\top \mathbf{y}_j$ and report recall@100. Figure 2 (*left*) shows the
 270 results. As expected, unaligned embeddings fail to recover similar movies. Orthogonal Procrustes

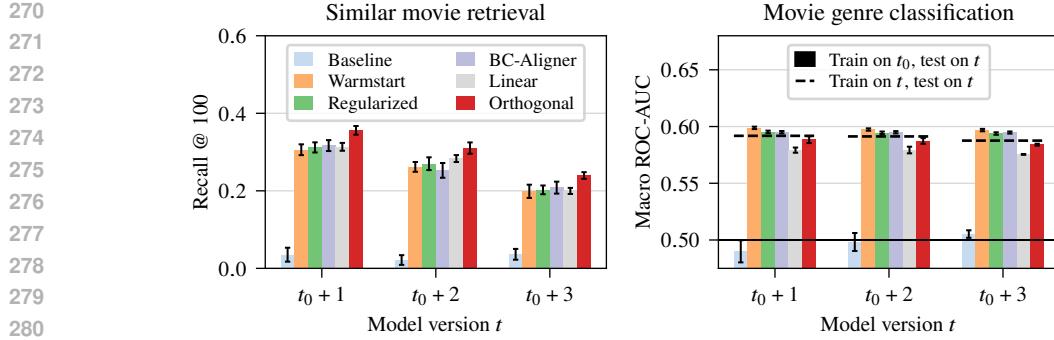


Figure 2: Retraining experiments on the MovieLens dataset. Models trained on embeddings from version t_0 are combined with embeddings from version $t > t_0$.

achieves the best performance among alignment methods, likely owing to the fact that \bar{X} preserves the geometry of X exactly.

Movie genre prediction. We also evaluate a downstream classification task: predicting the genres of a movie from its embedding. To this end, we partition the movies into training and test sets. For each genre, we train a binary logistic regression classifier on embeddings from version t_0 . We then evaluate the these classifiers on embeddings from version t of the movies in the test set. Figure 2 (right) presents the area under the ROC curve averaged over the 19 genres (macro ROC-AUC). Focusing on the two post-processing methods, we observe that orthogonal alignment outperforms linear alignment. Interestingly, the three methods that modify the training procedure outperform *a* both post-processing methods and *b* classifiers retrained on embeddings of version t , indicating that the inductive biases introduced by these approaches can improve embedding quality beyond the alignment problem itself—a subtle point that is beyond the scope of our work.

4.2 COMBINING DIFFERENT MODELS FOR TEXT RETRIEVAL

Next, we consider a text retrieval application in which documents and queries are embedded with different models. This scenario arises when document embeddings are fixed and cannot be recomputed, e.g., because the raw documents are unavailable (Morris et al., 2023; Huang et al., 2024), but the query embedding model can be updated. Our main question is: Can retrieval performance be improved by upgrading the query embedding model, provided that embeddings are aligned?

We evaluate on three tasks from the retrieval subset of the MMTEB benchmark (Enevoldsen et al., 2025), summarized in Table 2 in Appendix B.2. Each of the three datasets (HotpotQA-HN, FEVER-HN, and TREC-COVID) consists of a corpus of text documents and a set of queries with ground-truth relevance labels. For each query, documents are ranked by the dot product between query and document embeddings. Performance is measured with the normalized discounted cumulative gain of the top-ten retrieved documents (nDCG@10).

We consider seven text embedding models publicly available on HuggingFace², varying in number of parameters, dimensionality, training objective, and release date. Several models are trained with Matryoshka representation learning (Kusupati et al., 2022), which enables truncation of embeddings at test time to trade accuracy for computational cost. Figure 3 (left) visualizes the models using the first two principal coordinates of the pairwise Procrustes distance matrix, computed on FEVER-HN document embeddings. Figure 3 (right) plots normalized Procrustes distance against dot-product preservation across all 21 model pairs. Empirically, the distances remain well below our theoretical worst-case bound and appear to approximately follow the power-law trend suggested by theory.

For each ordered pair of models, we learn an orthogonal transformation Q^* by sampling 10 000 documents uniformly at random from the corpus and solving the orthogonal Procrustes problem (1). When models have different dimensionalities, we pad the smaller embeddings with zeros, thus preserving their original geometry. We then embed all documents with the first model and all

²See: https://huggingface.co/models?pipeline_tag=sentence-similarity.

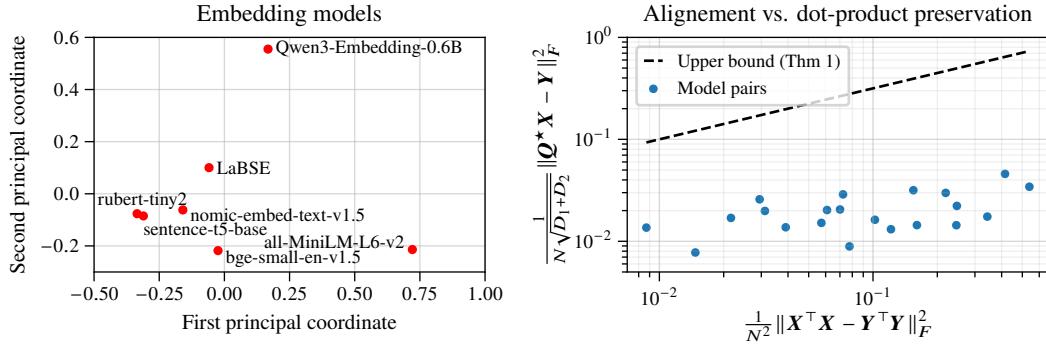


Figure 3: Two-dimensional representation of the text embedding models reflecting approximate Procrustes distances (left). Normalized Procrustes distance vs. geometry-preservation for all 21 pairwise model combinations (right).

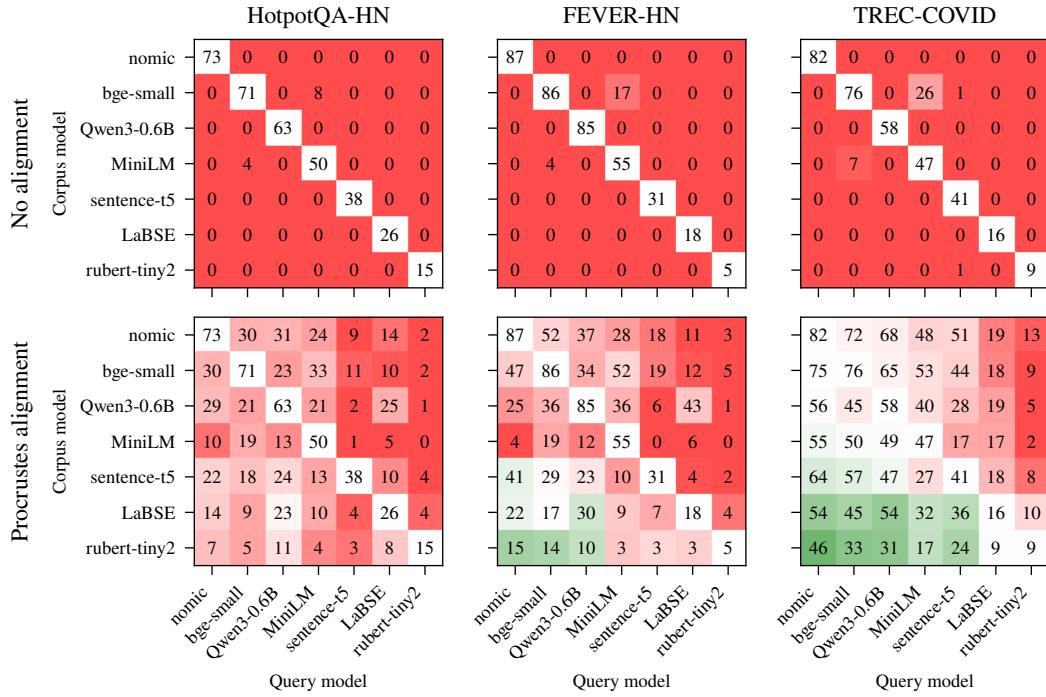


Figure 4: Retrieval performance (nDCG@10) for all query–document model combinations. *Top*: raw embeddings. *Bottom*: query embeddings aligned with orthogonal Procrustes. Diagonal entries correspond to the baseline case where the same model is used for both queries and documents.

queries with the second model, and evaluate retrieval performance in two settings, *a*) using raw query embeddings (no alignment), and *b*) aligning query embeddings with Q^* before retrieval. Figure 4 reports nDCG@10 for all 49 model pairs on the three tasks. Note that models are arranged in decreasing order of baseline performance. Without alignment, cross-model retrieval fails almost completely. After alignment, retrieval becomes feasible across models, and in two of the three tasks, upgrading to a stronger query model can yield substantial performance gains. In particular, the lower triangles in Figure 4 (*bottom*) show that replacing a weak query encoder with a stronger one, while keeping document embeddings fixed, can sometimes dramatically improve retrieval performance.

Does the orthogonality constraint help? We compare Procrustes alignment with an unconstrained linear alignment matrix A^* that minimizes the Frobenius error without enforcing orthogonality. By construction, the unconstrained solution cannot perform worse in terms of alignment error, as

Corpus model	HotpotQA-HN							FEVER-HN							TREC-COVID							
	nomic	+0	+10	+10	+12	-3	+7	+0	+0	+20	+14	+10	-9	+0	+1	+0	+9	+13	+1	-2	-17	-9
bge-small	+2	+0	+3	+9	-2	+3	+0	-2	+0	+4	+5	-12	-1	-2	-2	+6	+0	+5	+3	-7	-13	-8
Qwen3-0.6B	-0	+3	+0	+7	-23	+5	+5	-32	+2	+0	+8	-50	+3	-9	-32	+1	+0	+11	-12	-4	-7	
MiniLM	-13	-10	-3	+0	-10	-0	-2	-28	-20	-6	+0	-22	-0	-2	-28	+1	+4	+0	-19	-3	-9	
sentence-t5	+7	+9	+5	+5	+0	+2	+1	+12	+16	+12	+4	+0	-3	-1	+12	+16	+12	+4	+0	-13	+0	+3
LaBSE	+0	+3	+6	+5	-6	+0	-1	-5	+6	+20	+5	-2	+0	+0	-5	+6	+20	+5	-2	+0	+0	+0
rubert-tiny2	+2	+3	+5	+2	+0	+2	+0	+4	+9	+8	+1	+2	+1	+0	+4	+9	+8	+1	+2	+1	+0	+0

Figure 5: Difference in nDCG@10 between orthogonal Procrustes and unconstrained linear alignment. Positive values indicate orthogonal Procrustes performs better.

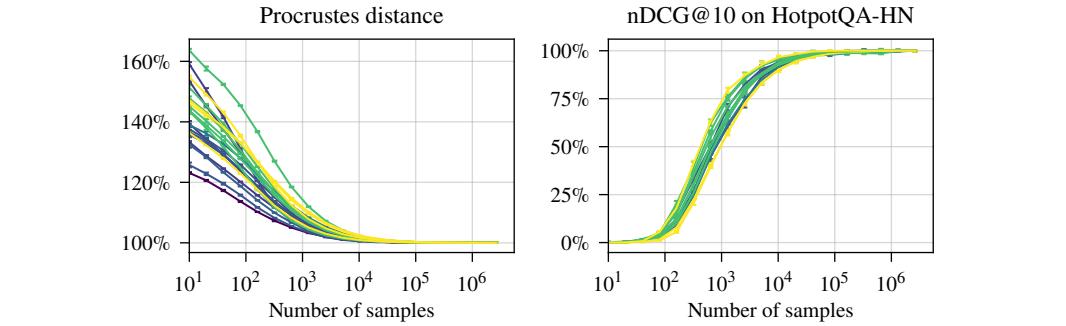


Figure 6: Performance vs. number of samples used to estimate Q^* across 21 model pairs, normalized by full-sample performance on HotpotQA. Brighter colors indicate more free parameters in Q^* .

$\min_{A \in \mathbb{R}^{D \times D}} \|AX - Y\|_F \leq \min_{Q \in \mathcal{O}} \|QX - Y\|_F$. However, as shown in Figure 5, orthogonal alignment consistently outperforms linear, especially when upgrading to a stronger query model. This suggests that preserving the geometry of the stronger source model retains useful information that would otherwise be lost by unconstrained linear alignment. Conversely, when downgrading to a weaker query model (upper triangles), unconstrained alignment can help, but this case is less realistic.

How many samples are needed to learn Q^* ? In order to learn the alignment matrix, we require a sample of texts embedded with both source and target embedding models. Figure 6 shows Procrustes distance and retrieval performance as a function of the number of training samples. For the models we consider, performance gains appear to saturate after roughly 10 000 samples, indicating relatively modest sample requirements for reliable alignment.

In Appendix B.2, we further analyze alignment matrices between models trained with Matryoshka representation learning (MRL). MRL encourages representations in which the leading dimensions capture most of the semantic variability. Consistent with this property, we find that Q^* between two Matryoshka models typically aligns the first 16–32 dimensions of one embedding space with the corresponding leading dimensions of the other.

4.3 IMPROVING MIXED-MODALITY SEARCH

Lastly, we consider an application of Procrustes post-processing to multimodal embedding models. Models such as CLIP and SigLIP train text and image encoders into a shared embedding space, enabling cross-modal retrieval (Wang et al., 2016). This allows, e.g., retrieving the most relevant images given a text query via dot-product comparisons, as in Section 4.2. Unlike the previous applications, the text and image encoders are jointly trained and therefore nominally aligned. However,

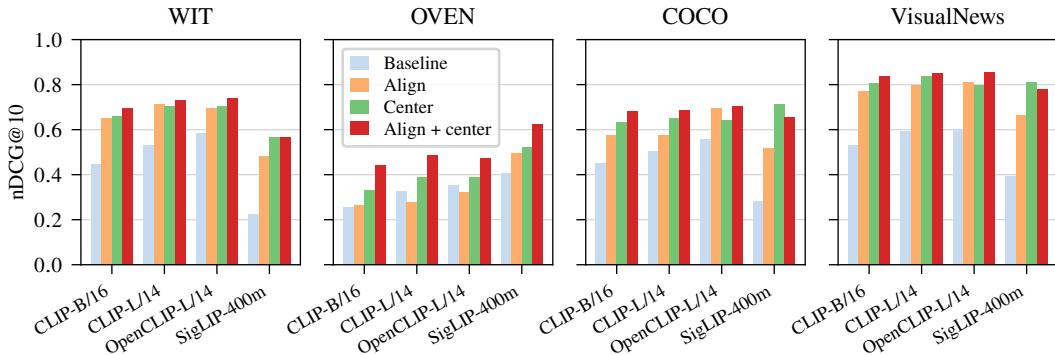


Figure 7: Retrieval performance (nDCG@10) on the four MixBench subsets. We evaluate four multimodal embedding models under different post-processing methods.

these models exhibit a persistent *modality gap*: embeddings cluster by modality in disjoint regions of \mathbf{R}^D (Liang et al., 2022). This modality gap hinders comparisons between heterogeneous modalities, such as ranking a text-only and an image-only document with respect to a text query. This setting is known as mixed-modality search.

To systematically evaluate retrieval performance in this setting, Li et al. (2025) introduced the MixBench benchmark, building on four well-known multimodal text–image datasets. For each query (text in most subsets, or an image and a question in the OVEN subset), the goal is to retrieve the most relevant documents, which can be *a*) image-only, *b*) text-only, or *c*) an image–text pair. Embeddings for queries or documents that combine image and text are formed as weighted combinations: $\mathbf{x} = \alpha \mathbf{x}_{\text{text}} + (1 - \alpha) \mathbf{x}_{\text{image}}$, where α is a hyperparameter. In their work, Li et al. demonstrate that simply centering and renormalizing the underlying text and image embeddings significantly improves retrieval, establishing the state of the art on MixBench. Note that centering modifies the dot-product distributions but does not explicitly align modalities (c.f. Appendix B.3). We hypothesize that explicitly aligning the embeddings of different modalities with orthogonal Procrustes can further improve the performance. We thus compare four variants, *a*) baseline (original unprocessed embeddings), *b*) orthogonal alignment only, *c*) centering only, and *d*) orthogonal alignment followed by centering.

In Figure 7, we report results on four multimodal embedding models. In these experiments, mean embeddings and alignment matrices are learned on held-out data derived from MixBench’s upstream datasets. For mixed-modality queries and documents, we use $\alpha = 0.5$; results for a range of other values of α (presented in Appendix B.3) confirm the same qualitative trends. Across all subsets of MixBench and nearly all models, Procrustes post-processing improves mixed-modality retrieval. Orthogonal alignment alone outperforms the original unprocessed embeddings, while the combination of alignment and centering yields the best overall performance, consistently outperforming centering alone.

5 CONCLUSION & FUTURE WORK

We have shown that approximate dot-product preservation implies that two embedding models can be closely aligned by an orthogonal transformation, providing a principled justification for Procrustes alignment. Beyond this theoretical insight, we have demonstrated that Procrustes post-processing effectively addresses several practical challenges, including model retraining, partial upgrades, and multimodal search. These results highlight the growing importance of embedding alignment as machine learning systems increasingly interact in complex pipelines.

In future work, we plan to investigate alignment across modalities more deeply. Liang et al. (2022) show that the modality gap exists even at random initialization; we hypothesize that aligning representations at the start of training could improve optimization. More generally, we envision developing an alignment layer, similarly to normalization layers (Ioffe & Szegedy, 2015; Zhang & Sennrich, 2019), to make embedding interoperability a standard component of representation learning.

486
487
ETHICS STATEMENT488
489
490
491
492
We have reviewed the ICLR code of ethics and we believe our work abides by it. Our work does
not involve research or use of human subjects, and no potentially dangerous artifact is released as
part of it. We study a general methodology for aligning representations that does not target any one
particular application domain. We do not identify any potential societal implications (positive or
negative) that can arise specifically as a consequence of this work.493
494
REPRODUCIBILITY STATEMENT495
496
497
498
All the models and datasets we use are publicly available. Upon publication, we commit to release
code that will enable to reproduce all the experimental results presented in this paper. This will include
data preprocessing, training and evaluation of our proposed methods, and any other methodologies
we benchmark against.499
500
REFERENCES

- 501
-
- 502 P. Alestalo, D. A. Trotsenko, and J. Väisälä. Isometric approximation.
- Israel Journal of Mathematics*
- ,
-
- 503 125:61–82, 2001.
-
- 504 E. Arias-Castro, A. Javanmard, and B. Pelletier. Perturbation bounds for Procrustes, classical scaling,
-
- 505 and trilateration, with applications to manifold learning.
- Journal of Machine Learning Research*
- ,
-
- 506 21(15):1–37, 2020.
-
- 507 S. Arora, A. May, J. Zhang, and C. Ré. Contextual embeddings: When are they worth it? In
-
- 508
- Proceedings of ACL 2020*
- , virtual event, July 2020.
-
- 509 M. Artetxe, G. Labaka, and E. Agirre. Learning principled bilingual mappings of word embeddings
-
- 510 while preserving monolingual invariance. In
- Proceedings of EMNLP 2016*
- , Austin, Texas, USA,
-
- 511 November 2016.
-
- 512 Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives.
-
- 513
- IEEE Transactions on Pattern Analysis and Machine Intelligence*
- , 35(8):1798–1828, 2013.
-
- 514 S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. Indexing by latent
-
- 515 semantic analysis.
- Journal of the American Society for Information Science*
- , 41(6):391–407, 1990.
-
- 516 A. El-Kishky, T. Markovich, S. Park, C. Verma, B. Kim, R. Eskander, Y. Malkov, F. Portman,
-
- 517 S. Samaniego, Y. Xiao, and A. Haghghi. TwHIN: Embedding the Twitter heterogeneous informa-
-
- 518 tion network for personalized recommendation. In
- Proceedings of KDD 2022*
- , Washington, DC,
-
- 519 USA, August 2022.
-
- 520 K. Enevoldsen, I. Chung, I. Kerboua, M. Kardos, A. Mathur, D. Stap, J. Gala, et al. MMTEB: Massive
-
- 521 multilingual text embedding benchmark. In
- Proceedings of ICLR 2025*
- , Singapore, April 2025.
-
- 522 F. Feng, Y. Yang, D. Cer, N. Arivazhagan, and W. Wang. Language-agnostic BERT sentence
-
- 523 embedding. In
- Proceedings of ACL 2022*
- , Dublin, Ireland, May 2022.
-
- 524 J. W. Fickett. Approximate isometries on bounded sets with an application to measure theory.
- Studia
525 Mathematica*
- , 72(1):37–46, 1982.
-
- 526 Y. Gan, Y. Ge, C. Zhou, S. Su, Z. Xu, X. Xu, Q. Hui, X. Chen, Y. Wang, and Y. Shan. Binary
-
- 527 embedding-based retrieval at Tencent. In
- Proceedings of KDD 2023*
- , Long Beach, CA, USA,
-
- 528 August 2023.
-
- 529 E. Grave, A. Joulin, and Q. Berthet. Unsupervised alignment of embeddings with Wasserstein
-
- 530 Procrustes. In
- Proceedings of AISTATS 2019*
- , Naha, Okinawa, Japan, April 2019.
-
- 531 F. M. Harper and J. A. Konstan. The MovieLens datasets: History and Context.
- ACM Transactions
532 on Interactive Intelligent Systems*
- , 5(4):1–19, 2015.
-
- 533 S. E. Harvey, D. Lipshutz, and A. H. Williams. What representational similarity measures imply
-
- 534 about decodable information. Preprint, arXiv:2411.08197 [stat.ML], November 2024.

- 540 H. Hu, Y. Luan, Y. Chen, U. Khandelwal, M. Joshi, K. Lee, K. Toutanova, and M.-W. Chang.
 541 Open-domain visual entity recognition: Towards recognizing millions of Wikipedia entities. In
 542 *Proceedings of ICCV 2023*, Paris, France, October 2023.
- 543 W. Hu, R. Bansal, K. Cao, N. Rao, K. Subbian, and J. Leskovec. Learning backward compatible
 544 embeddings. In *Proceedings of KDD 2022*, Washington, DC, USA, August 2022.
- 545 Y.-H. Huang, Y. Tsai, H. Hsiao, H.-Y. Lin, and S.-D. Lin. Transferable embedding inversion attack:
 546 Uncovering privacy risks in text embeddings without model queries. In *Proceedings of ACL 2024*,
 547 Bangkok, Thailand, August 2024.
- 548 J. R. Hurley and R. B. Cattell. The Procrustes program: Producing direct rotation to test a hypothesized
 549 factor structure. *Behavioral Science*, 7(2):258–262, 1962.
- 550 D. H. Hyers and S. M. Ulam. On approximate isometries. *Bulletin of the American Mathematical
 551 Society*, 51(4):288–292, 1945.
- 552 S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
 553 internal covariate shift. In *Proceedings of ICML 2015*, Lille, France, July 2015.
- 554 F. Kittaneh. Inequalities for the Schatten p -norm. iv. *Communications in Mathematical Physics*, 106:
 555 581–585, 1986.
- 556 Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems.
 557 *Computer*, 42(8):30–37, 2009.
- 558 A. Kusupati, G. Bhatt, A. Rege, M. Wallingford, A. Sinha, V. Ramanujan, W. Howard-Snyder,
 559 K. Chen, S. Kakade, P. Jain, and A. Farhadi. Matryoshka representation learning. In *Advances in
 560 Neural Information Processing Systems 35*, New Orleans, LA, USA, December 2022.
- 561 B. Li, Y. Zhang, X. Wang, W. Liang, L. Schmidt, and S. Yeung-Levy. Closing the modality gap for
 562 mixed modality search. Preprint, [arXiv:2507.19054 \[cs.CV\]](https://arxiv.org/abs/2507.19054), July 2025.
- 563 Z. Li, X. Zhang, Y. Zhang, D. Long, P. Xie, and M. Zhang. Towards general text embeddings with
 564 multi-stage contrastive learning. Preprint, [arXiv:2308.03281 \[cs.CL\]](https://arxiv.org/abs/2308.03281), August 2023.
- 565 W. Liang, Y. Zhang, Y. Kwon, S. Yeung, and J. Zou. Mind the gap: Understanding the modality gap
 566 in multi-modal contrastive representation learning. In *Advances in Neural Information Processing
 567 Systems 35*, New Orleans, LA, USA, December 2022.
- 568 T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.
 569 Microsoft COCO: Common objects in context. In *Proceedings of ECCV 2016*, Zurich, Switzerland,
 570 September 2014.
- 571 F. Liu, Y. Wang, T. Wang, and V. Ordonez. Visual news: Benchmark and challenges in news image
 572 captioning. In *Proceedings of EMNLP 2021*, Punta Cana, Dominican Republic, November 2021.
- 573 S. Mazur and S. Ulam. Sur les transformations isométriques d'espaces vectoriels normés. *Comptes
 574 rendus hebdomadaires des séances de l'Académie des sciences*, 194:946–948, 1932.
- 575 Q. Meng, C. Zhang, X. Xu, and F. Zhou. Learning compatible embeddings. In *Proceedings of CVPR
 576 2021*, June 2021.
- 577 T. Mikolov, Q. V. Le, and I. Sutskever. Exploiting similarities among languages for machine
 578 translation. Preprint, [arXiv:1309.4168 \[cs.CL\]](https://arxiv.org/abs/1309.4168), September 2013.
- 579 J. Morris, V. Kuleshov, V. Shmatikov, and A. M. Rush. Text embeddings reveal (almost) as much as
 580 text. In *Proceedings of EMNLP 2023*, Singapore, December 2023.
- 581 J. Ni, G. H. Abrego, N. Constant, J. Ma, K. B. Hall, D. Cer, and Y. Yang. Sentence-T5: Scalable
 582 sentence encoders from pre-trained text-to-text models. In *Findings of the ACL 2022*, Dublin,
 583 Ireland, May 2022.
- 584 Z. Nussbaum, J. X. Morris, A. Mulyar, and B. Duderstadt. Nomic embed: Training a reproducible
 585 long context text embedder. *Transactions on Machine Learning Research*, 2025.

- 594 R. T. Powers and E. Størmer. Free states of the canonical anticommutation relations. *Communications*
595 *in Mathematical Physics*, 16:1–33, 1970.
- 596
- 597 T. Pumir, A. Singer, and N. Boumal. The generalized orthogonal Procrustes problem in the high
598 noise regime. *Information and Inference: A Journal of the IMA*, 10(3):921–954, 2021.
- 599
- 600 A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
601 J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from natural language
602 supervision. In *Proceedings of ICML 2021*, virtual event, July 2021.
- 603
- 604 N. Reimers and I. Gurevych. Sentence-BERT: Sentence embeddings using siamese BERT-networks.
605 In *Proceedings of EMNLP-IJCNLP 2019*, Hong Kong, November 2019.
- 606
- 607 S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. BPR: Bayesian personalized
608 ranking from implicit feedback. In *Proceedings of UAI 2009*, Montreal, Canada, June 2009.
- 609
- 610 K. Roberts, T. Alam, S. Bedrick, D. Demner-Fushman, K. Lo, I. Soboroff, E. Voorhees, L. L. Wang,
611 and W. R. Hersh. Searching for scientific evidence in a pandemic: An overview of TREC-COVID.
612 *Journal of Biomedical Informatics*, 121:103865, 2021.
- 613
- 614 S. Ruder, I. Vulić, and A. Søgaard. A survey of cross-lingual word embedding models. *Journal of*
615 *Artificial Intelligence Research*, 65:569–631, 2019.
- 616
- 617 Y. Shen, Y. Xiong, W. Xia, and S. Soatto. Towards backward-compatible representation learning. In
618 *Proceedings of CVPR 2020*, June 2020.
- 619
- 620 D. Shiebler, L. Belli, J. Baxter, H. Xiong, and A. Tayal. Fighting redundancy and model decay with
621 embeddings. Preprint, arXiv:1809.07703 [cs.SI], September 2018.
- 622
- 623 U. Singer, I. Guy, and K. Radinsky. Node embedding over temporal graphs. In *Proceedings of IJCAI*
624 2019, Macao, China, August 2019.
- 625
- 626 I. Söderkvist. Perturbation analysis of the orthogonal Procrustes problem. *BIT Numerical Mathematics*, 33:687–694, 1993.
- 627
- 628 K. Srinivasan, K. Raman, J. Chen, M. Bendersky, and M. Najork. WIT: Wikipedia-based image text
629 dataset for multimodal multilingual machine learning. In *Proceedings of SIGIR 2021*, virtual event,
630 July 2021.
- 631
- 632 H. Steck, L. Baltrunas, E. Elahi, D. Liang, Y. Raimond, and J. Basilico. Deep learning for recom-
633 mender systems: A Netflix case study. *AI Magazine*, 42(3):7–18, 2021.
- 634
- 635 K. Tagowski, P. Bielak, and T. Kajdanowicz. Embedding alignment methods in dynamic networks.
636 In *Proceedings of ICCS 2021*, June 2021.
- 637
- 638 J. Thorne, A. Vlachos, C. Christodoulopoulos, and A. Mittal. FEVER: A large-scale dataset for fact
639 extraction and VERification. In *Proceedings of ACL 2019*, New Orleans, LA, USA, June 2018.
- 640
- 641 S. Tu, R. Boczar, M. Simchowitz, M. Soltanolkotabi, and B. Recht. Low-rank solutions of linear
642 matrix equations via Procrustes flow. In *Proceedings of ICML 2016*, New York, NY, USA, June
643 2016.
- 644
- 645 K. Wang, Q. Yin, W. Wang, S. Wu, and L. Wang. A comprehensive survey on cross-modal retrieval.
646 Preprint, arXiv:1607.06215 [cs.MM], July 2016.
- 647
- 648 S. Xiao, Z. Liu, P. Zhang, N. Muennighoff, D. Lian, and J.-Y. Nie. C-Pack: Packed resources for
649 general Chinese embeddings. In *Proceedings of SIGIR 2024*, Washington D.C., USA, July 2024.
- 650
- 651 C. Xing, D. Wang, C. Liu, and Y. Lin. Normalized word embedding and orthogonal transform for
652 bilingual word translation. In *Proceedings of NAACL HLT 2015*, Denver, CO, USA, May 2015.

- 648 Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. Cohen, R. Salakhutdinov, and C. D. Manning. HotpotQA: A
649 dataset for diverse, explainable multi-hop question answering. In *Proceedings of EMNLP 2018*,
650 Brussels, Belgium, October 2018.
- 651
- 652 X. Zhai, B. Mustafa, A. Kolesnikov, and L. Beyer. Sigmoid loss for language image pre-training. In
653 *Proceedings of ICCV 2023*, Paris, France, October 2023.
- 654
- 655 B. Zhang and R. Sennrich. Root mean square layer normalization. In *Advances in Neural Information
656 Processing Systems 32*, Vancouver, BC, Canada, December 2019.
- 657
- 658 Y. Zhang, M. Li, D. Long, X. Zhang, H. Lin, B. Yang, P. Xie, A. Yang, D. Liu, J. Lin, et al. Qwen3
659 embedding: Advancing text embedding and reranking through foundation models. Preprint,
arXiv:2506.05176 [cs.CL], June 2025.
- 660
- 661 K. Zielnicki and K.-J. Hsiao. Orthogonal low rank embedding stabilization. Preprint,
arXiv:2508.07574 [cs.IR], August 2025.
- 662
- 663
- 664
- 665
- 666
- 667
- 668
- 669
- 670
- 671
- 672
- 673
- 674
- 675
- 676
- 677
- 678
- 679
- 680
- 681
- 682
- 683
- 684
- 685
- 686
- 687
- 688
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701

702 **A PROOFS AND ADDITIONAL THEORY**
 703

704 In Section A.1, we provide a complete proof of Theorem 1. In Section A.2, we provide a concrete
 705 example of a pair of embedding matrices that achieves the upper bound.
 706

707 **A.1 PROOF OF THEOREM 1**
 708

709 The Frobenius norm is a special case of the Schatten p -norm, which we will also make use of. Let
 710 $\mathbf{A} = [a_{ij}]$ be a real-valued matrix of rank r , with non-zero singular values $\sigma_1(\mathbf{A}) \geq \dots \geq \sigma_r(\mathbf{A})$.
 711 For $p \in [1, \infty)$, the Schatten p -norm is defined as

712
$$\|\mathbf{A}\|_p = (\sum_{i=1}^r \sigma_i(\mathbf{A})^p)^{1/p}.$$

 713

714 For $p = \infty$, it is defined as $\|\mathbf{A}\|_\infty = \sigma_1(\mathbf{A})$, in which case it coincides with the operator norm. We
 715 recover the Frobenius norm by setting $p = 2$.

716 In order to prove our bound, we will rely on a result first obtained by Powers & Størmer (1970,
 717 Lemma 4.1) in the case $p = 1$, and later extended to any p by Kittaneh (1986, Corollary 2).

718 **Lemma 1** (Powers-Størmers-Kittaneh Inequality). *Let $\mathbf{A}, \mathbf{B} \in \mathbf{R}^{N \times N}$ be positive semi-definite.
 719 Then,*

720
$$\|\mathbf{A} - \mathbf{B}\|_{2p}^2 \leq \|\mathbf{A}^2 - \mathbf{B}^2\|_p.$$

 721

722 We also need another lemma that shows that the optimal alignment matrix aligns the subspaces
 723 spanned by the columns of \mathbf{A} and \mathbf{B} .
 724

725 **Lemma 2.** *Let $\mathbf{A}, \mathbf{B} \in \mathbf{R}^{M \times N}$ be such that $\text{rank}(\mathbf{A}) \leq R$ and $\text{rank}(\mathbf{B}) \leq R$. There exists an
 726 orthogonal matrix $\mathbf{P} \in \arg \min_{\mathbf{Q} \in \mathcal{O}} \|\mathbf{Q}\mathbf{A} - \mathbf{B}\|_F$ such that*

727
$$\text{rank}(\mathbf{P}\mathbf{A} - \mathbf{B}) \leq R.$$

 728

729 *Proof.* Let $\mathbf{U}\Sigma\mathbf{V}^\top$ be a singular value decomposition of $\mathbf{B}\mathbf{A}^\top$ into $M \times M$ orthogonal matrices
 730 \mathbf{U}, \mathbf{V} and an $M \times M$ diagonal matrix Σ containing the singular values sorted by magnitude, from
 731 largest to smallest. Schönemann (1966) shows that, for any such decomposition, the orthogonal matrix
 732 $\mathbf{P} \doteq \mathbf{U}\mathbf{V}^\top$ satisfies $\mathbf{P} \in \arg \min_{\mathbf{Q} \in \mathcal{O}} \|\mathbf{Q}\mathbf{A} - \mathbf{B}\|_F$. We know that $r \doteq \text{rank}(\mathbf{B}\mathbf{A}^\top) \leq R \leq M$. If
 733 $r < M$, the last $M-r$ elements of the diagonal of Σ are zero, and $\mathbf{U}\mathbf{V}^\top$ is not unique. We will show
 734 that there is at least one pair \mathbf{U}, \mathbf{V} that satisfies the claim.
 735

736 Let $\text{span}(\mathcal{S})$ be the linear subspace spanned by a set of vectors \mathcal{S} . For a matrix \mathbf{M} , let $\text{col}(\mathbf{M})$
 737 be the linear subspace spanned by its columns, and $\text{null}(\mathbf{M})$ be its (right) nullspace. Assume that
 738 $\text{rank}(\mathbf{A}) \leq \text{rank}(\mathbf{B})$ and, without loss of generality, that $\text{rank}(\mathbf{B}) = R$. By properties of the
 739 singular value decomposition and of the column space of matrix products, we have that

740
$$\text{span}(\{\mathbf{u}_1, \dots, \mathbf{u}_r\}) = \text{col}(\mathbf{B}\mathbf{A}^\top) \subseteq \text{col}(\mathbf{B}),$$

741 We can thus choose columns $r+1, \dots, R$ of \mathbf{U} such that $\text{span}(\{\mathbf{u}_1, \dots, \mathbf{u}_R\}) = \text{col}(\mathbf{B})$. Similarly,
 742 we know that

743
$$\text{span}(\{\mathbf{v}_{r+1}, \dots, \mathbf{v}_M\}) = \text{null}(\mathbf{B}\mathbf{A}^\top) \supseteq \text{null}(\mathbf{A}^\top),$$

 744

745 and we can choose \mathbf{V} such that $\text{span}(\{\mathbf{v}_{r+1}, \dots, \mathbf{v}_M\}) \subseteq \text{null}(\mathbf{A}^\top)$. It follows that the last $M-R$
 746 rows of $\mathbf{V}^\top \mathbf{A}$ contain all zeros. Letting $\mathbf{P} \doteq \mathbf{U}\mathbf{V}^\top$, we have that $\text{col}(\mathbf{P}\mathbf{A}) = \text{col}(\mathbf{U}\mathbf{V}^\top \mathbf{A}) \subseteq$
 747 $\text{span}(\{\mathbf{u}_1, \dots, \mathbf{u}_R\}) = \text{col}(\mathbf{B})$ by construction. In turn, we have that $\text{col}(\mathbf{P}\mathbf{A} - \mathbf{B}) \subseteq \text{col}(\mathbf{B})$, and
 748 we conclude that $\text{rank}(\mathbf{P}\mathbf{A} - \mathbf{B}) \leq \text{rank}(\mathbf{B})$.
 749

750 If $\text{rank}(\mathbf{A}) > \text{rank}(\mathbf{B})$, we can swap the matrices \mathbf{A} and \mathbf{B} in the argument above and find
 751 $\mathbf{G} \in \arg \min_{\mathbf{Q} \in \mathcal{O}} \|\mathbf{Q}\mathbf{B} - \mathbf{A}\|_F$ such that $\text{rank}(\mathbf{G}\mathbf{B} - \mathbf{A}) \leq R$. It is then easy to verify that setting
 752 $\mathbf{P} \doteq \mathbf{G}^\top$ verifies the claim. \square
 753

754 It is interesting to note that this lemma holds for the Frobenius norm, but does not hold for all Schatten
 755 p -norms. We discuss this in more details in Appendix A.2.

756 Equipped with these, we can prove our main result.

756 *Proof of Theorem 1.* For a matrix $\mathbf{A} \in \mathbf{R}^{D \times N}$, define the matrix absolute value $|\mathbf{A}| = (\mathbf{A}^\top \mathbf{A})^{1/2}$
 757 as the unique $N \times N$ positive semidefinite matrix such that $|\mathbf{A}|^\top |\mathbf{A}| = \mathbf{A}^\top \mathbf{A}$. The rank of $|\mathbf{A}|$ is
 758 equal to the rank of \mathbf{A} . We have that

$$759 \quad \|\mathbf{X}^\top \mathbf{X} - \mathbf{Y}^\top \mathbf{Y}\|_F \geq \|\|\mathbf{X}\| - \|\mathbf{Y}\|\|_F^2 \geq (2D)^{-1/2} \|\|\mathbf{X}\| - \|\mathbf{Y}\|\|_F. \quad (2)$$

761 The first inequality follows from Lemma 1 with $p = 2$. The second inequality comes from the fact
 762 that, for any matrix \mathbf{A} of rank r , with non-zero singular values $\sigma_1, \dots, \sigma_r$,

$$763 \quad \|\mathbf{A}\|_p = (\sigma_1^p + \dots + \sigma_r^p)^{1/p} = (\mathbf{1}^\top [\sigma_1^p \dots \sigma_r^p])^{1/p} \\ 764 \quad \leq \left(\sqrt{r} \cdot \sqrt{\sigma_1^{2p} + \dots + \sigma_r^{2p}} \right)^{1/p} = r^{1/2p} \|\mathbf{A}\|_{2p},$$

767 by the Cauchy-Schwarz inequality. In our case, $\mathbf{A} = \|\mathbf{X}\| - \|\mathbf{Y}\|$, and since $\text{rank}(\|\mathbf{X}\|) \leq D$ and
 768 $\text{rank}(\|\mathbf{Y}\|) \leq D$, the difference is of rank at most $2D$.

769 Furthermore, Lemma 2 states that there is an orthogonal matrix $\mathbf{G} \in \mathbf{R}^{N \times N}$ such that

$$770 \quad \|\mathbf{G}|\mathbf{X}| - |\mathbf{Y}|\|_F \leq \|\|\mathbf{X}\| - \|\mathbf{Y}\|\|_F \quad (3)$$

772 and $\text{rank}(\mathbf{G}|\mathbf{X}| - |\mathbf{Y}|) \leq D$. This implies that there is an orthogonal matrix $\mathbf{H} \in \mathbf{R}^{N \times N}$ such that
 773 the last $N - D$ rows of $\mathbf{H}(\mathbf{G}|\mathbf{X}| - |\mathbf{Y}|)$ are all zeros. Let $\mathbf{S}, \mathbf{T} \in \mathbf{R}^{D \times N}$ be such that \mathbf{S} coincides
 774 with the D first rows of $\mathbf{HG}|\mathbf{X}|$, and \mathbf{T} coincides with the D first rows of $\mathbf{H}|\mathbf{Y}|$. By unitary
 775 invariance of the Frobenius norm and by construction of \mathbf{H} , we have that

$$776 \quad \|\mathbf{G}|\mathbf{X}| - |\mathbf{Y}|\|_F = \|\mathbf{H}(\mathbf{G}|\mathbf{X}| - |\mathbf{Y}|)\|_F = \|\mathbf{S} - \mathbf{T}\|_F. \quad (4)$$

777 Since $\mathbf{S}^\top \mathbf{S} = \mathbf{X}^\top \mathbf{X}$, there is an orthogonal matrix $\mathbf{U} \in \mathbf{R}^{D \times D}$ such that $\mathbf{S} = \mathbf{U}\mathbf{X}$. Similarly,
 778 there is an orthogonal matrix $\mathbf{V} \in \mathbf{R}^{D \times D}$ such that $\mathbf{T} = \mathbf{V}\mathbf{Y}$. By unitary invariance, we have that

$$779 \quad \|\mathbf{S} - \mathbf{T}\|_F = \|\mathbf{U}\mathbf{X} - \mathbf{V}\mathbf{Y}\|_F = \|\mathbf{P}\mathbf{X} - \mathbf{Y}\|_F, \quad (5)$$

781 where $\mathbf{P} = \mathbf{V}^\top \mathbf{U}$. The claim follows by combining (2), (3), (4) and (5). \square

783 A.2 TIGHTNESS OF UPPER BOUND

785 In this section, we provide an explicit example of a pair of embedding matrices that achieves equality
 786 in the upper-bound in Theorem 1. Let $D = 1$, $N = 2$, and let

$$787 \quad \mathbf{X} = \begin{bmatrix} \sqrt{\frac{\varepsilon}{2\sqrt{2}}} & \sqrt{\frac{\varepsilon}{2\sqrt{2}}} \end{bmatrix}, \quad \mathbf{Y} = \begin{bmatrix} \sqrt{\frac{\varepsilon}{2\sqrt{2}}} & -\sqrt{\frac{\varepsilon}{2\sqrt{2}}} \end{bmatrix}.$$

789 There are only two possible orthogonal transformations ($\pm [1]$), both of which align \mathbf{X} and \mathbf{Y} equally
 790 well. It is easy to verify that

$$791 \quad \|\mathbf{X}^\top \mathbf{X} - \mathbf{Y}^\top \mathbf{Y}\|_F = \varepsilon, \quad \max_{\mathbf{Q} \in \{\pm [1]\}} \|\mathbf{Q}\mathbf{X} - \mathbf{Y}\|_F = 2^{1/4} \sqrt{\varepsilon}.$$

793 This satisfies equality in the bound of Theorem 1. The example can be extended to $D > 1$ as follows.
 794 Let $\mathbf{e}_i \in \mathbf{R}^D$ be the i th standard basis vector, let $N = 2D$, and let \mathbf{X} and \mathbf{Y} be such that, for
 795 $i = 1, \dots, D$,

$$797 \quad \mathbf{x}_{2i-1} = \sqrt{\frac{\varepsilon}{2\sqrt{2D}}} \mathbf{e}_i, \quad \mathbf{x}_{2i} = \sqrt{\frac{\varepsilon}{2\sqrt{2D}}} \mathbf{e}_i, \\ 798 \quad \mathbf{y}_{2i-1} = \sqrt{\frac{\varepsilon}{2\sqrt{2D}}} \mathbf{e}_i, \quad \mathbf{y}_{2i} = -\sqrt{\frac{\varepsilon}{2\sqrt{2D}}} \mathbf{e}_i.$$

800 These embedding matrices also satisfy

$$802 \quad \|\mathbf{X}^\top \mathbf{X} - \mathbf{Y}^\top \mathbf{Y}\|_F = \varepsilon, \quad \max_{\mathbf{Q} \in \mathcal{O}_D} \|\mathbf{Q}\mathbf{X} - \mathbf{Y}\|_F = (2D)^{1/4} \sqrt{\varepsilon}.$$

803 For $D = 1$, the bound holds for all Schatten- p norms, not only the Frobenius norm. However, for
 804 $D > 1$, this example can be used to show that the bound does not hold for general values of p .
 805

806 B ADDITIONAL EXPERIMENTAL DETAILS

808 This appendix mirrors the structure of the main text, with Section B.1 covering model retraining,
 809 Section B.2 covering partial upgrades, and Section B.3 covering multimodal embeddings.

810
811

Table 1: MovieLens experiment data

	Partition1 (2019-02 - 07)	Partition2 (2019-03 - 08)	Partition3 (2019-04 - 09)	Partition4 (2019-05 - 10)
Partition1	Ratings: 617,643 Users: 6,281 Movies: 9,537			
Partition2	Overlapping Users: 5,430 Movies: 8,949	Ratings: 610,480 Users: 6,132 Movies: 9,452		
Partition3	Overlapping Users: 4,591 Movies: 8,501	Overlapping Users: 5,258 Movies: 8,738	Ratings: 610,296 Users: 6,091 Movies: 9,328	
Partition4	Overlapping Users: 3,944 Movies: 8,139	Overlapping Users: 4,592 Movies: 8,320	Overlapping Users: 5,391 Movies: 8,613	Ratings: 594,011 Users: 6,007 Movies: 9,080

825

B.1 MAINTAINING COMPATIBILITY ACROSS RETRAININGS

826

The experiments are conducted using the MovieLens-25M dataset, which contains 25 million ratings from 162 541 users on 59 047 movies between 2008 and 2019. We ignore the rating values and treat the ratings as binary implicit user feedback.

827

The core of our experiment involves training a matrix factorization-based BPR (Bayesian Personalization Ranking) model. This model is well-suited for implicit feedback, as it frames the learning process as a ranking task. During training, the model learns to rank an item the user has interacted with (i.e., a movie a user has rated) higher than an item the user is unlikely to have interacted with (i.e., a movie sampled uniformly at random from the set of movies the user has not rated). The model is optimized using the following objective function:

828
829
830

$$\ell_{\text{BPR}}(\mathbf{V}, \mathbf{X}) = - \sum_{(u, i, j) \in D_s} \ln \sigma(\mathbf{v}_u \cdot \mathbf{x}_i - \mathbf{v}_u \cdot \mathbf{x}_j) + \lambda(\|\mathbf{V}\|_F^2 + \|\mathbf{X}\|_F^2)$$

831

Here, u denotes a user, i is a movie the user rated, and j is a movie the user did not rate. $\mathbf{v}_u \in \mathbf{R}^D$ represents the learned embedding vector for user u , while $\mathbf{x}_i, \mathbf{x}_j \in \mathbf{R}^D$ represent the learned embedding vectors for movies i and j , respectively. The equation represents the pairwise ranking loss, which seeks to maximize the difference between the positive and negative preferences.

832

The primary objective of this experiment is to evaluate the compatibility of embeddings across different training sessions. This phenomenon is particularly relevant in real-world scenarios where models are periodically retrained using new data. We simulate this industry practice by conducting multiple training runs on different time windows of the MovieLens-25M dataset.

833

Specifically, we create four distinct training partitions, each spanning a 6-month period. These partitions are sequentially aligned to simulate a rolling time window, with the data preceding four different months as the re-training time points: 2019-08 to 2019-11. For each partition, a standard preprocessing step is applied to ensure data quality. We filter the data to only include users and movies that have a minimum of 5 ratings within that specific partition. This preprocessing results in a different number of users, movies, and ratings in each partition, reflecting the natural evolution of the dataset over time. The counts for each partition and the overlapping between partitions are shown in table 1.

834

Hyperparameter tuning for the model is conducted using a separate, distinct dataset split. The training data for this process consists of 6 months of ratings between 2019-01 and 2019-06. Validation is performed on a subsequent 1-month period of data from 2019-07. The model is optimized using the Adam optimizer, with the number of training epochs fixed at 30. Hyperparameter tuning was performed using a grid search over the following parameter space.

835
836

- batch size: {512, 1024, 2048, 4096}
- embedding dimensionality: {8, 16, 32, 64}

- 864 • bias term for the movies: {true, false}
 865 • learning rate: {1, 0.1, 0.01, 0.001}
 866 • weight decay: {0.1, 0.01, 0.001, 0}

868 The validation task is a retrieval problem. For each user in the validation set, the model ranks
 869 all movies from the training data based on the dot product of the user and movie embeddings.
 870 The performance is measured by the Hit Rate at K ($HR@K$), which quantifies whether a rated
 871 movie from the validation set appears within the top K ranked movies for that user. Based on the
 872 performance on the validation set, measured by the Hit Rate at 100 ($HR@100$), the best configuration
 873 found was: batch size: 4096; embedding dimension size: 8; including movie bias: false; learning
 874 rate: 0.01; weight decay: 0.

875 In addition to the four partitions trained from scratch as baseline setting, we introduce three alternative
 876 training settings to explore methods for mitigating embedding drift and maintaining compatibility.
 877 These scenarios use the embeddings from the first partition (trained on data starting from 2019-02) as
 878 a reference point for the subsequent three partitions.

880 **Warmstart:** The training process for Partitions 2, 3, and 4 is initialized with the learned embeddings
 881 (weights) from Partition 1. The hyperparameters keep same as the baseline setting except
 882 the training epochs are decreased to 10.

883 **Autoencoding loss:** A regularization loss term is added to the training objective for Partitions 2,
 884 3, and 4. This loss penalizes the distance between the newly learned embeddings and the
 885 embeddings from Partition 1 ($\mathbf{V}_0, \mathbf{X}_0$), encouraging them to stay close to the reference. The
 886 hyperparameters keep same as the baseline setting, and the regularization strength is set as
 887 $\lambda_{\text{auto}} = 1.0$.

$$\ell_{\text{auto}}(\mathbf{V}, \mathbf{X}) = \ell_{\text{BPR}} + \lambda_{\text{auto}}(\|\mathbf{V} - \mathbf{V}_0\|_F^2 + \|\mathbf{X} - \mathbf{X}_0\|_F^2)$$

889 **BC-Aligner:** This method introduces a learnable transformation matrix, \mathbf{A} , which is co-trained
 890 with the user and movie embeddings for Partitions 2, 3 and 4. A regularization loss is
 891 applied to minimize the distance between the transformed embeddings (\mathbf{AV} and \mathbf{AX}) and
 892 the reference embeddings from Partition 1 (\mathbf{V}_0 and \mathbf{X}_0), thus explicitly aligning the new
 893 embedding space with the first one. The hyperparameters keep same as the baseline setting,
 894 and the regularization strength is set as $\lambda_{\text{BC}} = 1.0$.

$$\ell_{\text{BC}}(\mathbf{V}, \mathbf{X}) = \ell_{\text{BPR}} + \lambda_{\text{BC}}(\|\mathbf{AV} - \mathbf{V}_0\|_F^2 + \|\mathbf{AX} - \mathbf{X}_0\|_F^2)$$

895 For the movie genre classification task, we use the movie metadata information in the MovieLens-
 896 25M dataset. It includes a genre list for each movie. The genres are selected from a list of 19 different
 897 genre terms.

901 B.2 COMBINING DIFFERENT MODELS FOR TEXT RETRIEVAL

903 Table 2 introduces the three text retrieval tasks evaluated in Section 4.2, as well as two larger datasets
 904 used to sample training data to learn alignment matrices. Table 3 provides summary statistics for
 905 the text embedding models used in the experiments of that section. Figure 8 replicates the sample
 906 complexity analysis of Section 4.2 on the FEVER dataset. Qualitatively, the conclusions do not differ
 907 from those obtained on HotpotQA.

908 Figure 9 visualizes three alignment matrices, contrasting matrices that align two embeddings trained
 909 with MRL with matrices that align embeddings not trained with MRL. MRL encourages representa-
 910 tions in which the leading dimensions capture most of the semantic variability. Consistent with this
 911 property, we find that \mathbf{Q}^* between two Matryoshka models typically aligns the first 16–32 dimensions
 912 of one embedding space with the corresponding leading dimensions of the other.

914 B.3 IMPROVING MIXED-MODALITY SEARCH

916 This section provides additional details pertaining to Section 4.3 in the main text. We start by arguing
 917 why centering is not necessarily a principled way to align different embedding spaces. Then, we
 918 provide information on our experimental setup as well as additional results.

918
 919 Table 2: Summary statistics for the text retrieval datasets studied in Section 4.2. All datasets are part
 920 of the MMTEB benchmark (Enevoldsen et al., 2025).

Name	# queries	# documents	Reference
HotpotQA-HN	1000	225 621	Yang et al. (2018)
FEVER-HN	1000	163 698	Thorne et al. (2018)
TREC-COVID	50	171 332	Roberts et al. (2021)
HotpotQA	—	5 233 329	Yang et al. (2018)
FEVER	—	5 416 568	Thorne et al. (2018)

921
 922
 923
 924
 925
 926
 927
 928
 929
 930 Table 3: Summary statistics of text embedding models used in the experiments of Section 4.2.

Name	D	Release date	Resizeable	Reference
nomic-embed-text-v1.5	768	2024-02	Yes	Nussbaum et al. (2025)
bge-small-en-v1.5	384	2023-09	No	Xiao et al. (2024)
Qwen3-Embedding-0.6B	1024	2025-06	Yes	Zhang et al. (2025)
all-MiniLM-L6-v2	384	2021-08	No	N/A
sentence-t5-base	768	2021-08	No	Ni et al. (2022)
LaBSE	768	2020-07	No	Feng et al. (2022)
rubert-tiny2	312	2021-10	No	N/A
bge-base-en-v1.5	768	2023-09	No	Xiao et al. (2024)
gte-base-en-v1.5	768	2024-04	Yes	Li et al. (2023)

931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941 **Centering does not imply alignment.** Through an explicit example in two dimensions, we argue
 942 that centering embedding spaces does not necessarily help aligning them. Let
 943

$$x_1 = \begin{bmatrix} 1 \\ -\varepsilon \end{bmatrix}, \quad x_2 = \begin{bmatrix} 1 \\ +\varepsilon \end{bmatrix}, \quad y_1 = \begin{bmatrix} -\varepsilon \\ 1 \end{bmatrix}, \quad y_2 = \begin{bmatrix} +\varepsilon \\ 1 \end{bmatrix}.$$

944 Letting $\mu_x = (x_1 + x_2)/2$ and $\mu_y = (y_1 + y_2)/2$, and denoting the centered embeddings by
 945 $\tilde{x}_i = x_i - \mu_x$ and $\tilde{y}_i = y_i - \mu_y$, we have that

$$\tilde{x}_1 = \begin{bmatrix} 0 \\ -\varepsilon \end{bmatrix}, \quad \tilde{x}_2 = \begin{bmatrix} 0 \\ +\varepsilon \end{bmatrix}, \quad \tilde{y}_1 = \begin{bmatrix} -\varepsilon \\ 0 \end{bmatrix}, \quad \tilde{y}_2 = \begin{bmatrix} +\varepsilon \\ 0 \end{bmatrix}.$$

946 Clearly, \tilde{X} and \tilde{Y} are not aligned ($\tilde{X}^\top \tilde{Y} = 0_{2 \times 2}$), and arguably they are less aligned than the
 947 original embeddings X and Y . On the other hand, observe that the orthogonal matrix

$$Q^* = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

948 perfectly aligns the embeddings: $\tilde{X} \doteq Q^* X = Y$.

949
 950
 951
 952
 953 **Description of the models.** Table 4 provides a brief description of the different multimodal models
 954 we consider.

955
 956
 957
 958
 959
 960 **Detailed experimental results.** Figure 10 presents retrieval performance for the four methods we
 961 consider as a function of the fusion weight α . We observe that while the choice of α does impact
 962 absolute performance, the relative performance of different methods is relatively stable across a wide
 963 range of values.

964
 965
 966
 967
 968
 969 **B.4 DATASETS AND TRAINING DETAILS**

970
 971 The MixBench benchmark (Li et al., 2025) builds on four large multimodal text-image datasets,
 972 *a*) Google WIT (Srinivasan et al., 2021), *b*) OVEN (Hu et al., 2023), *c*) COCO (Lin et al., 2014),

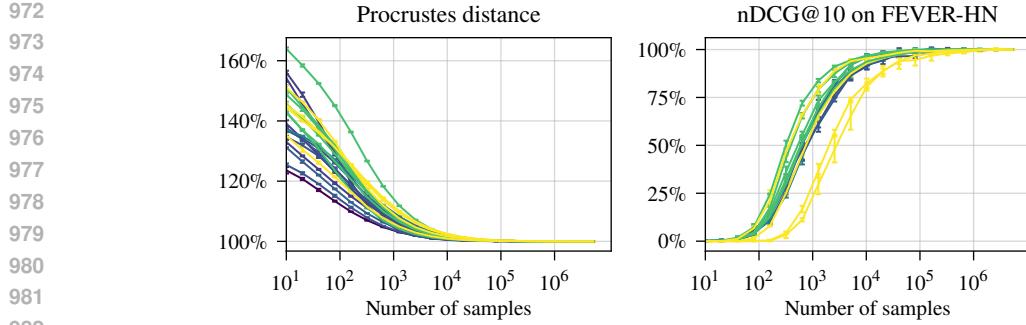


Figure 8: Performance vs. number of samples used to estimate Q^* across 21 model pairs, normalized by full-sample performance on FEVER. Brighter colors indicate more free parameters in Q^* .

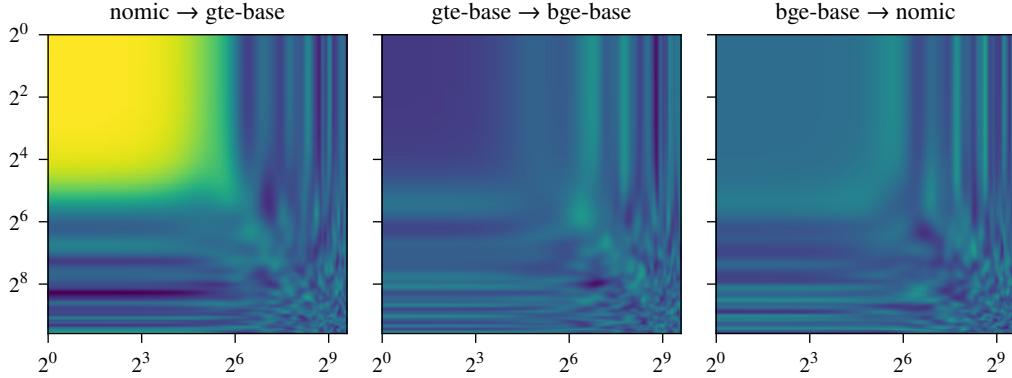


Figure 9: Visualization of orthogonal matrices aligning pairs of models. The matrix aligning nomic to gte-base tends to align the first 16–32 dimensions of nomic embeddings with the corresponding leading dimensions of gte-base embeddings.

and *d*) VisualNews (Liu et al., 2021). MixBench includes approximately 1000 multimodal query–document pairs extracted from these datasets. Details about the preprocessing steps used to obtain the final benchmark are provided in (Li et al., 2025, Appendix E).

To avoid estimating the cross-modality alignment matrix directly on the test data, we adopt the following procedure. We replicate the MixBench preprocessing pipeline and apply it to the training split of each of the four upstream datasets. From each dataset, we extract up to 10 000 unique text–image pairs, resulting in approximately 40 000 pairs in total. Given a multimodal model, we compute embeddings for all pairs and then fit a single alignment matrix using the orthogonal Procrustes method. This matrix is subsequently used to produce that model’s experimental results on all four MixBench subsets. Our procedure closely follows (Li et al., 2025, Appendix B).

B.5 ADDITIONAL PLOTS FOR REBUTTAL

Figures 11, 12, and 13 were added during the discussion phase.

C LLM USAGE

We have used LLMs as general-purpose assisting tools for grammar, spelling and word choice in our manuscript, as well as for support with implementing code. No use of LLMs was made outside of these assistive purposes.

1026

1027

1028

1029 Table 4: Multimodal embedding models used for the experiments on MixBench.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

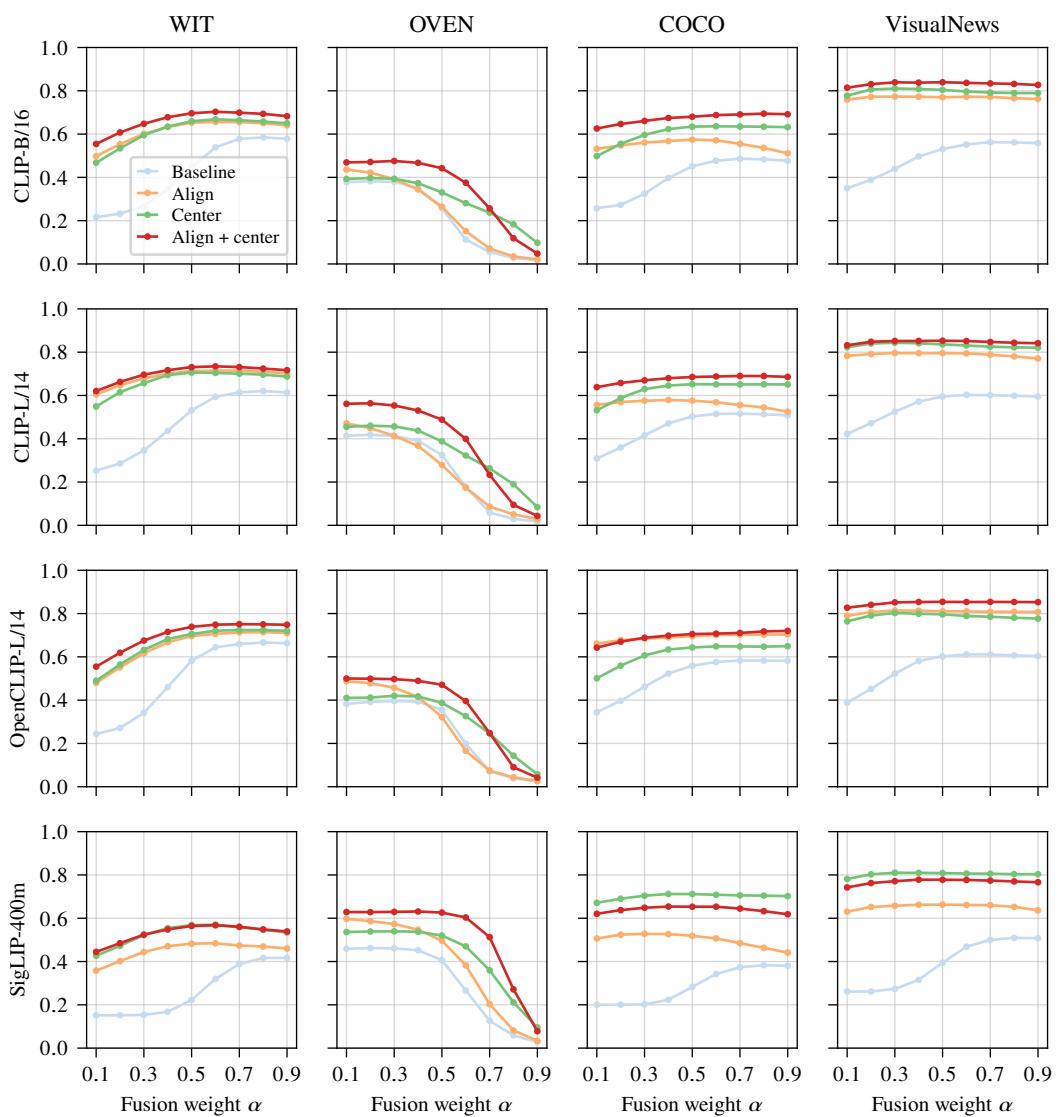
1075

1076

1077

1078

1079

Figure 10: Retrieval performance (nDCG@10) on the four MixBench subsets, as a function of the fusion weight α . We evaluate four multimodal embedding models under different post-processing methods.

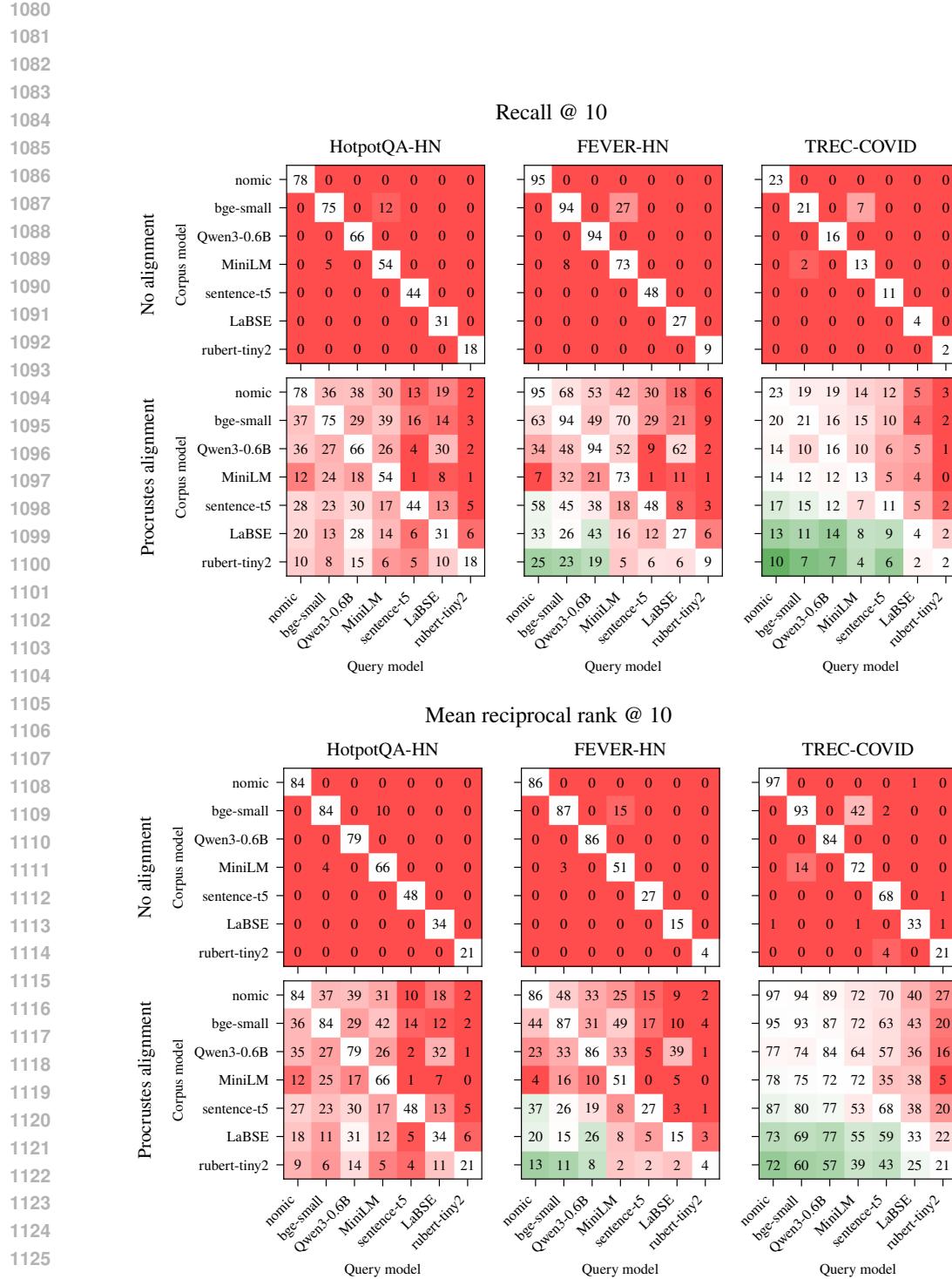


Figure 11: Retrieval performance (**recall @ 10 and MRR @ 10**) for all query–document model combinations. For presentation purposes, numbers are multiplied by 100. *Top rows*: raw embeddings. *Bottom rows*: query embeddings aligned with orthogonal Procrustes. Diagonal entries correspond to the baseline case where the same model is used for both queries and documents.

1134	1135	1136	1137	HotpotQA-HN							FEVER-HN							TREC-COVID																																																																																																																																																																							
1138	1139	1140	1141	1142	1143	1144	1145	1146	1147	1148	1149	1150	1151	1152	1153	1154	1155	1156	1157	1158	1159	1160	1161																																																																																																																																																																		
Corpus model	Regularizer: 1e+02	nomic	+65+28+30+20+9+13+2	bge-small	+26+50+21+23+11+7+2	Qwen3-0.6B	+28+21+41+16+2+12+1	MiniLM	+7+13+11+11+0+3+0	sentence-t5	+21+18+22+11+37+8+4	LaBSE	+13+8+20+8+4+13+4	rubert-tiny2	+7+5+10+3+3+6+15	Corpus model	Regularizer: 1e+01	nomic	+13+18+23+15+4+7+1	bge-small	+13+5+12+13+5+2+1	Qwen3-0.6B	+8+9+5+10-10+1+2	MiniLM	-4-3+2+2-6-0-1	sentence-t5	+13+12+11+7+14+3+2	LaBSE	+4+3+9+6-1+2+1	rubert-tiny2	+4+4+7+2+2+1+4	Corpus model	Regularizer: 1e+00	nomic	+1+11+14+13-1+7+1	bge-small	+4+0+5+9-1+2+0	Qwen3-0.6B	+1+4+1+7-21+1+4	MiniLM	-11-9-2+0-10-1-2	sentence-t5	+8+9+5+6+3+2+1	LaBSE	+0+2+5+5-5+0-1	rubert-tiny2	+2+2+5+2+1+0+0	Corpus model	Regularizer: 1e-01	nomic	+0+10+11+12-3+7+0	bge-small	+2+0+3+9-2+2+0	Qwen3-0.6B	-1+3+0+7-23+4+5	MiniLM	-13-10-3-0-10-1-2	sentence-t5	+7+8+5+5+0+2+1	LaBSE	-0+2+5+4-6+0-1	rubert-tiny2	+2+3+5+2+0+2+0	Corpus model	Regularizer: 1e-02	nomic	+0+10+10+12-3+7+0	bge-small	+2+0+3+9-2+3+0	Qwen3-0.6B	-0+3+0+7-23+5+5	MiniLM	-13-10-3+0-10-0-2	sentence-t5	+7+9+5+5+0+2+1	LaBSE	+0+3+6+5-6-0-1	rubert-tiny2	+2+3+5+2+0+2+0	Query model	nomic	+65+28+30+20+9+13+2	bge-small	+26+50+21+23+11+7+2	Qwen3-0.6B	+28+21+41+16+2+12+1	MiniLM	+7+13+11+11+0+3+0	sentence-t5	+21+18+22+11+37+8+4	LaBSE	+13+8+20+8+4+13+4	rubert-tiny2	+7+5+10+3+3+6+15	Query model	nomic	+81+50+35+16+18+7+3	bge-small	+44+39+31+23+18+7+5	Qwen3-0.6B	+25+36+61+23+6+22+1	MiniLM	+1+11+10+7+0+4+0	sentence-t5	+41+29+21+6+30+1+1	LaBSE	+20+14+25+6+6+9+3	rubert-tiny2	+15+14+10+2+3+1+5	Query model	nomic	+57+57+47+27+41+9+9	bge-small	+55+53+45+30+37+12+6	Qwen3-0.6B	+45+37+39+28+26+16+5	MiniLM	+37+36+35+20+11+8+0	sentence-t5	+48+42+29+7+30+7+2	LaBSE	+39+33+43+16+30+9+8	rubert-tiny2	+38+29+27+13+21+8+7	Query model	nomic	+11+23+20+7+18-10+2	bge-small	+20+5+9+9+15-2+1	Qwen3-0.6B	+15+12+9+15+9+2+0	MiniLM	+11+9+12+5-6-1-3	sentence-t5	+18+16+5-5-2-8-3	LaBSE	+14+10+31+14+18+0+4	rubert-tiny2	+24+15+18+11+18+3+0	Query model	nomic	+0+10+15+1+1-17-5	bge-small	+9-1+2+4-4-13-6	Qwen3-0.6B	+1-2+2+12-6-4-4	MiniLM	+4+2+6+1-17-5-7	sentence-t5	+7+6-2-12-5-15-8	LaBSE	+7+3+29+14+20+0+3	rubert-tiny2	+19+11+16+10+17+3-1	Query model	nomic	+1+8+14+1-1-18-8	bge-small	+7-0+4+3-7-12-8	Qwen3-0.6B	-2-1-0+11-11-6-7	MiniLM	+4+0+4+0-19-4-8	sentence-t5	+7+4-5-13-1-16-9	LaBSE	+7+4+32+13+21+0+3	rubert-tiny2	+21+13+18+9+17+4+0	Query model	nomic	+0+9+13+1-2-17-9	bge-small	+6+0+5+3-7-13-8	Qwen3-0.6B	-3+1-0+11-12-4-7	MiniLM	+5+1+4+0-19-3-9	sentence-t5	+8+4-5-13-0-15-9	LaBSE	+8+5+32+13+20+0+3	rubert-tiny2	+23+13+19+9+18+4+0	Query model

Figure 12: Difference in nDCG@10 between orthogonal Procrustes and unconstrained, **regularized** linear alignment. Rows correspond to different levels of ℓ_2 regularization on the linear alignment matrix. Positive values indicate orthogonal Procrustes performs better. **No regularization (or very low regularization) on the linear alignment matrix works best.**

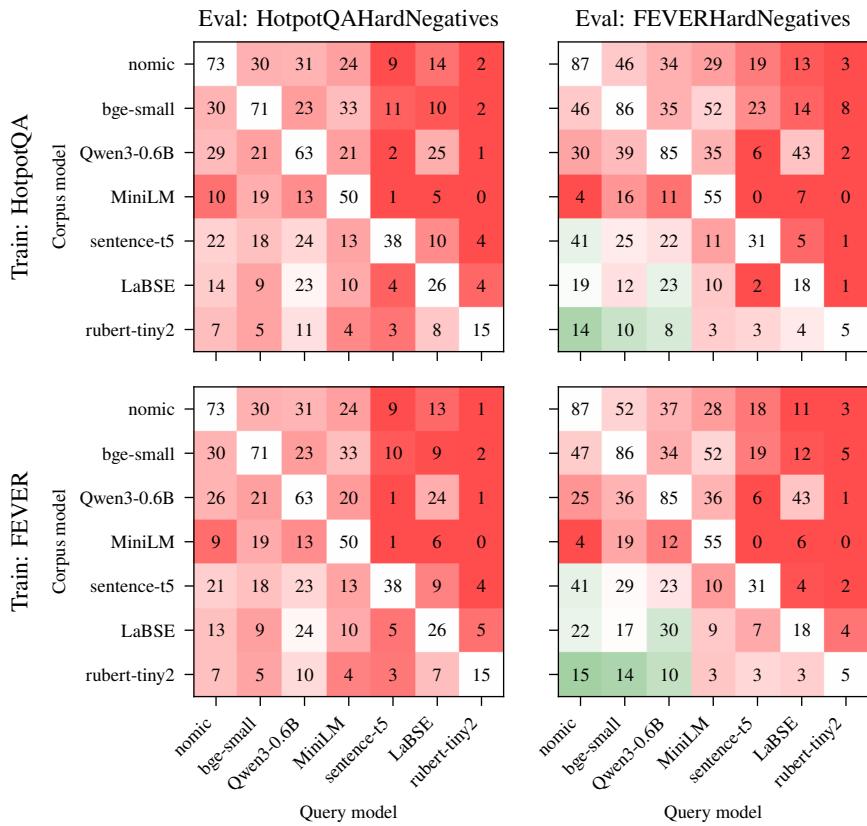


Figure 13: Retrieval performance (nDCG@10) for all query–document model combinations, when query embeddings are aligned with orthogonal Procrustes. Each row corresponds to a dataset that is used to estimate the orthogonal alignment matrix. Each column corresponds to a task that we evaluate on. **Take-away: alignment matrices learned on HotpotQA generalize well to FEVER and vice-versa.**