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ABSTRACT

Multi-scale decomposition has become a mainstream paradigm for time series
forecasting. However, existing approaches primarily rely on the input sequence
for scale separation, which introduces bias and limits predictive accuracy. In
this work, we propose a novel forecasting framework that jointly leverages both
input and output sequences to construct a more faithful multi-scale representa-
tion. At its core, an FFT-driven adaptive period selection module, augmented
with Gumbel sampling, dynamically identifies dominant temporal scales while
enabling stochastic yet structured scale exploration during training. To further im-
prove stability and long-horizon robustness, we introduce an adaptive temperature
gating mechanism that refines decoder initialization. Extensive experiments on
multiple real-world benchmarks demonstrate that our method outperforms state-
of-the-art models, providing new insights into temporal decomposition for time
series forecasting.

1 INTRODUCTION

Time series forecasting is fundamental in numerous applications, including energy management,
traffic control, and financial planning(Jin et al. [2024). Accurate prediction of long-horizon se-
quences remains challenging due to multi-scale temporal dependencies and non-stationarities(Deng
et al.| [2024; |[Fan et al.,[2024; Tan et al.,2024)). Traditional deep learning models often fail to capture
these dynamics effectively, limiting their reliability in real-world scenarios(Kim et al., [2025)).

Multi-scale decomposition has emerged as a popular approach to model temporal hierarchies, where
sequences are separated into components corresponding to different scales(Wang et al., |2024b;
Shang et al.| 2024). While this paradigm can enhance model expressiveness, existing methods pre-
dominantly rely on input-only decomposition(Yu et al., 2024b; Wang et al., 2024c)). Such strategies
introduce bias, as the derived scales may not accurately reflect future dynamics(Glushkovsky,|[2024),
and they typically adopt deterministic scale assignments, restricting the exploration of alternative
temporal structures(Hu et al.| [2024)).

These limitations pose two major challenges: first, input-only decomposition may fail to capture
scales relevant for long-horizon forecasting(Yang et al., [2024; Jin et al.| [2023); second, determinis-
tic or fixed-scale strategies prevent the model from adaptively exploring diverse temporal structures
during training, potentially reducing generalization performance across different datasets and pre-
diction horizons(Fan et al.| 2024; |Zeng et al., [2023)).

To address these challenges, we propose a novel forecasting framework that jointly leverages both
input and output sequences to construct a more faithful multi-scale representation. At the core of
our method is an FFT-driven adaptive period selection module that dynamically identifies domi-
nant temporal scales. We further incorporate a Gumbel sampling mechanism, enabling stochastic
yet structured exploration of scales during training. Additionally, an adaptive temperature gating
strategy is designed to stabilize the decoder initialization, improving the overall reliability of long-
horizon predictions.Our main contributions are summarized as follows:

* We propose a joint multi-scale decomposition framework that integrates both input and
output sequences, alleviating the scale bias issue inherent in conventional single-sequence
decomposition methods.



Under review as a conference paper at ICLR 2026

* We design an FFT-driven adaptive scale selection module with Gumbel sampling, which
enables dynamic and stochastic exploration of dominant temporal scales, enhancing flexi-
bility and robustness in representation learning.

* We introduce a unified network architecture that incorporates an adaptive temperature gat-
ing mechanism for decoder initialization, thereby stabilizing the decoding process and im-
proving long-horizon forecasting performance.

2 RELATED WORK

2.1 TRANSFORMER-BASED MODEL FOR TIME SERIES

Transformer-based architectures remain central to long-term forecasting research. Numerous stud-
ies aim to address the inherent limitations of Transformers in temporal sequence modeling. iTrans-
former (Liu et al., 2023)) reformulates the architecture by representing individual series as tokens
rather than time steps, thereby capturing inter-sequence dependencies through explicit multivari-
ate correlation modeling. PatchTST (Nie et al.l 2023) segments time series into patches and em-
ploys channel-independent processing to reduce computational complexity while enabling direct
multi-step forecasting. TimesNet (Wu et al.l [2023)) transforms one-dimensional series into two-
dimensional tensors to model both intra-period and inter-period variations adaptively. However,
these Transformer variants face a common challenge: while they excel at modeling dependencies
between sequences, their autoregressive prediction mechanisms can lead to cumulative errors over
long horizons. As demonstrated by DLinear (Zeng et al., [2023), simple linear models sometimes
outperform complex Transformers by avoiding sequential error propagation, highlighting the inher-
ent trade-off between the expressive power of attention mechanisms and the robustness of direct
prediction strategies.

2.2 DECOMPOSITION OF TIME SERIES

Time series decomposition has proven essential for capturing multi-scale temporal patterns. Clas-
sical techniques such as seasonal-trend decomposition and wavelet transforms aim to separate sig-
nals into distinct components. Recent deep learning approaches have integrated decomposition as
explicit modules, with Autoformer (Wu et al.l 2021)) pioneering auto-correlation mechanisms for
periodicity modeling. However, newer methods recognize that fixed decomposition schemes may
introduce bias. Leddam (Yu et al.| [2024a)) introduces learnable decomposition using trainable con-
volutional kernels that adapt to input-specific patterns, achieving significant error reductions when
integrated into existing models. TimeMixer (Wang et al., |2024b) employs multi-scale decomposi-
tion with separate mixing operations for seasonal and trend components across different temporal
scales. CycleNet (Lin et al.,[2024) learns recurrent cycles directly from data to model inherent peri-
odicities. While these learnable approaches represent substantial progress, they still fundamentally
depend solely on the input sequence for decomposition, potentially limiting their ability to capture
the full complexity of temporal dynamics when historical patterns alone may not sufficiently inform
future decomposition structures.

3 PROPOSED METHOD

In this section, we present our proposed framework for joint multi-scale time series forecasting. An
overview of the framework is illustrated in Figure [I] The framework consists of five key compo-
nents: the overall architecture, FFT-based decomposition, Gumbel sampling for scale exploration,
transformer-based temporal modeling blocks with cross-scale fusion, and adaptive temperature gat-
ing.

3.1 OVERALL ARCHITECTURE

The proposed model adopts an encoder—decoder structure augmented with a joint multi-scale de-
composition module. The encoder embeds temporal patterns at different scales, while the decoder
incorporates adaptive initialization and multi-scale context to refine long-horizon predictions.
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Figure 1: Overall architecture of the proposed framework. The model follows an encoder—decoder
design with a joint multi-scale decomposition module.

Let the input sequence be denoted as X € RE*N and the target horizon as Y € R¥*N_ The
encoder transforms the historical sequence into hidden representations:

H, = Enc(X), H, e RL*9, (1)

To initialize the decoder, we refine the encoder states using the proposed adaptive temperature gating
mechanism, producing the extended initialization matrix:

Zo = G, (H,) € REFH)*d, 2)

where G, (-) denotes the gating function that adaptively regulates feature sparsity and extends the
representation to accommodate both past and future horizons.

The decoder then generates the predictions conditioned on this gated initialization:

Y = Dec(Z). 3)

Furthermore, the proposed decomposition and fusion modules are incorporated into both encoder
and decoder pathways.

3.2 FFT-BASED JOINT MULTI-SCALE DECOMPOSITION

To capture the periodic nature of time series, we employ an FFT-based decomposition module ap-
plied at both the encoder and decoder inputs. The encoder processes the input sequence X, where
FFT decomposition helps extract multi-scale features. In the decoder, inspired by (Wang et al.,
20244a), we combine the generated input and output features and apply FFT to mitigate the auto-
correlation issue and enhance representation learning. Formally, we define the frequency-domain
transformation as:

Fi(w) =FFT(I), Ie€{X,Zo} (€))]
The dominant periods are selected as the set of top-K frequency indices:
QI :Topkw (|}—I<w)|aK)v )
where K is a hyperparameter. The corresponding temporal periods are then computed as:
L
TI:{I weQI}, ©
w
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with Lx = L and Lz, = L 4+ H.These identified periods serve as candidate scale representations
for subsequent stochastic exploration using Gumbel sampling, enabling a more faithful multi-scale
decomposition of the temporal dynamics.

3.3 GUMBEL-BASED PERIOD SELECTION

We employ a Gumbel-perturbed selection mechanism to dynamically choose dominant periods from
the FFT-derived candidates. For each input (encoder or decoder), FFT provides a set of candidate

scales 7 = [T, ..., Tk] and corresponding normalized magnitudes M = [Mj, ..., M|, where
| F(wr)|
My = 280 (7
ZWGQ |]:I (LU)|

The model also maintains the current period T, which is incorporated into the candidate set during
each selection step. Before selection, the probabilities are adjusted using a decayed confidence factor
m:. Specifically, the candidate magnitudes are rescaled as

Mk:’iTt~Mk, k:].,...,K, (8)

and the current period is appended with residual probability weight

Mior = 1—m. )

Thus, the final candidate set is
T =[T,..., Tk, T, (10)
M = [My,..., My, Mg 1], (11)

ensuring that 2,15:11 M;, = 1. The probability-state 7, is decayed at each step:
Tt41 < T - P, 12)

where p € (0,1) is a fixed decay hyperparameter. This guarantees that as training proceeds, the
selection becomes increasingly stable and biased toward the previously chosen period.

To introduce stochasticity, we generate independent Gumbel noise terms gj, for each candidate and
compute perturbed logits:

g ~ Gumbel(0, 1), (13)
O = log(My + €) + gi, (14)

where € > 0 is a small constant for numerical stability. The selected index is given by the Gumbel-
argmax:

k* = arg max Ly, (15)

and the period is updated as
T ¢ T (16)

This mechanism is applied separately to both encoder and decoder candidate sets, yielding stateful
period selections that evolve across iterations.

Based on the selected periods Ty, we construct multi-scale representations by reshaping the input
sequence into 3D tensors aligned with the corresponding temporal scales. Formally:

H; = Reshape, (Pad(I)), (17)

where Pad(-) denotes zero-padding along the temporal dimension to ensure divisibility by the se-
lected period T;. The reshaped tensor Hy € R**71X/1 encodes the input sequence under period

T, with fy representing the corresponding folding factor. The results Hy provides multi-period
representations that serve as inputs for subsequent temporal modeling.
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3.4 TRANSFORMER-BASED TEMPORAL MODELING BLOCKS

Building upon the padded multi-period representations Hy € R¢*71*f1 each Transformer block
sequentially captures intra-period and inter-period dependencies via local attention, a feed-forward
(MLP or MoE), a permutation (transpose), global attention, and a second feed-forward. Residual
connections and layer normalization are applied around each sublayer.

Local attention & feed-forward. Treating Hy as f; non-overlapping segments of length 77, local
self-attention is computed as
KT
Ajocal = Softmax ( @k,
Vd

The local-refined representation is produced with a residual FFN:

) Vi, Q=HW,, K =HW, V=HW,.

Hioca = Hy + FFNj(Ajocal)-

Adaptive FFN choice. The position-wise feed-forward network is chosen according to layer
depth:

MLP(-), iflayer.id < ngense,
FFN(,) =
MOoE(+), otherwise,
where the MLP is the standard two-layer gated/activated projection

MLP(Z) = O'(I’Wl + bl)WQ + bQ,

and the MoE is a mixture-of-experts with soft gating

K
MoE(z) = ng(x) - Expert,, (z), ng(x) =1.
k=1 k

This design uses inexpensive MLPs in early (shallow) blocks for efficiency and higher-capacity MoE
in deeper blocks for expressiveness, matching the implementation choice in code.

Global attention & feed-forward. We permute (transpose) the local-refined tensor along the pe-
riod/segment axes:

HIT € RdxfIXTI
oca. N
Global self-attention is applied on the transposed tensor:

T

K
Aglobal = SOftma’X<Qf/gg ) V‘P Qg = Hl—cr)caIWC%7 KG = Hl—(r)calWIg{’ Vg = Hl—gcalW\g'

The global-refined tensor follows with another residual FFN:

Hgobar = H . + FFN,(Agiobal),
where FFN, follows the same depth-based MLP/MOoE selection rule.

Final reshape. After global refinement we transpose back and reshape to the original padded
multi-period form:

Hga = Reshape(Hg,p,) € RIXTixfi.

and (if needed) any padding is truncated to restore the original unpadded length.

This sequential pipeline (local — FFN; — transpose — global — FFN, — reshape) ensures that
intra-period patterns are first captured and enriched before being consolidated into inter-period align-
ments, while the MLP/MoE scheduling balances computational cost and modeling capacity across
depth.
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3.5 TRANSFORMER-BASED TEMPORAL MODELING BLOCKS

Building upon the padded multi-period representations Hy € R?*71*/1_we design temporal model-
ing blocks that sequentially capture intra-period and inter-period dependencies. Each block consists
of local attention, global attention, and feed-forward layers (MLP or MoE), combined with residual
connections and normalization.

Local Attention and Feed-Forward. For each period Tr, Hy is treated as fy segments of length
Ti. Local self-attention is applied within each segment:

Asoea = Softmax (L) Vi, Qi = HuW, Ki = HiWi, Vi = HiW.

The result is refined by a position-wise feed-forward network:
Hlocal = HI + FFNZ(Alocal)7
where FFN; is an MLP for shallow layers and an MoE for deeper layers.

Global Attention and Feed-Forward. To capture inter-period alignment, H,, is permuted along
the period axis:

dx fixT
Xglobal eR fi Ia

on which global attention is applied:

QuK,
Agiobal = Softmax( f/gg ) Vor Qg = XaobaWe), Ky = Xaobat Wi, Vg = Xgiobat W -

The output is further enhanced via
Hglobal = Xglobal + FFNg (Aglobal);
with FFN, chosen adaptively (MLP or MoE).

Final Fusion. Finally, Hg)opa is reshaped back to the original temporal axis:

Hdual - ReShape(Hglobal) € Rdx Tixfr .

This sequential pipeline introduces a hierarchical inductive bias: local modules capture intra-period
variations, global modules consolidate inter-period structure, while MLP/MoE feed-forwards adap-
tively balance efficiency and expressiveness across layers.

3.6 ADAPTIVE TEMPERATURE GATING

To further stabilize decoder initialization and control feature sparsity, we design an Adaptive Tem-
perature Gating module. Unlike static gating strategies, our method introduces a learnable gating
distribution with temperature annealing, which adaptively balances exploration in the early stage
and sparsification in later stages.

Formally, given input features x € R? with learnable gate weights w € R, the gating temperature
at step t is updated as
Ty = maX(Tmin,To ~’yt) , (18)

where 79 is the initial temperature, Ty, is the lower bound, and v € (0, 1) is the decay factor.

Training. During training, we adopt the Gumbel-Sigmoid reparameterization to enable differen-
tiable sampling:

gz-:a<“’i“7‘>, e = —log(—log(w)), s ~U(0, 1), (19)

Tt

yielding stochastic gates g € [0, 1]¢ that regulate the activation of each feature.
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Inference. At inference, we enforce sparsity by selecting the top-k gates according to a predefined
sparsity ratio s:

and set
1, €7
9= {0, otherwise. @D

Application. The final gated output is computed as
y=x0g8, (22)

where © denotes element-wise multiplication with gates reshaped to match the dimensionality of x.

This adaptive gating strategy regulates the sharpness of feature selection during training and enforces
structured sparsity during inference. Integrated into decoder initialization, it mitigates unstable dy-
namics, improves robustness, and ensures reliable long-horizon forecasting.

3.7 Loss FUNCTION DESIGN

To ensure multi-scale consistency and mitigate biases introduced by performing FFT solely on the
input, we apply frequency-domain supervision on both the encoder and decoder outputs. Let Hj de-
note the encoder representation after FFT-based decomposition, and Zg the decoder input initialized
via the adaptive temperature gating. The dual-level spectral losses are then formulated as

Lireqenc = || mean (Fe, (w)y) — mean (Fy (w)s) | 1 (23)
Lireqaee = ||Fzo (@) — Fy (W), (24)

where Y is the ground truth sequence and B is the batch size.

In addition, a standard time-domain loss L is applied to decoder predictions. The overall training
objective is

L= Cfreq—enc + Efreq—dec +« »ctimea (25)
with a controlling the contribution of the time-domain term.

By supervising both encoder and decoder in the frequency domain, our model alleviates multi-scale
bias from input-only FFT, preserves periodic structures across scales, and improves long-horizon
forecasting. This design extends prior FFT-based loss approaches (Wang et al.| 2024a) by enforcing
spectral consistency across the full sequence modeling pipeline.

4 EXPERIMENTS

We conduct extensive experiments to evaluate the effectiveness of our proposed framework. Specif-
ically, we aim to answer the following research questions (RQs):

* RQ1: Does our method consistently outperform state-of-the-art forecasting models across
multiple benchmarks?

* RQ2: How do the proposed FFT-based joint decomposition, Gumbel-based period selec-
tion, and adaptive temperature gating individually contribute to performance gains?

* RQ3: How sensitive is our model’s performance to changes in key hyperparameters and
architectural choices?

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate on eight widely-used multivariate time series forecasting benchmarks, in-
cluding ETT (Zhou et al.| 2021), ECL, Traffic, Weather and PEMS (Chen et al.| [2001). Each
dataset is divided chronologically for training, validation and test.
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Baselines. We compare against ten strong baselines covering four modeling paradigms:
Transformer-based (Transformer (Vaswani et al., 2017), Autoformer (Wu et al., |2021), FED-
former (Zhou et all, [2022), iTransformer (Liu et al., [2024)); Convolution-based (TimesNet (Wu
et al., |2023), MICN (Wang et al., 2023)); Linear (DLinear (Zeng et al., |2023), TiDE (Das et al.,
2023))); and Frequency-domain (FreDF (Wang et al., 2024a), FreTS (Yi et al., 2023)).

Implementation Details. We implement our framework in PyTorch. The number of candidate
periods K is set to 8, and the decay rate p for period confidence is 0.9. The initial gating temperature
is 79 = 1.0 with v = 0.95 and 7,5, = 0.1. Models are trained with the Adam optimizer (Kingma
& Bal [2014), using a learning rate of 1 x 10~* and batch size 32. We follow standard forecasting
horizons H € {96, 192,336,720} (and {12, 24, 36,48} for PEMS) and report results using mean
squared error (MSE) and mean absolute error (MAE).

Table 1: Comprehensive comparison of forecasting models across multiple datasets. Best results are
highlighted in bold. 1st Count shows the number of times each model achieved the best performance.

FEDformer
(2022)

Transformer
(2017) ‘

Autoformer
(2021)

iTransformer

JointMS FreDF
Models ‘ ‘ (2024)

(Ours) (2025)

FreTS TimesNet MICN TiDE DLinear
(2023) (2023) (2023) (2023) (2023)

Metrics | MSE MAE|MSE MAE|MSE MAE |MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE| MSE MAE|MSE MAE|MSE MAE

96 [0.298 0.352|0.324 0.362|0.346 0.379 |0.339 0.374|0.338 0.379]0.318 0.366|0.364 0.387[0.345 0.372|0.389 0.427|0.468 0.463|0.591 0.549
19210.340 0.376(0.373 0.385|0.392 0.400 |0.382 0.397|0.389 0.400|0.364 0.396|0.398 0.404 [0.381 0.390| 0.402 0.431|0.573 0.509|0.704 0.629
336(0.372 0.395|0.402 0.404|0.427 0.422 [0.421 0.426|0.429 0.428|0.398 0.428(0.428 0.425|0.414 0.414|0.438 0.451]0.596 0.527|1.171 0.861
720(0.428 0.430|0.469 0.444|0.494 0.461 [0.485 0.462|0.495 0.464|0.514 0.501|0.487 0.461|0.473 0.451]0.529 0.498|0.749 0.569[1.307 0.893

ETTm1

96 [0.166 0.248|0.173 0.252]0.184 0.266 |0.190 0.282]0.185 0.264|0.178 0.275|0.207 0.305]0.195 0.294|0.194 0.284]0.240 0.319|0.317 0.408
19210.234 0.290(0.241 0.298|0.257 0.315 |0.260 0.329|0.254 0.307|0.240 0.317|0.290 0.364 [0.283 0.359| 0.264 0.324|0.300 0.349|1.069 0.758
336(0.304 0.3300.298 0.334(0.315 0.351 [0.373 0.405|0.314 0.345|0.299 0.354[0.377 0.422|0.384 0.427|0.319 0.359{0.339 0.375|1.325 0.869
720(0.378 0.394|0.398 0.393|0.419 0.409 [0.517 0.499|0.434 0.413|0.482 0.479[0.558 0.524|0.516 0.524|0.516 0.502|0.430 0.423|2.576 1.223

ETTm2

96 [0.372 0.395|0.382 0.400|0.390 0.410 |0.399 0.412]0.422 0.433]0.383 0.418|0.479 0.464|0.396 0.410[0.377 0.418(0.423 0.441|0.796 0.691
19210.406 0.407|0.430 0.427|0.443 0.441 |0.453 0.44310.465 0.457]0.500 0.491|0.521 0.503|0.449 0.444|0.421 0.445]0.498 0.485|0.813 0.699
336(0.429 0.428|0.474 0.451|0.480 0.457 |0.503 0.475[0.492 0.470|0.546 0.530|0.659 0.603 |0.487 0.465|0.468 0.472(0.506 0.496|1.181 0.876
720(0.451 0.443|0.463 0.462|0.484 0.479 [0.596 0.565|0.532 0.502|0.671 0.620[0.893 0.736|0.516 0.513|0.500 0.493|0.477 0.487[1.182 0.885

ETThl

96 [0.285 0.337|0.289 0.337|0.301 0.349 |0.350 0.403[0.320 0.364|0.361 0.404|0.400 0.440[0.343 0.396|0.347 0.391[0.383 0.424|2.072 1.140
19210.367 0.390|0.363 0.385]|0.382 0.402 |0.472 0.475[0.409 0.417]0.495 0.490|0.528 0.509|0.473 0.474|0.430 0.443[0.557 0.511|5.081 1.814
336(0.374 0.424|0.419 0.426|0.430 0.434 |0.564 0.528|0.449 0.451|0.671 0.588|0.643 0.571(0.603 0.546| 0.469 0.475|0.470 0.481|3.564 1.475
720(0.398 0.440|0.415 0.437|0.447 0.455 [0.815 0.654|0.473 0.474|0.968 0.712|0.874 0.679|0.812 0.650| 0.473 0.480|0.501 0.515|2.469 1.247

ETTh2

96 [0.142 0.229]0.144 0.233]0.148 0.239 |0.189 0.277[0.171 0.273]0.168 0.280|0.237 0.329]0.210 0.302|0.200 0.315]0.199 0.315]|0.252 0.352
19210.155 0.255]0.159 0.247|0.167 0.258 |0.193 0.282]0.188 0.289|0.177 0.2890.236 0.330(0.210 0.305|0.207 0.322(0.215 0.327|0.266 0.364
336(0.167 0.271|0.172 0.263|0.179 0.272 |0.207 0.296|0.208 0.304|0.185 0.296|0.249 0.344(0.223 0.319| 0.226 0.340|0.232 0.343|0.292 0.383
720(0.194 0.289|0.204 0.294|0.209 0.298 |0.245 0.332|0.289 0.363|0.218 0.323|0.284 0.373|0.258 0.350| 0.282 0.379|0.268 0.371|0.287 0.371

ECL

96 [0.377 0.262]0.391 0.265]0.397 0.272 |0.528 0.341]0.504 0.298]0.609 0.317|0.805 0.493]0.697 0.429]0.577 0.362]0.609 0.385|0.686 0.385
19210.395 0.2780.410 0.273]0.418 0.279 |0.531 0.338(0.526 0.305|0.621 0.328|0.756 0.474(0.647 0.407 | 0.603 0.3720.633 0.400|0.679 0.377
336(0.403 0.288(0.424 0.280(0.432 0.286 |0.551 0.345(0.540 0.310|0.641 0.342(0.762 0.477{0.653 0.410|0.615 0.378|0.637 0.398|0.663 0.361
720(0.440 0.295|0.460 0.298|0.467 0.305 [0.598 0.367|0.570 0.324|0.671 0.354|0.719 0.409|0.694 0.429|0.649 0.403|0.668 0.415|0.693 0.381

Traffic

96 [0.154 0.207]0.164 0.202]0.201 0.247 |0.184 0.239[0.178 0.226]0.182 0.250|0.202 0.261]0.197 0.259]0.221 0.304|0.284 0.355|0.332 0.383
19210.195 0.249{0.220 0.253]0.250 0.283 |0.223 0.275|0.227 0.266|0.234 0.301|0.242 0.298 |0.236 0.294| 0.275 0.345|0.313 0.371]0.634 0.539
336(0.245 0.280(0.275 0.294(0.302 0.317 [0.272 0.316|0.283 0.305|0.268 0.325(0.287 0.335|0.282 0.332{ 0.338 0.379|0.359 0.393(0.656 0.579
720(0.311 0.328|0.356 0.347|0.370 0.362 [0.340 0.363|0.359 0.355|0.361 0.399[0.351 0.386|0.347 0.384| 0.408 0.418|0.440 0.446|0.908 0.706

‘Weather

12 [0.075 0.180]0.068 0.172]0.069 0.175 |0.083 0.194|0.082 0.188[0.087 0.203]0.117 0.225|0.122 0.245| 0.123 0.2480.239 0.365]0.107 0.209
24 (0.090 0.198{0.096 0.205]|0.098 0.210 |0.127 0.241[0.110 0.216{0.086 0.1980.233 0.320]0.202 0.320| 0.160 0.287[0.492 0.506|0.121 0.227
36 (0.102 0.217|0.128 0.240|0.131 0.243 |0.169 0.281[0.133 0.236{0.105 0.220(0.380 0.422]0.275 0.382|0.191 0.321{0.399 0.459|0.133 0.243
48 10.150 0.265|0.161 0.269|0.164 0.275 [0.204 0.311|0.146 0.251]0.120 0.235[0.536 0.511|0.335 0.429|0.223 0.350|0.875 0.723|0.144 0.253

PEMS03

12 [0.078 0.175]0.080 0.182]0.085 0.189 |0.095 0.204|0.110 0.209|2.193 0.871]0.121 0.231|0.152 0.274| 0.175 0.275|0.446 0.483]0.213 0.236
24 (0.113 0.208{0.118 0.220{0.131 0.236 |0.150 0.259[0.142 0.239{0.235 0.339|0.232 0.326[0.245 0.350| 0.211 0.305[0.488 0.509|0.238 0.256
36 (0.145 0.232|0.161 0.258]0.182 0.282 |0.202 0.305[0.167 0.258{0.197 0.3000.379 0.428]0.344 0.417|0.250 0.338]0.352 0.513]|0.263 0.277
48 10.190 0.269|0.206 0.293|0.236 0.323 [0.250 0.341|0.195 0.274|0.242 0.324|0.543 0.527|0.437 0.469|0.293 0.371|1.052 0.781[0.283 0.295

PEMS08

4.2 OVERALL PERFORMANCE

Table [T| summarizes results on nine benchmarks against ten baselines. Improvements are especially
strong at long horizons (H = 720), where it ranks first on eights datasets with notable improvements
(e.g., 8.7% on ETTml, 8.5% on Weather).

The model remains robust across diverse datasets, consistently outperforming baselines on Traffic
and surpassing recent SOTA methods (FreDF, iTransformer, FreTS) in 34/36 settings, with substan-
tial margins over earlier models.
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4.3 ABLATION STUDY (RQ2)

We conduct ablations to examine the effect of key components: (1) Multi-scale decomposition
(MS): removing joint FFT and using input-only; (2) Period selection (PS): replacing Gumbel sam-
pling with deterministic top-K; (3) Confidence decay (CD): disabling adaptive temperature gating.

As shown in Table [2} each module contributes to the final performance. Removing multi-scale
decomposition yields the largest degradation, underscoring its role in capturing long-term patterns.
Period selection and confidence decay provide additional gains in robustness and stability. The full
model (JointMS) achieves the lowest errors across all datasets, confirming the effectiveness of our
design.

Table 2: Ablation study on four datasets. Results are averaged across forecasting horizons.

ETTml ETThl Traffic PEMSO08
MSE MAE | MSE MAE | MSE MAE | MSE MAE

w/oMS | 0362 0.392 | 0429 0434 | 0429 0304 | 0.149 0.234
w/o PS 0.381 0.419 | 0427 0.425 | 0427 0305 | 0.147 0.235
w/oCD | 0373 0402 | 0430 0422 | 0410 0.292 | 0.150 0.242
JointMS | 0.359 0.388 | 0.414 0.418 | 0.403 0.280 | 0.131 0.221

Variant

4.4 HYPERPARAMETER SENSITIVITY ANALYSIS

We conduct a sensitivity analysis on two key hyperparameters: the hidden dimension dy,04e1 and the
period selection parameter K.

Hidden Dimension d;oq We observe that increasing diogel generally improves model perfor-
mance, as larger hidden dimensions enhance the capacity to capture complex temporal dependen-
cies. However, the improvement exhibits diminishing returns beyond a certain point. Across all
datasets, dmoger = 512 achieves a strong balance between accuracy and computational efficiency,
representing the optimal choice for the hidden dimension.

Period Selection X' We further examine the effect of the number of selected periods K. The
model performs best with moderate values of K, where too small or too large values can degrade
performance. Empirically, K = 4 consistently yields the lowest errors across datasets, indicating
that selecting an appropriate number of dominant periods is crucial for capturing temporal structures
effectively.

Summary Overall, the analysis demonstrates that the model is robust to moderate variations in
hyperparameters. Choosing dpneqer = 512 and K = 4 provides strong performance across diverse
datasets, balancing accuracy and efficiency.

5 CONCLUSION

In this paper, we introduced a novel forecasting framework that jointly leverages input and out-
put sequences to construct faithful multi-scale representations. Our approach combines FFT-driven
adaptive period selection with Gumbel-based stochastic exploration and adaptive temperature gating
to capture dominant temporal scales while stabilizing long-horizon predictions. Through extensive
experiments on diverse real-world datasets, we demonstrated that our method outperforms existing
models in forecasting accuracy and effectively models complex multi-scale temporal dynamics. Our
findings highlight the importance of joint decomposition and adaptive scale exploration in improving
both the expressiveness and robustness of time series forecasting models.
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