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Abstract
Attention is a fundamental component behind
the remarkable achievements of large language
models (LLMs). However, our current under-
standing of the attention mechanism, especially
regarding how attention distributions are estab-
lished, remains limited. Inspired by recent studies
that explore the presence of attention sink in the
initial token, which receives disproportionately
large attention scores despite their lack of seman-
tic importance, this work delves deeper into this
phenomenon. We aim to provide a more pro-
found understanding of the existence of attention
sinks within LLMs and to uncover ways to en-
hance the achievable accuracy of LLMs by di-
rectly optimizing the attention distributions, with-
out the need for weight finetuning. Specifically,
this work begins with comprehensive visualiza-
tions of the attention distributions in LLMs during
inference across various inputs and tasks. Based
on these visualizations, to the best of our knowl-
edge, we are the first to discover that (1) attention
sinks occur not only at the start of sequences but
also within later tokens of the input, and (2) not
all attention sinks have a positive impact on the
achievable accuracy of LLMs. Building upon
our findings, we propose a training-free Atten-
tion Calibration Technique (ACT) that automati-
cally optimizes the attention distributions on the
fly during inference in an input-adaptive manner.
Extensive experiments validate that ACT consis-
tently enhances the accuracy of various LLMs
across different applications. Specifically, ACT
achieves an average improvement of up to 7.30%
in accuracy across different datasets when applied
to Llama-30B. Our code is available at https:
//github.com/GATECH-EIC/ACT.
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1. Introduction
In recent days, large language models (LLMs) have garnered
significant attention due to their impressive performance
across a wide range of tasks (Touvron et al., 2023a;b; Ope-
nAI, 2023a; Waisberg et al., 2023; Fu et al., 2023; OpenAI,
2023b). One of the key components contributing to the re-
markable performance of LLMs is the attention mechanism,
which effectively identifies relationships among tokens in a
sequence. This ability enables LLMs to comprehend intri-
cate contexts and details, greatly enhancing their capacity to
process and generate text that closely resembles human lan-
guage (Vaswani et al., 2017; Radford et al., 2018). However,
despite the immense potential of the attention mechanism,
our current understanding of how attention distributions are
established and their relationship to the achievable perfor-
mance of LLMs remains inadequately explored.

Along this direction, a pioneering study, StreamLLM (Xiao
et al., 2023), has undertaken an initial investigation and
improved our understanding of attention distributions by
uncovering the existence of attention sinks. In particular,
they find that the initial token of an input text receives a
disproportionately large attention score, despite often lack-
ing semantic significance. This phenomenon arises from
the visibility of the initial token to almost all subsequent
tokens in autoregressive language modeling, causing them
to become the recipients of these “unnecessary” attention
values. Motivated by the impact of attention sinks on atten-
tion distributions, we aim to delve deeper into their general
existence to gain a better understanding of how they affect
LLMs’ reasoning and generation capabilities. This, in turn,
will inspire new strategies to enhance the achievable accu-
racy of LLMs. To achieve this goal, we pose the following
three intriguing research questions: Q1: Does an attention
sink only exist in the initial token? Q2: Will preserving
attention sinks always benefit LLMs’ accuracy in different
scenarios? Q3: Can we enhance LLMs’ accuracy by solely
manipulating attention sinks without any weight finetuning?

In our endeavor to address the aforementioned three ques-
tions, we make the following contributions:

• We conduct comprehensive visualizations of the atten-
tion distributions in LLMs across a variety of tasks
and inputs. To the best of our knowledge, we are the
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first to discover that attention sinks manifest not only
in the initial token but also within subsequent tokens
throughout the input context. Intriguingly, similar to
the attention sink observed in the initial token by (Xiao
et al., 2023), attention sinks in later tokens also tend to
be concentrated on tokens of less semantic importance.

• Excited by the above observation, we further probe into
the relationship between attention sinks at different
locations and the accuracy of the generated content at
those respective locations. Interestingly, we discover
that not all attention sinks have a positive impact on
maintaining LLMs’ performance, which complements
the findings in (Xiao et al., 2023).

• Leveraging the findings above, we have developed a
training-free Attention Calibration Technique, named
ACT, that automatically optimizes attention distribu-
tions on the fly during inference in an input-adaptive
manner, improving the achievable accuracy of pre-
trained LLMs on downstream tasks. Additionally, it
can even lead to a comparable accuracy as compared
to the commonly used in-context learning technique,
and further be combined with the latter for boosted ac-
curacy. As such, our ACT has provided an alternative
new design knob for LLM enhancement.

• Extensive experiments and ablation studies validate
that our proposed method can achieve up to a 7.30%
higher accuracy than the vanilla inference baseline
across various tasks. Furthermore, ACT is capable of
improving LLMs’ performance in challenging multi-
round conversation tasks. Specifically, applying ACT
to different variants of Llama2 boosts the achievable
score by up to 0.13 on the challenging MT-Bench
dataset.

2. Related Works
2.1. Large language models
Transformer-based language models (Vaswani et al., 2017;
Devlin et al., 2018; Raffel et al., 2020; Roberts et al., 2022)
have demonstrated their remarkable ability to effectively
extract relationships among tokens from complex input se-
quences, thanks to the utilization of the attention mechanism
in their model architecture. Furthermore, their attention-
centric design enables decent scalability (Qin et al., 2023;
Kaplan et al., 2020; Biderman et al., 2023): as the model
size and pretraining dataset scale increase, the performance
of transformer-based language models continues to improve.
This phenomenon has given rise to the emergence of LLMs.
One of the earliest impressive LLMs is GPT-3 (Brown et al.,
2020), which showcases remarkable zero-shot and few-
shot in-context learning capabilities. This achievement has
further fueled the development of various LLMs, such as
OPT (Zhang et al., 2022), Llama (Touvron et al., 2023a),
Llama2 (Touvron et al., 2023b), BLOOM (Workshop et al.,

2022), GPT-J (Wang & Komatsuzaki, 2021), Pythia (Bi-
derman et al., 2023), and GLM (Du et al., 2021). These
models have further pushed the boundaries of deep learn-
ing, gradually moving us toward achieving artificial general
intelligence.

2.2. Parameter-efficient tuning
Despite the promising zero-shot and few-shot capabilities
of LLMs, one common approach to achieving strong perfor-
mance in real-world applications is to finetune pretrained
LLMs for downstream tasks. However, the enormous size of
LLMs makes traditional weight tuning computationally ex-
pensive, requiring significant storage and memory overhead.
To address this challenge, various parameter-efficient tuning
(PET) methods have been proposed (Hu et al., 2021; Lester
et al., 2021; Zhang et al., 2020; Sung et al., 2022; Yu et al.,
2023a; Fu et al., 2022). Specifically, instead of updating
all parameters in the target LLM, PET selectively updates a
small set of learnable modules during finetuning (Qi et al.,
2023; Xia et al., 2024; Zhao et al., 2024; Yu et al., 2023b;
2024; Zhang et al., 2023a; Li et al., 2023). While PET
methods can reduce computational, storage, and memory
overheads, even state-of-the-art (SOTA) PET methods still
face challenges in efficiently finetuning LLMs (Dettmers
et al., 2023). Our proposed method is orthogonal to PET:
we aim to enhance the performance of LLMs by directly op-
timizing attention distributions on the fly during inference,
eliminating the need for weight finetuning.

2.3. Observations regarding LLMs’ attention
Despite being one of the key components of LLMs, the
understanding of the attention mechanism has been slow
to evolve compared to the rapid advancement of LLMs
themselves. Early works focus on studying attention in
small-scale transformers. For instance, (Clark et al., 2019b)
visualizes specific types of attention patterns in pretrained
BERT (Devlin et al., 2018), and (Vig, 2019) identifies biases
and localized relevant attention heads. Additionally, (Sun &
Lu, 2020) discovers that the degree of association between
a word token and a class label affects their attention score.
However, the exploration of the unique attention distribution
in LLMs with larger model sizes and datasets is still in
its infancy. Along this trajectory, some pioneering works
have made interesting observations related to the attention
mechanism in LLMs. For instance, (Kou et al., 2023) finds
that the attention distribution in LLMs differs from that in
humans, and (Zhang et al., 2023b) observes that increasing
the attention score of manually defined tokens at specific
heads can improve LLMs’ ability to follow instructions.
However, determining the relationship between attention
distributions and the achievable performance of LLMs, as
well as automating the enhancement of LLMs’ performance
by calibrating attention distributions during inference, still
remain open challenges.
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Figure 1. Upper: Visualization of the averaged attention maps across all heads and layers of Llama2-7B-chat on different datasets. Lower:
Visualization of the averaged attention maps across all heads in each layer when processing a sample from SST2 with Llama2-7B-chat.
Identified attention sinks in the averaged attention map from SST2 are bounded with green boxes.

3. Preliminaries
LLMs and multi-head attention. LLMs (Touvron et al.,
2023a; Brown et al., 2020; OpenAI, 2023b) are typically
constructed by stacking L transformer blocks, each com-
prising a feed-forward network (FFN) and a multi-head
attention (MHA) module that captures the pairwise rela-
tionships among all N input tokens in the input sequence.
Specifically, for a given input Xl ∈ RN×d to the l-th block,
the output feature Fl

h ∈ RN×d generated at head h can be
represented as:

Al
h = Softmax

(
f l
Q(X

l) · f l
K(Xl)T

√
dk

)
,

Fl
h = Al

h · f l
V (X

l),

(1)

where f l
Q, f l

K , and f l
V are projection layers, dk = d/h is

the embedding dimension of each head, and Al
h ∈ RN×N

is the attention map generated at head h. Each element
Al

h[i, j] represents the relationship between the i-th and
j-th tokens in Xl. The attention score is defined as alh =

[
∑i

j=1 A
l
h[i, j]/i, ∀i ∈ {1, · · · , N}], and alh[i] denotes the

attention score for the i-th token at head h, layer l.

Next, the features Fl
h of each head h are combined to gen-

erate the output Ol of MHA by

Ol = f l
O(Concat(F

l
1, · · · ,Fl

h)), (2)

where f l
O represents a projection layer. In the remainder

of this paper, we primarily utilize the distribution of Al
h

generated by various inputs Xl for all h and l within the

LLM as the key knob to address the three research questions
outlined in Sec. 1.

StreamLLM and the attention sink. StreamLLM (Xiao
et al., 2023) identifies the presence of an attention sink,
which is a token that receives a significantly higher atten-
tion score than other tokens but provides limited semantic
information. StreamLLM observes that the attention sink
only exists in the initial token and suggests always preserv-
ing these tokens when processing long input sequences to
prevent forgetting.

4. Unveil and Harness Hidden Attention Sinks
Overview. We aim to investigate the general existence of
attention sinks and explore their impact on the reasoning
and generation process of LLMs. To achieve this goal, we
adopt a deductive approach by sequentially addressing three
intriguing research questions outlined in Sec. 1: Firstly, we
address Q1 to investigate whether attention sinks are limited
to the initial token or if they persist in various locations,
as discussed in Sec. 4.1. Secondly, we explore Q2 to shed
light on the effects of these identified attention sinks on
the achievable accuracy of LLMs, as discussed in Sec. 4.2.
Finally, building upon the findings gained from Q1 and Q2,
we address Q3 by developing the ACT to enhance the perfor-
mance of LLMs in a training-free manner during inference,
as discussed in Sec. 4.3. Unless otherwise specified, for the
remainder of this section, our exploration is based on one of
the SOTA LLMs, Llama2-7B-chat (Touvron et al., 2023b).
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Table 1. Frequency of tokens appear with significantly higher at-
tention scores.

Token name ‘< s >’ ’.’ ‘< 0x0A >’ ‘:’ ‘Answer’

Frequency 1621135 958992 636902 65078 46297
Ratio 48.2% 28.5% 18.9% 1.9% 1.3%

Token name ‘ ’ ‘Type’ ‘iment’ ‘D’ Total

Frequency 21841 4430 3896 2644 3363296
Ratio 0.6% 0.1% 0.1% 0.1% 100%

4.1. Q1: Do attention sinks only exist in the initial
token?

The attention sink has been observed at the initial token
of LLMs (Xiao et al., 2023). However, the presence and
distribution of attention sinks in later tokens remain an open
yet crucial question, especially considering that these tokens
contain ample semantic information. Therefore, our objec-
tive is to investigate the overall existence of attention sinks
that consistently draw significant attention across the entire
input sequence.

Settings. To address Q1, we first visualize two metrics:
(1) the averaged attention maps across all heads and lay-
ers, denoted as (

∑H
h=1

∑L
l=1 A

l
h)/(H · L), on different

datasets, and (2) the averaged attention maps of each layer,
i.e., (

∑H
h=1 A

l
h)/H), when processing a single input sam-

ple, as illustrated in Fig. 1. Additional visualizations on
various datasets and models can be found in Appendix C.
To generalize these observations across a larger range of
datasets, we first visualize the distribution of token-wise at-
tention scores across different datasets to validate the signif-
icant gap between high-attention and normal tokens. We fur-
ther determine that the i-th token has a significantly higher
attention score if alh[i] > α/N (i.e., more than α times the
average attention score) and is considered an attention sink.
Specifically, we set α = 5 based on our upcoming visualiza-
tion in Fig. 2 unless otherwise specified. We summarize the
frequency of tokens exhibiting significantly higher attention
scores across all samples in a mixed dataset comprising 100
samples collected from each of the 18 datasets mentioned
in Sec. 5.1.

Observations. We can draw the following observations
from Fig. 1: Obs-(1) several tokens consistently attract sig-
nificantly higher attention values than other tokens. More-
over, as visualized in Fig. 2, the distribution of high-
attention tokens’ attention values has a notable boundary
with those of other tokens across different datasets, validat-
ing that the difference in attention scores between identified
high-attention tokens and other tokens is significant; Obs-(2)
as illustrated in Table 1, aside from the initial token <S>,
which corresponds exactly to the attention sink observed
in StreamLLM (Xiao et al., 2023), there also exist a non-
trivial number of other attention sinks that contain limited
semantic information (e.g., “.”, “:”, and “< 0x0A >”), yet
frequently draw significantly higher attention scores at vari-

Figure 2. Attention score distribution of the initial token (i.e., the
attention sink observed in StreamLLM (Xiao et al., 2023)), non-
initial high attention tokens, and other tokens for classification
tasks (top) and multiple-choice tasks (bottom).
ous locations; and Obs-(3) attention sinks often manifest in
the intermediate layers of LLMs, while the first two layers
exhibit more evenly distributed attention scores, and the
final layer focuses more on local information with diagonal
attention patterns.

Our answer to Q1. In complement to the observations
made in StreamLLM, we conclude that attention sinks are
found not only in the initial token but also in later tokens,
particularly during the intermediate layers of LLMs.

4.2. Q2: Will preserving attention sinks always benefit
LLMs’ accuracy in different scenarios?

Considering that the newly identified attention sinks in later
tokens, with their substantial attention values, divert a sig-
nificant portion of attention away from other non-attention-
sink tokens, it is imperative to investigate the impact of
this notable diversion on the reasoning and generation ca-
pabilities of LLMs. While StreamLLM (Xiao et al., 2023)
suggests preserving the attention sink of the initial token,
it remains unclear whether preserving later attention sinks
also enhances the accuracy of LLMs. Therefore, in this
subsection, we delve into the impact of attention sinks on
LLMs’ accuracy in downstream tasks.

Settings. We make a heuristic attempt to verify the influence
of attention sinks by decreasing the attention scores of each
attention head associated with attention sinks and examining
whether this can enhance the accuracy achieved by LLMs
on the MMLU dataset (Hendrycks et al., 2020). Taking into
account the various layer-wise attention patterns discussed
in Sec. 4.1-Obs-(3), we only apply this operation to attention
heads between the third layer and the second-to-last layer.

To effectively reduce the attention scores of attention sink
tokens and leverage the reduced attention scores to improve
the achievable performance of the target LLM by distribut-

4



Unveiling and Harnessing Hidden Attention Sinks

ing them across other tokens, we propose a simple calibra-
tion technique comprising three steps:

1. Identify a set of attention sink tokens Sl
h = {t ∈

{1, · · · , T} | alh[t] > α · 1/N}, where α = 5 by
default.

2. Reduce the attention scores of attention sinks located in
later tokens by setting Âl

h[k, s] = Al
h[k, s]× β for all

s ∈ Sl
h for each row k in the attention map Al

h, where
β is a hyperparameter controlling the extent to which
we want to eliminate the excessive attention scores of
attention sinks.

3. To leverage the reduced attention scores, we pro-
pose to maintain the target LLM’s original atten-
tion distribution to preserve token-wise relation-
ships while slightly increasing the attention scores
to enforce greater focus on the semantic infor-
mation of non-attention sink tokens by setting
Âl

h[k, s] = Al
h[k, t] + (

∑
s∈Sl

h
Âl

h[k, s]−Al
h[k, s])×

Al
h[k, t]

∑
i∈1,··· ,T−Sl

h
Al

h[k, i] for all s /∈ Sl
h, which

ensures that the sum of each row k remains one.

Observations. As demonstrated in Fig. 3, we can make two
observations: Obs-(1) despite the simplicity of the calibra-
tion technique we propose, in more than 76.8% of cases,
the LLM after attention calibration can achieve better accu-
racy compared to the vanilla inference baseline; and Obs-(2)
not all heads can benefit from the calibration, for instance,
calibrating certain heads can result in an accuracy drop as
significant as 0.39%.

Our answer to Q2. In contrast to the observation made
in StreamLLM (Xiao et al., 2023) that suggests preserving
attention sinks to enhance LLMs’ achievable accuracy, we
highlight that not all attention sinks are beneficial for LLMs.
Specifically, for the majority of attention sinks occurring in
the middle or later parts of inputs, reducing their attention
scores can result in improved accuracy. We suspect this
is because frequently occurring attention sinks excessively
divert attention and reducing them can effectively allocate
more attention to tokens with richer semantic information.

4.3. Q3: Can we enhance LLMs’ accuracy by solely
manipulating attention sinks without finetuning?

The observations in Sec. 4.2 highlight the potential for en-
hancing LLMs’ achievable accuracy by simply calibrating
attention sinks in specific heads, even without fine-tuning.
This introduces a new design parameter for improving
LLMs’ accuracy. However, the challenge lies in identi-
fying the heads that require calibration, especially given
that improperly reducing attention sinks in certain heads
can significantly degrade LLMs’ accuracy. Therefore, the
remaining research question pertains to developing a tech-
nique that can automatically identify and calibrate attention
sinks in the appropriate heads to enhance LLM accuracy.

Layer ID

Head ID1
31

3

32

x 0.1

Figure 3. Visualization of accuracy improvement in the MMLU
dataset (Hendrycks et al., 2020) achieved by reducing the attention
score of attention sinks in the middle of input sequences for each
individual head separately.

Our solution to addressing Q3. To enhance LLMs’ accu-
racy without the need for finetuning, by directly optimizing
attention sinks, we introduce an effective and low-cost at-
tention calibration technique, dubbed ACT. ACT first filters
out the heads that need to preserve all the corresponding
attention sinks they process offline and then calibrates the
attention in the remaining heads during inference.

Specifically, in the first head filtering step, we aim to deter-
mine the set of attention heads that need to preserve all the
processed attention sinks, meaning that these heads should
not undergo any attention calibration during inference. This
filtering process can be formally described as follows: For
each task T = {D1, · · · ,DQ}, consisting of Q different
datasets, we initially create a small held-out dataset C by
uniformly sampling data samples from each dataset Dq ∈ T ,
ensuring that ∥C ∩ Dq∥ = M, ∀Dq ∈ T (i.e., each dataset
Dq has M samples in C). Next, we execute the attention
calibration steps as proposed in Sec. 4.2, individually on
each attention head, and evaluate the resulting performance
on the held-out dataset C. Finally, we can identify a set of
heads H that can enhance the accuracy of the target LLM
after the calibration process.

In the second attention calibration step, we calibrate all
alh[t] ∀(l, h) ∈ H on the fly during inference in an input-
adaptive manner, leveraging the proposed attention cali-
bration steps in Sec. 4.2 to reduce excessive attention at
attention sinks.

5. Experimental Results
5.1. Evaluation settings

Models, tasks, and datasets. Models: We evaluate ACT
on seven models, including Llama2-7B/13B-chat (Tou-
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Table 2. ACT on domain-specific multiple choice datasets

Model Setting Method Hellaswag ARCE PIQA OB ARCC COPA CQA Avg.

Llama2-7B-chat

0-shot
Vanilla 41.65 75.61 63.22 57.20 52.17 85.00 59.71 62.08
ACT 42.70 75.79 66.54 59.00 53.85 89.00 59.71 63.80

Improv. 1.05 0.18 3.32 1.80 1.68 4.00 0.00 1.72

1-shot
Vanilla 30.99 75.44 59.25 54.20 53.51 72.00 59.54 57.85
ACT 31.52 75.79 60.55 57.00 54.52 76.00 60.04 59.35

Improv. 0.53 0.35 1.30 2.80 1.01 4.00 0.50 1.50

3-shot
Vanilla 42.46 77.54 65.56 56.40 55.52 69.00 62.49 61.28
ACT 42.93 77.19 66.27 56.60 57.19 69.00 63.14 61.76

Improv. 0.47 -0.35 0.71 0.20 1.67 0.00 0.65 0.48

5-shot
Vanilla 44.62 77.02 64.58 59.00 60.54 69.00 62.98 62.53
ACT 45.58 77.72 65.02 59.60 62.54 71.00 63.23 63.53

Improv. 0.96 0.70 0.44 0.60 2.00 2.00 0.25 0.99

Llama2-13B-chat

0-shot
Vanilla 41.80 79.82 69.80 63.20 64.21 77.00 64.70 65.79
ACT 48.28 78.77 69.21 63.80 64.88 89.00 64.86 68.40

Improv. 6.48 -1.05 -0.59 0.60 0.67 12.00 0.16 2.61

1-shot
Vanilla 47.27 78.07 69.86 62.80 65.89 85.00 60.28 67.02
ACT 50.49 77.19 70.51 62.60 68.23 87.00 60.20 68.03

Improv. 3.22 -0.88 0.65 -0.20 2.34 2.00 -0.08 1.01

3-shot
Vanilla 48.26 82.28 69.86 66.40 68.90 85.00 66.83 69.65
ACT 51.64 82.82 70.95 67.60 68.90 85.00 66.53 70.49

Improv. 3.38 0.54 1.09 1.20 0.00 0.00 -0.30 0.84

5-shot
Vanilla 51.26 82.81 67.19 69.60 68.23 91.00 66.34 70.92
ACT 52.67 82.11 67.46 68.80 69.23 91.00 67.24 71.22

Improv. 1.41 -0.70 0.27 -0.80 1.00 0.00 0.90 0.30

Mistral-7B 0-shot
Vanilla 49.68 85.96 72.31 72.00 76.25 87.00 69.21 73.20
ACT 55.82 87.19 79.22 74.00 77.26 95.00 70.60 77.01

Improv. 6.14 1.23 6.91 2.00 1.01 8.00 1.39 3.79

Llama-30B 0-shot
Vanilla 42.18 81.75 55.44 53.40 64.55 82.60 53.32 61.89
ACT 55.44 83.16 67.46 62.80 67.89 90.40 57.17 69.19

Improv. 13.26 1.41 12.02 9.40 3.34 7.80 3.85 7.30

vron et al., 2023b), Mistral-7B (Jiang et al., 2023), Llama-
30B (Touvron et al., 2023a), GPT-J-6B (Wang & Komat-
suzaki, 2021), OPT-2.7B (Zhang et al., 2022), and Vicuna-
7B (Chiang et al., 2023). Tasks and datasets: To pro-
vide a thorough evaluation of ACT, we benchmark ACT
on three types of commonly used tasks with 18 differ-
ent datasets, including Hellaswag (Zellers et al., 2019),
ARCE (Clark et al., 2018), PIQA (Bisk et al., 2020),
OB (Mihaylov et al., 2018), ARCC (Clark et al., 2018),
COPA (Wang et al., 2019), CQA (Talmor et al., 2018),
and MMLU (Hendrycks et al., 2020) for domain-specific
multiple-choice; SST2 (Socher et al., 2013), SST5 (Socher
et al., 2013), MR (Pang & Lee, 2005), AGNews (Zhang
et al., 2015), TREC (Voorhees & Tice, 2000), CB (De Marn-
effe et al., 2019), and BoolQ (Clark et al., 2019a) for
text classification; and MT-Bench (Zheng et al., 2024),
SQuADv1 (Rajpurkar et al., 2016), and SQuADv2 (Ra-
jpurkar et al., 2018) for open-ended question answering.

Table 3. ACT in boosting different LLMs on the MMLU dataset
Model Llama2 7B GPT-J 7B Vicuna-7B opt-2.7B Average

zero-shot 46.50 26.53 48.73 25.46 36.80

zero-shot-aug 46.82 27.62 49.15 25.94 37.38

Improv. 0.32 1.09 0.42 0.48 0.58

Baselines and evaluation metrics. Baselines: We bench-
mark ACT against the vanilla inference baseline under dif-
ferent shot settings, including zero-shot and 1/3/5-shot in-
context learning as the baseline settings. Evaluation metrics:
We use accuracy as the metric for domain-specific multiple
choice and text classification tasks, and F1 score with exact
match score for the open-ended question-answering task.

Implementation details. We implement our ACT frame-
work on top of PyTorch and Huggingface. For all
datasets, we use the standard prompting template provided
in (Ouyang et al., 2022; Sanh et al., 2021; Hao et al., 2022).
Detailed prompts we used can be found in Appendix B.
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Table 4. ACT on text classification datasets
Model Setting Method SST2 SST5 MR AGNews TREC CB BoolQ Avg.

Llama2-7B-chat

0-shot
Vanilla 92.78 47.87 90.99 78.17 11.80 69.64 77.68 65.07
ACT 93.23 47.59 91.74 81.76 18.80 69.64 76.48 66.36

Improv. 0.45 -0.28 0.75 3.59 7.00 0.00 -1.20 1.29

1-shot
Vanilla 87.50 44.69 82.93 84.87 21.60 76.79 38.87 61.11
ACT 89.33 45.69 84.33 85.62 23.00 78.57 41.74 62.49

Improv. 1.83 1.00 1.40 0.75 1.40 1.78 2.87 1.38

3-shot
Vanilla 92.08 42.62 92.87 75.09 24.20 67.86 68.42 64.35
ACT 92.78 42.51 92.21 76.36 25.00 73.21 72.52 65.78

Improv. 0.70 -0.11 -0.66 1.27 0.80 5.35 4.10 1.43

5-shot
Vanilla 93.69 46.87 90.62 85.59 29.60 69.64 81.55 67.79
ACT 94.04 46.62 90.71 86.04 30.60 69.64 81.58 68.38

Improv. 0.35 -0.25 0.09 0.45 1.00 0.00 0.03 0.58

Llama2-13B-chat

0-shot
Vanilla 91.86 46.23 90.71 81.07 18.00 66.07 80.76 67.81
ACT 92.20 46.16 90.43 82.37 29.00 75.00 81.68 70.98

Improv. 0.34 -0.07 -0.28 1.30 11.00 8.93 0.92 3.16

1-shot
Vanilla 93.69 42.69 86.59 82.51 17.20 75.00 64.74 66.06
ACT 94.27 42.96 87.05 83.57 23.40 75.00 65.75 67.43

Improv. 0.58 0.27 0.46 1.06 6.20 0.00 1.01 1.37

3-shot
Vanilla 92.09 48.14 87.52 80.36 15.20 82.14 76.87 68.90
ACT 92.78 48.23 87.62 80.36 22.40 82.14 77.29 70.12

Improv. 0.69 0.09 0.10 0.00 7.20 0.00 0.42 1.21

5-shot
Vanilla 93.23 47.96 92.87 85.95 16.40 73.21 81.55 70.17
ACT 93.46 47.59 93.06 85.97 17.20 76.79 81.58 70.81

Improv. 0.23 -0.37 0.19 0.02 0.80 3.58 0.03 0.64

Mistral-7B 0-shot
Vanilla 92.43 44.96 89.02 85.09 22.00 91.07 85.84 72.91
ACT 92.78 47.14 90.02 85.59 23.00 91.07 85.96 73.65

Improv. 0.35 2.18 1.00 0.50 1.00 0.00 0.12 0.74

Llama-30B 0-shot
Vanilla 80.53 41.78 81.05 64.37 28.60 42.86 65.17 60.25
ACT 85.09 45.59 85.37 80.53 29.80 41.07 65.85 65.37

Improv. 4.56 3.81 5.32 16.16 1.20 -1.79 0.68 5.12

In all our experiments, unless otherwise specified, we use
β = 0.4 and ∥C∥ = 1000×Q, which is less than 10% of the
size of the validation datasets. During head filtering, regard-
less of the number of shots we evaluate, we only perform
head filtering with samples using zero-shot prompts.

5.2. Enhancing LLM accuracy with ACT
Domain-specific multiple choice. We first validate ACT
on a set of commonly used domain-specific multiple-
choice datasets under different settings as shown in Ta-
ble 2. ACT on average achieves an accuracy improvement
of 0.30%∼7.30% across different models and numbers of
shots. The accuracy improvement can be as high as 13.26%
on a single dataset (i.e., leveraging ACT to boost Llama-30B
on Hellaswag (Zellers et al., 2019) under the zero-shot set-
ting), and applying ACT for PIQA (Bisk et al., 2020) under
a zero-shot setting can achieve a 1.96% higher accuracy than
the vanilla inference baseline under the 5-shot in-context

learning setting. Moreover, it is worth noticing that ACT
has a strong ability to adapt to different evaluation settings.
Specifically, although ACT only performs head filtering us-
ing samples with a zero-shot setting, ACT not only achieves
average accuracy improvements of 1.72% and 2.61% when
applied to Llama2-7B-chat and Llama2-13B-chat under the
zero-shot setting, respectively, but also achieves average
accuracy improvements of 1.26%, 0.66%, and 0.65% when
enhancing the two models under 1/3/5-shots, respectively.

To further validate ACT’s versatility and effectiveness in
enhancing the performance of different types of LLMs,
we apply ACT to four different kinds of LLMs including
Llama2-7B-chat (Touvron et al., 2023b), GPT-J-6B (Wang
& Komatsuzaki, 2021), OPT-2.7B (Zhang et al., 2022), and
Vicuna-7B (Chiang et al., 2023), and evaluate their achieved
accuracy on the representative MMLU dataset (Hendrycks
et al., 2020). As shown in Table 3, despite different model se-
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Table 5. ACT on open-ended question-answering datasets using
Llama2-chat with different sizes. Each result for SQuADv1/v2 is
presented as the exact match score/F1 score.

Model Method MT-Bench SQuAD v1 SQuAD v2

Llama2-7B-chat
Vanilla 6.272 31.64/47.88 4.36/24.42
ACT 6.406 41.78/64.30 19.52/31.30

Improv. 0.134 10.14/16.42 5.16/6.88

Llama2-13B-chat
Vanilla 6.602 41.77/56.00 19.69/27.02
ACT 6.690 45.89/58.57 21.42/28.15

Improv. 0.088 4.12/2.57 1.73/1.13

lections, ACT consistently achieves a 0.32%∼1.09% higher
accuracy over the vanilla inference baseline, proving that
our proposed ACT is a general framework capable of en-
hancing the performance of different kinds of LLMs despite
their pretraining processes, finetuning techniques, model
structures, and model sizes.

Text classification. We further validate ACT on a set of
text classification datasets under different numbers of shots
and across Llama2-7B/13B-chat as shown in Table 4. ACT
shows consistent accuracy improvement over the vanilla in-
ference baseline across different numbers of shots, datasets,
and models. Under the zero-shot setting, ACT achieves
average accuracy improvements of 1.29%, 3.16%, 0.74%,
and 5.12% for Llama2-7B-chat, Llama2-13B-chat, Mistral-
7B, and Llama-30B, respectively. Remarkably, the appli-
cation of ACT leads to a peak accuracy improvement of
16.16% when boosting the Llama-30B model on the AG-
News dataset (Zhang et al., 2015) under the zero-shot condi-
tion. This set of experiments further validates the robustness
of ACT in transferring between different validation scenar-
ios. Despite its primary application of head filtering in the
zero-shot scenario, ACT not only procures average accu-
racy improvements of 1.29% and 3.16% with the Llama2-
7B-chat and Llama2-13B-chat models, respectively, under
zero-shot conditions, but also facilitates average accuracy
gains of 1.38%, 1.43%, and 0.58% across 1-shot, 3-shot,
and 5-shot settings for the Llama2-7B-chat. Similarly, for
the Llama2-13B-chat model, ACT achieves average accu-
racy enhancements of 1.37%, 1.21%, and 0.64% across the
1-shot, 3-shot, and 5-shot configurations, respectively.

Open-ended question-answering. To better validate ACT’s
ability to enhance LLM accuracy across different appli-
cation scenarios, we further evaluate our proposed ACT
performance on open-ended question-answering task us-
ing widely used SQuADv1 (Rajpurkar et al., 2016) and
SQuADv2 (Rajpurkar et al., 2018) datasets, and a more
challenging multi-round conversation dataset from MT-
Bench (Zheng et al., 2023). As shown in Table 5, ACT
consistently achieves superior performance in all metrics
of MT-Bench and SQuAD v1/v2 compared to vanilla in-
ference. Specifically, ACT achieves a 0.088∼0.134 higher
MT-Bench score, a 1.73∼10.14 higher exact match score,
and a 1.13∼16.42 higher F1 score over the benchmarked

Table 6. Ablate on attention calibration methods
Calibrate method Temp Inv-temp Inv-ours Ours

Acc. 44.89 44.06 46.21 46.82

Figure 4. Visualization on the model’s averaged attention map be-
fore (left) and after (right) our proposed ACT.

vanilla LLMs, respectively. It is also worth noting that an im-
provement of 0.088∼0.134 on MT-Bench achieved by ACT
is non-trivial. The difference in MT-Bench scores between
Llama2-7B-chat and Llama2-13B-chat is 0.38, while the dif-
ference between Llama2-13B-chat and Llama2-70B-chat is
0.21. This suggests that applying ACT can mitigate around
one-third of the difference between a smaller model and
its larger counterpart. This proves that for the more com-
plicated autoregressive generation task, the phenomenon
that attention sinks appears in the middle part of the in-
put sequence and draws an excessive amount of attention,
sabotaging the achievable performance of LLMs still ex-
ists. Moreover, using our proposed ACT can calibrate the
attention and enhance the generation quality of LLMs.

5.3. Ablation studies
Ways to calibrate attention. We further validate whether
our answers to Q2 in Sec. 4.2 and Q3 in Sec. 4.3 is correct.
Specifically, we assess whether reducing the attention score
at attention sinks helps improve LLM performance. To this
end, we evaluate the performance of our method against
three other methods: (1) Temp, which directly applies a
temperature θ = 1.1 to all tokens except the attention sink
at the initial token; (2) Inv-temp, similar to temp but with
θ = 1/1.1; and (3) Inv-ours, the inverse process of our
proposed method, which reduces the attention value of other
tokens and redistributes it to the attention sink. As shown in
Table 6: (1) Our method achieves better results on MMLU
compared to Temp. We attribute this improvement to our
method’s superior ability to preserve the original attention
distribution across other tokens. (2) Inv-temp and inv-ours
perform worse than temp and our method, respectively, on
MMLU, indicating the importance of reducing the attention
values of attention sinks in the middle part of the input.

Ways to distribute the additional attention. After reduc-
ing the excessive attention value at attention sinks, how to
distribute them across other tokens is an important question.

8
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Table 7. Ablate on how to distribute the additional attention.
Method Uniform Question-only Choices-only Ours

Acc. 46.49 46.10 45.24 46.82

Table 8. Ablate on α selection.
α SST2 SST5 MR AGNews TREC CB BoolQ

Vanilla 92.78 47.87 90.99 78.17 11.80 69.64 77.68
3 93.23 47.59 91.74 81.74 19.00 69.64 76.26
5 93.23 47.59 91.74 81.76 18.80 69.64 76.48
7 93.12 47.68 91.74 81.29 18.80 69.64 76.62

Considering that the input of the multiple-choice dataset
MMLU consists of a question and a set of choices, we evalu-
ate three different ways to distribute the additional attention
on MMLU: (1) uniform, where we uniformly distribute
the additional attention across all tokens; (2) question-only,
where we apply the additional attention only to the tokens
corresponding to the questions; and (3) choice-only, where
we apply the additional attention only to the tokens corre-
sponding to the provided choices. As shown in Table 7, we
observe that distributing attention to all tokens (i.e., uniform
and our method) is important for preserving performance.
We suspect this is because drastically changing the attention
distribution across too many tokens should be avoided.

α selection. α defines the criteria of attention sink in ACT.
In this paper, we empirically set α = 5 based on the visual-
ization of the attention score distribution across different to-
kens, as shown in Fig. 2. To better understand the robustness
of ACT across different selections of α, we test ACT under
the zero-shot setting with Llama2-7B-chat using various val-
ues of α. As shown in Table 8, despite different selections
of α, ACT consistently achieves similar performance with
a steady 1.24%∼1.29% higher average accuracy than the
vanilla Llama2-7B-chat baseline. This demonstrates that the
attention sinks identified in our work have distinct values
compared to other non-attention sink tokens, and thus, the
selection of α plays a minor role in the performance of ACT.

β selection. β determines how drastically we want to reduce
the attention sinks that occur in the middle of the input.
In this paper, we set β = 0.4, but we want to explore
the impact of β selection on the final achieved accuracy
on MMLU with Llama2-7B-chat. As shown in Table 9,
despite different selections of β result in varied accuracies,
they all achieve better accuracies than the vanilla inference
baseline, showing ACT is robust to different hyperparameter
selections.

Size of C. We ablate the appropriate size of ∥C∥, which con-
trols nearly the only source of overhead in ACT. We ablate
different selections of ∥C∥ by sampling different numbers of
samples in each Dq ∈ Q (i.e., ∥C∥/Q) and evaluating their
achieved accuracy on the MMLU dataset using Llama2-7B-
chat. As shown in Table 10, a larger C helps with ACT’s
performance, but when ∥C∥/Q scales up to around 1000

Table 9. Ablate on β selection.
β Vanilla 0.7 0.5 0.4 (Ours) 0.3 0.1

Acc. 46.50 46.77 46.81 46.82 46.79 46.65

Table 10. Ablate on M selection.
M Vanilla 300 600 1000 All

Acc. 46.50 46.50 46.56 46.82 46.91

Table 11. Ablate on the performance of ACT when only calibrating
on a subset of the selected attention heads.

Subset size SST2 AGNews PIQA ARCC Avg.

0% (Vanilla) 92.78 78.17 63.22 52.10 71.57
40% 92.78 80.16 66.92 53.51 73.34
60% 92.89 81.12 65.34 52.17 72.88
80% 93.23 81.08 66.63 52.84 73.44

100% (ACT) 93.23 81.76 66.54 53.85 73.84

(e.g., more than 10 times smaller than the validation dataset),
the further performance improvement is marginal.

Number of heads to calibrate. To verify whether the
performance improvement achieved by calibrating each in-
dividual attention head as in Fig. 3 can be accumulated,
we validate ACT’s performance when calibrating on sub-
sets of H of different sizes. As shown in Table 11, the
achieved performance of attention calibration gradually in-
creases as the size of the subsets increases, validating that
the effectiveness of calibrating each attention head in H can
be accumulated and that calibrating all heads in H leads to
optimal performance.

5.4. Attention map visualization before and after ACT
To better understand the role of our proposed ACT in reduc-
ing the excessive attention at attention sinks in the middle
of inputs, we further visualize the attention map of Llama2-
7B-chat before and after performing ACT with the same
input sample. As shown in Fig. 4, after performing ACT,
the original attention sink that occurs in the middle of the
input sequence is almost eliminated, while the attention
distribution of other tokens remains the same.

6. Conclusion
In this paper, we conduct comprehensive visualizations of
the attention distributions in LLMs during inference across
various inputs and tasks. Based on these visualizations, for
the first time, we discover that (1) attention sinks occur not
only at the start of sequences but also within later tokens
of the input, and (2) not all attention sinks have a positive
impact on the achievable accuracy of LLMs. Building upon
our findings, we propose a training-free technique, dubbed
ACT, that automatically optimizes the attention distributions
on the fly during inference in an input-adaptive manner. Ex-
tensive experiments validate that ACT consistently enhances
the accuracy of various LLMs across different applications.
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Impact Statement
The recent advancements in LLMs have triggered various
application scenarios that require an affordable LLM with
superior performance to serve as a backbone. This calls for
(1) LLMs with better performance under comparable com-
putation costs and (2) a better understanding of the behavior
of LLMs, facilitating a trustworthy generation process. In
this paper, we cater to both of the aforementioned calls.

For (1), our proposed ACT can improve the performance
of LLMs on downstream tasks not only in a training-free
manner but also with almost no additional inference cost.
The proposed ACT leverages the design knob on attention
manipulation, which is also orthogonal to most techniques
improving the performance of LLMs, such as in-context
learning, prompting, and finetuning, making ACT a gener-
ally applicable technique.

For (2), we have conducted comprehensive visualization
and analysis of the attention generated by LLMs during
inference with different inputs from various tasks. Moreover,
to the best of our knowledge, we are the first to discover
that attention sinks manifest not only in the initial token
but also in subsequent tokens throughout the input context.
This observation deepens our understanding of the intrinsic
mechanism of LLMs and thus can potentially facilitate the
trustworthy generation process.
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A. Histogram on the position of attention sinks
To better understand the attention sink distribution, we profile all of the attention sink that occurred during inference with
Llama2-7B-chat on all 17 datasets mentioned in Sec. 5.1. As shown in Fig. 5, despite the attention sink at the initial token
occurring the most frequently, there are many other positions that are prone to have attention sink, further proving the wide
existence of attention sink phenomenon throughout the input sequence.

Figure 5. Histogram of the positions of attention sinks throughout all 17 datasets used in our paper.

B. Prompts used for each dataset
Here, we list all the prompts we used in this paper on different datasets:

For multiple choice task (i.e., on hellaswag, ARCE, PIQA, OB, ARCC, COPA, CQA datasets), we use the following prompt:

• ”Complete the following sentence with an appropriate ending.

<Question>

<choice 1>

<choice 2>

<choice 3>

. . .

Answer:”

For MMLU datasets, we use the following prompt:

• ”The following are multiple choice questions (with answers) about <subject>.

<Question>

<choice 1>

<choice 2>

<choice 3>

. . .

Answer:”
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For text classification, we use different prompts for different datasets.

• SST2:

– ”Classify the sentiment of the user’s message into one of the following categories:’positive’ or ’negative’.
-
Sentence: <sentence>
Sentiment: ”

• SST5:

– ”Classify the sentiment of the user’s message into one of the following categories:’terrible’, ’negative’, ’neutral’,
’positive’, or ’great’.
-
Sentence: <sentence>
Sentiment: ”

• MR:

– “Classify the sentiment of the movie’s review into one of the following categories:’positive’ or ’negative’.
-
Review: <sentence>
Sentiment: ”

• AGNews:

– ”Classify the news articles into the categories of ’World’, ’Sports’, ’Business’, or ’Technology’.
-
Article: <sentence>
Category: ”

• TREC:

– ”Classify the given questions into the following categories of ’Description’, ’Entity’, ’Expression’, ’Person’,
’Number’, or ’Location’.
-
Question: <sentence>
Type: ”

• CB:

– ”Read the following paragraph and determine if the hypothesis is true.
-
Premise: <premise> Hypothesis: <hypothesis>. Answer: ”

• BoolQ:

– ”Read the text and answer the question by True or False.
-
Text: <passage> Question: <question>?
Answer: ”

For open-ended question answering (i.e., SQuADv1/v2), we use the following prompt:

• Answer question using information in the preceding background paragraph. If there is not enough information provided,
answer with “Not in background.”

Title: [title]
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Background: [background]

Q: [first question]

A: [first answer]

Q: [final question]

A: [completion]

C. More visualizations on attention maps
We conduct more visualization on different LLMs as shown in Fig. 6, Fig. 7, and Fig. 8 for Llama2-7B-chat, Vicuna-7B,
and OPT-2.7B, respectively.
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Figure 6. Visualization on the attention map of each layer in Llama2-7B-chat model when processing the following input sample: ’Read
the text and answer the question by True or False.\n\nText: Riverdale (2017 TV series) – The series debuted on January 26, 2017 to
positive reviews. A 22-episode second season premiered on October 11, 2017, and concluded on May 16, 2018. On April 2, 2018, The
CW renewed the series for a third season, which is set to premiere October 10, 2018. Question: is there going to be any more episodes of
riverdale? \n Answer: ’

17



Unveiling and Harnessing Hidden Attention Sinks

Figure 7. Visualization on the attention map of each layer in Vicuna-7B model when processing the following input sample: ”Classify the
sentiment polarity of the movie’s review into one of the following categories: ’subjective’ or ’object’.\n\nInput: when all seems hopeless,
ted gets some guidance from his good friend meg that turns the situation around: “ don’t scam on her, listen to her, be sincere. “ \nType: ”
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Figure 8. Visualization on the attention map of each layer in OPT-2.7B model when processing the following input sample: ””Read the
following paragraph and determine if the hypothesis is true. \n \n Premise: A: Oh, oh yeah, and every time you see one hit on the side of
the road you say is that my cat. B: Uh-huh. A: And you go crazy thinking it might be yours. B: Right, well I didn’t realize my husband
was such a sucker for animals until I brought one home one night. Hypothesis: her husband was such a sucker for animals. Answer: ” ”
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