
Published as a conference paper at ICLR 2024

RELORA: HIGH-RANK TRAINING THROUGH
LOW-RANK UPDATES

Vladislav Lialin†,‡∗ Sherin Muckatira†, Namrata Shivagunde†, and Anna Rumshisky†,§

†University of Massachusetts Lowell
‡Eleuther AI
§Amazon

ABSTRACT

Despite the dominance and effectiveness of scaling, resulting in large networks
with hundreds of billions of parameters, the necessity to train overparameterized
models remains poorly understood, while training costs grow exponentially. In
this paper, we explore parameter-efficient training techniques as an approach to
training large neural networks. We introduce a novel method called ReLoRA,
which utilizes low-rank updates to train high-rank networks. We apply ReLoRA to
training transformer language models with up to 1.3B parameters and demonstrate
comparable performance to regular neural network training. ReLoRA saves up
to 5.5GB of RAM per GPU and improves training speed by 9-40% depending on
the model size and hardware setup. Our findings show the potential of parameter-
efficient techniques for large-scale pre-training. Our code is available on GitHub1.

1 INTRODUCTION

Over the past decade, the machine learning field has been dominated by the trend of training
increasingly overparameterized networks or adopting the "stack more layers" approach (Krizhevsky
et al., 2012; He et al., 2016; Kaplan et al., 2020). The definition of a large network has evolved from
models with 100 million (Simonyan and Zisserman, 2015; Radford et al., 2018) to hundreds of billions
(Brown et al., 2020; Chowdhery et al., 2022) of parameters, which has made computational costs
associated with training of such networks prohibitive to most of the research groups. Despite this,
the necessity to train models which can have orders of magnitude more parameters than the training
examples (Brown et al., 2020; Chowdhery et al., 2022; Fedus et al., 2022), is poorly understood
theoretically (Jacot et al., 2018; Allen-Zhu et al., 2019; Zhang et al., 2021).

Alternative approaches to scaling, such as more compute-efficient scaling optima (Hoffmann et al.,
2022), retrieval-augmented models (Khandelwal et al., 2020; Borgeaud et al., 2022), and the simple
approach of training smaller models for longer (Touvron et al., 2023), have offered new trade-offs.
However, they do not bring us closer to understanding why we need overparameterized models and
rarely democratize the training of these models. For example, training RETRO (Borgeaud et al.,
2022) requires a complex training setup and infrastructure capable of quickly searching over trillions
of tokens, while training LLaMA-7B (Touvron et al., 2023) still requires hundreds of GPUs.

In contrast, approaches like zero-redundancy optimizers (Rajbhandari et al., 2020), 16-bit training
(Micikevicius et al., 2018), 8-bit inference (Dettmers et al., 2022), and parameter-efficient fine-tuning
(PEFT) (Lialin et al., 2023) have played a crucial role in making large models more accessible.
Specifically, PEFT methods have enabled fine-tuning of billion-scale language or diffusion models
on consumer hardware. This raises the question: Can these approaches also benefit pre-training?

Our Contribution In this study, we introduce ReLoRA which uses individually low-rank updates
that aggregate during the training process to train a high-rank network. We empirically demonstrate
that ReLoRA performs a high-rank update and achieves performance similar to regular neural network
training. The components of ReLoRA include initial full-rank training of the neural network (similar

∗Correspondance to vlad.lialin@gmail.com
1github.com/guitaricet/relora

1

https://github.com/guitaricet/relora


Published as a conference paper at ICLR 2024

0 2500 5000 7500 10000 12500 15000 17500 20000
3.0

3.5

4.0

4.5

5.0

Lo
ss

250M
250M ReLoRA
(99M trainable)
99M

0 2500 5000 7500 10000 12500 15000 17500 20000
Step

0
100
250

Tr
ai

na
bl

e 
Pa

ra
m

s

Figure 1: Training loss for 250M models. ReLoRA learns a high-rank network through a sequence of
low-rank updates. It outperforms networks with the same trainable parameter count and achieves
similar performance to training a full network at 100M+ scale. The efficiency of ReLoRA increases
with the model size, making it a viable candidate for multi-billion-parameter training.

to Frankle et al. (2019)), LoRA training, restarts, a jagged learning rate schedule, and partial optimizer
resets. We evaluate ReLoRA on transformer language models up to 1.3B parameters. Finally, we
observe that the efficiency of ReLoRA increases with model size, making it a viable option for
efficient training of multi-billion-parameter networks.

2 METHOD

We are interested in the rank of the sum of two matrices: rank(A+B) ≤ rank(A) + rank(B). We
know that for a matrix A, rank(A) < dim(A), there exists a B, rank(B) < dim(B) such that sum
of them has a higher rank than either A or B.

We want to exploit this property to make a flexible parameter-efficient training method. We start
with LoRA (Hu et al., 2022) which is a parameter-efficient fine-tuning method based on the idea of
low-rank updates. LoRA can be applied to any linear operation parameterized through W ∈ Rm×n.
Specifically, LoRA decomposes the weight update δW into a rank-r product WAWB as shown in
Equation 1, where s ∈ R is a fixed scaling factor usually equal to 1

r .

δW = sWAWB

WA ∈ Rin×r,WB ∈ Rr×out (1)

In practice, LoRA is usually implemented by adding new trainable parameters WA and WB , which
could be merged back into the original parameters after training. Thus, these implementations are
restricted by the rank r = maxWA,WB

rank(WAWB).

If we could restart LoRA, meaning we merge WA and WB during training and reset the values of
these matrices, we could increase the total rank of the update. Doing this multiple times brings the
total neural network update to:

∆W =

T1∑
t=0

δWt +

T2∑
t=T1

δWt + · · ·+
TN∑

t=TN−1

δWt = sW 1
AW

1
B + sW 2

AW
2
B + · · ·+ sWN

A WN
B (2)

However, implementing restarts is not trivial in practice and requires several modifications to the
optimization procedure. Unlike plain stochastic gradient descent, Adam (Kingma and Ba, 2015)
update is guided mainly by the first and second moments of the gradient accumulated over the
previous steps. In practice, Adam’s β1 and β2 are usually very high 0.9− 0.999. This means that

2



Published as a conference paper at ICLR 2024

0 2000 4000 6000 8000 10000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Le
ar

ni
ng

 R
at

e 
M

ul
tip

lie
r

Figure 2: Jagged cosine scheduler used in ReLoRA. As a base for our scheduler, we follow a standard
cosine decay schedule as in Touvron et al. (2023). On every optimizer reset, we set the learning rate
to zero and perform a quick (50-100 steps) learning rate warm-up back to the cosine schedule.

after the merge-and-reinit, continuing to use old gradient moments for W 2
A will guide it in the same

direction as W 1
A and optimize the same subspace.

To resolve this issue, ReLoRA performs a partial reset of the optimizer state during merge-and-reinit
via magnitude pruning. To avoid loss diverging after an optimizer reset it also sets the learning rate
to 0 with a subsequent warm-up (Figure 2). Our ablation studies (Table 6) show that both of these
modifications are required to improve the performance over LoRA. Finally, in our experiments, we
found that in the case of training from scratch (random initialization) a short full-rank training is
needed to “warm start” ReLoRA. All of this allows ReLoRA to achieve performance comparable to
full-rank training, especially in large transformer networks, by only training a small set of parameters
at a time. ReLoRA is described in Algorithm 1.

Enhancing computational efficiency Unlike other low-rank training techniques (Schotthöfer et al.,
2022; Sui et al., 2023; Kamalakara et al., 2022), ReLoRA follows the LoRA approach by maintaining
the frozen weights of the original network and adding new trainable parameters. At first glance, this
may appear computationally inefficient; however, the differentiation between frozen and trainable
parameters plays a crucial role in parameter-efficient fine-tuning (Lialin et al., 2023).

By reducing the number of trainable parameters, ReLoRA significantly reduces the memory spent on
the optimizer states and enables the utilization of larger batch sizes, maximizing hardware efficiency.
Additionally, it reduces the bandwidth requirements in distributed setups, which are often the limiting
factor in large-scale training. Furthermore, since the frozen parameters are not being updated between
restarts, they can be kept in a low-precision quantized format (Dettmers et al., 2023), further reducing
their memory and computational impact.

Locally Low-Rank Training: Intuition Multiple studies suggest that neural network training is
either completely low-rank or has multiple phases with initially high-rank and subsequent low-rank
training. For example, Aghajanyan et al. (2021) shows that as the model becomes larger or when it
is pre-trained for longer, the rank of the update needed to learn a downstream task reduces. Arora
et al. (2019) finds that SGD is biased towards low-rank solutions. The existence of Lottery Tickets
early in training (Frankle et al., 2019) also partially supports this hypothesis, since training a lottery
ticket network could effectively be seen as a low-rank approximation to the regular training process.
Our empirical analysis (Section 4) shows that pre-trained neural networks exhibit high-rank updates
over long trajectories (Figure 4). However, for a sufficiently small trajectory, the training can be
effectively approximated by a low-rank update, which goes in-line with the findings of Boix-Adsera
et al. (2023). Given the above results, we speculate that neural network training is locally low-rank,
which directly motivates ReLoRA.

3



Published as a conference paper at ICLR 2024

Algorithm 1 ReLoRA. θ is model parameters, θ̂ is model parameters with linear layers replaced with
ReLoRA, M and V are Adam optimizer states, η is learning rate, and q is the reinit frequency.

Require: θ, M , V , q, η
1: for t in warm start steps do
2: Update θ, M , V , η {Regular training for warm start}
3: end for
4: for layer in model layers do
5: if layer is linear then
6: layer← ReLoRA(W i,W i

A,W
i
B)

7: Freeze W i

8: end if
9: end for

10: for t in training steps do
11: Update θ̂, M , V {Training step with ReLoRA}
12: if MOD(t, q) = 0 then
13: for l in model layers do
14: if l is linear then
15: W i ← (W i + sW i

AW
i
B)

16: W i
A ← kaiming_init(W i

A); W i
B ← 0

17: MW i
A
← prune(MW i

A
); VW i

A
← prune(VW i

A
)

18: end if
19: end for
20: Start η warmup
21: end if
22: end for
23: return θ

3 EXPERIMENTS

To evaluate the effectiveness of ReLoRA, we apply it to train a transformer language model on the
C4 dataset (Raffel et al., 2020) using various model sizes: 60M, 130M, 250M, 350M, and 1.3B.

In all experiments, we train without data repetition (single epoch) on at least compute-optimal amount
of data, estimated using Chinchilla Scaling Laws (Hoffmann et al., 2022).

Architecture and training hyperparameters Our architecture is based on transformer (Vaswani
et al., 2017) and closely resembles LLaMA (Touvron et al., 2023). Namely, we use pre-normalization,
RMSNorm (Zhang and Sennrich, 2019), SwiGLU activations (Shazeer, 2020), 8

3h fully-connected
hidden state size (Touvron et al., 2023), and rotary embeddings (Su et al., 2021). We select the number
of pre-training tokens based on the Chinchilla scaling laws (Hoffmann et al., 2022). Architecture and
training hyperparameters are presented in Table 1.

For all LoRA and ReLoRA experiments, we use rank r = 128 as our initial experiments showed it to
have the best perplexity/memory trade-off. You can find additional recommendations on ReLoRA
hyperparameter selection in Appendix A. We perform additional experiments comparing different

Params Hidden Heads Layers Learning rate Batch size Seq. len. Data amount

60M 512 8 8 1e-3 122K 256 1.2B
130M 768 12 12 1e-3 154K 256 2.6B
250M 768 16 24 5e-4 590K 512 6.8B
350M 1024 16 24 5e-4 590K 512 6.8B
1.3B 2048 24 32 4e-4 786K 512 23.1B

Table 1: Hyperparameters of the language models trained in this study. Batch size and data amount
are specified in tokens.

4



Published as a conference paper at ICLR 2024

60M 130M 250M 350M 1.3B

Full training 33.81 (60M) 23.65 (130M) 22.39 (250M) 18.66 (350M) 16.83 (250M)
Control 36.52 (43M) 27.30 (72M) 25.43 (99M) 23.65 (130M) 21.73 (250M)
LoRA 47.44 (43M) 34.17 (72M) 36.60 (99M) 57.11 (125M) -
LoRA + Warm Start 34.73 (43M) 25.46 (72M) 22.86 (99M) 19.73 (125M) 18.23 (250M)
ReLoRA 34.46 (43M) 25.04 (72M) 22.48 (99M) 19.32 (125M) 17.27 (250M)

Training tokens 1.2B 2.6B 6.8B 6.8B 23.1B

Table 2: Language model perplexity when trained using each of the above methods. Number of
trainable parameters for each model in (brackets). Control baseline is full-rank training a model with
the same total number of parameters as the number of trainable parameters in low-rank training.

CoLA STS-B MRPC RTE SST2 MNLI QNLI QQP Avg

Full-rank pretrained 35.43 83.85 76.96 64.26 88.99 70.98 83.38 84.49 73.54
Not pretrained 7.59 22.73 67.00 51.15 82.61 60.04 67.92 78.40 54.68
ReLoRA 31.07 83.33 78.43 60.65 89.45 72.27 83.93 86.01 73.14

Table 3: Applying ReLoRA to fine-tune 350M models pre-trained full-rank and using ReLoRA. We
observe minimal differences between the models.

rank choices for the 1.3B model in Section 4.1. We use bfloat16 for all floating point operations and
FlashAttention (Dao et al., 2022) for effective attention computation.

ReLoRA and baselines setup In our experiments, ReLoRA replaces all attention and fully-
connected network parameters, while updating the embeddings and normalization layers full-rank.
Since ReLoRA-wrapped models have fewer trainable parameters than full-rank training, we include
a Control baseline, which is a full-rank transformer with the same number of trainable parameters as
ReLoRA.

We initialize ReLoRA from a checkpoint of full-rank training at 5,000 update steps and reset it every
5,000 steps thereafter, 3 times in total till we reach 20K steps. After each reset, 99% of the optimizer
state is pruned based on magnitude, and the loss is warmed up for the next 100 iterations. ReLoRA
parameters are reinitialized following LoRA best practices, Kaiming initialization (He et al., 2015)
for A-matrix, and zeros for B-matrix.

Scaling up to 1.3B After initial results at 130M and 350M model sizes, we applied ReLoRA to
train a 1.3B parameter language model. As a baseline, we pre-trained a 1.3B model from scratch on
23B tokens. We performed multiple ReLoRA runs starting from 2K, 5K, and 10K checkpoints. In
most of the experiments, we continued using r = 128 and our additional experiments show minimal
difference between rank 128 and 512 (hidden size is 2048). Section 4.1 describes these experiments
in detail.

4 RESULTS

Parameter-efficient pre-training Our results are presented in Table 2 and Figure 1. ReLoRA sig-
nificantly outperforms LoRA training demonstrating the effectiveness of our proposed modifications
(ablated in Section 6). Additional pre-training loss figures are available in Appendix C.

Furthermore, ReLoRA achieves similar performance to full-rank training in both upstream and
downstream tasks (Table 3).2

High-rank training through low-rank updates To determine whether ReLoRA performs a higher
rank update than LoRA, we plot the singular value spectrum of the learned update to the warm-start

2Note that the absolute values of GLUE results are expected to be quite far from state-of-the-art, because our
models were pre-trained on roughly 20 times less data than T5 or BERT.

5



Published as a conference paper at ICLR 2024

0.0 0.5 1.0 1.5 2.0
Singular Value

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fr
eq

ue
nc

y

Q Projections
ReLoRA
LoRA
Full-rank
training

0.0 0.5 1.0 1.5 2.0
Singular Value

0.0

0.5

1.0

1.5

2.0

2.5

3.0 K Projections
ReLoRA
LoRA
Full-rank
training

0.0 0.5 1.0 1.5 2.0
Singular Value

0.0

0.5

1.0

1.5

2.0

2.5

3.0 V Projections
ReLoRA
LoRA
Full-rank
training

0.0 0.5 1.0 1.5 2.0
Singular Value

0.0

0.5

1.0

1.5

2.0

2.5

3.0 Down Projections
ReLoRA
LoRA
Full-rank
training

Figure 3: Singular values spectra of the weight difference between ReLoRA and LoRA at 5,000
iterations (warm start) and 20,000 iterations. ReLoRA exhibits a closer resemblance to full-rank
training than to LoRA, indicating its effectiveness in approximating full-rank behavior. 350M models.

WQ WK WV Wup Wdown
0

250

500

750

1000

Full-rank
Training
LoRA
ReLoRA

Figure 4: The number of singular values >0.1 in weight matrices of the learned update. 350M models.

weights. Specifically, the difference between warm-start weights and the final weights for ReLoRA,
LoRA, and full-rank trained models. Figure 3 illustrates significant qualitative differences between
LoRA and ReLoRA for the singular values of ∆WQ, ∆WK , ∆WV , and ∆Wdown. While most of
the singular values for LoRA are zero (Figure 4) with a noticeable number of exceptionally high
values above 1.5, ReLoRA exhibits a higher distribution mass between 0.1 and 1.0, reminiscent of
full-rank training.

Additionally, we computed the number of singular values less than 0.1 for LoRA, ReLoRA, and
full-rank training. Our results (Figure 4) show that ReLoRA has a much smaller number of near-
zero singular values than LoRA, closer to full-rank training. This observation emphasizes the
significance of high-rank updates and demonstrates that ReLoRA does accomplish a high-rank update
by performing multiple low-rank updates. We also perform ReLoRA component ablation (Table 6)
and discuss it in Section 6.

4.1 SCALING UP TO 1.3B

Our best run at this model size starts after a 10K step warm start (33% of the total update steps).
We train ReLoRA with rank r = 128, learning rate 5e-4, 100 steps lr warmup, and 50 steps restarts
warmup. The results are presented in the Figure 5 and Table 4. ReLoRA clearly outperforms LoRA
throughout the training with the gap between the methods increasing from 0.56 at 15K steps to 0.96
at 30K steps. At the end of the training, ReLoRA is able to reach a perplexity of 17.24, only 0.44
higher than full-rank training. You can find additional recommendations on ReLoRA hyperparameter
selection in Appendix A.

Varying ReLoRA rank In this experiment we wanted to evaluate if r = 128 is still applicable to
the model of this size (hidden size 2048) or if it needs to be increased. To do that, we used an early
checkpoint for the warm start (5K out of 30K steps). This was beneficial for the comparison, as at
this point loss changes quickly which makes any differences in training dynamics more evident. We
train these models for an additional 10K iterations. Unexpectedly, we found very little difference
between ranks 128 (ppl. 19.16) and 512 (ppl. 19.00).

6



Published as a conference paper at ICLR 2024

0 5000 10000 15000 20000 25000

2.8

3.0

3.2

3.4

3.6

Lo
ss

1B
1B ReLoRA
(250M trainable)
1B LoRA
(250M trainable)
250M

0 5000 10000 15000 20000 25000
Step

0
250

1300

Tr
ai

na
bl

e 
P

ar
am

s

Figure 5: Training loss at 1.3B scale and the associated baselines. ReLoRA outperforms LoRA
throughout training and the gap between the methods increases over time.

1.3B @15K steps 1.3B @20K steps 1.3B @30K steps

Full training 17.67 (250M) 17.00 (250M) 16.83 (250M)
Control 22.67 (250M) 22.00 (250M) 21.73 (250M)
LoRA + Warm Start 18.50 (250M) 18.38 (250M) 18.23 (250M)
ReLoRA 17.94 (250M) 17.64 (250M) 17.27 (250M)

Training tokens (billions) 11.8 15.7 23.1

Table 4: Results at 1.3B scale. Number of trainable parameters for each model in (brackets).

250M 1.3B
(@15k steps) (@25k steps)

ReLoRA 27.66 17.36
Online ReLoRA 29.31 17.80

Table 5: Online ReLoRA.

Negative results: Online ReLoRA Intu-
itively, more frequent ReLoRA resets can lead
to better performance, as they, in principle, can
learn a higher rank update. Usually, for ev-
ery ReLoRA reset, we would also perform an
optimizer reset and learning rate scheduler re-
warmup (Section 1). However, in our experi-
ments we observed that very high ReLoRA reset
rates lead to worse performance.

Online ReLoRA resolves this issue quite elegantly – it merges LoRA parameters very frequently
(e.g., every 100 iterations) while keeping the optimizer reset rate at 2-5K iterations. Unexpectedly,
we found that it performs worse than regular ReLoRA at both 250M and 1.3B scales (Table 5).

ReLoRA Training Speedup Training ReLoRA took 440 A100-hours, saving 56 A100-hours
compared to full-rank training. A part of the speedup was due to the ability to use two times
larger microbatch size. When training with the same microbatch size, ReLoRA improved RAM
consumption from 27.8Gb to 22.3Gb saving 5.5Gb of GPU RAM. Overall, in the 8xA100 setup,
combining the warm start and ReLoRA training time, 1.3B-ReLoRA took 86 hours (wall clock) to
train compared to 93.5 hours to train 1.3 model full-rank on the same amount of data. This yields a
relative speed improvement of 9%.

We additionally observed that ReLoRA speedup is significantly hardware-dependent (Table 7). In our
early experiments on 2xRTX3090, we estimated the speedup of 42%. In a more practical, but still
relatively budget setup of 6xA6000 Ada, we estimated 152 hours of wall-clock training time for the
1B full-rank model and 119 hours for the ReLoRA model with 33% warm start. This saves 33 hours
yielding a relative speedup of 21%. We attribute the difference to the GPU memory speed. ReLoRA
can more effectively utilize low-bandwidth memory as it has less trainable parameters.

7



Published as a conference paper at ICLR 2024

Restarts Optimizer Reset Jagged Schedule Warm Start Perplexity (↓)
× × × × 34.17
✓ × × × 34.25
✓ ✓ × × (diverged)
✓ × ✓ × 34.29
✓ ✓ ✓ × 29.77
× × × ✓ 25.46
✓ ✓ ✓ ✓ 25.04

Regular training 23.65

Table 6: Ablation studies of ReLoRA (130M models). Restarts and warm starts are essential for good
performance. Restarts and optimizer resets without a jagged schedule causes the model to diverge.

8xA100 6xA6000 (Ada) 2x3090

Full-rank throughput 137 ex/sec 84 ex/sec 8.8 ex/sec
ReLoRA throughput 157 ex/sec 124 ex/sec 17.8 ex/sec
Immediate speedup 15% 48% 102%
Warm-start adjusted ReLoRA throughput 149 ex/sec 111 ex/sec 14.8 ex/sec
Total speedup 9% 32% 51%

Table 7: Performance metrics in different hardware configurations. Warm start adjustment assumes
33% of full-rank training before switching to ReLoRA.

4.2 ABLATION STUDIES

We conduct ablation studies on all four crucial components of ReLoRA: restarts, jagged schedule,
optimizer resets, and warm starts, utilizing the 130M-sized model. The results are presented in
Table 6. In this section, we will focus on and analyze certain combinations of these components.

LoRA ReLoRA, without the aforementioned components, is essentially equivalent to training
a low-rank network parameterized by LoRA. This approach yields remarkably high perplexity,
indicating that a simple matrix decomposition has significantly different training dynamics from
full-rank training.

Adding restarts and optimizer resets ReLoRA, without a jagged schedule and optimizer reset,
performs similarly to LoRA because old optimizer states force the newly initialized parameters
into the same subspace as the prior weights, limiting the model’s capacity. However, doing a naive
optimizer reset with ReLoRA causes the model to diverge. A jagged schedule helps to stabilize
training and has a positive impact on the mixture. In our initial experiments, we also observed that a
combination of partial optimizer reset and jagged scheduler allows for a quicker warmup, as low as
50 steps, instead of hundreds of steps required when the optimizer is initialized from scratch.

Warm start The warm start shows the most significant improvement, dropping perplexity by
almost 10 points. To investigate whether post-warmup training contributes to the loss, we measured
the perplexity of the warmed-up network, which equals 27.03. It outperforms all low-rank methods
except for our final ReLoRA recipe but still demonstrates a significant difference from the final
network. This demonstrates the importance of early training, similar to the concept of the lottery
ticket hypothesis with rewinding (Frankle et al., 2019). In our experiments, unless specified otherwise,
we performed warm start for about 1/4 of the total training updates.

5 RELATED WORK

Scaling versus Efficiency The relationship between overparametrization and neural network
trainability and generalization has been extensively studied (Zhang et al., 2017; Belkin et al., 2018;

8



Published as a conference paper at ICLR 2024

Frankle and Carbin, 2019; Nakkiran et al., 2019; Singh et al., 2021), yet it remains a mystery (Zhang
et al., 2021).

Moreover, scaling laws (Kaplan et al., 2020; Ghorbani et al., 2021; Hoffmann et al., 2022) demonstrate
a simple and strong power-law dependence between network size and its performance across a variety
of modalities. This finding not only supports overparametrization but also encourages the training
of extraordinarily resource-intensive neural networks (Brown et al., 2020; Chowdhery et al., 2022;
Fedus et al., 2022). Nonetheless, the Lottery Ticket Hypothesis (Frankle et al., 2019) suggests that
overparametrization could, in principle, be minimized.

Parameter-efficient fine-tuning Aghajanyan et al. (2021) found that pre-training reduces the
amount of change to the network required to learn a new task through fine-tuning. I.e., larger
networks or networks pre-trained on more data require smaller modifications in terms of the rank of
the range to learn a new task. This explains the success of parameter-efficient fine-tuning methods
(Lialin et al., 2023) and has also motivated the development of low-rank fine-tuning methods such as
LoRA (Hu et al., 2022) and Compacter (mahabadi et al., 2021).

Low-rank neural network training Training low-rank representations have been explored in the
context of CNN compression, regularization, and efficient training (Idelbayev and Carreira-Perpinan,
2020; Jaderberg et al., 2014; Sui et al., 2023; Schotthöfer et al., 2022; Lin et al., 2020; Yuan et al.,
2021; Zhao et al., 2023). However, most of these methods are either specific to CNNs, do not scale
well, or have not been evaluated on large transformers (Vaswani et al., 2017) with hundreds of
millions of parameters, which can benefit greatly from efficient training. While transformers have
been shown to have a low-rank internal dimensionality and representations (Aghajanyan et al., 2021;
Wang et al., 2020), the study by Bhojanapalli et al. (2020) demonstrated that the low rank of key
and query projections in multi-head attention bottlenecks the performance of transformers. Our
experiments (Section 6) also demonstrate that low-rank transformers perform significantly worse
compared to the full-rank baseline and ReLoRA.

6 CONCLUSION

In this paper, we demonstrate that parameter-efficient fine-tuning methods can be adapted for pre-
training large language models. We first examined the limitations of a low-rank matrix factorization
(LoRA) approach and observed that it struggles to effectively train high-performing transformer
models. To address this issue, we proposed ReLoRA, which leverages the rank of the sum property to
train a high-rank network through multiple low-rank updates. Similar to the lottery ticket hypothesis
with rewinding, ReLoRA employs a full-rank training warm start before transitioning to ReLoRA.
During training, ReLoRA periodically merges its parameters into the main parameters of the network,
performs optimizer reset and learning rate re-warmup.

We demonstrated that ReLoRA consistently outperforms LoRA for training large transformer models.
Our largest experiment demonstrated 9% wall-clock time reduction in 8xA100 setup and much larger
(20− 40%) speed improvements on cheaper hardware. Further, our results show similar performance
to regular training making ReLoRA a promising candidate for improving the efficiency of large model
training. Our further studies will focus on improving ReLoRA performance, efficiency, applying it to
larger models, and applying it to continued pre-training of existing large language models.

ACKNOWLEDGMENTS

This paper has been a journey and we are sincerely grateful to everyone who supported us. We would
like to express our gratitude to Stability.ai, Eleuther.ai, and the Google Cloud for Research Program
for providing computational resources essential for this research; Eric Lehman and Artem Krivosheev,
for supporting this project from the very beginning.

Special thanks to Jason Phang, Hailey Schoelkopf, Enrico Shippole, and Stella Biderman for their
technical advice and assistance with computational resources. Our experiments at billion-parameter
scale wouldn’t be possible without your support.

This work was funded in part by an NSF CAREER award (IIS-1652742) and an Amazon Alexa AI
research award to Anna Rumshisky.

9



Published as a conference paper at ICLR 2024

REFERENCES

A. Aghajanyan, S. Gupta, and L. Zettlemoyer. Intrinsic dimensionality explains the effectiveness of language
model fine-tuning. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages
7319–7328, Online, Aug. 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.
568. URL https://aclanthology.org/2021.acl-long.568.

Z. Allen-Zhu, Y. Li, and Z. Song. A convergence theory for deep learning via over-parameterization. In
K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pages 242–252. PMLR, 09–15 Jun 2019.
URL https://proceedings.mlr.press/v97/allen-zhu19a.html.

S. Arora, N. Cohen, W. Hu, and Y. Luo. Implicit regularization in deep matrix factorization, 2019.

M. Belkin, D. J. Hsu, S. Ma, and S. Mandal. Reconciling modern machine-learning practice and the classical
bias–variance trade-off. Proceedings of the National Academy of Sciences, 116:15849 – 15854, 2018.

S. Bhojanapalli, C. Yun, A. S. Rawat, S. Reddi, and S. Kumar. Low-rank bottleneck in multi-head attention
models. In International Conference on Machine Learning, pages 864–873. PMLR, 2020.

E. Boix-Adsera, E. Littwin, E. Abbe, S. Bengio, and J. Susskind. Transformers learn through gradual rank
increase, 2023.

S. Borgeaud, A. Mensch, J. Hoffmann, T. Cai, E. Rutherford, K. Millican, G. B. Van Den Driessche, J.-B. Lespiau,
B. Damoc, A. Clark, D. De Las Casas, A. Guy, J. Menick, R. Ring, T. Hennigan, S. Huang, L. Maggiore,
C. Jones, A. Cassirer, A. Brock, M. Paganini, G. Irving, O. Vinyals, S. Osindero, K. Simonyan, J. Rae, E. Elsen,
and L. Sifre. Improving language models by retrieving from trillions of tokens. In K. Chaudhuri, S. Jegelka,
L. Song, C. Szepesvari, G. Niu, and S. Sabato, editors, Proceedings of the 39th International Conference on
Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 2206–2240. PMLR,
17–23 Jul 2022. URL https://proceedings.mlr.press/v162/borgeaud22a.html.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei. Language models are few-shot learners. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing
Systems, volume 33, pages 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung, C. Sutton,
S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko, J. Maynez, A. Rao, P. Barnes, Y. Tay, N. M. Shazeer,
V. Prabhakaran, E. Reif, N. Du, B. C. Hutchinson, R. Pope, J. Bradbury, J. Austin, M. Isard, G. Gur-Ari,
P. Yin, T. Duke, A. Levskaya, S. Ghemawat, S. Dev, H. Michalewski, X. García, V. Misra, K. Robinson,
L. Fedus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiridonov, R. Sepassi, D. Dohan, S. Agrawal,
M. Omernick, A. M. Dai, T. S. Pillai, M. Pellat, A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee,
Z. Zhou, X. Wang, B. Saeta, M. Díaz, O. Firat, M. Catasta, J. Wei, K. S. Meier-Hellstern, D. Eck, J. Dean,
S. Petrov, and N. Fiedel. Palm: Scaling language modeling with pathways. ArXiv, abs/2204.02311, 2022.

T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Re. Flashattention: Fast and memory-efficient exact attention with
IO-awareness. In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, Advances in Neural Information
Processing Systems, 2022. URL https://openreview.net/forum?id=H4DqfPSibmx.

T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer. GPT3.int8(): 8-bit matrix multiplication for transformers
at scale. In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, Advances in Neural Information
Processing Systems, 2022. URL https://openreview.net/forum?id=dXiGWqBoxaD.

T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer. Qlora: Efficient finetuning of quantized llms. ArXiv,
abs/2305.14314, 2023. URL https://api.semanticscholar.org/CorpusID:258841328.

A. Edalati, M. S. Tahaei, I. Kobyzev, V. Nia, J. J. Clark, and M. Rezagholizadeh. Krona: Parameter efficient
tuning with kronecker adapter. ArXiv, abs/2212.10650, 2022. URL https://api.semanticscholar.
org/CorpusID:254926823.

W. Fedus, B. Zoph, and N. Shazeer. Switch transformers: Scaling to trillion parameter models with simple and
efficient sparsity. J. Mach. Learn. Res., 23(1), jan 2022. ISSN 1532-4435.

10

https://aclanthology.org/2021.acl-long.568
https://proceedings.mlr.press/v97/allen-zhu19a.html
https://proceedings.mlr.press/v162/borgeaud22a.html
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=H4DqfPSibmx
https://openreview.net/forum?id=dXiGWqBoxaD
https://api.semanticscholar.org/CorpusID:258841328
https://api.semanticscholar.org/CorpusID:254926823
https://api.semanticscholar.org/CorpusID:254926823


Published as a conference paper at ICLR 2024

J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. In Interna-
tional Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=
rJl-b3RcF7.

J. Frankle, G. Karolina Dziugaite, D. M. Roy, and M. Carbin. Stabilizing the lottery ticket hypothesis. arXiv
e-prints, pages arXiv–1903, 2019.

B. Ghorbani, O. Firat, M. Freitag, A. Bapna, M. Krikun, X. García, C. Chelba, and C. Cherry. Scaling laws for
neural machine translation. ArXiv, abs/2109.07740, 2021.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on
imagenet classification. CoRR, abs/1502.01852, 2015. URL http://arxiv.org/abs/1502.01852.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. de las Casas, L. A. Hendricks,
J. Welbl, A. Clark, T. Hennigan, E. Noland, K. Millican, G. van den Driessche, B. Damoc, A. Guy, S. Osindero,
K. Simonyan, E. Elsen, O. Vinyals, J. W. Rae, and L. Sifre. An empirical analysis of compute-optimal
large language model training. In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, Advances
in Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id=
iBBcRUlOAPR.

E. J. Hu, yelong shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. LoRA: Low-rank
adaptation of large language models. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=nZeVKeeFYf9.

Y. Idelbayev and M. A. Carreira-Perpinan. Low-rank compression of neural nets: Learning the rank of each layer.
In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 8046–8056,
2020. doi: 10.1109/CVPR42600.2020.00807.

A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in neural networks.
In Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS’18,
page 8580–8589, Red Hook, NY, USA, 2018. Curran Associates Inc.

M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up convolutional neural networks with low rank
expansions. In Proceedings of the British Machine Vision Conference. BMVA Press, 2014. doi: http:
//dx.doi.org/10.5244/C.28.88.

S. R. Kamalakara, A. F. Locatelli, B. Venkitesh, J. Ba, Y. Gal, and A. N. Gomez. Exploring low rank training of
deep neural networks. ArXiv, abs/2209.13569, 2022. URL https://api.semanticscholar.org/
CorpusID:252545358.

J. Kaplan, S. McCandlish, T. J. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu, and
D. Amodei. Scaling laws for neural language models. ArXiv, abs/2001.08361, 2020.

U. Khandelwal, O. Levy, D. Jurafsky, L. Zettlemoyer, and M. Lewis. Generalization through memorization:
Nearest neighbor language models. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=HklBjCEKvH.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2015.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks.
In F. Pereira, C. Burges, L. Bottou, and K. Weinberger, editors, Advances in Neural Information Processing
Systems, volume 25. Curran Associates, Inc., 2012. URL https://proceedings.neurips.cc/
paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

V. Lialin, V. Deshpande, and A. Rumshisky. Scaling down to scale up: A guide to parameter-efficient fine-tuning,
2023.

R. Lin, C.-Y. Ko, Z. He, C. Chen, Y. Cheng, H. Yu, G. Chesi, and N. Wong. Hotcake: Higher order tucker
articulated kernels for deeper cnn compression. In 2020 IEEE 15th International Conference on Solid-State
& Integrated Circuit Technology (ICSICT), pages 1–4, 2020. doi: 10.1109/ICSICT49897.2020.9278257.

R. K. mahabadi, J. Henderson, and S. Ruder. Compacter: Efficient low-rank hypercomplex adapter layers. In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in Neural Information Processing
Systems, 2021. URL https://openreview.net/forum?id=bqGK5PyI6-N.

11

https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
http://arxiv.org/abs/1502.01852
https://openreview.net/forum?id=iBBcRUlOAPR
https://openreview.net/forum?id=iBBcRUlOAPR
https://openreview.net/forum?id=nZeVKeeFYf9
https://api.semanticscholar.org/CorpusID:252545358
https://api.semanticscholar.org/CorpusID:252545358
https://openreview.net/forum?id=HklBjCEKvH
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://openreview.net/forum?id=bqGK5PyI6-N


Published as a conference paper at ICLR 2024

P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia, B. Ginsburg, M. Houston, O. Kuchaiev,
G. Venkatesh, and H. Wu. Mixed precision training. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=r1gs9JgRZ.

P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever. Deep double descent: where bigger
models and more data hurt. Journal of Statistical Mechanics: Theory and Experiment, 2021, 2019.

A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving language understanding by generative
pre-training. 2018.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu. Exploring the
limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research, 21
(140):1–67, 2020. URL http://jmlr.org/papers/v21/20-074.html.

S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He. Zero: Memory optimizations toward training trillion parameter
models. In SC20: International Conference for High Performance Computing, Networking, Storage and
Analysis, pages 1–16, 2020. doi: 10.1109/SC41405.2020.00024.

S. Schotthöfer, E. Zangrando, J. Kusch, G. Ceruti, and F. Tudisco. Low-rank lottery tickets: finding efficient low-
rank neural networks via matrix differential equations. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems, volume 35, pages 20051–
20063. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/
paper/2022/file/7e98b00eeafcdaeb0c5661fb9355be3a-Paper-Conference.pdf.

N. Shazeer. Glu variants improve transformer, 2020.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In
Y. Bengio and Y. LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/
1409.1556.

S. P. Singh, G. Bachmann, and T. Hofmann. Analytic insights into structure and rank of neural network hessian
maps. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in Neural Information
Processing Systems, 2021. URL https://openreview.net/forum?id=otDgw7LM7Nn.

J. Su, Y. Lu, S. Pan, B. Wen, and Y. Liu. Roformer: Enhanced transformer with rotary position embedding.
ArXiv, abs/2104.09864, 2021.

Y. Sui, M. Yin, W. Yang, Y. Gong, J. Xiao, H. Phan, D. Ding, X. Xu, S. Liu, Z. Chen, and B. Yuan. ELRT:
Towards efficient low-rank training for compact neural networks, 2023. URL https://openreview.
net/forum?id=TC39w69m8bB.

Y.-L. Sung, J. Cho, and M. Bansal. Lst: Ladder side-tuning for parameter and memory efficient transfer
learning. ArXiv, abs/2206.06522, 2022. URL https://api.semanticscholar.org/CorpusID:
249642544.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro,
F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample. Llama: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention
is all you need. Advances in neural information processing systems, 30, 2017.

S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma. Linformer: Self-attention with linear complexity. arXiv
preprint arXiv:2006.04768, 2020.

X. Yuan, P. H. P. Savarese, and M. Maire. Growing efficient deep networks by structured continuous sparsification.
In International Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=wb3wxCObbRT.

B. Zhang and R. Sennrich. Root mean square layer normalization. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_
files/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires rethink-
ing generalization. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=Sy8gdB9xx.

12

https://openreview.net/forum?id=r1gs9JgRZ
http://jmlr.org/papers/v21/20-074.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/7e98b00eeafcdaeb0c5661fb9355be3a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/7e98b00eeafcdaeb0c5661fb9355be3a-Paper-Conference.pdf
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://openreview.net/forum?id=otDgw7LM7Nn
https://openreview.net/forum?id=TC39w69m8bB
https://openreview.net/forum?id=TC39w69m8bB
https://api.semanticscholar.org/CorpusID:249642544
https://api.semanticscholar.org/CorpusID:249642544
https://openreview.net/forum?id=wb3wxCObbRT
https://openreview.net/forum?id=wb3wxCObbRT
https://proceedings.neurips.cc/paper_files/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf
https://openreview.net/forum?id=Sy8gdB9xx
https://openreview.net/forum?id=Sy8gdB9xx


Published as a conference paper at ICLR 2024

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning (still) requires rethinking
generalization. Communications of the ACM, 64:107 – 115, 2021.

J. Zhao, Y. Zhang, B. Chen, F. Schäfer, and A. Anandkumar. Inrank: Incremental low-rank learning. arXiv
preprint arXiv:2306.11250, 2023.

A A PRACTICAL GUIDE TO RELORA

In this section, we wanted to answer most common questions on hyperparameter selection. Especially
how to select ReLoRA-specific hyperparameters to reliably get better performance than LoRA. In all
of our experiments, we applied LoRA/ReLoRA to all of the linear layers in the model: kqv-projection
layers, FFN layers and other projections, except for logits and embeddings.

We observed that r ∈ {64, 128} works well for all of the networks, up to 1B. One small, but
important hyperparameter change from full-rank training to ReLoRA-training that was crucial for the
performance was increased learning rate. ReLoRA (and LoRA) requires 1.5− 2 times larger learning
rate than regular training/fine-tuning to achieve similar performance.

When taking about ReLoRA-specific hyperparameters, we did not observe significant dependence on
optimizer pruning percentage as long as it’s larger than 90%. Larger pruning rates can lead to slightly
better performance at the cost of possible loss instabilities during the reset. We tested several ReLoRA
reset rates with 350M and 1.3B models and found that 2K iterations reset rate performed consistently
well in both pre-training and fine-tuning experiments and always led to better performance than no
resets. In general, we observed good results with reset rates 2K-5K.

B RELORA FOR FINE-TUNING

We apply ReLoRA to fine-tune T5-base (220M parameters) and T5-large (770M parameters) on the
GLUE benchmark. We use the same type of learning rate scheduler as in ReLoRA pre-training and
prune 90% of the low magnitude optimizer states during each LoRA merge-and-reinit (restart). The
batch size is equal to 128 examples and the learning rate is tuned (from 1e-4 to 5e-4) on each model
and dataset combination. We perform additional ReLoRA ablation studies using the T5-Large model
and QNLI dataset. Specifically, we explore different ReLoRA ranks, optimizer state pruning rates,
and the total number of ReLoRA resets.

Method SST-2 MNLI QNLI QQP RTE STS-B MRPC CoLA Avg

Adapters† 94.2 86.4 93.1 88.9 75.1 91.1 88.9 64.4 85.3
Prompt Tuning† 90.3 82.5 92.5 88.5 59.5 90.1 74.6 0.0 72.2
Ladder Side Tuning† 94.1 85.6 93.3 88.8 71.9 90.7 90.4 58.1 84.1
Compacter* 93.9 86.1 92.9 90.4 76.3 91.0 91.5 64.4 85.8
KronA* 94.3 86.3 93.2 90.6 77.7 91.3 92.5 63.3 86.1

Full fine-tuning* 93.6 86.2 92.8 91.7 74.8 90.1 92.7 63.4 85.7
LoRA 93.92 86.12 91.95 90.62 78.34 89.96 90.52 60.04 85.18
ReLoRA 94.15 85.96 91.68 87.2 77.74 89.88 90.03 59.92 84.57

Full fine-tuning (T5-L) 94.7 89.1 91.6 89.9 78.9 90.6 88.9 57.0 85.0
LoRA (T5-L) 95.59 89.44 93.98 91.44 85.92 90.89 92.90 63.77 87.99
ReLoRA (T5-L) 95.7 89.06 93.68 91.04 84.72 90.53 90.57 61.72 87.47

Table 8: ReLoRA for fine-tuning does not outperform LoRA. Results with † and * are T5-base results
from Sung et al. (2022) and Edalati et al. (2022) respectively.

ReLoRA fine-tuning ablations Table 9 shows the results of varying ReLoRA hyperparameters. A
rank of 64 seems to provide the best performance. The results indicate that the model’s performance
remains largely unaffected even when 99% of the optimizer states are reset. Our analysis of the
jagged cosine learning rate scheduler’s impact on classification accuracy in the QNLI dataset suggests
that two resets are adequate (reset rate 4000).

13



Published as a conference paper at ICLR 2024

Rank Acc. Pruning Acc. Reset rate #resets Acc.

16 94.05 85% 94.51 6000 1 94.38
32 94.16 92% 94.33 4000 2 94.73
64 94.55 95% 94.31 2000 5 94.34
128 94.44 99% 94.56 1000 11 94.33

Table 9: ReLoRA fine-tuning ablations. We apply ReLoRA to fine-tune T5-large on the QNLI dataset
and vary LoRA rank (r), optimizer state pruning percentage, and reset frequency of ReLoRA. Reset
rate means the number of iterations between ReLoRA resets.

C LEARNING CURVES OF MODELS PRE-TRAINED IN THE STUDY

In this section we present additional training loss plots for all of the models from Table 2. 60M:
Figure 6, 130M: Figure 7, 250M: Figure 8, 350M: Figure 9, 1.3B: Figure 10.

D RANKS OF 130M MODELS

Figures 11 and 12 show spectral properties for 130M model.

E SMALLER WARM START PERIOD

Table 2 demonstrates that ReLoRA consistently outperforms the warmed-started LoRA baseline. To
provide a more contrasting example, we performed additional pre-training experiments starting from
just 2K warm-started network. Figure 13 shows a significant performance gain with ReLoRA over
LoRA by 1.4 ppl points (ppl 23.64 vs 25.08). While the absolute performance of ReLoRA is lower
compared to full-rank training in this context, these experiments validate our initial hypothesis that
LoRA restarts positively impact performance.

0 2000 4000 6000 8000 10000
3.4

3.6

3.8

4.0

4.2

4.4

Lo
ss

60M
60M ReLoRA
(40M trainable)
60M LoRA+WarmStart
(40M trainable)
40M

0 2000 4000 6000 8000 10000
Step

0

40
60

Tr
ai

na
bl

e 
Pa

ra
m

s

Figure 6: 60M experiments training loss

14



Published as a conference paper at ICLR 2024

0 2500 5000 7500 10000 12500 15000 17500 20000

3.25

3.50

3.75

4.00

4.25

4.50
Lo

ss
130M
130M ReLoRA
(72M trainable)
130M LoRA+WarmStart
(72M trainable)
72M

0 2500 5000 7500 10000 12500 15000 17500 20000
Step

0

40
60

Tr
ai

na
bl

e 
Pa

ra
m

s

Figure 7: 130M experiments training loss

0 2500 5000 7500 10000 12500 15000 17500 20000
3.0

3.5

4.0

4.5

5.0

Lo
ss

250M
250M ReLoRA
(99M trainable)
99M

0 2500 5000 7500 10000 12500 15000 17500 20000
Step

0
100
250

Tr
ai

na
bl

e 
Pa

ra
m

s

Figure 8: 250M experiments training loss

0 2500 5000 7500 10000 12500 15000 17500 20000

3.0

3.2

3.4

3.6

3.8

4.0

Lo
ss

350M
350M ReLoRA
(130M trainable)
350M LoRA+WarmStart
(130M trainable)
130M

0 2500 5000 7500 10000 12500 15000 17500 20000
Step

0
130

350

Tr
ai

na
bl

e 
Pa

ra
m

s

Figure 9: 350M experiments training loss

15



Published as a conference paper at ICLR 2024

0 5000 10000 15000 20000 25000

2.8

3.0

3.2

3.4

3.6
Lo

ss
1B
1B ReLoRA
(250M trainable)
1B LoRA
(250M trainable)
250M

0 5000 10000 15000 20000 25000
Step

0
250

1300

Tr
ai

na
bl

e 
P

ar
am

s

Figure 10: 1.3B experiments training loss

0.0 0.5 1.0 1.5 2.0
Singular Value

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fr
eq

ue
nc

y

Q Projections
ReLoRA
LoRA
Full-rank
training

0.0 0.5 1.0 1.5 2.0
Singular Value

0.0

0.5

1.0

1.5

2.0

2.5

3.0 K Projections
ReLoRA
LoRA
Full-rank
training

0.0 0.5 1.0 1.5 2.0
Singular Value

0.0

0.5

1.0

1.5

2.0

2.5

3.0 V Projections
ReLoRA
LoRA
Full-rank
training

0.0 0.5 1.0 1.5 2.0
Singular Value

0.0

0.5

1.0

1.5

2.0

2.5

3.0 Down Projections
ReLoRA
LoRA
Full-rank
training

Figure 11: Singular values spectra of the weight difference between ReLoRA and LoRA at 5,000
iterations (warm start) and 20,000 iterations. ReLoRA exhibits a closer resemblance to full-rank
training than to LoRA, indicating its effectiveness in approximating full-rank behavior. 130M models.

WQ WK WV Wup Wdown
0

200

400

600
Full-rank
Training
ReLoRA
LoRA

Figure 12: The number of singular values < 0.1 in attention and FCN matrices of the learned update.
130M models.

16



Published as a conference paper at ICLR 2024

Figure 13: ReLoRA significantly outperforms LoRA when started from an early (2K steps) check-
point.

17


	Introduction
	Method
	Experiments
	Results
	Scaling up to 1.3B
	Ablation studies

	Related work
	Conclusion
	A Practical guide to ReLoRA
	ReLoRA for fine-tuning
	Learning curves of models pre-trained in the study
	Ranks of 130M models
	Smaller warm start period

