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Abstract
Diffusion models have revolutionized genera-
tive modeling by producing high-fidelity images.
However, concerns about memorization—where
models reproduce specific training images—pose
ethical and legal challenges, especially regard-
ing copyrighted content. In this paper, we criti-
cally analyze current memorization criteria, high-
lighting their brittleness due to reliance on spe-
cific caption-image pairs and vulnerability to com-
mon prompt modifications standard in industry,
at both training and inference time. We propose
a novel method for Memorization Auditing via
Generative Image Compression (MAGIC) that re-
frames memorization detection as an image com-
pression problem. Specifically, we investigate
whether the model can regenerate a particular im-
age, independent of textual prompts. By com-
pressing an image into a short learned condition-
ing (embedding), we directly measure how faith-
fully a diffusion model can reconstruct it. Ex-
perimentally, MAGIC significantly improves ro-
bustness and accuracy (by over 20%) in detect-
ing memorized content compared to existing ap-
proaches. MAGIC thus enhances our understand-
ing of memorization and provides practical tools
for developing safer generative systems.

1. Introduction
Diffusion models have rapidly emerged as a transforma-
tive class of generative models, capable of synthesizing
images with striking fidelity and diversity (Ho et al., 2020;
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Figure 1: Memorization detection performance by existing
metrics after applying simple train-time and inference-time
modifications. Existing metrics heavily rely on the exact
text prompt that triggers the image. Hence, they suffer a
drop in detection performance under benign modifications
to prompts during training and/or inference. Such modifica-
tions are commonplace in industry today.

Song & Ermon, 2020). Despite their impressive capabilites,
these models’ tendency to memorize and exactly reproduce
specific training images raises significant ethical and legal
concerns. Recent lawsuits brought by artists and content
creators against generative AI companies highlight the ur-
gency of addressing concerns regarding intellectual prop-
erty rights and privacy (Sustainable Technology Partners,
2023). For example, popular text-to-image diffusion models
(such as Stable Diffusion, Ideogram, Dall-E 3), trained on
massive web-sourced datasets, have been accused of repro-
ducing copyrighted artwork without consent, fueling heated
debates around intellectual property infringement and re-
sponsible AI development (Somepalli et al., 2023a; Carlini
et al., 2023).

Existing memorization metrics rely heavily on precise text-
image pairs or consistent reproduction across multiple gen-
erations (Carlini et al., 2023; Wen et al., 2024). In practice,
these definitions are fragile, easily circumvented by minor
modifications to textual prompts during either training or
inference. Real-world practices, such as refining or entirely
re-captioning training images (Betker et al., 2023; Nguyen
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et al., 2023), routinely evade detection. Similarly, at in-
ference time, the use of prompt enhancement to improve
user prompts has become standard practice. These practices
highlight critical limitations of current auditing methods
(Section 2).

Motivated by these insights, we propose MAGIC
(Memorization Auditing via Generative Image
Compression), a novel approach that reframes the
problem of memorization detection as an image compres-
sion task (Section 3). MAGIC employs soft embedding
optimization to compress target images into short, learned
embeddings that, when used as conditioning, can regenerate
the original image through the diffusion model. Intuitively,
if a diffusion model has memorized an image, it should
readily compress and reconstruct that image from a compact
embedding with few tokens. Conversely, images not
memorized by the model either cannot be reconstructed
faithfully or require substantially larger number of tokens,
effectively distinguishing memorization from generalized
learning.

Empirically, MAGIC significantly enhances robustness and
accuracy in detecting memorized content, maintaining high
detection rates even when traditional metrics degrade dras-
tically (nearly 15%, see Figure 1) under realistic textual
interventions. Our evaluations demonstrate that MAGIC reli-
ably identifies memorization overlooked by prior methods.

We further leverage MAGIC to conduct a comprehensive
audit of contemporary diffusion models, focusing on high-
stakes copyrighted content (Appendix D). Notably, we un-
cover that prominent models memorize over 50% of top
images from major intellectual property holders, underscor-
ing the practical importance and immediate applicability
of our auditing framework. By shifting the discourse from
mere output consistency to the deeper question: can the
model regenerate specific training content under plausible
conditions?, MAGIC provides a first of its kind tool for au-
diting image memorization by diffusion models at scale.

2. Brittleness of Existing Memorization
Definitions

In this section, we investigate the robustness of exist-
ing memorization detection methods for diffusion models,
specifically highlighting how they can be easily circum-
vented through common, practical modifications to textual
prompts. We systematically analyze the vulnerability of
established metrics under both training-time and inference-
time interventions, clearly demonstrating their fragility and
motivating the need for a more robust, text-independent
detection approach.

2.1. Preliminaries: Existing Memorization Metrics

We first define three widely-used memorization metrics in
the context of diffusion models.

L2 Distance. The L2-Dist metric considers an image
memorized if the pixel-level Euclidean distance between
a generated image and a corresponding training image is
below a predefined threshold (Carlini et al., 2023). This
method is extremely sensitive to minor pixel-level differ-
ences and augmentations, like generating a mirror-image of
the target image.

Self-Supervised Copy Detection. The SSCD metric was
proposed by Pizzi et al. (2022) as a measure of semantic sim-
ilarity between two images. This improves upon L2-Dist
by evaluating perceptual similarity using features extracted
from self-supervised models, and has been used in measur-
ing memorization in past works (Somepalli et al., 2023b).

Text-conditioned Noise prediction. Wen et al. (2024)
examine the magnitude of text-conditional noise predictions,
observing that for memorized prompts, the text condition
consistently guides the generation toward the memorized
image regardless of initializations. Their method achieves
high detection accuracy (AUC of 0.960) even at the first
generation step with a single generation per prompt, mak-
ing it significantly more efficient than previous approaches
that require multiple generations or querying large training
datasets.

2.2. Training-Time Interventions

Training-time prompt modifications are common in modern
generative modeling practices. For instance, state-of-the-art
models like Stable Diffusion-2 and DALL-E 3 frequently
employ synthetic or refined captions to enhance training
data quality (Betker et al., 2023).

Training on Enhanced Prompts (Enh-FT). We use
an LLM (GPT-4o-mini) to generate semantically richer
prompts from the original training captions, simulating prac-
tical enhancements aimed at clearer, more descriptive train-
ing data. By aligning training data with prompt-engineering
techniques—such as appending keywords like high-quality,
4k, ultra-resolution or imitating specific artistic styles (e.g.,
camera types or film aesthetics), the model is adapted to
diverse user prompts.

Training on Recaptioned Prompts (Recap-FT). We sim-
ulate a more comprehensive data labeling overhaul by com-
pletely recaptioning images with entirely new, descriptive
text generated independently via an multimodal LLM. This
practice has shown great promise in improving model train-
ing (Nguyen et al., 2023; Li et al., 2024). To achieve this, we
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Algorithm 1 Memorization Auditing via Generative Image
Compression (MAGIC)
Input: Target image I0, diffusion model ϵθ , VAE encoder Eimg,
initial embedding e, learning rate η, iterations N
Encode image: x0 ← Eimg(I0)

for i = 1 to N do
Sample timestep t ∼ Uniform(1, . . . , T )

Sample noise ϵ ∼ N (0, I)

Create noised latent: xt ←
√
ᾱtx0 +

√
1− ᾱtϵ

Predict noise: ϵ̂← ϵθ(xt, t, e)

Compute loss: L← 1
2σ2

t
∥ϵ̂− ϵ∥22

Update embedding: e← e− η∇eL

end for
return Optimized embedding e

utilize an off-the-shelf VLM, Qwen-2.5 ((Wang et al., 2024;
Bai et al., 2025)), to generate n = 50 unique captions per
image. The captions are created by posing diverse questions
about various aspects of the image, such as its attributes,
context, or artistic style.

2.3. Inference-Time Interventions

We further demonstrate vulnerabilities by evaluating
inference-time prompt modifications, which represent typi-
cal end-user interactions.

Inference using Enhanced Prompts (Enh-Prompt).
Platforms like Ideogram and Midjourney have “Prompt En-
hancers” that improve the user’s input prompt by appending
keywords and detailed explanations to elicit high-quality
generations. To simulate this kind of honest inference-time
intervention, we use an LLM (GPT-4o-mini) to enhance
the original prompt, and pass the enhanced prompt to the
Diffusion Model for image generation.

Inference using Recaptioned Prompts (Recap-Prompt).
Since artists can’t recover the exact training prompt, they
can use a vision–language model to auto-caption their im-
age and feed that into existing memorization metrics. To
simulate this scenario, we use the Qwen-2.5-VL model to
generate a descriptive caption of the image, and use this
description as input to the Diffusion Model.

2.4. Experiments.

To ensure a fair comparison, we reproduced the fine-tuning
setup and dataset released by (Somepalli et al., 2023a).
We used Stable Diffusion 2.1 (SD-2.1) (Rombach et al.,
2022) as the pre-trained diffusion model and fine-tuned it
for 100,000 steps across all experimental setups. To con-
struct the memorized subset, we select the 100 samples with
the highest SSCD similarity scores between the generated

images and their corresponding originals. Visual inspection
of these samples confirms strong resemblance, suggesting
likely memorization. In contrast, the non-memorized subset
comprises the 100 samples with the lowest similarity scores.

Figure 1 shows that simple interventions to the prompts dra-
matically reduce memorization detection accuracy across
all metrics. It is noteworthy that the interventions are not
strictly adversarial in nature, and can be made by an hon-
est model developer to improve the performance of their
Diffusion Models.

3. MAGIC: Memorization Auditing by
Generative Image Compression

Given the shortcomings of existing memorization metrics
(Section 2), a robust approach to auditing memorization
must satisfy two critical properties: (1) independence from
the original text-image pair, requiring only the image itself,
and (2) direct probing of the model’s learned visual represen-
tation rather than its entire generative pipeline. Motivated by
these insights, we propose MAGIC (Memorization Auditing
via Generative Image Compression), which frames memo-
rization detection as an image compression task. Intuitively,
if a model has memorized an image, it should have com-
pressed information about it in the visual encoder, and hence
should be able to reconstruct it using minimal conditioning
information.

MAGIC finds an optimal continuous embedding (condition-
ing vector) for each target image by minimizing the model’s
reconstruction error on that image. This embedding can be
thought of as a “compressed representation” for the image
within the model’s learned space. We then use properties
of this embedding (such as its size) as a measure of mem-
orization. We also show that this procedure can be used to
generate the compressed reconstruction, providing a visual
confirmation of memorization.

3.1. Soft Embedding Optimization for Image
Compression

The core idea behind MAGIC is optimizing a short, continu-
ous conditioning embedding e to reconstruct a given target
image I0. Specifically, we find e by minimizing reconstruc-
tion loss over the diffusion process. Let x0 = Eimg(I0)
represent the VAE-encoded image latent. Starting from a
generic embedding (e.g., encoding ”an image”), we itera-
tively update e to minimize the standard diffusion training
loss:

L(e) = Et,ϵ

[
1

2σ2
t

∥ϵ̂θ(xt, t, e)− ϵ∥22
]
, (1)

where ϵ ∼ N (0, I), t ∼ Uniform(1, T ), and xt =
√
ᾱtx0+√

1− ᾱtϵ. The full procedure is detailed in Algorithm 1.
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Table 1: Memorization Detection Results Across Metrics and Interventions. We compare the performance of MAGIC against existing
memorization detection methods, including Densityℓ2 (Carlini et al., 2023), DensitySSCD (Somepalli et al., 2023b), and TCNP (Wen
et al., 2024). Each column corresponds to a variant of the diffusion model (original or subjected to training-time or inference-time prompt
modifications). Each row reports the accuracy at a 5% false positive rate (FPR) for a specific method. All baseline methods rely on fixed
prompts, whereas MAGIC uses image-only compression. Darker green indicates higher detection performance (closer to 1.0), while
red/yellow indicates performance close to random guessing.

Method Original Enh-FT Recap-FT Enh-Prompt Recap-Prompt

DensitySSCD@SSCD = 0.5, n = 4 0.62 0.57 0.54 0.51 0.52

Accuracy (↑) at 5% FPR Threshold on Original

Densityℓ2 , n = 4 0.60 0.57 0.55 0.56 0.54
TCNP, n = 4 0.65 0.53 0.50 0.56 0.56

MAGIC (w/ L2 Norm) 0.73 0.72 0.52 0.73 0.73
MAGIC (w/ Token Length) 0.79 0.80 0.84 0.79 0.79
MAGIC (w/ Recon. Sim.) 0.81 0.79 0.73 0.81 0.81
MAGIC (All) 0.84 0.81 0.85 0.84 0.84

3.2. Variants of MAGIC

We test three variants of our method, each leveraging a
distinct property of the optimized embedding:

Embedding Norm (L2 Norm). This variant quantifies
memorization by measuring the Frobenius norm |e|F of the
optimized embedding, normalized by JPEG compression
size. Intuitively, a lower embedding norm indicates the
model requires less information to reconstruct the image,
suggesting stronger memorization. To ensure that the em-
bedding norm is minimized during the optimization process,
we apply L2 weight decay regularization during embedding
optimization.

Token Length (Compression Factor). Each embedding
e in Stable Diffusion has dimensions 512 × Ntokens (e.g.,
77 tokens). In this variant, we search for the minimum
number of tokens needed to achieve faithful image recon-
struction (SSCD score > 0.7). A smaller required token
count indicates stronger memorization.

Reconstruction Similarity (SSCD). This metric represents
the maximum achievable similarity (as measured by SSCD)
between the original and the reconstructed image, given the
full embedding dimension. A high SSCD score indicates
successful reconstruction and is therefore a direct indicator
of memorization capability.

Combined Metric (All). We also consider a combined ap-
proach (MAGIC All), where we jointly leverage embedding
norm, token length, and reconstruction similarity through
a logistic regression model trained on a validation set to
predict memorization.

3.3. Experiments and Results

We present a thorough evaluation of MAGIC and comparison
against state-of-the-art memorization detection methods:

Setup. The evaluation setup for this section extends from
the discussion about the limitations of existing memoriza-
tion metrics. Following established experimental setups
from recent literature (Carlini et al., 2023; Somepalli et al.,
2023b; Wen et al., 2024), we fine-tune Stable Diffusion
2.1 on 10,000 image-caption pairs from LAION. We then
choose the 100 most memorized images based on SSCD
score of the original and generated image. Since we use
SSCD to find the examples, we use a fixed threshold of 0.5
to report its accuracy, as opposed to finding the threshold at
5% FPR. We adapt all methods to use the SD v2.1 model.

Results in Table 1 indicate robustness to Interventions.
MAGIC maintains high accuracy and robustness against
training-time and inference-time textual interventions, sig-
nificantly outperforming prior caption-dependent methods.
MAGIC fundamentally shifts memorization auditing from a
reliance on fixed prompts towards directly probing model
capabilities. This offers (i) Robustness to prompt variabil-
ity: Independent of textual conditioning, making it resilient
to common real-world modifications; (ii) Practical scalabil-
ity: No requirement to access original training captions or
large datasets—only the diffusion model and target image.

4. Conclusion
We introduced MAGIC, a novel method for auditing mem-
orization in diffusion models by framing it as a generative
image compression task. Unlike prior metrics that relied
on prompts and failed under textual variations, MAGIC opti-
mized soft embeddings to test whether a model could recon-
struct an image from learned representations alone.

Empirically, MAGIC improved robustness and accuracy,
maintaining strong performance where existing methods de-
graded. It successfully identified memorized images missed
by other metrics and reduced false positives, providing a
scalable and reliable tool for auditing memorization.
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A. Related Work
Memorization in generative models, especially diffusion models, has become a critical area of research due to its implications
for privacy, security, and intellectual property rights. This section reviews prior work on analyzing, detecting, and mitigating
memorization in diffusion models, as well as technical perspectives on copyright protection in generative AI.

Memorization in Generative Models. Memorization has studied across classes of generative models such as GANs
and LLMs. Webster et al. (2019) and others showed that GANs can sometimes overfit and reproduce training examples,
proposing metrics to detect such behavior. In NLP, Carlini et al. (2019) was one of the first to demonstrated that large
language models can emit training data verbatim, raising privacy concerns. However, diffusion models differ substantially
in generation process (iterative noising/denoising) and conditioning mechanisms, rendering many existing techniques
inapplicable or ineffective. Early evidence of memorization in diffusion models was reported by Somepalli et al. (2023a),
who noted that models trained on extremely limited or duplicated data tend to regurgitate specific images. Subsequent
work by Carlini et al. (2023) provided a large-scale confirmation: they extracted dozens of exact training images from
Stable Diffusion by cleverly searching the latent space and prompt space. These studies established that diffusion models do
memorize some training images, especially those that are repeated in the data or have unique features.

Definitions and Detection of Memorization in Diffusion Models. Due to the continuous nature of image generation,
defining what constitutes memorization is non-trivial. A straightforward definition is that a model has memorized an image
if it can reproduce it with sufficiently high fidelity (e.g., low perceptual distance) when given the right prompt or latent
representation. This definition was operationalized by Carlini et al. (2023) by searching for prompts that yield images nearly
identical to known training examples. A key challenge is setting a similarity threshold — too strict a threshold misses cases
of near-memorization, while too lenient a threshold may flag merely similar outputs as memorized. Somepalli et al. (2023b)
and Wen et al. (2024) observed that certain rare prompt phrases or trigger words can consistently cause a model to output
the same image, effectively acting as keys to memorized content. Building on this, Wen et al. (2024) proposed an automated
test: if multiple generations with different random seeds for a given prompt yield nearly identical images, then the model
has memorized that content. Another related field is that of membership inference: given an image, determine if it was in the
training set (Shokri et al., 2017; Carlini et al., 2022). For diffusion models, the task is harder because the model does not
explicitly output training samples unless specifically prompted. Our compression-based approach can be seen as a type of
membership inference attack specialized for diffusion generative models.

Recently, (Jiang et al., 2025) introduced introduced Inversion-based Inference Perturbation (IIP), a framework for detecting
image-level memorization in diffusion models without relying on prompt information. InvMM (Ma et al., 2024) is another
inversion-based metric that quantifies image-level memorization in diffusion models by estimating the KL divergence
between sensitive latent noise distributions and a standard Gaussian prior. Both IIP and InvMM are computationally
intensive, making it less practical for large-scale applications.

Mitigating Memorization and Content Removal. Several works address how to prevent or limit memorization in
generative models. Chen et al. (2024) proposed strategies to train diffusion models that are less prone to memorizing
training data. Data pruning and de-duplication prior to training have been suggested to reduce overfitting on near-duplicate
images (Somepalli et al., 2023a; Carlini et al., 2023). Recently, techniques for concept erasure in diffusion models have
emerged. Lu et al. (2024) introduced MACE, a finetuning framework that uses targeted LoRA updates to remove the
ability to generate specific concepts from a model. Similarly, Chavhan et al. (2024) explored pruning or editing model
weights associated with memorized content, effectively ”forgetting” that content without retraining from scratch. These
approaches are complementary to ours: while they aim to scrub memorized data from models, our focus is on detecting and
characterizing memorization.

Ethical and Legal Perspectives. The ability of generative models to reproduce training images verbatim has direct
implications for copyright and privacy. Zhang et al. (2023) provided a technical perspective on copyright protection in
generative AI, discussing how models might infringe on intellectual property rights. Vyas & Abbe (2023) explored provable
copyright protection mechanisms for generative models. Our work falls under the broader umbrella of AI model auditing
and transparency, sometimes termed the ”blue team” approach in AI security: developing tools to ensure models behave
responsibly. We note that distinguishing memorization from mere style imitation is an open question: generative models
often learn to mimic artistic styles or compositions from training data without copying any single image exactly. This gray
area—between permissible inspiration and impermissible plagiarism—remains an area for future work and likely policy
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intervention.

B. Preliminaries on Diffusion Models
B.1. Diffusion Model Background and Notation

We briefly review the diffusion model setup. Given an image latent x0, the forward diffusion process progressively corrupts
it into a noisy latent xt:

q(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (2)

where ᾱt =
∏t

s=1(1 − βs) with a predefined variance schedule βs. The reverse (denoising) process employs a U-Net
parameterized by θ to predict noise ϵ given latent xt and text conditioning e:

ϵ̂θ(xt, t, e) ≈ ϵ, where xt =
√
ᾱtx0 +

√
1− ᾱtϵ. (3)

In text-to-image setups (e.g., Stable Diffusion), e typically originates from a CLIP-based text encoder. Critically, e need not
correspond to actual textual prompts—it can be directly optimized as a continuous representation, providing the basis for
our soft embedding approach.

C. More Details about MAGIC
Normalization via JPEG Compression. To account for the intrinsic complexity of images (i.e., some images inherently
compress better due to their simplicity), we normalize all our embedding metrics relative to JPEG compression size, a
“zero knowledge” baseline as introduced by Somepalli et al. (2023b). This normalization helps control for the inherent
compressibility of an image, thus isolating the memorization signal more accurately.

The Importance of Initialization. In order to converge to the solution fast, we notice that initializing the text guidance
with the actual prompt of the image can be extremely beneficial. In particular, by assuming access to either the (i) original
text associated with caption; or (ii) a VLM generated caption of an image, we can significantly speed up the optimization
process. This observation both points to a practical strategy to yield the best results out of MAGIC, but also an important
limitation of the optimization process itself, which would be of interest for future work.

C.1. Visualization of the Soft Prompt Optimization

In Figures 2 and 3, we show how the Soft Embedding Optimization method proceeds for different Token Length values,
on one example from the memorized and non-memorized set each. For the memorized example in Figure 2, we see that
token length of 8 onwards start producing a similar looking final image as the target image. It also shows that increasing the
number of tokens beyond a certain point does not help much in improving the quality of the final reconstruction. However, in
Figure 3, we see that for all different token lengths, the final image is still quite different from the target image in both details
and style. This implies that no such soft embedding was found by the optimization algorithm that would elicit generation of
this target image easily.

D. How much copyrighted content do frontier models memorize?
D.1. Audited Characters from Major Copyright Holders

We systematically selected the top ten most popular characters or images from each copyright holder using Google image
search queries. For reproducibility, the exact characters used in our audit are listed below.

Marvel Characters

Thanos, Deadpool, Doctor Strange, Wolverine, Black Panther, Hulk, Thor, Iron Man, Captain America, Spiderman

Pokémon Characters

Pikachu, Charizard, Mewtwo, Eevee, Snorlax, Jigglypuff, Gengar, Bulbasaur, Squirtle, Charmander
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Figure 2: Soft Prompt Optimization Process for varying Token Lengths for an image from the Memorized Set.

Disney Characters

Mickey Mouse, Minnie Mouse, Goofy, Donald Duck, Simba, Elsa (Frozen), Woody (Toy Story), Ariel (The Little
Mermaid), Buzz Lightyear, Belle

New Characters

Envy, Anxiety, Ennui, Embarassment (from Inside Out 2), Pecharunt (Pokemon), Ironheart Riri, Maystorm (Marvel),
Grape (Nintendo)

All image selections were performed in May 2025, capturing current search-engine popularity, and the first image appearing
on Google image results was consistently chosen.

Having redefined memorization detection through generative image compression (Section 3), we now leverage our approach
to empirically audit memorization in frontier diffusion models, focusing on popular copyrighted characters. Unlike prior
methods, which depend heavily on static image-caption pairs and fail to reliably detect memorization under minor textual
perturbations (Section 2), MAGIC robustly identifies memorization purely based on image content. Using the thresholds
established in Section 3.3 (corresponding to a 5% FPR), we perform a rigorous evaluation on a systematically curated set of
iconic images representing major intellectual properties.

Specifically, we evaluate ten popular and recognizable characters or images from each of the following major copyright
holders: Pokémon, Disney, and Nintendo. Images are selected using standard Google searches (the first image result for
each character), simulating plausible and common scenarios of memorization in publicly-trained models.
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Figure 3: Soft Prompt Optimization Process for varying Token Lengths for an image from the Non-Memorized Set.

Figure 4 summarizes our findings. We observe substantial memorization across all tested copyright holders. Notably, Marvel
exhibits the highest number of memorized instances (9 out of 10), closely followed by Pokémon and Disney, each with 8
instances memorized.

Importantly, our evaluation reveals that certain images, like iconic depictions of characters (e.g., Batman or Pikachu),
have been memorized multiple times under various different captions. This insight highlights a crucial limitation of
prior caption-dependent metrics (Wen et al., 2024; Carlini et al., 2023), which cannot effectively handle such real-world
memorization scenarios.

This analysis underscores the pressing need for robust memorization auditing tools, particularly in light of ongoing lawsuits,
such as the well-known litigation against Stability AI by artists and corporations alleging unauthorized reproduction of
protected content (Sustainable Technology Partners, 2023). By quantifying memorization concretely and independently from
textual conditioning, MAGIC provides valuable transparency for regulatory scrutiny, legal contexts, and ethical development
of generative AI technologies.

E. Future Work and Limitations
Several promising directions arise from our work. First, extending MAGIC to other generative modeling paradigms, such as
video (like SORA) or 3D generative models, is an immediate and compelling avenue. Given the increasing prominence and
potential privacy implications of these modalities, adapting our compression-based auditing framework could significantly
advance the understanding and control of memorization across diverse media types. Second, our method currently focuses
strictly on exact or near-exact image reconstructions. This specificity may miss nuanced forms of memorization, such as
semantic or stylistic memorization, which may also carry significant ethical implications. Examining partial or semantic-level
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Figure 4: How much copyrighted content does SD-2.1 memorize based on the copyright holder? We take the top 10 most
famous copyrighted characters for each of the above companies, and then use MAGIC on those images to test whether they
were memorized by the diffusion model. We find that more than 50% of copyrighted characters were memorized by the
model.

Original 16 tokens 32 tokens 64 tokens

MAGIC

Figure 5: Examples of Memorized Instances Detected by MAGIC. One representative memorized image per company
as detected by our proposed method. The images shown were faithfully regenerated by frontier diffusion models, clearly
illustrating the practical importance of auditing memorization.

memorization remains a critical next step. Third, MAGIC still requires iterative optimization, especially if initialized poorly
or without prior textual guidance. Future work optimizing this process could make the optimization process more reliable
and fast.
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