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Abstract

Existing studies in dialogue system research001
mostly treat task-oriented dialogue and chit-002
chat as separate domains. Towards building003
a human-like assistant that can converse nat-004
urally and seamlessly with users, it is impor-005
tant to build a dialogue system that conducts006
both types of conversations effectively. In007
this work, we investigate how task-oriented008
dialogue and knowledge-grounded chit-chat009
can be effectively integrated into a single010
model. To this end, we create a new dataset,011
KETOD (Knowledge-Enriched Task-Oriented012
Dialogue), where we naturally enrich task-013
oriented dialogues with chit-chat based on rel-014
evant entity knowledge. We also propose two015
new models, SimpleToDPlus and Combiner,016
for the proposed task. Experimental results on017
both automatic and human evaluations show018
that the proposed methods can significantly im-019
prove the performance in knowledge-enriched020
response generation while maintaining a com-021
petitive task-oriented dialog performance. We022
believe our new dataset will be a valuable re-023
source for future studies. The code and the024
dataset will be made publicly available.025

1 Introduction026

Dialogue systems have achieved substantial027

progress (Zhang et al., 2020; Hosseini-Asl et al.,028

2020a; Tao et al., 2021) due to recent success in029

language model pre-training (Radford et al., 2019;030

Raffel et al., 2020; Lewis et al., 2020). One major031

type of dialogue being studied is task-oriented dia-032

logue (TOD) (Wen et al., 2017a; Budzianowski033

et al., 2018; Rastogi et al., 2020; Hosseini-Asl034

et al., 2020a), where the system aims to collect035

user intents/goals to complete certain tasks (e.g.036

restaurant-booking). In most of TOD systems, the037

system responses are concise and templated, as038

we only focus on the success of task completion039

but not providing a natural and engaging conversa-040

tional experience. The latter is the target of another041

I would like to see a Musical show. 
system

user

I would like to find an event around SD.

What type of event do you prefer?

KETOD

Alejandro Sanz is at Cal Coast Credit Union 
Amphitheater on March 7th at 7:30 pm. He 
is known for flamenco-influenced ballads, 
but experiments with other genres too,  it's 
sure to be a good show!

Knowledge from Wikipedia
Alejandro Sánchez Pizarro, better known as Alejandro Sanz 
born December 18, 1968), is a Spanish musician, singer and 
composer. … The singer is notable for his 
flamenco-influenced ballads, and has also experimented with 
several other genres including pop, rock, funk, R&B and jazz.

system

user

Figure 1: An example from the KETOD dataset: the green text
is our enriched chit-chat based on the entity knowledge of Ale-
jandro Sanz in the original TOD. Such knowledge-grounded
chit-chat makes the dialogue more natural and engaging.

kind of popularly studied dialogue - knowledge- 042

grounded chit-chat (Ghazvininejad et al., 2018; 043

Zhang et al., 2018; Tuan et al., 2019; Dinan et al., 044

2019). Knowledge-grounded chit-chat enables dia- 045

log systems to access external knowledge so that 046

they can provide more engaging and knowledge- 047

able conversations and in the same time reduce 048

hallucinations (Shuster et al., 2021). 049

Existing studies mostly focus on one specific 050

type of dialogue, either task-oriented dialogue or 051

knowledge-grounded chit-chat. However, the ul- 052

timate goal of Conversational AI is a human-like, 053

unified system capable of conversing with the users 054

naturally and seamlessly among all kinds of dia- 055

logues. Current TOD systems can hardly make in- 056

teresting and engaging conversations only with tem- 057

plated functional responses. Few previous works 058

like ACCENTOR (Sun et al., 2021) have studied 059

the combination of TOD and chit-chat, but their 060

chit-chat augmentation is largely limited to simple 061
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general responses like ‘you’re welcome’, ‘sounds062

good to me’. In this work, we propose to enrich063

TOD with knowledge-grounded chit-chat, as one064

step further towards the ultimate goal of building065

a human-like, unified system (See Figure 1 for an066

example). We believe that the proposed knowledge-067

enriched TOD system can conduct more social,068

natural, and engaging conversations.069

To this end, we propose a new dataset, KETOD070

(Knowledge-Enriched Task-Oriented Dialogue).071

In order to obtain natural and high-quality072

knowledge-grounded chit-chat, we design the073

dataset construction framework by augmenting ex-074

isting TODs and using the relevant entity knowl-075

edge to make the chit-chat enrichment. Specifically,076

for a given TOD, 1) extracting the entities from077

the dialogue states and actions; 2) retrieving the078

knowledge associated with the entities from exter-079

nal knowledge sources; 3) asking the human anno-080

tators to enrich the system responses with chit-chat081

using the retrieved knowledge. We demonstrate082

that the knowledge-enriched dialogues constructed083

with the proposed framework are consistently pre-084

ferred by human judges across all axes of engaging-085

ness, interestingness, knowledge, and humanness.086

We propose two models, and study the chal-087

lenges and insights of our new dataset. The first088

model is an end-to-end language model that jointly089

learns and generates both the TOD results (di-090

alogue states and actions) and the knowledge-091

enriched responses. The second model is a pipeline092

that first generates the TOD results, then uses an-093

other response generation model to generate the094

knowledge-enriched responses. We run compre-095

hensive experiments to demonstrate the improve-096

ment over the baselines, and show that our models097

can generate better knowledge-enriched responses098

while maintaining competitive performance on the099

TOD tasks. To summarize, we make the following100

major contributions:101

• We propose the task of combining TOD and102

knowledge-grounded chit-chat.103

• We construct a new large-scale dataset, KE-104

TOD, with high-quality, manually annotated105

dialogue responses enriched with knowledge-106

grounded chit-chat. We will release the107

dataset upon acceptance of the paper.108

• We propose two models for our dataset, and109

carry comprehensive experiments to study110

the challenges and insights. We believe our111

dataset should be a valuable resource for build- 112

ing a human-like conversational assistant. 113

2 Related Work 114

Task-oriented dialogue. Task-oriented dialogue 115

(TOD) has been one of the most popular types of 116

dialogue in the research community. There have 117

been many works on building each component of 118

the TOD system, such as dialogue state tracking, 119

action prediction, and response generation (Wen 120

et al., 2015, 2017b; Mrksic et al., 2017; Zhong 121

et al., 2018; Eric et al., 2020; Liu et al., 2018; Peng 122

et al., 2017; Zhou et al., 2017). Later works begin 123

to investigate building end-to-end systems (Bordes 124

et al., 2017; Liu et al., 2018, 2017; Xu et al., 2020). 125

Most recent works on TOD also apply such lan- 126

guage model pre-training style methods on build- 127

ing end-to-end systems (Hosseini-Asl et al., 2020a; 128

Peng et al., 2020; Su et al., 2021), achieving top per- 129

formances on various datasets. Popular datasets in 130

TOD include the DSTC challenge series (Williams 131

et al., 2016), MultiWOZ (Budzianowski et al., 132

2018), SGD (Rastogi et al., 2020), etc. As the 133

primary goal of TOD is the successful completion 134

of the functional tasks, the system responses are 135

mostly concise and templated. 136

Chit-chat dialogue. Another type of popular stud- 137

ied dialogue is chit-chat, with the goal of making a 138

natural and engaging conversation. Apart from the 139

‘pure’ simple chit-chat that mostly covers plain and 140

general responses, more works focus on knowledge 141

groundings to achieve better specificity and engag- 142

ingness, such as using user profiles (Zhang et al., 143

2018), social media contexts (Sordoni et al., 2015), 144

or knowledge graphs (Tuan et al., 2019; Moon et al., 145

2019), etc. In this work, our enriched chit-chat is 146

grounded on open-domain knowledge, similar as 147

the Topical-Chat (Gopalakrishnan et al., 2019) and 148

the WOW dataset (Dinan et al., 2019), where the 149

system converses with the users about certain top- 150

ics involving entity knowledge in an open-ended 151

setting. In contrast, their datasets specifically fo- 152

cus on knowledge-grounded chit-chat, while our 153

dataset combines TOD and such chit-chat. 154

Combination of task-oriented dialogue and 155

chit-chat. ACCENTOR (Sun et al., 2021) pro- 156

poses to combine TOD with chit-chat by prepend- 157

ing or appending chit-chat to the TOD system re- 158

sponses. But their chit-chat is mostly general re- 159

sponses like ’sounds good!’, ’you’re welcome’. 160

FusedChat (Young et al., 2021) proposes to in- 161

sert chit-chat turns into TOD as well as re-writing 162
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Task-oriented dialogue

User: Can you find me some 
songs? Any album is fine

System: A: How does A Little Bit 
Stronger by Sara Evans in the 
album Stronger sound? 

…

Song name: 
A Little Bit Stronger

Singer: 
Sara Evans

Album: 
Stronger

Dialogue states/actions

A Little Bit Stronger: "A Little Bit 
Stronger"  … is a mid-tempo country 
ballad, backed by mandolin, steel 
guitar, piano, and percussion. The 
song's female narrator describes 
going through her daily routine and 
being constantly reminded of her 
former love interest ...

User: Can you find me some songs? Any 
album is fine

System: How does A Little Bit Stronger 
sound? A mid-tempo country ballad, with 
the female narrator telling the pain of her 
former love. It’s by Sara Evans in the 
album Stronger.

Knowledge source Knowledge-enriched 
Task-oriented dialogue

Figure 2: The pipeline of dataset construction: for each task-oriented dialogue, we first extract all the entities from the dialogue
states and actions. Then we retrieve the knowledge associated with each entity from external knowledge sources (Wikipedia). At
last, we ask human annotators to enrich the TOD system responses with chit-chat grounded on the retrieved knowledge.

TOD turns, but their chit-chat is still mostly gen-163

eral responses or based on commonsense knowl-164

edge. Kim et al. (2020) propose to insert additional165

turns into TOD, where the system needs to respond166

based on the knowledge from domain FAQs. The167

DSTC10 task 2 (Kim et al., 2021) is based on the168

dataset from (Kim et al., 2020) with a similar focus.169

HyKnow (Gao et al., 2021) also proposes to insert170

turns into TOD grounded on knowledge from un-171

structured documents. These datasets focus on the172

challenge of detecting those turns requiring exter-173

nal knowledge and selecting the knowledge to gen-174

erate the responses. In contrast, our dataset focuses175

on injecting knowledge-grounded chit-chats into176

the original TOD responses, to make the dialogue177

more natural and engaging. Our dataset poses more178

challenges in selecting knowledge based on the di-179

alogue context and generating the responses with180

both the correct TOD information and the chit-chat181

seamlessly.182

3 The KETOD Dataset183

3.1 Dataset Construction184

In this section, we describe our framework to con-185

struct the KETOD dataset. We start from exist-186

ing TOD datasets and employ human annotators187

to augment the functional system responses with188

knowledge-grounded chit-chat. The proposed ap-189

proach is demonstrated to give natural, contextual-190

relevant knowledge enrichment, and meanwhile191

easy to scale to different datasets. Figure 2 gives192

an overview of the dataset construction pipeline.193

Data preparation. We build upon the SGD194

dataset (Rastogi et al., 2020), with TOD spanning195

16 domains, such as Restaurant, Wheather,196

etc. Given each TOD, to obtain the knowledge rele-197

vant to the dialogue context, we first extract all the198

entities from the dialogue states and actions. We ex-199

clude the domains Alarm, Banks, and Payment200

as there are mostly no entities involved in these201

domains; Also, to simplify the human annotation 202

process in the next step, we remove the dialogues 203

with over 10 entities involved. 204

Knowledge retrieval. For each entity, we use the 205

concatenation of the domain name and entity name 206

as the query to retrieve Wikipedia articles. We use 207

the DrQA retriever (Chen et al., 2017) to retrieve 208

the top 2 Wikipedia articles and take the first 2 para- 209

graphs of each article as the knowledge candidates 210

associated with each entity. Then we break the re- 211

trieved articles into sentences, with each sentence 212

as one knowledge snippet. 213

Response enrichment. In this step, we employ 214

human annotators to enrich the system responses 215

in the original TOD based on the dialogue context 216

and the retrieved knowledge. For each TOD, we 217

present to the annotators the full dialogue, as well 218

as all the knowledge snippets associated with the 219

entities in the dialogue. The annotators can click on 220

each entity name to see the associated knowledge 221

snippets in an expanded textbox. See Appendix A 222

for our annotation interface. 223

The annotation process is as follows: 1) Read 224

the full dialog first to have an overall story in mind, 225

as well as the relevant knowledge snippets, then to 226

decide how many turns to enrich with chit-chat and 227

which turn(s) to enrich; If there is no way to make 228

a natural chit-chat enrichment, skip the example. 229

2) After deciding the turn(s) to enrich with the chit- 230

chat, select the knowledge snippets used to make 231

the enrichment (at most 3 snippets for each turn); 232

3) Rewrite the system response to enrich with chit- 233

chat grounded on the selected knowledge snippets; 234

The functional information in the original response 235

should be maintained, while may be rephrased to 236

make the enriched response more natural. 237

To ensure the dataset quality, we first inter- 238

view the annotators to select the appropriate hires 239

through a few test examples. Then we launch a 240

training session for all the annotators to learn the 241
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task and the annotation interface. We launch the242

official batches after the annotators can well-master243

the task. During annotation, we specifically em-244

phasize the contextualization of the knowledge-245

grounded chit-chat - the enrichment should be con-246

textualized closely on the dialogue context, but not247

a plain restatement of the knowledge snippets.248

3.2 Dataset Statistics and Analysis249

We end up with 5,324 dialogues with enriched sys-250

tem responses. We make the split of 4,247/545/532251

as the train/dev/test set. Table 1 shows the statis-252

tics of the KETOD dataset. Around 12.1% of the253

turns (which indicates mostly 1 or 2 turns in one254

dialogue) are enriched with knowledge-grounded255

chit-chat. This intuitively complies with our goal of256

making the whole dialogue natural and engaging,257

since too frequent chit-chat may result in redun-258

dancy and unnaturalness.259

Quality assessment of the annotation. During260

the annotation process, around 12% of the dia-261

logues cannot be enriched with any turns and thus262

discarded. It takes around 100 seconds for the263

annotators to finish each dialogue. To assess the264

quality of the annotation, we sample 5% of the an-265

notated dialogues and distribute them to linguistics266

to check: 1) If the chit-chat enrichment is relevant267

and natural; 2) If the knowledge snippets are ac-268

curately selected corresponding to the enrichment.269

We end up with a correct rate of 87.0%.270

Justification of the chit-chat enrichment. To271

demonstrate that our proposed knowledge-enriched272

TOD can be more natural and engaging, we con-273

duct human evaluations to compare KETOD dia-274

logues and their corresponding original TOD di-275

alogues without chit-chat enrichment (SGD). We276

follow (Li et al., 2019) to make pairwise compar-277

isons of the full dialogues over the following four278

axes: engagingness, interestingness, knowledge,279

and humanness. The results in Figure 3 show the280

superiority of KETOD over all axes.281

4 Approaches282

In this section, we will describe the proposed two283

models for the KETOD dataset.284

4.1 Overview and Formulations285

For each dialogue turn, denote the dialogue context286

(history) as C, belief states as B, database search287

results as D, actions as A, the knowledge snippets288

used for chit-chat enrichment as K, the response289

Dialogues 5,324
Vocabulary 27k
All turns 52,063
Turns enriched with chit-chat 6,302
All entities 4,639
All knowledge snippets 33,761
Avg. # turns per dialogue 9.78
Avg. # tokens in enriched responses 28.07
Avg. # entities per dialogue 4.98
Avg. # knowledge snippets per dialogue 70.50

Table 1: General statistics of KETOD.

Figure 3: Results of pairwise comparison of KETOD vs SGD.

as T . Then we formulate the problem as: given 290

the dialogue context C and a knowledge source 291

(Wikipedia in this dataset), the target is to generate 292

the belief states B, actions A, and the response T , 293

which may be enriched with chit-chat grounded 294

on the knowledge based on the context. The goal 295

of the optimization on KETOD is two-folded: 1) 296

Optimizing the generation of knowledge-enriched 297

responses; 2) Maintaining the task performances; 298

In this work, we propose the following model- 299

ing framework on KETOD: 1) given the dialogue 300

context, generate the belief states and actions; 2) 301

extract the entities in the belief states and actions, 302

then use these entities to retrieve knowledge can- 303

didates (similar as in the dataset construction pro- 304

cess); 3) conditioned on the dialogue context, use 305

a knowledge selection model to select knowledge 306

snippets from the knowledge candidates retrieved; 307

4) generate the knowledge-enriched response condi- 308

tioned on both the dialogue context and the selected 309

knowledge snippets. 310

Based on the above general framework, we pro- 311

pose two architectural approaches, SimpleToD- 312

Plus and Combiner, respectively in §4.3 and §4.4. 313

4



SimpleToD

db result knowledge snippets response

Knowledge 
retrieval

Knowledge 
selection

Inference

SimpleToD

context belief db result action

Task-oriented dialogue model

GPT-2

context

Response generation model

action knowledge snippets

response

Knowledge 
retrieval

Knowledge 
selection

Inference

context belief action

Figure 4: Illustration of the models. Left: the SimpleToDPlus model; Right: the Combiner model;

4.2 Knowledge Selection314

After the generation of belief states and actions,315

we retrieve the knowledge snippet candidates from316

Wikipedia using the entities in the belief states317

and actions. The average number of knowledge318

snippets candidates retrieved for each dialogue is319

around 70. It is impractical to input all of them320

into the models due to the large amount. As we321

have the annotation for the ground truth knowledge322

snippets used for each chit-chat enrichment, we323

train a knowledge selection model to select the top324

knowledge snippets most appropriate for chit-chat325

enrichment. Specifically, we concatenate the dia-326

logue context with each knowledge snippet as the327

input. Then we use BERT (Devlin et al., 2019) to328

train a simple classifier to rank all the knowledge329

snippets candidates. We take the top 3 ones as330

the knowledge selection results. We use the same331

knowledge selection model for both architectures.332

4.3 SimpleToDPlus333

SimpleToD (Hosseini-Asl et al., 2020b) is a recent334

popular approach on TOD, which uses one single335

language model to sequentially generate the be-336

lief states, actions, and responses. It has achieved337

strong performances in all the above functional338

tasks. In this work, we propose its extension, Sim-339

pleToDPlus, to generate knowledge-enriched re-340

sponses for TOD. The left part of Figure 4 shows341

the overview of SimpleToDPlus. We formulate the342

training sequence as:343

[C,B,D,A,K,<chitchat>, T ] (1)344

Where <chitchat> is a tag to indicate the decision345

of whether to enrich the response with knowledge346

grounded chit-chat or not. If the response is not347

enriched, we insert the tag <nochitchat>. Since348

the number of the gold knowledge snippets varies349

from 1 to 3 (as in the dataset construction), to be350

compatible with inference time, here we first run351

the knowledge selection model on all training in-352

stances. Then we construct the knowledge snippets353

K as the merge of the gold knowledge snippets 354

and the knowledge selection model results, trun- 355

cated to 3 ones. If the response is not enriched with 356

chit-chat, i.e., no gold knowledge snippets, we still 357

put 3 snippets from the knowledge selection model 358

ranking results here during training. 359

In the inference time, we first sequentially gen- 360

erate the belief states and actions. Then we extract 361

the entities from the generated belief states and 362

actions, and apply the same process of knowledge 363

retrieval as in dataset construction. Next, we run 364

the knowledge selection model on the retrieved 365

knowledge candidates and take the top 3 knowl- 366

edge snippets as the model input followed by the 367

generated actions. At last, the model generates 368

the decision to make chit-chat enrichment or not, 369

followed by the final response. 370

Since the knowledge-enriched response is con- 371

ditioned on the entity knowledge from the belief 372

states and actions, we need to directly include the 373

entities in the actions and responses during gener- 374

ation, instead of generating a delexicalized result 375

first and then lexicalizing in the post-process as in 376

the original SimpleToD. To simplify, we use the or- 377

acle database search results for all the experiments. 378

4.4 Combiner 379

SimpleToDPlus models all the generations in an 380

end-to-end manner. In Combiner, we use a 381

pipeline of a TOD model followed by a response 382

generation model to separate the TOD part (belief 383

states, actions) with the generation of knowledge- 384

enriched responses. The goal is to study whether an 385

independent model can better learn each task with 386

less interference from the other. The overview of 387

the architecture is shown on the right of Figure 4. 388

For the TOD model, we use SimpleToD to gen- 389

erate the belief states and actions, with the training 390

sequence as: 391

[C,B,D,A] (2) 392

We find that including the knowledge-enriched 393

responses during training degrades the task per- 394
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Models Joint GA Avg GA Act-Slot F1 BLEU-4aug BLEU-4orig BLEU-4all

SimpleToD-ref 27.6 54.2 67.6 - - -

SimpleToD 23.7 50.1 62.7 4.8 10.7 10.0
SimpleToDPlus 28.6 52.2 66.9 6.3 11.7 11.0
Combiner 24.5 51.5 64.5 6.5 9.9 9.5

Table 2: Main experiment results: Both SimpleToDPlus and Combiner outperform the baseline. Overall SimpleToDPlus obtains
better response generation performance while maintaining competitive TOD performance.

formance, indicating the disturbance from the un-395

grounded knowledge in the responses.396

For the response generation model, we use GPT-397

2 (Radford et al., 2019) with the concatenation of398

the dialogue context, actions, and the knowledge399

snippets as the prompt:400

T = GPT-2(C,A,K) (3)401

We use the same way of constructing the merged402

knowledge snippets during training, and the same403

process of knowledge retrieval and selection during404

inference as in SimpleToDPlus.405

5 Experimental Results406

Baseline model. We use SimpleToD (Hosseini-407

Asl et al., 2020b) as our baseline model, i.e., with408

the training sequence as [ C,B,D,A, T ], without409

the injection of knowledge snippets. Therefore the410

knowledge-grounded chit-chat in the responses T411

do not have any knowledge groundings - we aim to412

show the necessity of knowledge grounding for our413

task, as well as the effectiveness of our proposed414

models to incorporate knowledge.415

Experimental setups and evaluations. Check416

Appendix B for details of model training and pa-417

rameter settings. For the TOD performances, we418

evaluate the belief states with joint goal accuracy419

(Joint GA) and average goal accuracy (Avg GA),420

and the actions with act-slot F1, same as (Sun421

et al., 2021). For the automatic evaluations of re-422

sponse generation, we use three BLEU-4 scores:423

BLEU-4aug for evaluating the responses enriched424

with knowledge; BLEU-4orig for evaluating the re-425

sponses not enriched with knowledge; BLEU-4all426

for evaluating all responses;427

5.1 Main Results428

Performance on response generation. Table 2429

shows our main experiment results. For the per-430

formances on response generation, we can see431

that both of our proposed models, SimpleToD-432

Plus and Combiner, improve on the knowledge-433

enriched response generation (BLEU-4aug) over434

the SimpleToD baseline. Since in the baseline, we 435

do not include the knowledge snippets in the in- 436

put, the generated responses are mostly enriched 437

with random knowledge or frequent knowledge 438

in the training data. The improvements demon- 439

strate the necessity of knowledge grounding and 440

the effectiveness of the proposed knowledge en- 441

richment methods. Combiner performs slightly 442

better on knowledge-enriched responses than Sim- 443

pleToDPlus but falls short on the responses with- 444

out knowledge-enrichment (i.e., original TOD re- 445

sponses). This is partially because of its pipeline 446

nature - a separated response generation module 447

can better learn the knowledge enrichment with- 448

out the disturbance of other tasks, but the error 449

cascading from the generated actions degrades the 450

performance of the TOD responses part. 451

Performances on belief states and actions. To 452

better study how the knowledge enrichment affects 453

the TOD performances, we first train SimpleToD 454

on our dataset without the knowledge enrichment, 455

i.e., replace all the knowledge-enriched responses 456

with the original responses in SGD. We name it as 457

SimpleToD-ref in Table 2, serving as a reference 458

of the original TOD performances. The Simple- 459

ToD baseline gives largely degraded performances 460

due to the disturbance from the ungrounded knowl- 461

edge in the responses during training. Therefore in 462

Combiner, we do not include the responses in the 463

training sequences of the TOD model (specified in 464

section 4.4), and obtain better scores. SimpleToD- 465

Plus achieves the best TOD performances, which 466

are nearly competitive with SimpleToD-ref. This 467

is partially due to the enhancement of language 468

modeling ability brought by the training on the 469

responses grounded on the input knowledge. 470

Human evaluations. In order to get the more com- 471

prehensive measure of the response generation per- 472

formances, we conduct human evaluations for both 473

dialogue-level pairwise comparison and turn-level 474

factualness evaluation. For dialogue-level pairwise 475

comparison, we randomly sample 200 dialogues 476
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Metrics SimpleToDPlus win
(%)

Combiner win
(%)

Tied
(%)

Engagingness 47.8 24.5 27.8
Interestingness 34.5 19.0 46.5
Knowledge 29.5 26.3 44.3
Humanness 43.3 23.8 33.0

Table 3: Human evaluation of SimpleToDPlus vs. Combiner.

Metrics SimpleToDPlus win
(%)

Gold win
(%)

Tied
(%)

Engagingness 16.8 60.5 22.8
Interestingness 12.0 51.0 37.0
Knowledge 14.5 44.8 40.8
Humanness 17.3 58.0 24.8

Table 4: Human evaluation of SimpleToDPlus vs. Gold.

from the test set and apply the same process as477

in dataset evaluation (3.2). For each model, we478

construct the full dialogue results by concatenat-479

ing the generated response for each turn given the480

gold dialogue context. Table 3 shows the results of481

pairwise comparison between the SimpleToDPlus482

model and the Combiner model, demonstrating483

SimpleToDPlus is more performant. Table 4 shows484

the results of pairwise comparison between Simple-485

ToDPlus and the gold reference, indicating there486

is still a large room for further improvements. See487

Appendix C for the human evaluation results of488

comparing both methods to the baseline. For turn-489

level factualness evaluation, we randomly sample490

one turn with chit-chat enrichment from each di-491

alogue, and present both the generated response492

and the selected knowledge snippets to the anno-493

tators. The annotators are asked to check whether494

the chit-chat in the responses are factually correct495

based on the knowledge snippets. SimpleToDPlus496

and Combiner obtain the factualness correct rate of497

64.2% and 66.1%, respectively. In summary, Com-498

biner achieves better factualness of knowledge en-499

richment since its independent response generation500

model can better focus on the learning of knowl-501

edge groundings. But its error cascading due to the502

pipeline nature may degrade the overall consistency503

and human-likeness of the generated dialogue.504

As we have two optimization goals on KE-505

TOD 1) Optimizing the generation of knowledge-506

enriched responses; 2) Maintaining the task perfor-507

mances, we consider SimpleToDPlus as a better508

model regarding the overall performances. We will509

use the results of SimpleToDPlus for the ablations510

and other analyses in the rest of the experiments.511

BLEU-4aug BLEU-4all

Given gold TOD results, decision, and knowledge

SimpleToD 6.5 13.1
SimpleToDPlus 9.7 14.6
Combiner 14.6 15.1

Given gold TOD results

SimpleToD 6.3 12.8
SimpleToDPlus 7.4 14.0
Combiner 9.6 13.9

Table 5: Analysis of different inference stages: we provide the
models with gold results up to certain stages, and investigate
the performances for the inferences on following stages.

BLEU-4aug BLEU-4all
Knowledge selection

recall (%)

Gold 9.7 14.6 100.0
BERT selection 7.8 14.4 52.7
TF-IDF selection 6.6 13.7 14.1

Table 6: SimpleToDPlus response generation performance
with varying knowledge selection strategies.

5.2 Ablations and Analysis 512

Analysis of different inference stages. There are 513

several inference stages for this task - the TOD 514

results (belief states and actions), the selection of 515

knowledge snippets, and the final response genera- 516

tion, where each stage is conditioned on previous 517

results. Therefore the errors accumulate through 518

all the stages leading to the final performances. 519

Here we run another two sets of experiments to 520

study such error accumulations and compare the 521

two models. Specifically, first, we feed the models 522

with the gold TOD results, chit-chat decisions, and 523

knowledge snippets, to solely test the abilities to 524

generate the knowledge-enriched responses; Sec- 525

ond, we feed the models with the gold TOD results 526

to test the following stages of knowledge selec- 527

tion and the response generation. The results are 528

shown in Table 5. Compared with the full inference 529

results in Table 2, we can see that the Combiner 530

model largely outperforms SimpleToDPlus if pro- 531

vided with more gold results for previous stages. 532

However, it gradually falls behind SimpleToDPlus 533

when moving to fully end-to-end inference due to 534

the error cascading of its pipeline nature. 535

Importance of knowledge selection strategies. 536

To demonstrate the importance of the knowledge 537

selection strategies (and their subsequent recall per- 538

formance), we run SimpleToDPlus with 1) gold 539

knowledge snippets; 2) predicted knowledge snip- 540

pets (with BERT); 3) knowledge snippets selected 541

by heuristics (we use TF-IDF matching between 542

the current dialogue turn and the knowledge snip- 543
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User: Sure, that sounds right. Could you help me find 
some songs?
System: I found 10 songs for you. One song is Supercut 
by Lorde from the album Melodrama.

User: What other songs did you have? I like Battle Beast.
System: They're quite a well-known power metal band. I 
found 1 song for you. It is called Eden by Battle Beast from 
the album No More Hollywood Endings?

User: Sure, that sounds right. Could you help me find 
some songs?
System: I have 10 songs for you. Would you like to listen 
to Supercut by Lorde from the album Melodrama?

User: What other songs did you have? I like Battle Beast.
System: I found 1 song by Battle Beast from the album No 
More Hollywood Endings. It is a metal song by Battle 
Beast.

Battle Beast
Battle Beast is a 
Finnish heavy/power 
metal band 
established in Helsinki 
in 2005. The initial 
line-up consisted of 
guitarists…

Battle Beast
Battle Beast is a 
Finnish heavy/power 
metal band 
established in Helsinki 
in 2005. The initial 
line-up consisted of 
guitarists…

Gold PredictedKnowledge snippets Knowledge snippets

User: I would like to find an event around SD.
System: What type of event do you prefer?

User: I would like to see a Musical shows.
System: Alejandro Sanz is at Cal Coast Credit Union 
Amphitheater on March 7th at 7:30 pm. He is known for 
flamenco-influenced ballads, but experiments with other 
genres too, so it's sure to be a good show!

User: I would like to find an event around SD.
System: What type of event would you like? Music, 
Sports, or something else?

User: I would like to see a Musical shows.
System: I have 10 events that you might like. One is 
Alejandro Sanz at Cal Coast Credit Union Amphitheater. 
He is a Spanish singer-songwriter and musician.

Alejandro Sánchez 
Pizarro…  The singer 
is notable for his 
flamenco-influenced 
ballads, and has also 
experimented with 
several other genres 
including pop, rock, 
funk, R&B and jazz.

Alejandro Sánchez 
Pizarro, is a Spanish 
musician, singer and 
composer…

Figure 5: Case studies: two examples of comparing the generation from SimpleToDPlus (right) with the gold reference (left),
together with the knowledge snippets selected. Overall our model can mostly generate reasonable knowledge enrichment, but
still falls short on engagingness and consistency compared to the gold references.

BLEU-4aug BLEU-4all
Enrichment decision

F1 (%)

Gold decision 9.7 14.6 100.0
Predicted decision 8.0 14.1 58.7

Table 7: SimpleToDPlus response generation performance
using (1) the gold set of turns to enrich with chit-chat, and (2)
the predicted set of turns.

All Hotels Movies Restaurant Music

BLEU-4aug 6.3 7.1 5.2 5.1 7.7
BLEU-4all 11.0 10.3 12.2 14.0 12.3

Table 8: Domain breakdown of SimpleToDPlus response gen-
eration performances.

pets). To eliminate the influences brought by other544

inference stages, we feed the model with gold TOD545

results (dialogue states and actions). The results546

are shown in Table 6. There exists a certain level547

of variance for knowledge selection, e.g., when rec-548

ommending a song for the user, you may talk about549

its genre, its singer, or the album.550

Learning when to inject knowledge-enriched551

chit-chat. In all models, we use the special to-552

ken ‘<chitchat>’ and ‘<nochitchat>’ to indicate the553

decision to inject knowledge enrichment for the554

responses. To study the effect of the chit-chat in-555

jection decision-making accuracy on the overall556

dialogue tasks, we run SimpleToDPlus (1) with the557

ground-truth information of turns to enrich with558

chit-chat, and (2) with the predicted decisions, us-559

ing the gold TOD results. Table 7 shows the per-560

formance gap, which highlights the importance of561

knowing when to inject knowledge-enriched chit-562

chat. While such decisions are conditioned on the563

dialogue history, e.g., we may tend to not enrich a 564

turn if many of the previous turns are enriched to 565

avoid redundancy, there also exists some variance. 566

In a real system, we may consider specifying the 567

turns to make the chit-chat enrichment instead of 568

letting the model make the decision. 569

Domain analysis. We investigate the model perfor- 570

mance for each domain in Table 8. We observe that 571

the performance differences may depend on the 572

variance of the enriched knowledge. Domains with 573

larger variance on selected knowledge tend to have 574

lower automatic scores. For example, in Hotels 575

domain, mostly the chit-chat is about the locations 576

since there are mostly location entities involved in 577

this domain. But for the restaurants domain, 578

the enriched knowledge can be about the food, the 579

restaurant, as well as the location. The selected 580

knowledge shows more diversity and variance. 581

We provide case studies in Figure 5 to compare 582

the predicted results with the gold references. 583

6 Conclusion 584

In this work, we propose to combine task-oriented 585

dialogue with knowledge-grounded chit-chat, and 586

construct a new dataset named KETOD, with man- 587

ually composed knowledge-enriched system re- 588

sponses. We conduct comprehensive experiments 589

on our new dataset to study the insights and chal- 590

lenges. We believe that our proposed task is an 591

important step towards the ultimate goal to build 592

a unified, human-like conversational AI. Our new 593

dataset KETOD, annotated by experts, will greatly 594

facilitate the research in this direction. 595
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7 Ethical Considerations596

Data Access and Licensing. We develop the KE-597

TOD dataset based on the publicly available SGD598

dataset1 (Rastogi et al., 2020). The SGD dataset599

is publicly available under the CC-BY-SA-4.0 Li-600

cense.601

Dataset Collection Process and Conditions.602

This project is approved by our Institutional Review603

Board (IRB). Our annotators are all U.S. based.604

For the annotation of our KETOD dataset, linguis-605

tics for assessing data quality, and all the human606

evaluations, our annotators were hired as full-time607

employees through a leading annotation services608

vendor, and were paid in accordance with a fair609

wage rate. During the data annotation, we instruct610

the annotators to skip any example that contains611

offensive or any unethical contents.612
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Appendix A: Dataset Construction 917

Figure 6 shows our annotation interface to add 918

knowledge-grounded chit-chat to TOD. The left 919

part shows the full dialogue, where the annotators 920

can click and expand each turn to make the chit- 921

chat enrichment. The right part shows all the enti- 922

ties with the associated knowledge snippets. The 923

annotators can click on each entity name to expand 924

the textbox to see the knowledge snippets. We add 925

index number to each knowledge snippet (shown 926

in green brackets), and the annotators are asked to 927

write down the indexes of the knowledge snippets 928

they used for writing the knowledge grounded chit- 929

chat. Figure 7 shows one example annotation turn 930

using our interface. 931
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Figure 6: Our annotation interface example 1.

Appendix B: Model and Training Details932

All the implementations are based on the Hugging-933

face Transformers library2. For all models, we use934

the Adam optimizer (Kingma and Ba, 2015). For935

the knowledge selection model, we use BERT-base936

with learning rate of 3e-5 and batch size of 16. For937

the baseline SimpleToD model, SimpleToDPlus938

model, and Combiner model, we all use learning939

rate of 1e-4 and batch size of 16. All the experi-940

ments are done using TESLA M40 GPU cards.941

Appendix C: Evaluation Details942

Table 9 and 10 show the human evaluation results943

of SimpleToDPlus vs. SimpleToD, and Combiner944

vs. SimpleToD, respectively.945

2https://github.com/huggingface/transformers

Metrics SimpleToDPlus win
(%)

SimpleToD win
(%)

Tied
(%)

Engagingness 40.0 30.3 29.8
Interestingness 31.8 19.5 48.8
Knowledge 38.0 18.3 43.8
Humanness 38.3 26.8 35.0

Table 9: Human evaluation of SimpleToDPlus vs. SimpleToD.

Metrics Combiner win
(%)

SimpleToD win
(%)

Tied
(%)

Engagingness 34.8 33.5 31.8
Interestingness 27.0 22.5 50.5
Knowledge 32.5 23.0 44.5
Humanness 27.8 32.5 39.8

Table 10: Human evaluation of Combiner vs. SimpleToD.
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Figure 7: Our annotation interface example 2.
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