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Abstract

While data augmentation is widely used to train symmetry-agnostic models, it remains
unclear how quickly and effectively they learn to respect symmetries. We investigate this
by deriving a principled measure of equivariance error that, for convex losses, calculates
the percent of total loss attributable to imperfections in learned symmetry. We focus our
empirical investigation to 3D-rotation equivariance on high-dimensional molecular tasks
(flow matching, force field prediction, denoising voxels) and find that models rapidly be-
come nearly equivariant within 1k-10k training steps, a result robust to model and dataset
size. This happens because learning 3D-rotational equivariance is an easier learning task,
with a smoother and better-conditioned loss landscape, than the main prediction task. We
then theoretically characterize learning dynamics for models that are nearly equivariant,
as “stochastic equivariant learning dynamics”, via analyses that also hold beyond 3D ro-
tations. For 3D rotations, the loss penalty for non-equivariant models is small throughout
training, so they may achieve lower test loss than equivariant models per GPU-hour unless
the equivariant “efficiency gap” is narrowed.

1 Introduction

Machine learning modeling of molecules — generative modeling, property prediction, simulating dynamics, etc.
— holds great potential for advancing scientific discovery and human health via therapeutics. Molecules are
three-dimensional physical entities whose biochemical properties are invariant or equivariant to 3D rotations’.
To model these symmetries, two approaches are common: 1) use symmetry-respecting neural architectures,
or 2) training symmetry-agnostic models with data augmentation, wherein training samples are randomly
transformed by the symmetry group. This choice is made at the start of any molecular modeling project and
can have a significant impact on engineering, training, and model performance, yet there has been a lack of
clarity on when to prefer which approach.

3D-rotational equivariant architectures use sophisticated tensor operations to maintain equivariance (

, ), achieve loss scaling curves similar to non-equivariant models ( , ; ,

), and are more parameter efficient than non-equivariant models on spherical image tasks ( ,

). Yet they can be much slower (10x-100x) than non-equivariant models? ( , ;

, ; , ), and they can be harder to optimize based on findings that breaking exact
equivariance improves learning ( , ; , ; , ).
We call this the efficiency gap, arising both from optimization speed (training steps per second) and ease
(loss reduction per training step) Meanwhile, recent work achieve strong performance on molecular machine
learning tasks using non-equivariant architectures with data augmentation ( , ;

) ) ) ) ) )

To answer “are symmetry-respecting architectures worth it?”, one powerful principle is: wuse the model
that achieves better held-out loss. In a fixed amount of GPU-hours, non-equivariant models could incur
“unnecessary” equivariance error leading to higher loss, but equivariant models may achieve worse test
loss due to the efficiency gap. In fact, we suggest the loss penalty vs. efficiency gap tradeoff is a general

* Co-first author; tCorresponding author
IMolecules also have symmetries to translation, which are commonly handled by centering molecule positions.
2Slowness is also partially from less optimized code and GPU kernels.
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Figure 1: Overview of the paper. (a) Schematic of twisting and twirling, which underpin a principled measure of
equivariance error. (b) Loss decomposition by Taylor expansion around the twirled prediction. (c) Loss landscapes
for each loss component at early model checkpoints (step=500). (d) Architectures of three non-equivariant models
studied here. (e) For MSE loss, the loss decomposition holds exactly, enabling computing the percent validation loss
from equivariance error, which is plotted by training step in three settings.

explanatory framework. This work focuses on equivariance, because on rotation-invariant tasks like property
prediction, symmetry-respecting architectures are relatively uncontroversial (Shoghi et al., 2024; Gasteiger
et al., 2022; Nowara et al., 2025b): they have a minimal efficiency gap to symmetry-agnostic architectures
as rotation-invariant features are informative and fast to compute, and standard deep learning operations
easily preserve rotation invariance. In contrast, consider set permutation invariance where the symmetry-
respecting architecture is the norm. This can be explained by observing that set transformers have minimal
efficiency gap to symmetry-agnostic transformers, as set transformers simply ignore positional embeddings.

While it is possible to directly compare efficiency gaps to loss penalties from imperfect symmetry, this is
easily confounded by implementation details. To provide a more fundamental insight, we instead isolate
and quantify a key source of potential underperformance in symmetry-agnostic models. We develop tools
to investigate: what is the percent of a symmetry-agnostic model’s loss that comes only from its failure
to be perfectly equivariant? (§2, Fig. 1A-B) In an idealized setting (ignoring efficiency differences), this
characterizes the counterfactual error reduction if we had trained a symmetry-respecting model instead. In
light of efficiency gaps for 3D-rotational equivariance, this metric quantifies how small the efficiency gap
must become for equivariant models to outperform non-equivariant models.

In this work, we focus our empirical investigations to three high-dimensional (R*" — R3") molecular learning
tasks satisfying 3D-rotational equivariance — flow matching, molecular dynamics force field prediction, and
denoising voxelized atomic densities (§3, Fig. 1D). We decompose the total loss with data augmentation
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L(0) = Limean(?) + Lequiv(0), where Lequiv captures all information about deviance from exact equivariance.
In particular, for exact equivariant models, the loss relation is £(6) = Liean(0), i-e., Lequiv = 0. We find:

(i) Equivariance error shrinks rapidly (1k-10k training steps; minutes). Models quickly become nearly
equivariant, with equivariance error shrinking below 1% of the loss (Fig. 1E). This occurs because Lequiv
is a significantly easier learning task than Li,can: the loss landscape for Lequiv is significantly smoother
and better conditioned (Fig. 1C). Strikingly, this is robust to model size, training set size, batch size, and
optimizer: we find it with standard batch sizes as well as batch size 1, on training sets of 1M molecules to
as small as 500 molecules, and on model sizes of 1M and 400M.

In §4, we theoretically characterize learning dynamics for nearly equivariant models. We analyze the rela-
tionships between the losses Lmean; Lequiv, the gradients V.Lcan, VLequiv, and the parameters 6 = 0g + 0¢ 1.
in the subspace of exactly equivariant functions and its orthogonal component. This analysis is not specific
to 3D rotations.

(ii) Stochastic equivariant learning dynamics For nearly equivariant models, we can have VL(6) =~
VLmean(8). The learning gradients approximate the gradients of exactly equivariant models. Minibatch
noise can cause fluctuations in Lequiv, yet equivariance error remains small (<10% of loss). During this
phase, the parameters € can be close to 0g — for the modern graph transformer architecture EScAIP, we
prove that Lequiv has a globally-valid quadratic relationship with ||6g ||.

2 Measuring Equivariance & Loss Decompositions

Let f : RP — RP be a learnable function and let G be a compact group, for instance of 3D rotations.
We consider T as the matrix representation of the action of G on RP. A function f is G-equivariant if it
commutes with all transformations 7' € G, such that for any input € R, we have f(T(z)) = T(f(z)),
also written (f oT)(x) = (T o f)(z). Rearranging, we observe that a perfectly equivariant function satisfies,
for all z, T

(T~ o foT)(z) = f(z) (1)

We call (T~ 1o foT)(x) the twisted prediction for z, from the twisted function T~1o foT. To produce a twisted
prediction® on molecules, we sample a random rotation, use it to rotate the input molecule, pass this through
the function, and un-rotate the output. The un-rotation step re-aligns the output to the “original frame” of
the input molecule, which provides a canonical frame to compare the impact of different transformations on
the output.

In contrast to a perfectly equivariant function, a non-equivariant function must have some distinct transfor-
mations Ty, T» where the twisted prediction is different: (T, o foTy)(z) # (Ty ' o f o Ty)(x). This property
motivates analyzing the distribution of twisted predictions over a uniform distribution on the group, which
is the usual choice for data augmentation. For a given x:

Z,(T) 2 (T o foT)(x), T ~ Uniform(G) (2)

Its first central moment u(x) is the group-averaged, or twirled prediction.

pwa) £ Er((T™" o f o T)(x)] 3)

By the twirling formula, p(z) is perfectly G-equivariant ( , ). The second central moment
of the twisted random variable is the covariance: Covy (Zy(T)) = Er [(Zo(T) — i(2))(Zo(T) — p(x))"]. The
total variance — the trace of the covariance matrix — is a natural measure of equivariance error:

3The name reflects a physical intuition of introducing a twist in the middle of a rope with fixed endpoints: approaching the
middle, the rope twists, and after the middle, it untwists.
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ZEr (T o fo T)(w) — (o)) (®)

This quantity measures the variance of the twisted predictions around their equivariant mean. An important
property is that it is zero if and only if the function is perfectly equivariant. Higher moments of Z,(T") likewise
capture multivariate generalizations of skewness and kurtosis of the equivariance error.

Twirling serves as a simple yet powerful postprocessing operation to transform any learned function into an
equivariant one at test time. For convex losses, the loss of a twirled model is always less than or equal to
the loss of the original model, by Jensen’s inequality. The expectation can be estimated via Monte Carlo
sampling. On 3D molecule learning tasks, we find that neural networks are typically smooth enough that
only five to ten rotation samples are necessary to achieve a stable estimate of the twirled prediction. Ideas
like this have been explored in ( ); ( ). Preprocessing inputs
to a canonical frame is another simple yet powerful postprocessing operation to convert any function into
an equivariant one ( , : ,

2.1 Loss decomposition

Twisting and twirling provide machinery to understand a function’s behavior around group actions. We can
extend this machinery to analyze losses used to train models under random data augmentation, where each
training point is randomly rotated. Let the data distribution p(x,%) and loss function [ : RP? x RP? — R
be invariant to G. That is, the joint data distribution p(x,y) for any transformation T' € G satisfies:
p(z,y) = p(T(x),T(y)) and for any predictions z and targets y, and for all T € G: (T(2),T(y)) = I(z,y).
These conditions imply that the loss-optimal model is equivariant, and that: I((f o T)(z),T(y)) =I((T"' o
foT)(x),y). The total loss over all data and transformations is:

L(f) & oy [((T™ 0 f o T)(2),y)] ()

We perform a Taylor expansion of the total loss around the twirled prediction p(z), and obtain terms
involving central moments of the twisted random variable:

L(f) = Euyll(u(x),y)] + %Ez,y [tr (Hi(u(2), y)Covr (T~ o f o T)(2)]) | +O([18]1%)

twirled prediction error

equivariance error

where § = (T~Yo foT)(z) — u(x), Hi(u,y) is the D x D Hessian matrix of the loss with respect to its first
argument, and Covy is a D x D covariance matrix over the distribution of transformations 7.

Proposition 1. Ifl(z,y) = %HZ —y||? is mean-squared error, then the total loss decomposes as:
L(f) = Eoy[l(p(2), )] + 5Ear [T~ 0 f o T)(2) = u(@)]?].

For MSE loss, our Taylor expansion reduces to a version of bias-variance decomposition. The equivariance
error is identical to equation 4 because MSE loss places equal weight on all dimensions. These two terms
are central objects of study, so we name them:

Limecan £ ]Ex,y[l(,u(z)v y)} (6)
Ecquiv = %EE,T [H(Tﬁl © f o T)(.T) - M(x)”?] (7)

Percent of loss from equivariance error. Denoting model parameters as 6, under MSE loss, we can
express the total loss exactly as £(0) = Liean(0) + Lequiv(f). As all three terms are strictly non-negative,
this implies:
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Lequiv(0
% MSE loss from equivariance error = '3212‘))() (8)
We can further define a generalized measure of the percent of loss from equivariance error for any convex
loss function with non-negative outputs. By Jensen’s inequality, we have Lyean(8) < £(6) and both terms
are non-negative. Furthermore, the two terms are equal if and only if the model is exactly equivariant. This
implies:

% loss from equivariance error = £0) = Lmean(9) (9)
L(0)

Our derivations provide a principled framework for measuring and understanding degrees of learned equiv-

arfance. An important property is that for exactly equivariant architectures, Lequiv(f) = 0, so that

L(0) = Limean(P). We remark that sometimes, non-equivariant models may be trained without data aug-

mentation, so that this decomposition may not apply on the training loss. We stress that as long as we aim

for these models to behave in an equivariant manner, then the loss decomposition is valid for held-out loss.

3 Experiments

To gain insight into the empirical learning behavior of non-equivariant models, we apply our loss decom-
position framework to three high-dimensional learning problems on 3D molecules, each with a distinct task
and a modern non-equivariant model architecture. For each task, we follow the standard training procedure
described in its original publication. Notably, all tasks use a mean-squared error loss, so our framework
provides an exact decomposition of £(f) into Lmean and Lequiv- We report both of these metrics, as well as
the percentage of the total loss attributable to the model’s lack of equivariance, on a validation set over the
course of training. We provide complete details on methods in §D.

o Neural Interatomic Potential (NNIP): We consider force prediction with EScAIP (
, ), a graph transformer architecture. The model predicts a 3D force vector for each atom
based on density functional theory, mapping an input molecule with N atoms to an output in R3Y. This
task is physically equivariant to the special orthogonal group SO(3) acting on atom coordinates in R3.

o Probabilistic Flow Matching: We study a generative modeling task with Proteina ( ,

), a transformer-based architecture with similarities to AlphaFold3. The model learns to approximate

the velocity field of a probability flow that transforms random noise into structured protein backbones. For

a molecule with N alpha carbon atoms, the network maps noised atom coordinates and a time ¢ € [0, 1] to

a velocity vector in R3V. The learning task is made rotationally equivariant through data augmentation,
aligning it with SO(3) acting on atom coordinates in R3.

o Denoising Voxelized Atomic Densities: We analyze a denoising autoencoder task with VoxMol (

, ; , ), a non-equivariant 3D convolutional neural network. Molecules
are represented as densities in a cubic voxel grid. For a grid length ¢ and a atom types, the input and
output are tensors of shape [g, ¢, g,a]. This learning task is made rotationally equivariant through data
augmentation using 16 axis-preserving 90-degree rotations of a cube, which do not introduce discretization
artifacts due to aliasing. These rotations are a subset of the full octohedral group O.

3.1 Force field prediction with EScAIP

We trained EScAIP 6M on a subset of SPICE with 950k training examples used by

( ) for 30 epochs with batch size 64. SPICE is a dataset with of small molecule 3D conformers with
energies and forces computed by quantum-mechanical density functional theory ( , ). We
varied model size from 1M, 4M and 6M, varied training set size from 950k, 50k, 5k, and 500 (with batch size
1), and varied the optimizer or learning rate. We observe the following:
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e« Equivariance is learned early and quickly, in a manner robust to training set size, model
size, and optimizer and learning rate. The percent validation loss from equivariance error rapidly
plummets in the first stage of training to under 0.1% within 1k-10k training steps (Fig. 2A-B). Notably,
this speed is independent of epoch or training set size - with a 950k training set, this occurs 25% through
the first epoch. Training with 500 datapoints with batch size 1, this occurs at the fourth epoch. The dip
is least affected by changing model size (Fig. 2E), and most affected by the optimizer and learning rate
(Fig. 2F).

¢ Equivariance is learned quickly because its an easier learning task than the main prediction
task. The loss landscape (Fig. 1C) for the equivariance error is much smoother and better conditioned,
with a 1,000x lower condition number, than the loss landscape for the twirled prediction error.

e After a near-universal dip, percent loss from equivariance error can increase mildly. In the
default setting, the percent increases from 0.1% to 0.3%. This is explained by a plateau in the equivariance
error while the twirled prediction error continues to decrease (Fig. 2C).

e« Typical models converge to being nearly equivariant, with percent validation loss from
equivariance error under 0.1%. The exception is training on 500 or 5k examples only: equivariance
error continues to increase as training progresses, whereas equivariance error decreases in the long-term
for larger training set sizes (Fig. 2D, Supp. Fig. 6).

Force field prediction with EScAIP
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Figure 2: Training dynamics of learning equivariance in EScAIP (Force field prediction). (a-c) Validation losses and
percent validation loss from equivariance error during training, early in training (a), with log-log axes (b), and
decomposed into separate terms (c¢). (d-f) Impact of varying training set size (d), model size (e), and optimizer or
learning rate (f).

3.2 Flow matching with Proteina

We trained Proteina at 60M without triangular attention and 400M with triangular attention on the full
Protein databank (PDB) dataset with 225k training examples. We also trained models on 1% of the PDB
with 2k examples and 0.1% with 200 examples. Flow matching trains a model jointly over ¢, flow matching
time, ranging from ¢ = 0 for noise and ¢t = 1 for data. We measure metrics at ¢t = 0,0.2,0.4,0.6,0.8,0.9,0.95,
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Flow matching with Proteina
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Figure 3: Training dynamics of learning equivariance in Proteina (Flow matching). Colors indicate flow matching

time, with noise at ¢ = 0 and data at t = 1. (a) Percent validation loss from equivariance error during training. (b)
Bar plot of the percent validation loss from equivariance error, by flow matching time, at a final checkpoint after 1M
training steps. (c-d) Validation losses by training step. (e-h) Impact of varying model size (e), training set size (f-h).

and 0.99, and use red colors for high ¢ close to the data, and blue-purple colors for low ¢ near noise in Figure
3. We observe the following:

e The equivariance learning dip occurs early for all ¢, in a manner robust to training set size
and model size. Following the dip at 1k-10k training steps (Fig. 3A), low ¢ (closer to noise) are more
equivariant, while high ¢ (closer to data) are less equivariant, with spikes to 10% validation loss from
equivariance error for ¢t € [0.8,0.9,0.95]. This holds for the 400M model (Fig. 3E), and 60M model
trained on 1% and 0.1% of the PDB (Fig. 3F-H). The dip occurs 4% through one epoch when trained on
the full PDB, but occurs around epoch 53 when trained on 0.1% of the PDB.

e After training, the model is approximately equivariant for all ¢, but less so around ¢t = 0.9.
After one million training steps, the percent validation loss by ¢ is plotted in Fig. 3B. The percent loss
peaks at t = 0.9 at 6%, and is relatively lower at the extremes ¢ = 0.99 at 3% and ¢ = 0 at 0.04%.
Task difficulty (measured by MSE loss) is harder at lower ¢ (Fig. 3C), so ¢t = 0.9 obtains low absolute
equivariance error (Fig. 3D), but also low twirled prediction error.

3.3 Denoising voxelized atomic densities with VoxMol

We trained VoxMol 111M on GEOM-drugs, a dataset of 3D structures of drug-like molecules with 1.1M
training examples. We also trained models on 1% (11k), 10% (110k), 25% (275k), and 50% (550k) examples,
and and models of varying size: full (111 M parameters), small (28 M), and tiny (7 M).. We observe:

e The equivariance learning dip occurs early for all ¢, in a manner robust to training set and
model size. Across the training set sizes, all models rapidly reduce their percent validation loss from
equivariance error from an initial 60% to 3% or less within 1k-10k training steps (Fig. 4A-B). At 50k
training steps, models have around 5-10% validation loss from equivariance error. Beyond 50k training
steps, the twirled prediction error continues to decrease while the equivariance error plateaus, or decreases
more slowly, below le-5 (Fig. 4C).
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Figure 4: Training dynamics of learning equivariance in VoxMol (Denoising voxelized atomic densities). (a) Percent
validation loss from equivariance error during training. (b-c) Validation losses by training step.

3.4 Loss Landscape Analysis

To better understand the initial dip, we studied loss landscapes for Lyean and Lequiv at early checkpoints
(500 steps). We computed the Hessian of each loss on a training batch for a subset of 33k parameters
including non-linear layers for EScAIP, 1.5k parameters in Proteina’s linear head, and 6.9k parameters in
a final layer of VoxMol. For EScAIP, we measured condition numbers of 1e9 for Lyean and 1e6 for Lequiv
(1,000x smaller). For Proteina, we measured 2e10 for Lyean and 1e8 for Lequiv (100x smaller). For VoxMol,
we measured 5e9 and 6e8 respectively (10x smaller). We calculate condition numbers for Lean and Lequiv
using the largest positive and smallest positive eigenvalues for each loss. For loss landscape plotting, we
chose two axes for plotting using the largest positive and smallest positive eigenvector on the total loss, and
used the same step size and grid for Liycan and Lequiv. In both models, we find that Lequiv has a substantially
smoother loss landscape than Lcan (Fig. 1C).

3.5 Do Latent Representations Learn to Respect Equivariance?

The three model architectures studied here have substantial differences (Fig. 1D), yet they display some
similarities in their training dynamics of learning equivariance. A natural question is whether their latent

representations learn to respect equivariance during training. We provide analysis here, with further details
in §D.

« EScAIP’s latent representation is rotation-invariant. EScAIP uses rotation-invariant features, and
all intermediate layers maintain rotation-invariance. Thus, the final representation is exactly rotation-
invariant by design (Fig. 1D). Note that the whole architecture is not invariant or equivariant due to the
final prediction head (see eq. 14).

o Proteina’s latent representation is approximately equivariant. The architecture acts directly
on 3D C-alpha coordinates, and does not use rotation-invariant or equivariant features. Its final latent
sequence representation is mapped by a linear head into the model output (Fig. 1D). Thus, when the
model is empirically approximately equivariant, the final latent is also approximately equivariant.

e VoxMol’s latent representations are not equivariant nor invariant. Unlike EScAIP and Proteina
where first-principles reasoning suffices, we had to study VoxMol empirically. To evaluate if latents were
equivariant, for an input molecule and a given rotation, we measured the cosine similarity between the
rotated latent, and the latent of the rotated molecule. We found a median of 0.6, comparable to the cosine
similarity between latents of different molecules, indicating a lack of equivariance (Fig. 9). To evaluate
if latents were invariant, we measured the cosine similarity between the latents of different rotations of
the same molecule as 0.64, which is statistically significantly higher but with a small effect size than the
cosine similarity between latents of different molecules at 0.58.
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4 Learning Dynamics when Lequiv < Lmean

Our empirical results revealed a two-phase learning process, starting with a rapid initial reduction in equiv-
ariance error. What happens once the model is approximately equivariant, i.e., when Lequiv < Lmean? In
this section, we investigate the implications this has on learning dynamics, focusing on three fundamental
quantities illustrated in Figure 5: the relative magnitudes of the loss components (Lequiv VS. Lmean), the
norms of their respective gradients (||VLequiv|| V8. [|[VLmeanl|), and the model’s parameter deviation from
the subspace of perfectly equivariant functions (f¢, ). By analyzing this interplay, we characterize the second
stage of learning, which we call stochastic equivariant learning dynamics.

['equiv (9) VS. Emean (9)

IV Lequiv(@)] V. |V Lmean (0)]]

Figure 5: Diagram of theoretical relationships studied here.
We summarize our results as:

e Props. 2, 3: Under mild conditions, we prove lower bounds on the gradient purity in terms of the loss
ratio. As the loss ratio shrinks, the worst possible gradient purity increases, so that learning gradients
focus more on Lycan-

o Props. 4, 5: We show that ||0¢ || has a quadratic relationship with Lequiv(6) for EScAIP, a modern graph
transformer architecture.

o Prop. 6: We show that when ||0¢ | is small, ||V Lequiv(0)| cannot be too large.
4.1 Smaller loss ratios imply purer learning gradients

Under MSE loss, our loss decomposition also applies to gradients:

VL(0) = VLmean(0) + VLequiv(0) (10)

Denote the relative loss ratio from equivariance error as:

é ACequiv (9)

O = e (®)

(11)

This quantity is closely related to the percentage of total loss from equivariance error (which is 1_7_(60()0) ). Ase(0)

shrinks, it is plausible that V Liyean (€) can increasingly dominate V.L(#), so that we have VL(0) = VL ean ().

We will formalize this gradient alignment in terms of €(f) in a two-stage analysis. To gain theoretical insights
into the optimization dynamics, we study the ideal, full-batch gradients including exact expectations over
the symmetry group. First, we derive a general result that holds everywhere in parameter space but can be
vacuous near critical points. Second, we show a result that holds near global optima. Importantly, we show
both results in mild conditions that hold for typical deep neural networks. Together, these results show that
broadly, when €(f) becomes smaller, learning gradients on the total loss become increasingly pure towards
the group-averaged prediction task, indicating that non-equivariant models increasingly adopt equivariant
learning dynamics as their approximate equivariance improves.
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Our first result relies only on a mild smoothness assumption on the loss ratio €(), a condition satisfied for
typical neural networks.

Proposition 2. Let €(f) be M.-smooth. For the MSE loss, the approzimation VL(0) = VLpean(0) holds
with relative error bounded by:

VL) — VLomean ()]

< ‘Cmean(e)
IVLmean@O)  —

IV Limean(O)]

e(0) + 2M€(0) (12)

Proof. Provided in C.2 O

In well-behaved regions where the gradient norm ||£pean(0)|| is large (i.e., where learning does not plateau or
stall), when €() becomes small, the learning gradient becomes increasingly pure at focusing on the group-
averaged learning task. While this upper bound holds globally, it becomes less meaningful near saddle
points of Lean Where the loss value can be large, but the gradient norm can become very small. In such
situations, when ¢(6) # 0, the equivariance error gradient can assist in escaping these undesired saddle points
or suboptimal local minima of Ly ean.

In the basin of attraction of global optima where Lycan () = 0, we can derive another bound on the learning
gradient purity. This bound also relies on mild assumptions satisfied by typical deep neural networks, and
avoids the coefficient that explodes when ||Lmean(8)] — 0.

Proposition 3. Let the model fo be a deep neural network constructed from analytic activation functions,
and let the data distribution p(x,y) have compact support. In the basin of atltraction of a global minimum
0* where Lpean(0*) =0, for the MSE loss, the approxzimation VL(0) & VL ean(0) holds with relative error
bounded by:

||V£(9) - VEme(m(Q)H 2M Eequiv(o)
VL@ = \/> N Zonean(0® (13)

where M s the resulting smoothness constant of Lequiv(6), and ¢ > 0, o € [1,2) are the constants of the
Kurdyka-Lojasiewicz (KL) inequality that Loean(0) is guaranteed to satisfy.

Proof. Provided in §C.3. O

Experimental validation. Our theory suggests that when the loss ratio is small, the gradient norm ratio
is also small. We empirically investigated this and found strong log-log correlations of Pearson R = 0.75
over training in EScAIP, and R = 0.41 to 0.90 for Proteina at ¢t > 0.2. The only exception was Proteina at
t = 0, which had negative correlation of -0.32.

4.2 Parameter space decomposition

In the proceeding analysis, we adopt ( )’s mathematical framework for analyzing neu-
ral network parameters in terms of equivaraint and non-equivariant parameter subspaces, which enables
expressing parameters into orthogonal components: § = 0¢ + 0¢ . In this framework, the total parameter
space of a neural network is shown to have a subspace £ corresponding to perfectly equivariant functions. It
is shown that under mild conditions, the total parameter space is an inner product space, and £ is a linear
subspace, which together enable the orthogonal decomposition 8 = 0¢ + 0¢, . This framework is shown to
apply to a broad class of modern neural network operations and architectures, including fully connected
layers with non-linearities, convolutions, residual connections, and attention layers. It also includes a broad
class of symmetry groups including SO(3) and all groups studied in this work. We provide more detail in
§A.1 and refer the interested reader to ( ).

10
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4.3 Relating equivariance error to the deviation from equivariant parameter subspace

We will study the relationship between Lequiv and ||0g 1 ||. In general for neural networks, Lequiv is a complex,
highly non-linear function of § = 6¢ 4 0¢ . However, we know that Lquiv i non-negative, continuous, and
equal to zero iff ¢, = 0. By these properties, we know that if ||fg || is small, then Lequiv is small. More
formally, for any € > 0, there exists a § > 0 such that if the parameter deviation is small (||fg || < J), then
the equivariance error is also small (Lequiv < €).

We will be able to make a stronger statement specifically for the EScAIP architecture, a modern graph
transformer architecture that achieved strong results on NNIP energy and force prediction tasks (

, ). The EScAIP architecture uses rotation-invariant features derived from an input
molecular graph. Its hidden representations for atoms and edges, denoted h, are rotation-invariant through-
out the network. Force prediction outputs a 3D force vector at each atom in a molecule. For a single atom
with a set of 3D edge vectors E (the vectors pointing from one atom to another atom) in a molecule ,
EScAIP predicts force vectors as:

O e - WxTh(e,x)
oy| = |ey-wyTh(e,x) (14)
0, ecE | e, - w,Th(e, x)

where e € R?, h(e,x) € R" is the last hidden representation of the edge e in molecule &, and W =
[Wx, Wy, W], where each w € R", are the parameters for a linear head with no bias. The 3D edge vectors e
are rotation-equivariant with respect to the input molecule, while the hidden representation h(e) is rotation-
invariant to the input molecule, but composing these to form the output prediction generally breaks both
invariance and equivariance.

In particular, force predictions are equivariant if and only if the scalar projections of the hidden features are
independent of the coordinate axis, i.e., wxTh(e,x) = wyTh(e,x) = w,Th(e, x), for all inputs. Under the
mild assumption of a non-degenerate learned embedding function h(e,x), such that the set of all possible
hidden vectors spans the feature space, this condition holds if and only if the parameter vectors themselves
are identical: wyx = wy = w,. This condition defines the subspace £ for the EScalP architecture. Using this,
we decompose W = W +Wg | with an equivariant part Wg = [w, w, w] € £ where w = %(wx +Wy+Wy),
and a non-equivariant part We | = [d, d,, d.] € £L where d, = wx — w, and same for y, 2.

With this setup, we can now establish that the equivariance error of the EScalP architecture has a quadratic
relationship with the magnitude of the parameter deviation from &, the space of perfectly equivariant func-
tions.

Theorem 4. For the EScAIP architecture trained with mean-squared error loss on a non-degenerate dataset,
for any fixed set of upstream parameters 0\ W , there exist positive constants 0 < Apin < Amaz (Which depend
on the model architecture, data distribution, and other parameters 6 \ W ) such that:

>\min . ||W£L||%" S Eequiv(e) S >\mam . HWEL”%‘ (15)
Proof. Provided in C.4. O

We can generalize the preceding analysis to a broader class of neural networks. Applying a Taylor expansion
t0 Lequiv(f) for the neural net f on an input x, we have: f(z;0g +0g1) = f(z;0g) + Jo,, f(z;0g) - 01 +
O(||0s1|]?) where Jg, , f(z;0¢) is the Jacobian of the network output with respect to parameter components
Og1, evaluated at fg. The key structure, analogous to the EScAIP argument, is the decomposition of the
neural net output into a purely equivariant term, and a term linear in f¢ , as well as a remainder term in
this setting. With this setup, for a broad class of neural network architectures, we can relate locally near £
that Lequiv is quadratic in ||fg1 || (Thm. 5), and its grad norm is linear in ||fg || (Thm. C.6).

Theorem 5. For any neural network whose parameters can be expressed as 0 = Og + 0g, with 0 € &
and 0g, € EL, and for equivariance error L.q., defined by the variance of the output with respect to

11
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transformations, there exist positive constants 0 < Amin < Amaz Such that for a non-degenerate dataset,
using || - || to denote La-norm:

Aminl|fe L1 + O10e LIP) < Leguio(0) < AmaalleL[|* + O(I0eL[*) (16)

Proof. Provided in C.5. O

Theorem 6. Under the same conditions as Thm. 5, the norm of the gradient of the equivariance loss
with respect to the non-equivariant parameters is bounded by the deviation itself. Specifically, there exists a
constant C' such that:

Vo, Lequin(@)| < C - [|0sL]|

Proof. Provided in C.6. O

5 Related Work

Prior work have measured learned equivariance with a wide variety of approaches ( , ;

, ), but to our knowledge, this work is the first to derive a measure of equivariance error that is

interpreted as a percent of loss. Notably, many prior measures effectively estimate equivariance error as
a pairwise deviation using only two samples per datapoint, whereas we estimate variance around a mean
using enough samples of the twisted prediction as necessary to obtain stable estimates.
( ) use the variance of the normalized twisted prediction, but this is not interpretable as a percent of
loss. They study flow matching, but their metric conflates task difficulty, which gets easier as t — 1, with
equivariance error. We correct for this issue, and find that ¢ = 0.9 is the most problematic time for non-
equivariance, whereas they find ¢ = 0.5 instead. ( ) find that relaxing architectures from
exact equivariance improves loss landscape conditioning and achieves better loss than perfectly equivariant
architectures on image super-resolution and fluid dynamics modeling.

)

6 Discussion

In this work, we found that 3D-rotational equivariance is learned easily and quickly. We described a two-phase
learning dynamic: initially, model rapidly learn equivariance. This occurs because learning equivariance is
an easier task, with a smoother and better-conditioned loss landscape, than the main prediction task. We
then theoretically analyzed learning dynamics for nearly equivariant models. After training, the final percent
loss from equivariance error is small for all models, but it is notably smaller for EScAIP at 0.006% than for
Proteina and VoxMol (< 5%). While all of these loss penalties are small, and easily remedied by test-time
postprocessing techniques like twirling or input frame canonicalization, this observation may also motivate
research on architecture design to narrow this gap.

Intriguingly, equivariance is learned rapidly despite significant differences in model architectures. EScAIP is
“nearly equivariant”, as it becomes exactly equivariant with only a small change to its final linear head, yet
its initial dip occurs just as quickly as Proteina and VoxMol, which are distant from being architecturally
equivariant. It is also interesting that each model’s latents learn (or fail to learn) to respect symmetries in
different ways.

Our work establishes a principled and unified framework for quantifying equivariance error in relation to the
loss. We focused our empirical study on 3D rotations, as this is a physically important symmetry group for
biomolecules, but other symmetry groups may be easier or harder to learn. Looking forward, our framework
could be used to study the learning dynamics of equivariance on other symmetry groups.

12
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A Appendix

A.1 Parameter space decomposition

Here, we describe in greater detail ( )’s mathematical framework for analyzing the
geometry of neural network parameters in terms of equivariant and non-equivariant parameter subspaces.

The foundation of this framework is the representation of a network’s parameters in all of its linear layers as a
point in a high-dimensional vector space, denoted H. This captures the dominant set of learnable parameters
when non-linearities are fixed. The space is formally constructed as the direct sum of the parameter spaces
for each individual layer: H = €, Hom(X;, X;41). Specific network architectures are assumed to have
parameters in an affine subspace £ C H, referred to as the space of "admissible layers". This setup is shown
by construction to be expressive and capable of describing many modern neural network architectures and
operations, including fully connected layers, convolutions, residual connections, and attention layers.

To define equivariance for a multi-layer network, the framework supposes that the symmetry group G acts
on all input, hidden, and output spaces (Xo, X1, ..., X1) through a series of representations, p;. With this
setup, the set of all parameter configurations where each linear layer is individually equivariant forms a
linear subspace of H, denoted Hg. This set is a linear subspace because the group actions p;(g) is a linear
operator, which means any linear combination of equivariant linear maps remains equivariant. For instance
in the setting of rotations on 3D molecules, consider a linear layer with matrix A with a rotation matrix R
— if it is equivariant, we have ARx = RAx. If A and B are both equivariant to R, then C' = ¢1 A + 2B is
also equivariant to R: RCx = R(c1A + coB)x = (1A + ¢coB)Rx = CRx. Hg is thus a linear subspace that
is closed under addition and scalar multiplication.

Algebraic manipulations show that TC;z = C;Tz, using:

TCix =T(c14; + caB;)x
=1 A;Tx + coB;Tx
= (c14; + 2B;)Tx
=CTx

This subspace’s linearity follows from the group’s actions being linear transformations.

The parameters that are both architecturally admissible and perfectly equivariant then lie in the intersection
of these spaces, & = L N Hq. It further follows that if non-linearities are equivariant, which is true for the
common case of nonlinearities applied element-wise, then the entire neural network function is equivariant
when its parameters are in £.

This geometric structure guarantees that any admissible parameters 6 in £ can be uniquely decomposed via
orthogonal projection into two components: 8 = 0¢ +6¢, . This is possible because H being an inner product
space allows for a unique projection onto the tangent space of the subspace £. The component ¢ is the
projection of the parameters onto the subspace of equivariant functions (£), while ¢, is the component in
the orthogonal complement of this subspace, representing deviation from perfect equivariance.
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Figure 8: Proteina: Percent validation loss from equivariance error vs. grad norm ratio, over training, by flow
matching time. Colored line indicates smoothed exponential moving average, colored by training step.
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C Proofs

C.1 Proof of Proposition 1

Proposition. Ifl(z,y) = 5|z — y||? is mean-squared error, then the total loss decomposes as:

£() = Eaallp(2), )] + Sy
—_——

D
Z Varr[(T™' o f o T)(z);] (17)

prediction error

equivariance error

Proof. For mean-squared error, the Hessian is constant: H;(z,y) = %I where I is the D x D identity
matrix. Furthermore, higher-order derivatives are zero, so the decomposition has no additional terms. The
equivariance error simplifies as:

%Ew {tr (<12)1> Covrl.. ])] _ %Ew [tr (Covrl...]) (18)
O

C.2 Proof of Proposition 2

Proposition. Let e(6) be M,.-smooth. For the MSE loss, the approzimation VL(0) = V L ean(0) holds with
relative error bounded by:

HVﬁ(@) — V‘Cmean(e)n ‘Cmeanw)
<€)+ =~ V2M(6 19
RZZ G R 7T )
Proof. The total loss gradient is £(0) = (1 + €(0)) Liean()-

VL) = V[(1+ €(0))Lmean(0)] (20)
= Ve(0)Lmean(0) + (1 4 €(0))V Linecan () (21)
VL) — VLmean(0) = €(0)V Linean (0) + Limean (0) Ve(H) (22)

Now, we bound the norm of this difference using the triangle inequality:
IVL(0) = VLmean (0) ]| < €(0)[|V Lmean (0) || + Linean(0) [ Ve(O)]] (23)

Using the smoothness assumption that ||e(0)|| < y/2M.e(0), we obtain the final result:

||V£(9) — v‘Cmean(e)u ¢ M -
Wl = O WLt V2 (24)

C.3 Proof of Proposition 3

Proposition 7. Let the model fy be a deep neural network constructed from analytic activation functions,
and let the data distribution p(x,y) have compact support. In the basin of attraction of a global minimum
0* where Lean(0*) =0, for the MSE loss, the approxzimation VL(0) & VL ean(0) holds with relative error
bounded by:
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6 — mean 0 2M equiv 0
IVL(O) = VEmeanO)l . [2M [ Lequin(©) (25)
||v£mean(9)” c Emean(e)a
where M is the resulting smoothness constant of Lequin(0), and ¢ > 0, a € [1,2) are the constants of the
Kurdyka-Lojasiewicz (KL) inequality that Loyean(0) is guaranteed to satisfy.

Proof. The network fy is a composition of analytic functions, making it analytic in 6. Further, the loss
functions Lequivs Lmean preserve analyticity. Thus, both are also analytic functions of 6. Lequiv is thus
M-smooth for some constant M in any compact parameter set. A foundational result states that any real-
analytic function satisfies the Kurdyka-F.ojasiewicz inequality ( , ; , ).
From the M-smoothness of Lequiv(6), we have: ||V Lequiv(0)||* < 2M - Loquiv(0). From the KL condition on
Lmean (), we have: ||V Lmean(0)||? > ¢ Liean(0)® for some constants ¢ > 0 and « € [1,2) in the basin. The
result follows from combining these properties. O

C.4 Proof of Proposition 4

Theorem. For the EScAIP architecture trained with mean-squared error loss on a non-degenerate dataset,
for any fized set of upstream parameters 0 \ W, there exist positive constants 0 < Apin < Apmagz Such that:

Amin * ||WEJ-||% < ‘Cequiv(e) < Amaz HWSJ-”%? (26)

Remarks. The constants Ani, and A\p,.x depend on the model architecture, data distribution, and other
parameters 6 \ W.

Proof. For a molecule x, the k-th component of the predicted force vector decomposes into a sum of contri-
butions from Wg and Wge | :

on(@;W) =3 e - (@ h(e) + > ex - (d]h(e) (27)

eckE eckE

Ocq,k(x;We) Aoy (z;We 1)

where the final hidden representation h depends on 6 \ W, the set of upstream parameters. Recall the
equivariance error from Proposition 1, and observe that the variance of oy = 0.y + Aoy depends only on
Aoy, as 0¢q is equivariant by construction. Thus, the equivariance error of the entire model, for a fixed set
of upstream parameters and expressed as a function of the force prediction head parameters, is:

Lequiv(ﬁ) = ]Eac,T [HAO(T?E, ng) — ET/ [AO(T’%; WgL)]”z]

Now, let us denote: g(T,z,Wg ) =T "1Ao(Tx;Wge,). Observe that this function g is linear in our deviation
parameters Wg | . By vectorizing the hx 3 parameter matrix Wg into a 3hx1 column vector p = vec(Wg ),
we can express this linear relationship as a matrix-vector product, for some matrix My, with shape 3 x 3h:
g(T,2,Wg, ) = My ,p. Similarly, the rotation-averaged prediction g(x; We1) = Ep[g(T, z, We )] is also a
linear function, so we associate it with the matrix M,. The equivariance error term with these linear matrix
forms is:

E.r[lg(T, 2, Wey1) — g(z, We1)[|’] = p"Op (28)
where the matrix Q = E, r[(Mrp, — Mm)T(MT’w — M,)]. Finally, observe that Q is positive definite, as the

as equivariance error is strictly positive on a non-degenerate dataset whenever We | # 0. By the properties
of a positive definite matrix, the quadratic form pTOp is lower-bounded by the smallest eigenvalue of Q,
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denoted Apin(Q), which is positive. It is also upper bounded by the largest eigenvalue Aar(Q). This
establishes the quadratic relationship on the equivariance loss as stated in the theorem.

O

C.5 Proof of Proposition 5

Theorem. For any neural network whose parameters can be expressed as 0 = Og + 0g, with 0 € £ and
O, € EL, there exist positive constants 0 < A\pin < Amaz Such that for a non-degenerate dataset:

/\mm|‘9€¢\§ + O(|0£L|g) S £equi'u(9) S >\m(w|9€L‘§ + O(W&‘LB) (29)

Proof. Applying a Taylor expansion to Lequiv(f) for the neural net f on an input z around equivariant
parameters ¢, we have:

f@;0s +0s1) = f2:0) + Joo, f(2;0¢)0s1 + O([|0c1]%) (30)

where Jy, | f(x;0¢) is the Jacobian of the network output with respect to parameter components ¢ , evalu-
ated at fg. As before, the term f(x;60¢) is equivariant by construction, and thus drops out of the equivariance
error term. The term Jy,  f(x;0s)0s is linear in Og , which creates a quadratic dependence on g in the
variance term in Lequiv-

The deviation from the twirled mean is the difference between the canonicalized prediction and its average
over transformations. Let’s expand this difference:

(T™" o fo T)(a;0) — ula;0) = (T~ o f o T)(w:6) — Ep[(T'~ o f 0 T")(230)] (31)

Substituting the Taylor series and using the equivariance of f(x;0¢):

= (f(x;0) + [T~ J0s 1 f(T(x); 0¢)]0c1 + O(|6e L *))
—Ep [f(x, Oc) + [T J0g L (T (2);0¢))0s + O(|9£J_|2)] (32)
= (T " Jo,, f(T(2);0¢) — B/ [T'"" J0g L f(T'(x); 0¢)]) 01 + OO |*) (33)

Let Adyr =& T Vs, f(T(2);0¢) — Ep/[T" "1y, f(T'(x);0¢)]. The expression becomes AJ, r - 0z +
O([1e L 11%)-

1

Lequiv(0) = HEor [|ATz 7 - 0p1 + Ol0s 1)) (34)
1

= BB AL 0L P + 2(Adar - 0e1)TO(0e 1 ) + 10(0e 1 )] (35)

The orders of the terms are:

o ATz - 01| is O(]|0sL]?).
e The cross-term is O(||0gL||) - O(||0e1]|?) = O(||0cL||?).
 The final term is (O(||0e1 %)% = O(||0e L ||*)-

We will study the leading term, which is quadratic in fg, and subsume the remainder into O(||6sL ).
As AJ, 1 is a linear function, we can define a matrix Q that represents the averaged outer product of the
Jacobian deviations: Q@ £ LE, 1 [(AJy, )" (AJ,,r)]. The equivariance error can now be expressed concisely:

22



Under review as submission to TMLR

‘Cequiv(eﬁ' + HEJ_) ~ 9&_ Qeé‘l (36)

The matrix Q is positive definite for a non-degenerate dataset when ¢, # 0. Using the Rayleigh-Ritz
theorem, this quadratic form is thus bounded by the smallest and largest eigenvalues:

Amin||0s 1 |13 < 0F, Q01 < Amaxl|fe1 ]2

Reincorporating the remainder term in our Taylor expression, we arrive at:

Aminlfe 1[5+ O(10e1L13) < Loquiv(0) < AmaxlfeL]3 + O(|0s1[3) (37)

C.6 Proof of Proposition 6

Theorem 8. Under the same conditions as the Taylor expansion theorem above, the norm of the gradient
of the equivariance loss with respect to the non-equivariant parameters is bounded by the deviation itself.
Specifically, there exists a constant C' such that:

Vo, Lequin(@)| < C - [|0sL]|

Proof. From previous theorems, we know Lequiv(d) ~ pT Op, where p = vec(fg1). The gradient of a
quadratic form is linear: VpLequiv = 29p. Taking norms, we get ||V Lequiv]l = [129p] < 2||Q|/||lp]|. Setting
C = 2\ naz o1 2||Q]|2 gives the result. O

D Code Availability, Methods & Experimental Details

Code repository for this project: <tbd> Our code repositories are minor modifications on the original
codebases. We added callbacks to track metrics during training, added configuration files for controlling
training, and added helper scripts for computing and plotting some metrics.

D.1 EScAIP

We trained EScAIP 6M on a subset of SPICE with 950k training examples used by

( ) for 30 epochs with batch size 64. SPICE is a dataset with of small molecule 3D conformers with
energies and forces computed by quantum-mechanical density functional theory ( , ). We
varied model size from 1M, 4M and 6M, varied training set size from 950k, 50k, 5k, and 500 (with batch
size 1), and varied the optimizer or learning rate. The model predicts a 3D force vector for each atom based
on density functional theory, mapping an input molecule with N atoms to an output in R3V. This task is
physically equivariant to the special orthogonal group SO(3) acting on atom coordinates in R?.

We follow the same training recipe as the original repository, which does not use data augmentation. We
suspect that data augmentation is not as important for EScAIP because it operates on rotation-invariant
features.

For further details and configuration files, please refer to our code repository.

D.2 Proteina

We trained Proteina at 60M without triangular attention and 400M with triangular attention on the full
Protein databank (PDB) dataset with 225k training examples. We also trained models on 1% of the PDB
with 2k examples and 0.1% with 200 examples. Flow matching trains a model jointly over ¢, flow matching
time, ranging from ¢ = 0 for noise and ¢t = 1 for data. We measure metrics at ¢t = 0,0.2,0.4,0.6,0.8,0.9,0.95,
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and 0.99, and use red colors for high ¢ close to the data, and blue-purple colors for low ¢ near noise in Figure
3. The model learns to approximate the velocity field of a probability flow that transforms random noise
into structured protein backbones. For a molecule with N alpha carbon atoms, the network maps noised
atom coordinates and a time ¢ € [0,1] to a velocity vector in R*¥. The learning task is made rotationally
equivariant through data augmentation, aligning it with SO(3) acting on atom coordinates in R?.

For further details and configuration files, please refer to our code repository.

D.3 VoxMol

Following ( ), we represent each molecule using a 3D voxel grid by placing a continuous
Gaussian density at each atom’s position. Each atom type is assigned a distinct input channel, producing a
4D tensor of shape [c¢ x I X I x {], where ¢ denotes the number of atom types and [ is the edge length of the
voxel grid. The voxel values are normalized between 0 and 1.

The denoising task arises from the use of walk-jump sampling for generating molecules (

). This uses a two-step score-based sampling method. The “walk” phase involves running % steps of
Langevin Markov chain Monte Carlo on a randomly initialized noisy voxel grid, simulating a stochastic
trajectory along a manifold. The “jump” phase applies a denoising autoencoder (DAE) to clean up the noisy
sample using a forward pass of the trained model at step k. The DAE is trained on voxelized molecules
corrupted with isotropic Gaussian noise, with a mean squared error (MSE) loss between prediction and
ground truth. WJS provides a fast alternative to diffusion models by requiring only a single noise and
denoise step ( , ; , ).

Architecture The VoxMol architecture is based on a 3D U-Net with convolutional layers spanning four

resolution scales, and includes self-attention modules at the two coarsest levels ( ). During
training, data augmentation is performed by applying random rotations and translations to each sample.
For further architectural and training details, refer to ( ).

Measuring whether latent representations learn to respect equivariance To evaluate whether
VoxMol learns equivariant latent features, we analyze cosine similarity between latent embeddings under
two scenarios.

First, we examine representations of the same molecule under rotation. Let x be a molecule and Ry a
discrete rotation operator (e.g., 90° around an axis). Using the encoder ¢(-) € REXPXHXW "with O = 512
and spatial dimensions 8 x 8 x 8, we define the spatially pooled latent vector:

5 = o S G0l d b

d,h,w

We then compute: B B
silllsame = cos ($(Rr(x)), Ri(9(x)))

This measures whether encoding a rotated molecule is equivalent to rotating the latent vector of the original
input—a key signature of learned equivariance.

Second, to obtain a baseline, we compute cosine similarities between embeddings of randomly selected dif-
ferent molecules: ~ ~
simgjg = cos (qﬁ(xi), (;S(xj)) . with x; # x;

We compute these metrics across 1000 molecules for various rotation angles along all three axes. Cosine
similarities are calculated over the 512-dimensional latent vectors and visualized using violin plots to capture
the distributional differences in Figure 9.

Findings. Cosine similarity between rotated versions of the same molecule tends to decrease as rotation

angle increases, reflecting imperfect latent equivariance. While same-molecule embeddings remain more
similar to each other than to embeddings of different molecules, the overlap between their distributions
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grows with rotation. This suggests that although the encoder partially preserves geometric structure, the
latent space does not fully achieve rotation equivariance, indicating potential for improved regularization or
architectural design.

Cosine Similarity of Latent Embeddings
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Figure 9: VoxMol: Cosine similarity of molecule latent representations with different rotations. x, y, z indicate
rotation axes, and numbers 0, 0.5, 1, 1.5, 2 correspond to 0, 90, 180, 270, 360 degrees of rotation. The last column
depicts cosine similarity between different molecules.

D.4 Metrics

To compute equivariance error, twirled prediction, error, percent MSE loss from equivariance error, and
gradient norms, 10 rotations per sample were used in EScAIP and Proteina. This number was found to
be sufficient to provide a stable signal for metrics which was robust to randomness and resampling. For
EScAIP, these metrics were computed on the first four (fixed) validation batches with batch size of 16, for a
total of 64 samples. For Proteina, these metrics were computed on the first eight (fixed) validation batches
with batch size of 3, for a total of 24 samples. The total MSE loss on these subsets was indicative of the
total validation MSE loss, indicating these sample sizes were sufficient to provide a stable and representative
signal for these metrics.

To plot the loss landscape, we selected a subset of parameters in each architecture. For EScAIP, we used
the final FFN (with a non-linearity) and the final linear head, for a combined total of 33k parameters. For
Proteina, we used the final linear head with 1.5k parameters. We computed the Hessian of this parame-
ter subset for the total MSE loss using one fixed training batch with ten rotations. We then performed
eigendecomposition of the total MSE loss Hessian to find the eigenvectors for the largest positive eigenvalue,
and minimum positive eigenvalue, which formed the two axes for plotting the loss landscape. We selected
a step size approximately 2-3x the training step size at that checkpoint, which is estimated by multiplying
the training learning rate with the total parameter gradient norm at that checkpoint. We then create a 2D
grid of perturbations to the parameter subset, and compute Lycan and Lequiv at each point on the grid.
Importantly, the axes and the step size are the same for both Li,can and Lequiv-

To compute the condition numbers, we computed the Hessian of the same parameter subsets for £ ¢, and
Lequiv separately, and performed eigendecomposition on them separately. We reported the condition number
as the ratio between the largest positive eigenvalue and the minimum positive eigenvalue.
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