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Abstract

Robust feature representations are essential for learning-based Multi-View Stereo
(MVS), which relies on accurate feature matching. Recent MVS methods leverage
Transformers to capture long-range dependencies based on local features extracted
by conventional feature pyramid networks. However, the quadratic complexity of
Transformer-based MVS methods poses challenges to balance performance and
efficiency. Motivated by the global modeling capability and linear complexity
of the Mamba architecture, we propose MVSMamba, the first Mamba-based
MVS network. MVSMamba enables efficient global feature aggregation with
minimal computational overhead. To fully exploit Mamba’s potential in MVS,
we propose a Dynamic Mamba module (DM-module) based on a novel reference-
centered dynamic scanning strategy, which enables: (1) Efficient intra- and inter-
view feature interaction from the reference to source views, (2) Omnidirectional
multi-view feature representations, and (3) Multi-scale global feature aggregation.
Extensive experimental results demonstrate MVSMamba outperforms state-of-the-
art MVS methods on the DTU dataset and the Tanks-and-Temples benchmark
with both superior performance and efficiency. The source code is available at
https://github.com/JianfeiJ/MVSMamba.

1 Introduction

Multi-View Stereo (MVS) is aims to reconstruct dense 3D geometry of objects or scenes from
calibrated multi-view images, which is widely used in fields like autonomous driving [1, 2]. It
estimates the depth of each pixel by identifying correspondences across source views that satisfy
multi-view geometric consistency, making the task highly dependent on the quality of feature
matching. Naturally, more robust feature representations lead to more reliable feature matching.

Traditional MVS methods [3, 4, 5, 6, 7, 8] rely on handcrafted features, which tend to perform poorly
in regions with repetitive patterns, weak textures, and reflections. In contrast, learning-based MVS
methods [9, 10, 11] have made significant strides by leveraging the strong representational power of
deep neural networks. Early learning-based MVS methods utilize Convolutional Neural Networks
(CNNs)[12] and their variants[13, 14, 15, 16] for feature extraction, but their limited receptive fields
restricted to local features only. Recently, some methods have introduced Transformers [17] to
model long-range dependencies, enabling global feature learning both within and across views, thus
improving the robustness of feature matching in challenging regions.

Despite significant progress, Transformer-based MVS methods [18, 19, 20] continue to suffer from
quadratic computational complexity. To mitigate this issue, existing approaches have introduce linear
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Figure 1: Comparison of performance vs. efficiency among state-of-the-art CNN-based (■),
Transformer-based ( ), and our Mamba-based (★) methods on the (a) DTU dataset, the Tanks-and-
Temples (b) intermediate and (c) advanced benchmark. The GPU memory and runtime are evaluated
on 5-view images with a resolution of 832×1152. The proposed MVSMamba achieves the best
performance with superior efficiency.

attention [18, 21], epipolar window attention [22, 23], and epipolar vanilla attention [17, 24], and
typically applying them at the lowest resolution stage to reduce computational cost. However, these
methods still involve multiple rounds of self-attention and cross-attention across both reference and
source features, resulting in substantial overhead. Consequently, striking an optimal balance between
performance and efficiency remains a major challenge in MVS. A critical question remains: How can
we sustain high performance while minimizing computational cost?

As a powerful variant of state space models [25], Mamba [26] offers a promising solution by enabling
effective modeling of long-range dependencies with linear complexity. Inspired by this, we propose
MVSMamba, the first MVS network to explore the Mamba architecture. MVSMamba is designed
to efficiently model long-range dependencies among multi-view features, addressing performance
and efficiency bottlenecks in challenging MVS scenarios. To incorporate Mamba into the multi-view
feature matching process, we introduce a novel Dynamic Mamba module (DM-module) based on
a reference-centered dynamic scanning strategy. This module facilitates the efficient learning of
global and omnidirectional feature representations across multiple views. Specifically, for each
reference-source feature pair, the source features are concatenated to the top, bottom, left, and right of
the reference features, enabling four directional scanning from the reference view toward the source
view. This spatial configuration enhances intra- and inter-view interactions for each feature pair. To
generalize beyond pairwise matching, we dynamically adjust the scan directions based on the index
of source views, performing omnidirectional scanning from the reference feature toward different
source views. This enables the construction of omnidirectional multi-view feature representations.
The DM-module is deployed at multiple scales within the FPN to capture long-range dependencies
across different spatial resolutions. As shown in Fig. 1, CNN-based methods [11, 27, 28, 29] are
relatively efficient but suffer from limited performance. Transformer-based methods [18, 24, 30, 20]
offer superior performance, but this often comes at the cost of reduced efficiency. In contrast,
the proposed MVSMamba achieves state-of-the-art performance on both the DTU dataset and the
Tanks-and-Temples benchmark, while offering superior efficiency.

The main contributions are summarized as follows:

• We present MVSMamba, the first MVS network to leverage the Mamba architecture, en-
abling efficient global and omnidirectional multi-view feature representation.

• We propose a novel Dynamic Mamba module based on a reference-centered dynamic scan-
ning strategy to effectively bridge directional scanning with multi-view feature aggregation.

• Extensive experiments on the DTU dataset and the Tanks-and-Temples benchmark demon-
strate that MVSMamba achieves state-of-the-art performance with superior efficiency.

2 Related Work

2.1 Learning-based MVS

In recent years, learning-based MVS mehthods [9, 31] have made significant progress compare
with traditional methods. MVSNet [9] presents the first end-to-end learning-based MVS method,
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leveraging Convolutional Neural Network (CNN) for feature extraction. Subsequent methods have
introduced improvements from various perspectives. RNN-based MVS methods [10, 32] reduces
memory consumption but suffers from slow inference speed. Iterative update-based MVS meth-
ods [33, 34, 35, 36, 37] enabling high efficiency but with limited performance. Coarse-to-fine MVS
methods [11, 38, 39] achieves relatively better trade-off between performance and efficiency, and
have gradually become the dominant paradigm.

Coarse-to-fine MVS methods typically employ Feature Pyramid Networks [12] (FPN) to extract
multi-scale features, enabling depth estimation at multiple resolutions. Some later works [14, 18]
adopt CNN variants [15] to enhance feature representations. However, due to the limited receptive
field of CNNs, these methods are constrained to capture local features. To address this, TransMVS-
Net [18] first introduces Transformers [17] to MVS, employing intra- and inter- view attention [21]
to aggregate global features. WT-MVSNet [22] incorporates Swin Transformer [23] and constraines
feature aggregation within epipolar-aligned windows. ET-MVSNet [24] further restrictes vanilla atten-
tion [17] to epipolar line pairs, enabling non-local feature aggregation. Moreover, MVSFormer [30],
MVSFormer++ [20] and MonoMVSNet [40] enhance FPN features using pretrained Vision Trans-
formers [41, 42, 43] (ViT). Although these Transformer-based MVS methods have made efforts
to address the complexity issues inherent in attention mechanisms, they either inevitably require
alternating computations of self-attention and cross-attention to construct long-range dependency,
or rely on parameter-heavy pretrained models, making it difficult to simultaneously achieve high
performance and efficiency.

2.2 State Space Models

Transformers [17] have substantially advanced in computer vision but are hindered by their quadratic
complexity. To mitigate this limitation, researchers have developed more efficient alternatives,
including linear attention [21], shifted window attention [23], and flash attention [44]. Concurrently,
state space models [25], combined with selective mechanisms, have gained traction for capturing
long-range dependencies with linear complexity (detailed in Appendix A). Recently, Mamba [26] has
shown promising performance in computer vision tasks [45, 46, 47]. Vim [48] and VMamba [49]
expand receptive fields globally using bidirectional and four-directional scanning, respectively.
EVMamba [50] introduces a skip-scan mechanism to improve computational efficiency. Subsequent
works, including MambaVision [51], EfficientViM [52], and Mamba-ND[53], further explored this
domain by combining Mamba with self-attention, reducing computational costs, or extending the
architecture to multi-dimensional data. JamMa [54] proposes Joint Mamba for feature matching,
which enables high-frequency interactions between feature pairs. Building on these advances,
we integrate Mamba into the one-to-many multi-view stereo (MVS) setting to capture long-range
dependencies across multi-view features. This novel adaptation is specifically designed to address
the unique challenges of MVS.

3 Methodology

3.1 Network Overview

The overall architecture of MVSMamba is depicted in Fig. 2. Given K input images {Ik}K−1
k=0 ∈

R3×H×W consist of a reference image (k = 0) and K − 1 source images (0 < k < K), the goal is
to estimate a depth map for the reference image. We integrate the proposed Dynamic Mamba module
(DM-module) into the conventional Feature Pyramid Network (FPN) [12] to capture long-range
dependencies across multi-view features, efficiently aggregating the local features of the FPN encoder
into global and omnidirectional features. Then, we perform multi-scale aggregation within the FPN.
Finally, we predicted depth map from the FPN output features in a coarse-to-fine manner [11, 55].

3.2 Dynamic Mamba Module

The feature aggregation paradigm in existing Transformer-based MVS methods [18, 24, 20] typically
involves aggregating information from reference feature into source features [18], thereby enabling
improved source feature representation. However, this process often requires repeatedly alternating
between self-attention and cross-attention computations, making it difficult to achieve a favorable
balance between performance and efficiency. Therefore, we propose a Dynamic Mamba module (DM-
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Figure 2: Overall architecture of MVSMamba. The proposed Dynamic Mamba module (DM-module)
is integrated into the FPN (Sec. 3.2). First, a reference-centered dynamic scanning strategy extracts
four directional feature sequences, which are processed by four independent Mamba blocks. The
resulting sequences are then merged back into 2D feature maps. Multi-scale feature aggregation
(Sec. 3.3) is subsequently performed. Finally, we predicted depth in a coarse-to-fine manner (Sec. 3.4).

module) with a novel reference-centered dynamic scanning strategy, which efficiently performs both
intra- and inter-view omnidirectional global feature aggregation. Specifically, given FPN encoder
features {Fenc

k,s ∈ RC× H

23−s × W

23−s |s = 0, 1, 2, 3}K−1
k=0 , where s is the scale index, DM-module

leverages dynamic scanning order for feature enhancement.

Reference-Centered Dynamic Scanning. To construct long-range dependencies from reference
feature to each source feature, we propose a reference-centered dynamic scanning strategy. As
illustrated in Fig. 3 (a), take the s-th scale for example, source features Fenc

k,s are concatenated around
the reference feature Fenc

0,s along both horizontal and vertical directions, placing them on the top,
bottom, left, and right of the reference feature:

Xhr
k,s =

[
Fenc

0,s | Fenc
k,s

]
,Xhl

k,s =
[
Fenc

k,s | Fenc
0,s

]
,Xvb

k,s =

[
Fenc

0,s

Fenc
k,s ,

]
,Xvt

k,s =

[
Fenc

k,s

Fenc
0,s

]
, (1)

where the concatenated features Xhr
k,s,X

hl
k,s ∈ RC× H

23−s × 2W

23−s are the horizontal-right, horizontal-left

arrangement of features, and Xvb
k,s,X

vt
k,s ∈ RC× 2H

23−s × W

23−s are the vertical-top, and vertical-bottom
arrangements, respectively.

Based on Xhr
k,s, Xhl

k,s, Xvb
k,s, and Xvt

k,s, we adopt the skip scanning [50] strategy with four different
directions. As shown in Fig. 3 (a), these four concatenated features ensure the scanning order from
the reference feature to the source feature, thereby capturing global contextual dependencies from the
reference features to the source feature. In addition to global aggregation within both the reference
and source features, the source feature can effectively learn global representation from the reference
feature.

Specifically, we perform order scanning on Xhr
k,s, order scanning on Xhl

k,s, order scanning
on Xvb

k,s and order scanning on Xvt
k,s with a step 2 and a dynamic starting coordinate (hk, wk),

resulting in four directional sequences {Sj
k,s ∈ RC× HW

22(3−s)−1 }4j=1, each with a length of HW
22(3−s)−1 :

S1
k,s = (Xhr

k,s, (hk, wk)), S2
k,s = (Xhl

k,s, (hk, wk)),

S3
k,s = (Xvb

k,s, (hk, wk)), S4
k,s = (Xvt

k,s, (hk, wk)),
(2)

The starting coordinate (wk, hk) is dynamically updated according to the source image index k and
the arrangement type of reference and source features, as shonw in Fig. 3 (b). Specifically:
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Figure 3: Overview of our proposed reference-centered dynamic scanning strategy. (a) Scanning
directions of each reference-source feature pairs. (b) Receptive Filed of the reference feature to
different source features.

hk = (⌊ j−1
2 ⌋+ hj) mod 2,

wk = ((j − 1) mod 2 + wj) mod 2,
s.t. j = (k − 1) mod 4, and (hj , wj) =


(1, 0), j = 0,

(0, 0), j = 1,

(0, 1), j = 2,

(1, 1), j = 3.
(3)

These directional sequences are then fed into four independent Mamba blocks [26] to establish
long-range dependency:

{Ŝj}4j=1 = Mamba({Sj}4j=1). (4)

Finally, a Multilayer Perceptron (MLP) is introduced to further enhance the global representations of
the four directional sequences:

{S̄j}4j=1 = {Ŝj}4j=1 + LN(MLP({Ŝj}4j=1)). (5)

Analysis of Dynamic Scanning. With the dynamic scanning on different features, we can get
omnidirectional global receptive field, enhancing the features effectively. Here we give a deeper
analysis of our design.

Given a specific source image k, the source features are arranged around the reference feature. The
scanning types with different orders and starting coordinates are shown in Fig. 3(a). As we can see,
the scanning step 2 makes the length of scanned sequences 4 times smaller than the total number
of pixels, which is beneficial to improve the efficiency of the proposed MVSMamba. However, for
each scanning order, the features in most pixels are skipped, resulting in a smaller receptive field
in the reference feature. Nonetheless, the different starting coordinates of different scanning orders
ensure that all the pixels in the reference feature are scanned, resulting in a global receptive field in
the reference feature.

Though a global receptive field in the reference feature is obtained when given a specific source
image, the scanning in the reference feature is limited to a single direction for each pixel, resulting
in a lack of omnidirectionality in the aggregated features. Since MVS is inherently a one-to-many
feature matching task, where the reference feature typically needs to be matched with different source
features, we can change the scanning direction in the reference feature for different source features,
as illustrated in Fig. 3 (b), where 4 source features are available (K ≥ 5). In our implementation,
we choose to dynamically update the starting coordinates for different source features rather than
changing the scanning direction directly, which produces an equivalent effect.
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Figure 4: Qualitative comparison of depth maps in challenging scenarios on the DTU evaluation
dataset. Our method predicted more accurate depth maps in texture-less and reflection regions.

Feature Merging from Different Sequences. After obtaining the enhanced feature sequences
{S̄j}4j=1 with long-range dependency, we need to recover the globally omnidirectional feature map
for each reference–source feature pair by merging the enhanced features.

First, we rearrange the features in {S̄j}4j=1 to four features X̄hr
k,s, X̄

hl
k,s ∈ RC× H

23−s × 2W

23−s , and

X̄vb
k,s, X̄

vt
k,s ∈ RC× 2H

23−s × W

23−s by inversing the scan operations. The enhanced reference feature F̄enc
0,s

and source feature F̄enc
k,s is obtained as follows:

F̄enc
0,s = X̄hr

k,s[:, :, :
W

23−s
] + X̄hl

k,s[:, :,
W

23−s
:] + X̄vb

k,s[:,
H

23−s
:, :] + X̄vt

k,s[:, :
H

23−s
, :]

F̄enc
k,s = X̄hr

k,s[:, :,
W

23−s
:] + X̄hl

k,s[:, :, :
W

23−s
] + X̄vb

k,s[:, :
H

23−s
, :] + X̄vt

k,s[:,
H

23−s
:, :]

(6)

3.3 Multi-Scale Aggregation

The proposed DM-module takes both the reference-view and source-view features as input and
enhances the features across the two views. Though it is effective, it brings some computational
overhead. In order to reduce the computational complexity and achieve better efficiency, we further
design a Simplified DM-module (SDM-module), and use these two modules at different scales.

The SDM-module only takes the reference or source feature as input and enhances the feature within
the provided view. Since only a single-view feature is provided, we directly scan the input feature to
produce four sequences similar to Eq. (2). The starting coordinates are obtained using Eq. (3) with
k = 1. After feeding the sequences to Mamba blocks [26], the enhanced feature can be obtained by
inversing the scan operations.

Given the DM-module and SDM-module, we only use DM-moudle at the 0-th scale. While decoding
the enhanced {F̄enc

k,0 }
K−1
k=0 to multi-scale pyramid features, we insert a SDM-module before the output

layer for the 1-st scale in the FPN decoder. The output features of the FPN decoder are denoted as
{F̄dec

k,s ∈ RC× H

23−s × W

23−s |s = 0, 1, 2, 3}K−1
k=0 .

3.4 Learning Depth from FPN Features

Based on the FPN output features, we predicted depth map in a coarse-to-fine manner [11]. First,
source features are warped [9] into the reference view to form feature volumes [9], enabling the
construction of pairwise reference–source feature similarities [56, 33]. These feature similarities are
then fused into a cost volume using attention-based weights [55]. Subsequently, a lightweight 3D
U-Net [55] is employed for cost volume regularization, followed by a softmax operation to generate
a probability volume. Finally, a winner-take-all strategy is used to predict the depth map. For more
details about coarse-to-fine depth estimation, please refer to the works in [11, 55]. Similar to existing
MVS works [55], we apply cross-entropy loss at each scale to supervise the probability volume.
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Table 1: Quantitative results of point cloud error and model efficiency on the DTU evaluation set with
coarse-to-fine learning-based MVS methods. The methods are categorized into three groups (from top
to bottom): CNN-based, Transformer-based, and our Mamba-based. Methods with * denotes trained
on high-resolution images. To indicate the performance–efficiency balance, we report the average
ranking across six metrics of point cloud error and model efficiency. The best , second-best , and
third-best results are marked with colors.

Methods Avg. Rank↓ Point Cloud Error↓ Model Efficiency↓

Overall Acc. Comp. GPU(G) Time(s) Params(M)

CasMVSNet [11] 7.17 0.355 0.324 0.385 4.48 0.18 0.93
UniMVSNet [57] 8.83 0.315 0.352 0.278 4.75 0.27 0.93
MVSTER* [55] 5.17 0.303 0.340 0.266 2.70 0.07 0.98
GeoMVSNet [27] 8.00 0.295 0.331 0.259 5.21 0.19 15.31
DMVSNet [28] 8.83 0.305 0.338 0.272 4.01 0.31 2.67
GoMVS [29] 7.67 0.287 0.347 0.227 12.1 0.64 1.50

TransMVSNet [18] 7.83 0.305 0.321 0.289 3.69 0.70 1.15
ET-MVSNet [24] 5.00 0.291 0.329 0.253 2.91 0.16 1.09
MVSFormer* [30] 6.17 0.289 0.327 0.251 3.66 0.24 28.01
MVSFormer++* [20] 5.83 0.281 0.309 0.252 4.71 0.23 39.48

MVSMamba (Ours) 3.83 0.287 0.314 0.260 2.82 0.11 1.31
MVSMamba* (Ours*) 2.50 0.280 0.308 0.252 2.82 0.11 1.31

4 Experiment

4.1 Datasets

We conduct experiments on three of the most widely used datasets in the field of MVS. (1) DTU [58]
is an indoor dataset captured under controlled laboratory conditions, consisting of 128 scenes. Each
scene is captured under seven different lighting conditions with either 49 or 64 images. Following
the MVSNet [9] protocol, we split the dataset into training, validation, and evaluation sets, resulting
in a total of 27,097 training samples. DTU used for both training and evaluation. (2) Tanks-and-
Temples [59] is a large-scale benchmark captured in real-world environments, containing 14 indoor
and outdoor scenes. The dataset is divided into a intermediate set and a advanced set based on
reconstruction difficulty, and is used to evaluation the generalization ability of MVS methods. (3)
BlendedMVS is a large-scale synthetic dataset MVS training only, comprising 106 training scenes
and 7 validation scenes.

4.2 Implementation Details

MVSMamba is implemented using PyTorch [60] and optimized with the Adam optimizer [61].
Following common practice [55, 30, 20], the model is first trained and evaluated on the DTU [58]
dataset. To adapt the model to real-world scenes, the DTU-trained model is fine-tuned on the
BlendedMVS [62] dataset before evaluation on the Tanks-and-Temples benchmark [59]. The final
reconstructed point clouds are obtained using the dynamic fusion strategy [32].

For DTU training, we use 5-view input images at a resolution of 512× 640, with a batch size of 4
for 15 epochs. The initial learning rate is set to 0.001 and is halved at the 10-th, 12-th, and 14-th
epochs. For fine-tuning on BlendedMVS, we use 11-view images at a resolution of 576× 768 with a
batch size of 2 for 15 epochs. The initial learning rate is 0.0005 and is reduced by half at the 6-th,
8-th, 10-th, and 12-th epochs. Additionally, consistent with [55, 30, 20], we conduct high-resolution
training on DTU using 5-view images at 1024×1280 resolution for 10 epochs, with an initial learning
rate of 0.001, halved at 6-th, 8-th, and 9-th epochs. The number of inverse depth hypotheses in four
coarse-to-fine scales is set to 32-16-8-4, with corresponding depth intervals of 2-1-1-0.5, and the
group correlation of 4-4-4-4.
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Figure 5: Qualitative comparison of reconstructed point clouds on the Tanks-and-Temples benchmark.
The top row shows the precision of Francis (τ = 5mm) from the intermediate set, while the bottom
row presents the precision of Ballroom (τ = 10mm) from the advanced set. Brighter regions indicate
lower reconstruction errors under the corresponding distance threshold τ .

Table 2: Quantitative results on the Tanks-and-Temples benchmark with F-score [%]. The mean
refers the average F-score of all scenes. Methods are categorized into three groups (from top to
bottom): CNN-based, Transformer-based, and our Mamba-based. The best , second-best , and
third-best results are marked with colors.

Methods
Intermediate set ↑ Advanced set ↑

Mean Fam. Fra. Hor. L.H. M60 Pan. P.G. Tra. Mean Aud. Bal. Cou. Mus. Pal. Tem.

CasMVSNet [11] 56.84 76.37 58.45 46.26 55.81 56.11 54.06 58.18 49.51 31.12 19.81 38.46 29.10 43.87 27.36 28.11
UniMVSNet [57] 64.36 81.20 66.43 53.11 63.46 66.09 64.84 62.23 57.53 38.96 28.33 44.36 39.74 52.89 33.80 34.63
MVSTER [55] 60.92 80.21 63.51 52.30 61.38 61.47 58.16 58.98 51.38 37.53 26.68 42.14 35.65 49.37 32.16 39.19
GeoMVSNet [27] 65.89 81.64 67.53 55.78 68.02 65.49 67.19 63.27 58.22 41.52 30.23 46.54 39.98 53.05 35.98 43.34
DMVSNet [28] 64.66 81.27 67.54 59.10 63.12 64.64 64.80 59.83 56.97 41.17 30.08 46.10 40.65 53.53 35.08 41.60
GoMVS [29] 66.44 82.68 69.23 69.19 63.56 65.13 62.10 58.81 60.80 43.07 35.52 47.15 42.52 52.08 36.34 44.82

TransMVSNet [18] 63.52 80.92 65.83 56.94 62.54 63.06 60.00 60.20 58.67 37.00 24.84 44.59 34.77 46.49 34.69 36.62
CostFormer [63] 64.51 81.31 65.65 55.57 63.46 66.24 65.39 61.27 57.30 39.43 29.18 45.21 39.88 53.38 34.07 34.87
WT-MVSNet [22] 65.34 81.87 67.33 57.76 64.77 65.68 64.61 62.35 58.38 39.91 29.20 44.48 39.55 53.49 34.57 38.15
ET-MVSNet [24] 65.49 81.65 68.79 59.46 65.72 64.22 64.03 61.23 58.79 40.41 28.86 45.18 38.66 51.10 35.39 43.23
MVSFormer [30] 66.37 82.06 69.34 60.49 68.61 65.67 64.08 61.23 59.53 40.87 28.22 46.75 39.30 52.88 35.16 42.95
MVSFormer++ [20] 67.18 82.69 69.44 64.24 69.16 64.13 66.43 61.19 60.12 41.60 29.93 45.69 39.46 53.58 35.56 45.39

MVSMamba (Ours) 67.67 82.47 72.90 58.55 69.63 65.34 66.88 65.60 59.98 43.32 30.95 49.61 41.04 54.92 36.72 46.67

4.3 Benchmark Performance

Evaluation on DTU. We use the official evaluation script to report three standard metrics: accuracy
(Acc.), completeness (Comp.), and their average (Overall). Moreover, we also evaluate the model
efficiency (GPU memory, runtime and parameters) using 5-view input images with resolution of
832× 1152 to ensure fair comparison. For the model trained on low-resolution (MVSMamba), we
use 5-view input images at a resolution of 832 × 1152. For the model trained on high-resolution
(MVSMamba*), we use 5-view input images with a resolution of 1152 × 1600. The quantitative
results of point cloud error and model efficiency are shown in Tab. 1. We compare our method with
state-of-the-art coarse-to-fine learning-based MVS methods. MVSMamba* achieves the highest
overall score and accuracy, while also demonstrating the best balance between performance and
efficiency. Meanwhile, MVSMamba outperforms all other methods in the performance-efficiency
trade-off, with performance second only to MVSFormer++[30], which was trained on high-resolution
images with the lower efficiency. As shown in Fig. 4, our method produces more accurate depth maps
in challenging regions, highlighting its robustness and generalization capability.

Evaluation on Tanks-and-Temples. We evaluate our method on the Tanks-and-Temples benchmark
to assess its generalization capability, and report the F-score as the metric. Consistency with [30, 20],
the evaluation is conducted using 21-view input images with 2k resolution. The quantitative results
of intermediate and advanced sets are shown in Tab. 2. Our method achieves best performance on
both intermediate and advanced sets among all published methods, which demonstrate our powerful
generalization capability. Fig. 5 shows the qualitative results of reconstructed point clouds, our
method exhibit superior precision. More visualization results are provided in Appendix D.
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Table 3: Ablation study of each component in MVSMamba.

Modules Overall↓ Acc.↓ Comp.↓ MAE↓ GPU(G)↓ Time(s)↓ Params(M)↓

full 0.287 0.314 0.260 5.21 2.82 0.111 1.31

w/o DM 0.295 0.317 0.272 5.58 2.82 0.104 1.15
w/o SDM 0.289 0.317 0.261 5.45 2.82 0.097 1.15
w/o MLP 0.293 0.315 0.271 5.23 2.82 0.108 1.24

Table 4: Comparison of different feature aggregation modules and scan strategies.

Methods Overall↓ Acc.↓ Comp.↓ MAE↓ GPU(G)↓ Time(s)↓ Params(M)↓

w/o Aggregation 0.305 0.315 0.295 6.12 2.78 0.09 0.98

w/ DCN [15] 0.295 0.310 0.280 5.84 4.35 0.55 1.65
w/ FMT [18] 0.296 0.311 0.281 5.93 2.85 0.19 1.27
w/ ET [24] 0.291 0.310 0.272 5.62 2.91 0.17 1.09

w/ VMamba [49] 0.291 0.310 0.272 5.30 2.82 0.13 1.31
w/ EVMamba [50] 0.298 0.320 0.276 5.81 2.82 0.11 1.31
w/ JamMa[54] 0.301 0.318 0.284 6.01 2.82 0.11 1.31

MVSMamba 0.287 0.314 0.260 5.21 2.82 0.11 1.31

4.4 Ablation Study

We conducted ablation study (more in Appendix C) to analyze the effectiveness and efficiency of
the proposed module using the metrics reported in Tab. 1, along with an additional depth metric,
Mean Absolute Error (MAE). Unless otherwise specified, we use the model trained on DTU [58] low-
resolution, evaluated with 5-view images at a resolution of 832×1152, with all other hyperparameters
kept consistent. Since the point cloud metrics on the DTU dataset are highly sensitive to the depth
fusion method and its hyperparameters, we provide additional quantitative ablation studies on detailed
depth metrics in Appendix C.2 to further validate the effectiveness of our method.

Effectiveness of Each Component. As shown in Tab. 3, we ablate each component of our proposed
method. The DM module contributes the most, as it capture both intra- and inter-view long-range
dependencies between reference and source features at the bottom level of the FPN, and decodes
them into all subsequent scales. The SDM modules perform self-feature enhancement at higher levels,
strengthening multi-scale interactions and further improving performance. The MLP enhances the
feature representations produced by Mamba blocks with only a slight increase in parameter count.
All three modules incur minimal computational overhead, making our method highly efficient.

Different Feature Aggregation Modules and Scan Strategies. As shown in Tab. 4 row 2-4, we
compare our method with three feature aggregation module: DCN [15, 13, 18], FMT [18], and
ET [24]. Our method achieves the best performance improvement with minimal cost in memory and
runtime, and only a modest growth in parameter count. As shown in Tab. 4 row 5-7, we compare
our reference-centered dynamic scan strategy with three scan strategy: the four-directional scan used
in VMamba[49], the skip scan used in EVMamba [50], and the joint scan used in JamMa [54]. Our
proposed scan strategy achieves the best performance while maintaining the highest efficiency.

Multi-Scale Aggregation. We conducted an ablation study on multi-scale aggregation to evaluate
the impact of applying the DM-module and SDM-module at different scales. As shown in Tab. 5,
simply increasing the number of application scales for the DM-module or SDM-module does not
yield further performance gains. This is because the DM-module, operating at the coarsest 0-th scale,
already captures effective intra- and inter-view interactions. These interactions are then propagated
through the decoder to all scales. Meanwhile, the SDM-module serves as a complement to the
DM-module, providing self-feature enhancement. Therefore, given that the DM-module is applied at
the 0-th scale, the SDM-module is applied at the 1-st scale instead.
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Table 5: Ablation study on multi-scale aggregation in DM and SDM modules across FPN scales.
Modules Overall↓ Acc.↓ Comp.↓ MAE↓ GPU(G)↓ Time(s)↓ Params(M)↓

DM (s=0) 0.289 0.317 0.261 5.34 2.82 0.10 1.15
DM (s=0,1) 0.295 0.320 0.270 5.41 2.82 0.11 1.20
DM (s=0,1,2) 0.292 0.320 0.294 5.38 2.82 0.17 1.21
DM (s=0,1,2,3) 0.294 0.318 0.270 5.49 2.82 0.31 1.22

DM (s=0) + SDM (s=1) 0.287 0.314 0.260 5.21 2.82 0.11 1.31
DM (s=0) + SDM (s=1,2) 0.293 0.316 0.270 5.27 2.82 0.16 1.31
DM (s=0) + SDM (s=1,2,3) 0.296 0.318 0.274 5.35 3.38 0.35 1.31

Table 6: Ablation study of different feature concatenation.

Methods Overall(mm)↓ Acc.(mm)↓ Comp.(mm)↓ MAE(mm)↓

Source-centered static 0.300 0.318 0.282 5.42
Reference-centered static 0.294 0.310 0.278 5.28
Source-centered dynamic 0.296 0.312 0.280 5.39

Reference-centered dynamic 0.287 0.314 0.260 5.23

Table 7: Ablation study on weight sharing.

Sharing Overall(mm)↓ Acc.(mm)↓ Comp.(mm)↓ MAE(mm)↓ Params(M)↓

✓ 0.289 0.314 0.264 5.36 1.21
✕ 0.287 0.314 0.260 5.21 1.31

Different Feature Concatenation Methods. As shown in Table 6, we conducted an ablation study
on four feature concatenation scanning methods: source-centered static, reference-centered static,
source-centered dynamic, and reference-centered dynamic. The results show that our proposed
reference-centered dynamic method achieves the best performance across both point cloud and depth
metrics. We attribute this superior performance to the source features’ ability to learn consistent
global representations from the reference feature (Appendix D.1).

Weight Sharing. As shown in Tab. 7, we conducted an ablation study to determine whether the
four Mamba modules should share weights. Using four independent Mamba modules (with out
weight sharing) achieves better performance. Due to Mamba’s efficiency, this configuration with
only a 0.1M increase in the parameter count. This indicates that independent Mamba modules allow
different scanning directions to learn distinct information from the sequence, thereby improving
model performance.

5 Conclution

In this paper, we present a Mamba-based MVS network, termed MVSMamba, which efficiently
aggregates global and omnidirectional feature representations. Specifically, we propose a DM-module
with a novel reference-centered dynamic scanning strategy. This strategy enables anisotropic scanning
from the reference feature to the source feature, where the scanning direction is dynamically updated
based on the index of each source view to achieve omnidirectional coverage. The DM-module is
integrated into the FPN to facilitate multi-scale feature aggregation. Experimental results demonstrate
that our method outperforms state-of-the-art methods on multiple datasets while maintaining superior
efficiency.

Acknowledgments. This work was supported by the Beijing Natural Science Foundation (No.
L257003), National Natural Science Foundation of China (No. 62402042 and 62227801).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clear claims we propose a novel Dynamic
Mamba module for Multi-View Stereo.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Appendix E.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [No]
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Justification: This paper does not involve theoretical research.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experiment details see Sec.4.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: The code will be release after the paper is accepted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experiment details see Sec.4.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We report metrics based on the average results of multiple experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: We use NVIDIA RTX A6000 GPUs for tranining and NVIDIA RTX 3090 for
evalution.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This papaer adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This work will have an impact on the field of MVS.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There are no security issues in the implementation of this work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets (e.g., DTU) and code bases are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: This work does not introduce any new datasets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The work does not involve crowdsourcing or human participants
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The study does not involve human subjects or sensitive data requiring IRB
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used as part of the core methodology in this work
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Mamba

A.1 State Space Models

State Space Models (SSMs) are originally designed to model continuous linear time-invariant
systems [64]. These models map an input signal x(t) to an output y(t) via a hidden state h(t)
as:

h′(t) = Ah(t) +Bx(t), y(t) = Ch′(t), (7)

where A ∈ RN×N , B ∈ RN×1, and C ∈ R1×N are system parameters. To enable the application of
SSMs in discrete sequence modeling tasks, such as sequence-to-sequence learning, S4 [25] discretizes
these parameters using the zero-order hold method. However, S4 shares parameters across all time
steps, which limits its expressiveness in complex sequential contexts.

A.2 Mamba Module

To address the limitations of S4, Mamba [26] introduces a refined formulation named S6, where
the SSM parameters B and C are made input-dependent. This dynamic parameterization allows
Mamba to adaptively modulate state transitions based on the input sequence, significantly enhancing
its representation power and enabling performance on par with Transformer models [65]. Moreover,
Mamba achieves high efficiency by reformulating the recurrent SSM computation into a single
global convolution operation. Specifically, a convolution kernel K is precomputed, allowing output
computation as:

K = (CB,CAB, . . . ,CAN−1B), y = x ∗K, (8)

where ∗ denotes the convolution operator. This structure supports both dynamic modeling and fast
parallel training.

B More Quantitative Results

B.1 Evaluation on ETH3D

ETH3D [66] benchmark contains high-resolution images with significant viewpoint transformations.
We adopt an automatic evaluation process by uploading the generated point clouds to the official
website. This process measures the accuracy (Acc.) and completeness (Comp.) of the generated point
clouds. The F-score is defined as the harmonic mean of Acc. and Comp. We evaluate MVSMamba
on the ETH3D training benchmark using the model finetuned on BlendedMVS [62], with the number
of input views set to 11 and the image resolution to 1600×2432. However, point cloud fusion
involves complex post-processing steps, requiring careful, per-scene hyperparameter selection to
improve metrics. For a fair comparison, we follow the approach of MVSFormer++ [20]. We adopt
the default dynamic fusion strategy [32] and set the depth confidence filtering threshold to 0.5 for all
subscenes, without any hyperparameter tuning. As shown Tab. 8, MVSMamba achieved competitive
performance with MVSFormer++, while also realizing a 52.1% reduction in running time and a
28.5% reduction in GPU memory consumption, thanks to the DM-module’s efficient multi-view
global feature representation. In contrast, Transformers result in impractically high complexity when
processing such high-resolution images.

Table 8: Quantitative results on the ETH3D benchmark.

Methods Acc.(%)↑ Comp.(%)↑ F-score(%)↑ Time(s)↓ Memory(G)↓

MVSFormer++ [20] 81.88 83.88 82.99 2.11 9.31
MVSMamba (Ours) 87.87 76.85 81.69 (-1.5%) 1.01 (-52.1%) 6.65 (-28.5%)

B.2 Comparison with Feed-Forward MVS on DTU

DUSt3R [67] series of feed-forward MVS methods (such as MASt3R [68] and VGGT [69]) are
trained on diverse datasets containing millions of images and perform 3D reconstruction without
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known Ground-Truth (GT) cameras. In contrast, MVSNet-based [9] methods (such as MVSMamba
and MVSFormer++) are trained solely on the DTU and BlendedMVS datasets and require known GT
cameras to construct cost volumes. Due to these fundamental differences, these two categories of
methods are not directly comparable. Tab. 9 nonetheless presents a direct performance comparison
on DTU. MVSMamba significantly outperforms feed-forward methods that operate without known
GT cameras (DUSt3R, VGGT), as well as MASt3R, which triangulates matches using known GT
cameras to derive depth maps.

Table 9: Quantitative comparison with feed-forward MVS methods on the DTU dataset.

Methods Known GT camera Overall(mm)↓ Acc.(mm)↓ Comp.(mm)↓

DUSt3R [67] ✕ 1.741 2.677 0.805
VGGT [69] ✕ 0.302 0.389 0.374
MASt3R [68] ✓ 0.374 0.403 0.344

MVSMamba(Ours) ✓ 0.280 0.308 0.252

C Additional Ablation Study

C.1 Loss Function

As shown in Tab. 10, Cross-Entropy (CE) loss significantly outperforms L1 loss on all point cloud
metrics, while the difference in depth metrics is minimal. This is because CE loss directly supervises
the probability volume, yielding more reliable confidence maps that are crucial for the subsequent
depth map fusion process.

Table 10: Ablation study on loss function.

Loss Overall(mm)↓ Acc.(mm)↓ Comp.(mm)↓ MAE(mm)↓

L1 0.302 0.319 0.285 5.21
CE 0.287 0.314 0.260 5.21

C.2 Ablation on Depth Metrics

Consistent with the settings in the main paper Sec. 4.4, we conducted detailed ablation studies on
depth metrics to further validate our method’s effectiveness. These metrics include Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), and depth precision (Prec.) at thresholds of 1mm,
2mm, and 4mm. All metrics were evaluated at a resolution of 832×1152 on DTU [58]. Tab. 11 shows
the effectiveness of each component. Tab. 12 compares different feature aggregation modules and
scanning strategies. Tab. 13 compares different feature concatenation methods. Tab. 14 evaluates the
impact of weight sharing among the four Mamba modules. Tab. 15 compares the performance of
different loss functions.

Table 11: Ablation study of each component in MVSMamba.

Modules MAE(mm)↓ RMSE(mm)↓ Prec. 1mm(%)↓ Prec. 2mm(%)↓ Prec. 4mm(%)↓

full 9.59 27.78 66.01 78.06 84.09

w/o DM 11.29 30.72 64.16 76.46 82.58
w/o SDM 10.63 30.41 66.75 78.54 84.34
w/o MLP 8.72 26.04 65.58 77.89 83.96

C.3 More Input Views

The DM-module adopts a reference-centered scanning strategy, allowing the reference features to
fully leverage multi-view information for learning global and omnidirectional feature representations.
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Table 12: Comparison of different feature aggregation modules and scan strategies.
Methods MAE(mm)↓ RMSE(mm)↓ Prec. 1mm(%)↓ Prec. 2mm(%)↓ Prec. 4mm(%)↓

w/o Aggregation 10.31 30.06 63.28 76.29 82.79

w/ DCN [15] 11.73 32.83 65.01 77.11 82.88
w/ FMT [18] 17.83 45.98 64.01 75.50 80.89
w/ ET [24] 13.24 35.34 65.52 77.33 83.08

w/ VMamba [49] 11.58 30.83 65.63 77.57 83.39
w/ EVMamba [50] 12.59 33.78 64.91 77.16 83.06
w/ JamMa[54] 15.89 40.08 57.53 71.95 79.49

MVSMamba 9.59 27.78 66.01 78.06 84.09

Table 13: Ablation study of different feature concatenation.
Methods MAE(mm)↓ RMSE(mm)↓ Prec. 1mm(%)↓ Prec. 2mm(%)↓ Prec. 4mm(%)↓

Source-centered static 12.11 33.09 64.07 76.90 82.97
Reference-centered static 9.97 27.97 63.93 76.90 83.15
Source-centered dynamic 10.21 28.67 64.54 76.99 83.22

Reference-centered dynamic 9.59 27.78 66.01 78.06 84.09

Table 14: Ablation study on weights sharing.

Sharing MAE(mm)↓ RMSE(mm)↓ Prec. 1mm(%)↓ Prec. 2mm(%)↓ Prec. 4mm(%)↓

✓ 10.67 29.74 66.00 77.88 83.76
✕ 9.59 27.78 66.01 78.06 84.09

Table 15: Ablation study on different loss function.

Loss MAE(mm)↓ RMSE(mm)↓ Prec. 1mm(%)↓ Prec. 2mm(%)↓ Prec. 4mm(%)↓

L1 9.27 25.64 67.60 78.01 83.60
CE 9.59 27.78 66.01 78.06 84.09

Table 16: Ablation study of the total number of training and testing views (reference and source
views) on the Tanks-and-Temples [59] benchmark.

Train Test
Intermediate F-score [%] ↑ Advanced F-score [%] ↑

Mean Fam. Fra. Hor. L.H. M60 Pan. P.G. Tra. Mean Aud. Bal. Cou. Mus. Pal. Tem.

7 21 65.00 81.07 70.85 49.83 68.00 63.81 64.84 64.58 57.67 39.28 24.60 44.33 36.96 51.82 36.50 41.99
9 21 66.46 82.01 72.30 52.89 69.49 64.29 65.98 65.58 59.08 42.27 28.84 48.98 39.73 53.87 36.80 45.42

11 21 67.67 82.47 72.90 58.55 69.63 65.34 66.88 65.60 59.98 43.32 30.95 49.61 41.04 54.92 36.72 46.67
11 11 65.90 82.43 70.55 55.63 66.33 65.00 64.59 63.83 59.02 41.82 29.81 46.96 39.61 52.65 36.48 45.39

To assess how our method benefits from the number of input views processed by the DM-module, we
conduct an ablation study by varying the number of input views during both training and testing. As
shown in Tab. 16, the performance consistently improves with more input views in both training and
testing stages. The 20 candidate source views are extended by MVSFormer [30].

D More Visualization Results

D.1 PCA Features

We apply Principal Component Analysis (PCA) to reduce the number of feature channels to three and
visualize the results with RGB. As illustrated in Fig. 6, we present the evolution of each reference-
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source feature pair in the Courtroom scene from the Tanks-and-Temples Advanced set. The results
show that all source features effectively learn consistent global representations from the reference
feature, thereby facilitating more reliable subsequent feature matching.

D.2 All Point Clouds

As shown Fig. 7 and Fig. 8, we visualize the reconstructed point clouds on the DTU [58] and
Tanks-and-Temples [59] benchmark, respectively.

E Limitations

The proposed DM-module and SDM-module are effective when applied at specific FPN scales,
simply extending them to FPN encoder features across multiple scales does not yield additional
performance gains, indicating that the full potential of Mamba is not yet fully leveraged. Although the
FPN structure allows global features to propagate from coarse to fine scales, this process inevitably
introduces information loss. Developing a feature interaction framework that supports efficient
multi-scale Mamba-based interaction remains a promising direction for future work.
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Figure 6: We show the PCA features of each pair of reference-source features on the Courtroom
scene of the Tanks-and-Temples [59] benchmark at the 0-th scale. For each pair, the top row displays
the reference feature, while the bottom row shows the corresponding source feature. The source
features are able to learn consistent global representations from the reference feature.
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Figure 7: All reconstructed point clouds on the DTU [58] dataset by the proposed method.
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Figure 8: All reconstructed point clouds on the Tanks-and-Temples [59] benchmark by the proposed
method.
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