
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Baton: Enhancing Batch-wise Inference Efficiency for Large
Language Models via Dynamic Re-batching

Anonymous Author(s)

Abstract

The advanced capabilities of Large Language Models (LLMs) have
inspired the development of various interactive web services or
applications, such as ChatGPT, which offer query inference ser-
vices for users. Unlike traditional DNN model, the inference of
LLM entails different iterations of forward computation for differ-
ent queries, which result in efficiency challenges for existing run-
to-completion batch-wise inference. Hence, some methods refine
batch-wise inference to iteration-level by duplicating all nonlinear
layers of LLM. However, such the approach not only increases re-
source usage but also introduced idle computations to the batch
due to the prefilling of newly added queries.

Therefore, we propose Baton, an efficient batch-wise LLM infer-
ence scheme by dynamically adjusting processing batch, which can
achieve near-zero idle computations without incurring additional
resource consumption. To do so, Baton 1) shapes the vectors in-
volved in the inference of the newly inserted query and processing
batch to align dimensions and generates a new attentionmask based
on vector shaping to ensure inference correctness, which enable
query inserting without consuming additional resource; 2) embeds
prefilled Keys and Values of the new query into the KV_Cache of
the processing batch by leveraging the prefilling and decoding sep-
aration mechanism, eliminating idle computations to the batch
introduced by the prefilling process of the new query. Experimental
results show that compared to the state-of-the-art solution Orca,
Baton outperforms improves query processing by up to 1.75×.

Keywords

LLM, inference serving, query scheduling

1 Introduction

The superior abilities of Large Language Models (LLMs) provide
new possibilities for various fields from natural language processing
to science researches, which prompts the development of LLM-
based web services and applications [1–4]. The ChatGPT from
Openai is a notable LLM-based application for users [5], followed
closely by Copilot from Microsoft, Gemini from Google, ERNIE-
Bot from Baidu, Qwen from Alibaba, Kimi-Chat from Moonshot
[6–10], etc., which all can process the queries proposed by users in
a interactive conversation manner. These applications essentially
provide LLM inference services from a computational perspective,
processing user queries by inputting them into the deployed model
and returning generated outputs [11]. To fully exploit the parallel
computing capabilities of GPUs, this inference process is typically
performed in batch-wise. This means the model takes multiple
queries stacked along the tensor dimension as input, and generates
corresponding result for each query embedded in the output tensor.

The workflow of LLM inference differs significantly from that of
conventional Deep Neural Network (DNN) models. The inference
of DNN models typically involves a single forward computation

to produce the entire output, which naturally aligns with batch-
wise processing [12]. For instance, in image classification tasks,
an RNN-based model can get classify results of a batch of images
via a single forward computation [13]. In contrast, LLM inference
follows a unique autoregressive pattern, requiring multiple forward
computations. Each forward computation, i.e., an iteration, will
generate a new token [14] for each query. Moreover, the inference
process can be divided into two phases: prefilling and decoding
[15, 16]. In the prefilling phase, the entire query tensor is embedded,
and the corresponding Keys and Values tensors are computed and
cached, concluding with the generation of the first new token. The
decoding phase then iteratively generates a new token for each
query based on last token and the KV-Cache [17]. In the meantime,
the KV-Cache will also be updated in each iteration. The decoding
phase continues until themodel outputs an end-of-inference symbol
(⟨EOS⟩) or the sequence reaches the setting maximum length.

Token is the basic unit that constitutes the final answer sequence
to a query. Consequently, the number of inference iteration required
depends on the answer sequence length of each query. In existing
run-to-completion inference frameworks, inference computation of
a batch continues until all queries are completed, even if different
queries require varying numbers of iterations. Queries that com-
plete earlier continue to be processed alongside incomplete queries,
producing only the ⟨EOS⟩. This unnecessary resource consump-
tion and computation, without generating meaningful tokens, is
termed as idle computation, leading to resource underutilization
and reducing the efficiency of inference services. Parallel comput-
ing on GPUs requires the dimensions of corresponding tensors
to be aligned or compatible for multiplication. The autoregressive
characteristic of LLMs makes the tensor dimensions involved in
inference, such as the KV-Cache, to increase with each iteration.
Therefore, replenishing a new query directly to current process-
ing batch is impracticable [18], which makes it difficult to utilize
aforementioned idle resources.

Orca [19] is the state-of-the-art solution for LLM inference,
which refines the scheduling granularity from batch-level to iteration-
level and detours dimensional discrepancies caused by inserting
new queries via modifying the model structure. The method con-
catenates queries tensors into a single one-dimensional tensor for
all linear computations and replicates the self-attention modules
for each query to perform nonlinear computations. On the basis
of Orca, FastServe [20] further introduces a query scheduler to
support proactive inference task scheduling. However, such the
Orca series method faces the following two challenges: 1) the pa-
rameters of self-attention take up a large part of the LLM [21–23],
replicating manner makes the model consume more resources; 2)
the synchronization requirement of the linear layer computation
makes the Prefilling of the new query choke the decoding of the
other queries of the batch [15, 24].

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Peizhuang Cong et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

softmax
Q K V

To

Prefilling (1st iteration)

softmax
Q K V

Decoding (2nd iteration)
KV-Cache
mechanism

You

Happy Birthday

softmax
Q

K V
Decoding (3rd iteration)

<EOS>

To YouHappy Birthday

Figure 1: Example of 𝑄 , 𝐾 , and 𝑉 calculations during KV-

Cache-based inference in a text generation task.

To this end, we propose Baton in this paper, a efficient batch-
wise LLM inference scheme that allows removing completed queries
from and inserting new queries to the current processing batch
dynamically with near-zero idle computations, like the relay race
manner. Baton offers a non-invasive and generic solution appli-
cable to all existing LLMs that utilize the KV-Cache policy, which
(1) shapes the vectors of new and processing queries by padding
operations to align dimensions and creates corresponding masks to
ensure the correctness of subsequent inference iterations; (2) em-
beds the 𝐾𝑒𝑦𝑠 and𝑉𝑎𝑙𝑢𝑒𝑠 of new query into the cached 𝐾𝑉 tensors
without introducing extra paddings required for dimension align-
ment by decoupling the prefilling and decoding phases, thereby
avoiding additional idle computations, referred to as "bubbles" in
the paper. Moreover, Baton instinctively supports query inference
interruption and recovery, enabling preemptive query scheduling
and flexible batch size scaling during inference.

The contributions of this paper are summarized as follows:

• We designed a tensor shaping and embedding strategy to
achieve query-level seamless batch-wise LLM inference,
supporting query exits from and inserts to the current pro-
cessing batch.

• We designed a tensor alignment policy based on P&D de-
coupling, avoiding the resource and computational bubbles
introduced by the embedding process and freeing the im-
plicit constraints of batch composing.

• We conducted extensive experiments with several repre-
sentative LLMs, and the results show that Baton outper-
forms the state-of-the-art solution w.r.t. query processing
throughput by 1.29-1.75×.

2 Preliminary and Motivation

In this section, we firstly introduce some preliminaries about LLM
to facilitate the introduction of Batonmore explicitly to follow; and

Model

<pad><pad>𝑥!
<pad>𝑦"𝑦!
𝑧#𝑧"𝑧!

𝑥"
𝑦#
𝑧$

Model

𝑥#
𝑦#

<EOS>

𝑥"
𝑦#
𝑧$

Model

𝑥%
<EOS>

<EOS>

𝑥$
𝑦$

<EOS>

Model

<EOS>

<EOS>

<EOS>

𝑥&
<EOS>

<EOS>

…

Iteration 1 Iteration 2 Iteration 3 Iteration n

Start

End

…

…

Figure 2: Batch-wise inference

then present the motivation of Baton based on practical serving
demands.

2.1 Preliminaries

In the following, we present preliminaries of LLMs in terms of (1)
general architecture, (2) KV-Cache-based inference iterations, and
(3) workflow of bath-wise inference.

General architecture. Most of current open-source LLMs, e.g.,
GPT and Llama, are mainly based on the Transformer structure or
its variations [25, 26]. The key part of Transformer is self-attention
mechanism [27]. For self-attention calculation, the input sequence
𝑋 is first linearly transformed by the trained weight matrices𝑊𝑄 ,
𝑊𝐾 , and𝑊𝑉 , generating the Query (𝑄), Key (𝐾), and Value (𝑉)
vectors. The relationship strength between elements of 𝑋 is eval-
uated by calculating the dot product between 𝑄 and 𝐾 , and then
converted into attention weights through scaling and softmax op-
erations. Finally, these attention weights are multiplied by 𝑉 , and
through weighted summation, an output is generated.

This process enables the model to integrate global information
and dynamically adjust the representation of each element to cap-
ture complex dependencies and contextual information in the se-
quence. Typically, LLMs consist of multiple Transformer layers,
between which are set some Feed Forward Networks (FFNs) or
Multi-Layer Perceptrons (MLPs).

KV-Cache-based inference iterations. Each forward calcu-
lation of LLM generates a token based on the input sequence 𝑋 ,
which is the basic unit of the final response sentence, therefore, it
is necessary to append the output token to 𝑋 iteratively until the
complete response sentence is generated. This is the autoregressive
nature of LLM and the inference will end when the model outputs
the end-of-inference symbol (⟨EOS⟩) or the sequence length reaches
the set threshold.

Taking text generation tasks as an example, suppose the initial
input sentence is "Happy Birthday", the model will generate "To" in
first iteration; and "Happy Birthday" will be input into the model
again for the second iteration inference. Based on the aforemen-
tioned self-attention description, in a strawman way, it is necessary
to calculate the attention weights among "Happy", "Birthday", and
"To". However, the attention weights between "Happy" and "Birth-
day" has been computed in the first iteration. Therefore, these re-
peated calculations can be avoided by caching previously calculated
𝐾 and 𝑉 values and reusing them, which is known as KV-Cache
[28]. As shown in the Figure 1, the 𝐾 and 𝑉 of the first iteration
are cached for the second iteration, it is possible to output “You” by
calculating “To” related values; it is similarly to calculate the “You”

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Baton: Enhancing Batch-wise Inference Efficiency for Large Language Models via Dynamic Re-batching

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

related values based on the last KV-Cache in third iteration. More-
over, given the KV-Cache mechanism, only the first iteration—often
referred to as the prefilling phase—inputs the current complete
query sentence, whereas subsequent iterations, known as the de-
coding phase, the latest output token is enough as the input.

Batch-wise inference. It is necessary to align the dimensions
of the involved vectors during batch-wise processing by GPUs.
Therefore, as shown in Figure 2, batch-wise LLM inference needs to
align the vector lengths of all query sentences of the batch for the
prefilling phase, i.e., padding the shorter query by the predefined
padding symbol. To avoid the impact of padding symbols on the
computation, a 0-1 attention mask vector will be generated for each
query to identify the initial tokens and padding symbols.

During inference, if any query in the batch is completed, rep-
resented by the output of the ⟨EOS⟩, the model will continue to
generate ⟨EOS⟩ directly for that query in subsequent iterations to
align vectors dimensions. The inference for this batch continues
until all queries in the batch have completed.

2.2 Motivation

Regarding LLM inference, how to combine batch is a major area
of research, the core of which is dedicated to reducing the idle
computation generated by misalignment occurring in batch-wise
inference process. For example, avoiding queries with huge differ-
ence in initial sentence lengths to compose a batch. Although the
computation of the prefilling phase can be performed by padding
operation, the computation overhead of prefilling for the whole
batch is determined by the longest query, i.e., an excessively long
query would stall the computation of the other queries. Since the
length of query is explicit, the idle computation in the prefilling
phase can be reduced by combining queries with similar length into
a batch. However, the inference process of LLM is autoregressive,
which means that the rounds of iteration in the decoding phase of
each query are uncertain or hardly evaluated, so the batch-wise
inference of LLM still faces the issue of idle computation.

Opportunity: Query-level seamless batch-wise inference.

In the inference process, a query that has completed still occupies
GPU resources due to idle computations, repeatedly outputting
duplicate ⟨EOS⟩ tokens in each iteration. This issue can be addressed
by replenishing a new query seamlessly into the current processing
batch after one query completes, akin to a relay race. However,
implementing this replenishable feature presents several challenges.

Challenge 1: Misaligned vector dimension. Parallel com-
putation on GPUs requires that the dimensions of the vectors for
all queries of the batch remain consistent. However, dimension of
these vectors changes iteratively during inference, as the illustra-
tive example in Figure 1. Consequently, it is impossible to directly
insert a new query into the current processing batch. The SOTA
methods, Orca and its derivatives [19, 29, 30], detour dimension
misalignment by splicing all vectors into a one-dimension vector
for linear layer computing and replicating self-attention networks
for each query to enable individual computing. Nevertheless, this
approach introduces additional model parameters that consume
extra GPU resources proportional to the batch size. Moreover, this
replication policy underutilizes the parallel computing capabilities
of the GPU.

Challenge 2: Redundant prefilling. The currently processed
queries are all in the decoding phase, whereas newly inserted
queries must first undergo prefilling. This difference in phases
causes existing queries to engage in unnecessary idle computations
(redundant prefilling) along with the prefilling processing of the
new query, even though they only need to compute the most re-
cent single token. For Orca [19], the linear computation of each
transformer layer requires outputs of all self-attention replica, this
synchronization actually remains the redundant prefilling issue.
In spite of employing the strategy of prioritizing the insertion of
shorter queries, it is not possible to completely avoid redundant
prefilling of existing queries when introducing new ones.

3 Baton Overview

3.1 Desired properties

To improve the performance of LLM inference serving, the batch-
wise processing by leveraging the parallel capabilities of GPUs is
advantageous. However, the autoregressive feature of LLMs poses
challenges to the current employed run-to-completion batch-wise
inference approach. Our goal is to provide an LLM inference serving
that meet the following two requirements.

Query-level continues inference.The run-to-completion batch-
wise will cause longer waiting time for others queries due to the
LLM autoregressive. Instead, batch-wise inference should support
the insertion of new query after any query is completed, exhibiting
the continuity of inference at the query granularity.

Resource and Computation efficient. GPU memory resource
is valuable especially in LLM scenes, therefore, it is allowed to intro-
duce no or very rare additional resource and calculation overheads
in meeting the last requirement.

3.2 Baton solutions

For the aforementioned two challenges and desired properties, Ba-
ton provides two solutions respectively.

Solution 1: Vector shaping. Given the padding operation and
attention mask mechanism supported by existing LLMs by default,
Baton proposes a vector shaping and embedding strategy, the
core idea of which is to align the dimensions of the queries in
the processing batch and the newly inserted query by padding
operation, and generate a new attention mask based on the padding
status to guarantee the correctness of the subsequent inference
iterations.

Solution 2: Vector embedding. Baton solves this problem by
decoupling the prefilling and decoding phases, i.e., all query can be
composed into a batch using the similarity of length principle and
complete the prefilling phase. When a new query is inserted into
the processing batch, the existing queries do not need to be aligned
with it by padding, and the entire batch can seamlessly execute
the subsequent decoding phase. By ingenious implementation, it
allows parallel computation with decoupled prefilling and decoding
and enables prefetchable GPU&CPU hybrid KV-Cache storing.

4 Baton Design

In this section, we first describe the vector shaping scheme for query
inserting to achieve query-level continues batch-wise inference.
Then we present the vector embedding strategy to zeroing the

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Peizhuang Cong et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

𝑡!"#
$𝑡!

$𝑡!%#
$…

𝑡!"##𝑡!#𝑡!%##…

<->𝑡!&𝑡!%#&…

𝑘!$𝑘!%#$𝑘!%&$…

𝑘!#𝑘!%##𝑘!%&#…

𝑘!&𝑘!%#&𝑘!%&&…

Previous
outputs

𝑞𝑢𝑒𝑟𝑦$

𝑞𝑢𝑒𝑟𝑦#

𝑞𝑢𝑒𝑟𝑦&

</>𝑡!"#$𝑡!$…

</>𝑡!"##𝑡!#…

𝑡#'𝑡$'

𝑘!$𝑘!%#$𝑘!%&$…

𝑘!#𝑘!%##𝑘!%&#…

−𝑖𝑛𝑓	−𝑖𝑛𝑓	−𝑖𝑛𝑓	…

𝑞𝑢𝑒𝑟𝑦$

𝑞𝑢𝑒𝑟𝑦#

𝑞𝑢𝑒𝑟𝑦'

0111…

0111…

1100…

Generated in 𝐼𝑡𝑒𝑟!

Shaping for 𝐼𝑡𝑒𝑟!"#

111…

111…

111…

Generated for 𝐼𝑡𝑒𝑟!"#

𝑖𝑛𝑝𝑢𝑡_𝑡𝑜𝑘𝑒𝑛!"# 𝐾𝑉_𝐶𝑎𝑐ℎ𝑒!"# 𝑎𝑡𝑡𝑒𝑛_𝑚𝑎𝑠𝑘!"#

𝑖𝑛𝑝𝑢𝑡_𝑡𝑜𝑘𝑒𝑛′!"# 𝐾𝑉_𝐶𝑎𝑐ℎ𝑒′!"# 𝑎𝑡𝑡𝑒𝑛_𝑚𝑎𝑠𝑘′!"#

𝑎𝑡𝑡𝑒𝑛_𝑚𝑎𝑠𝑘!𝐾𝑉_𝐶𝑎𝑐ℎ𝑒!

insert
𝑞𝑢𝑒𝑟𝑦"[𝑡#", 𝑡$"]

𝑡𝑜𝑘𝑒𝑛′!%$𝑡𝑜𝑘𝑒𝑛′!%$𝑖𝑛𝑝𝑢𝑡_𝑡𝑜𝑘𝑒𝑛′!%$

𝑎𝑡𝑡𝑒𝑛_𝑚𝑎𝑠𝑘′!%$𝑎𝑡𝑡𝑒𝑛_𝑚𝑎𝑠𝑘′!%$𝑎𝑡𝑡𝑒𝑛_𝑚𝑎𝑠𝑘′!%$

𝐾𝑉-𝐶𝑎𝑐ℎ𝑒′!%$𝐾𝑉-𝐶𝑎𝑐ℎ𝑒′!%$𝐾𝑉_𝐶𝑎𝑐ℎ𝑒′!%$

batch: (𝑞𝑢𝑒𝑟𝑦!,#,$)

𝑡𝑜𝑘𝑒𝑛′!%$𝑡𝑜𝑘𝑒𝑛′!%$𝑖𝑛𝑝𝑢𝑡_𝑡𝑜𝑘𝑒𝑛!

𝑎𝑡𝑡𝑒𝑛_𝑚𝑎𝑠𝑘′!%$𝑎𝑡𝑡𝑒𝑛_𝑚𝑎𝑠𝑘′!%$𝑎𝑡𝑡𝑒𝑛_𝑚𝑎𝑠𝑘!

𝐾𝑉-𝐶𝑎𝑐ℎ𝑒′!%$𝐾𝑉-𝐶𝑎𝑐ℎ𝑒′!%$𝐾𝑉_𝐶𝑎𝑐ℎ𝑒!

batch: (𝑞𝑢𝑒𝑟𝑦!,#,%)

𝑡𝑜𝑘𝑒𝑛′!%$𝑡𝑜𝑘𝑒𝑛′!%$𝑡𝑜𝑘𝑒𝑛!%$

𝐾𝑉-𝐶𝑎𝑐ℎ𝑒′!%$𝐾𝑉-𝐶𝑎𝑐ℎ𝑒′!%$𝐾𝑉_𝐶𝑎𝑐ℎ𝑒!%$
LLM

𝑎𝑡𝑡𝑒𝑛_𝑚𝑎𝑠𝑘!𝐾𝑉_𝐶𝑎𝑐ℎ𝑒!

return

<->: <EOS> </>: padding symbol

Current
outputs

Previous
outputs

(𝑡&'#!)

(𝑡&'##)

(<->)

(𝑡&'#
!)

(𝑡&'##)

(𝑡!$) (𝑡#$)

(</>)

(</>)

Figure 3: Baton: an illustrative example of query inserting

bubbles introduced by query inserting. At last, we show additional
functions of Baton that can further improve the inference serving
system.

4.1 Vector Shaping

In the LLMs inference that employs KV-Cache mechanism gener-
ally involves three primary variables: 𝑖𝑛𝑝𝑢𝑡_𝑡𝑜𝑘𝑒𝑛,𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘 ,
and𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒 . Initially, for the first iteration inference, 𝑖𝑛𝑝𝑢𝑡_𝑡𝑜𝑘𝑒𝑛
contains all tokens for each query of the batch, whichwill be aligned
by the padding operation. That is, 𝑖𝑛𝑝𝑢𝑡_𝑡𝑜𝑘𝑒𝑛 is the dimension
of the 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 × 𝑙𝑚𝑎𝑥 , where 𝑙𝑚𝑎𝑥 =𝑚𝑎𝑥 (𝑞𝑢𝑒𝑟𝑦𝑖) is the length
of the longest query. To facilitate the description, the embedding
dimension of tokenizer is omitted in this paper as it is fixed for all
tokens, and we mainly focus on the dimension of token sequence
length. The original and padding tokens are distinguished by a 0-1
vector known as 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘 , whose dimension keeps consis-
tent with that of 𝑖𝑛𝑝𝑢𝑡_𝑡𝑜𝑘𝑒𝑛. And 𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒 currently is empty.

After the first iteration, the LLM will generate a token for each
query and update 𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒 . For example, in the GPT-family mod-
els, 𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒 is a tensor with dimensions of [𝑙𝑎𝑦𝑒𝑟, 2, 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒,
𝑚𝑢𝑙_ℎ𝑒𝑎𝑑, 𝑠𝑒𝑞_𝑙𝑒𝑛𝑔𝑡ℎ, 𝑒𝑚𝑏𝑒𝑑_𝑙𝑒𝑛𝑔𝑡ℎ], where 𝑙𝑎𝑦𝑒𝑟 identifies the
number of transformer layers of the model, 2 denotes the Keys and
Values,𝑚𝑢𝑙_ℎ𝑒𝑎𝑑 denotes the number of multi-head, 𝑠𝑒𝑞_𝑙𝑒𝑛𝑔𝑡ℎ is
the length of the sequence, and 𝑒𝑚𝑏𝑒𝑑_𝑙𝑒𝑛𝑔𝑡ℎ denotes the dimen-
sion of the tokenizer embedding. Similarly, as only the 𝑠𝑒𝑞_𝑙𝑒𝑛𝑔𝑡ℎ
dimension is dynamic, the other dimensions are ignored in the
description of this paper for convenience. 𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒 represents
the inter-relationships among existing tokens of a query, so its
dimension now is 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 × 𝑙𝑚𝑎𝑥 .

In second iteration, the latest output token will be input to the
model as the current 𝑖𝑛𝑝𝑢𝑡_𝑡𝑜𝑘𝑒𝑛, whose dimension is 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 .
Simultaneously, as 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘 is identifying the whole se-
quence, including the original query and the existing output to-
kens, it needs to add a column with the value of all 1 to the origi-
nal 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘 , indicating that the current 𝑖𝑛𝑝𝑢𝑡_𝑡𝑜𝑘𝑒𝑛 is not
padding tokens. That is, the dimension of 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘 currently
is expanded to𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒×(𝑙𝑚𝑎𝑥 +1). After this iteration, the model

not only outputs new tokens for the third iteration, but also appends
the inter-relationships among 𝑖𝑛𝑝𝑢𝑡_𝑡𝑜𝑘𝑒𝑛 input in the second iter-
ation and previous tokens to 𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒 , whose dimension changes
to 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 × (𝑙𝑚𝑎𝑥 + 1). Then the third and subsequent iter-
ations can be executed iteratively, 𝑖𝑛𝑝𝑢𝑡_𝑡𝑜𝑘𝑒𝑛, 𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒 , and
𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘 will be updated in each iteration, until the infer-
ence of this batch is completed.

During inference, the computation of queries of a batch is inde-
pendent to each other, which allows to replenish a new query as
soon as inference of any query is completed, like a relay race. The
premise of this objective is that subsequent iterations can be exe-
cuted and produce accurate results, which can be ensured through
the padding operation and the attention masking mechanism re-
spectively.

The details of Baton will be demonstrated by using Figure 3
as an example. The batch contains 𝑞𝑢𝑒𝑟𝑦0, 𝑞𝑢𝑒𝑟𝑦1, and 𝑞𝑢𝑒𝑟𝑦2.
The model outputs the latest 𝑡𝑜𝑘𝑒𝑛𝑖+1 at the end of the 𝑖-th itera-
tion, and appends the new 𝐾 and 𝑉 values to 𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒𝑖 to con-
stitute 𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒𝑖+1. And It would append an additional column
to 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑚𝑎𝑠𝑘𝑖 for 𝑡𝑜𝑘𝑒𝑛𝑖+1 to become 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑚𝑎𝑠𝑘𝑖+1. How-
ever, if the corresponding output of𝑞𝑢𝑒𝑟𝑦2 in this iteration is ⟨EOS⟩,
i.e., 𝑞𝑢𝑒𝑟𝑦2 has completed the inference, the cumulative outputs of
𝑞𝑢𝑒𝑟𝑦2 will be returned first and the 𝑖𝑛𝑝𝑢𝑡_𝑡𝑜𝑘𝑒𝑛, 𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒 , and
𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘 will be manipulated based on the newly inserted
𝑞𝑢𝑒𝑟𝑦3 [𝑡30 , 𝑡

3
1].

Input_token. Since the newly inserted query needs to complete
the prefilling phase, i.e., it needs to compute the relationship be-
tween all tokens, then all tokens should be input into the model.
Based on this, to align the dimensions of IT, it is necessary to pad
the latest 𝑡𝑜𝑘𝑒𝑛0

𝑖+1 and 𝑡𝑜𝑘𝑒𝑛
1
𝑖+1 of 𝑞𝑢𝑒𝑟𝑦

0 and 𝑞𝑢𝑒𝑟𝑦1 to the same
length as 𝑞𝑢𝑒𝑟𝑦3. Finally, the padded 𝑞𝑢𝑒𝑟𝑦0, 𝑞𝑢𝑒𝑟𝑦1, and the entire
𝑞𝑢𝑒𝑟𝑦3 are prepared as the new 𝑖𝑛𝑝𝑢𝑡_𝑡𝑜𝑘𝑒𝑛′

𝑖+1 for the next itera-
tion. The dimension of 𝑖𝑛𝑝𝑢𝑡_𝑡𝑜𝑘𝑒𝑛′

𝑖+1 is 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 × 𝑙𝑞3, where
𝑙𝑞3 is the length of 𝑞𝑢𝑒𝑟𝑦3.

Attention_mask. To ensure the correct computation of 𝑞𝑢𝑒𝑟𝑦0
and𝑞𝑢𝑒𝑟𝑦1, their previous𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘 vectors cannot be changed
and the new padding part should also be masked simultaneously,

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Baton: Enhancing Batch-wise Inference Efficiency for Large Language Models via Dynamic Re-batching

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

LLM
(Prefiling)

𝑡!𝑡"

𝑘!𝑘"𝑡#

𝐾𝑉_𝐶𝑎𝑐ℎ𝑒𝑡𝑜𝑘𝑒𝑛

𝑞𝑢𝑒𝑟𝑦

𝑡!"𝑡#"𝑡$"𝑡%"𝑡&"

𝑘#"𝑘$"𝑘%"𝑘&"

𝑘$&𝑘%&𝑘&&

𝑘$%𝑘%%𝑘&%

𝑘$$𝑘%$𝑘&$

𝑡!"

𝑡!#

<−>

1111

1111

1111

𝑎𝑡𝑡𝑒𝑛_𝑚𝑎𝑠𝑘!𝑡𝑜𝑘𝑒𝑛! 𝐾𝑉_𝐶𝑎𝑐ℎ𝑒!

11

𝑎𝑡𝑡𝑒𝑛_𝑚𝑎𝑠𝑘

return

𝑡$
'𝑡%

'𝑡&
'

𝑘%
'𝑘&

'

𝑞"

𝑞#

… LLM
(Decoding)

𝑘#"𝑘!"𝑘""

𝑘#!𝑘!!𝑘"!

𝑘!
$𝑘"

$−𝑖𝑛𝑓

𝑡%"

𝑡%!

𝑡#
$

1111

1111

1110

𝑎𝑡𝑡𝑒𝑛_𝑚𝑎𝑠𝑘′!𝑡𝑜𝑘𝑒𝑛′! 𝐾𝑉_𝐶𝑎𝑐ℎ𝑒′!

𝑘#"𝑘!"𝑘""−𝑖𝑛𝑓

𝑘#!𝑘!!𝑘"!−𝑖𝑛𝑓

𝑘&'𝑘#'𝑘!'𝑘"'

𝑡%
"

𝑡%!

𝑡('

11110

11110

11111

𝑎𝑡𝑡𝑒𝑛_𝑚𝑎𝑠𝑘′!𝑡𝑜𝑘𝑒𝑛′! 𝐾𝑉_𝐶𝑎𝑐ℎ𝑒′!

case 1: 𝑙" ≤ 𝑙#$

case 2: 𝑙" > 𝑙#$

𝑞#

𝑞"

(𝑡"
$) (𝑡#

$) (𝑡%
$)

(𝑡"&) (𝑡#&) (𝑡%&) (𝑡'&) (𝑡(&)

Prefilled query pool

Figure 4: Example of P&D decoupling-based vector embedding

i.e., the 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘 vectors of 𝑞𝑢𝑒𝑟𝑦0 and 𝑞𝑢𝑒𝑟𝑦1 are both ap-
pended with values of 0 according to the padding. For aligning the
current 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘 dimension, the original 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘
vector of completed 𝑞𝑢𝑒𝑟𝑦2 can be shaped and rewritten for reusing
by the newly inserted 𝑞𝑢𝑒𝑟𝑦3. Firstly, to eliminate the influence of
the already cached 𝐾𝑒𝑦𝑠 and 𝑉𝑎𝑙𝑢𝑒𝑠 of 𝑞𝑢𝑒𝑟𝑦2 on the calculation
of 𝑞𝑢𝑒𝑟𝑦3, it is necessary to set all the values of the 𝑞𝑢𝑒𝑟𝑦2 part
of the current 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘 tensor to 0. Then, the correspond-
ing actual 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘 of 𝑞𝑢𝑒𝑟𝑦3, an all-1 vector with the same
length of 𝑞𝑢𝑒𝑟𝑦3, will be spliced on it. As a result, the dimension of
attention_mask𝑖+1 becomes 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒× (𝑙𝑎𝑚𝑖

+𝑙𝑞3−1), where 𝑙𝑎𝑚𝑖

and 𝑙𝑞3 is the length of 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘𝑖 and 𝑞𝑢𝑒𝑟𝑦3, respectively.
KV_Cache. First of all, maintain 𝐾𝑒𝑦𝑠 and𝑉𝑎𝑙𝑢𝑒𝑠 of 𝑞𝑢𝑒𝑟𝑦0 and

𝑞𝑢𝑒𝑟𝑦1 unchanged. And then, although the zeroing of𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘
for 𝑞𝑢𝑒𝑟𝑦3 can mask the existing 𝐾𝑒𝑦𝑠 and𝑉𝑎𝑙𝑢𝑒𝑠 of 𝑞𝑢𝑒𝑟𝑦2 stored
in 𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒 , it is better to set such values to negative infinity
(−𝑖𝑛𝑓) to completely eliminate the impact on the calculation of
𝑞𝑢𝑒𝑟𝑦3. The dimension of𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒𝑖+1 becomes𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒×(𝑙𝑘𝑣𝑖+
1), where 𝑙𝑘𝑣𝑖 is the length of 𝐾𝑉 _𝐶𝑎ℎ𝑒𝑖 .

After the above mentioned processing, the model is able to cal-
culate the batch with a new query properly. Regarding each query,
the padding of 𝑞𝑢𝑒𝑟𝑦0 and 𝑞𝑢𝑒𝑟𝑦1 will not affect the output of the
next iteration. The shaping of 𝑞𝑢𝑒𝑟𝑦3 over the 𝐾𝑒𝑦𝑠 , 𝑉𝑎𝑙𝑢𝑒𝑠 , and
𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘 of 𝑞𝑢𝑒𝑟𝑦2 only results in a dimensional change
actually, which can be interpreted as a kind of padding with the
entire length of 𝑞𝑢𝑒𝑟𝑦2 in front of 𝑞𝑢𝑒𝑟𝑦3, without affecting the
output result of next iteration either.

However, so far, it is impossible for all queries in an iteration to
finish inference simultaneously, making it difficult to uniformly re-
lease resources occupied by𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒 etc., as is done in traditional
batch-wise inference, and then start the inference for the next batch.
If inference process is conducted according to the aforementioned
way, it will lead to continual expansion in the length of 𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒
etc., resulting in resource wastage and even potential GPU memory
overflow.

Following the aforementioned way, 𝑖𝑛𝑝𝑢𝑡_𝑡𝑜𝑘𝑒𝑛, 𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒 ,
and 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑚𝑎𝑠𝑘 can not only meet the dimensional alignment re-
quirements but also do not affect the inference results of all current
processing queries and the new one.

Resources releasing. Essentially, it acts as padding in front
of the corresponding 𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒 and 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘 vectors for
each newly inserted query, which serves no purpose except place-
holding. Therefore, once each query in the batch has been roundly
updated, there will be certain placeholder padding in 𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒
and 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘 vectors of each query. To prevent these tensors
from continuously expanding, the front overlapped placeholders of
𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒 and 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑚𝑎𝑠𝑘 can be released. This operation can
be performed before inserting a new query. It is possible to assign
an identifier, 𝑖𝑛𝑑𝑒𝑥 , to each query in a processing batch, which
marks the end of the padding. Consequently, the [0 :𝑚𝑖𝑛(𝑖𝑛𝑑𝑒𝑥𝑖)]
segments of 𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒 and 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘 should be released.

4.2 Vector Embedding

It is possible to achieve a query-level seamless batch-wise LLM
inference through vector shaping, which involves placing place-
holders in front of the newly inserted query and padding behind
the currently processing queries. The first iteration following the
insertion of a new query involves performing a prefill computation
for it, with overhead proportional to the sequence length of the
new query. Given that inference is performed uniformly in a batch,
even other queries that are already in the decoding phase will also
have the same overhead in this iteration, but without producing
any additional and useful computational result.

Consequently, if the new query is particularly lengthy, it will
distinctly decrease the computational efficiency of other queries
by imposing such additional prefill computation overhead. Fur-
thermore, after such idle computations, the 𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒 of the pro-
cessing queries will be appended with the values representing the
relationship strength between all padding symbols and other ex-
isting tokens. The appended length is equal to the padding length
introduced by the insertion of the new query, although these values
do not contribute to the inference beyond serving as placeholders.
Overall, the longer the new query, the greater the impact on the
computational efficiency of the processing queries and the more
unnecessary GPU resources are consumed.

If a newly inserted query contains only one token requiring
computation, it will not trigger the aforementioned issues. Indeed,
processing a single token is sufficient for any query during the
decoding phase. To address this, Baton implements a prefilling

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Peizhuang Cong et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

and decoding phases decoupling strategy. Specifically, all original
queries awaiting processing are initially prefilled by the model
and termed prefilled_queries, whose 𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒 is no longer empty.
It is possible to embed corresponding 𝐾𝑒𝑦𝑠 and 𝑉𝑎𝑙𝑢𝑒𝑠 into the
𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒 , which allows the model to execute subsequent infer-
ence iterations based solely on the latest single token for the new
query. In this context, when inserting any prefilled query into the
processing batch, the padding operations for vector alignment in
existing queries can be eliminated, as the input length of existing
queries and the new query is uniformly 1.

Commonly, embedding the 𝐾𝑒𝑦𝑠 and 𝑉𝑎𝑙𝑢𝑒𝑠 of the new query
into the 𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒 will not incur additional resource consump-
tion, as this part of the 𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒 would otherwise be occupied by
placeholders (−𝑖𝑛𝑓) in the vector shaping scheme. It only requires
additional space resources if the sequence length of the 𝐾𝑉 exceeds
the 𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒’s. Assuming the length of a new query’s 𝐾𝑒𝑦 and
𝑉𝑎𝑙𝑢𝑒 is 𝑙𝑞 , and the current𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒 length is 𝑙𝑘𝑣 , these two cases
of vector embedding as shown in the Figure 4.

First, if the 𝐾𝑉 length of the new query is less than the current
𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒 length, i.e., 𝑙𝑞 ≤ 𝑙𝑘𝑣 , the 𝐾𝑉 values are embedded into
𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒 in an end-aligned manner, and the remaining front part
of 𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒 , with length 𝑙𝑘𝑣 −𝑙𝑞 , will be filled with −𝑖𝑛𝑓 for place-
holding. In this situation, it allows the new query to be embedded
without any additional resource consumption compared to tradi-
tional batch-wise inference. Second, if the 𝐾𝑉 length of the new
query exceeds the current 𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒 length, i.e., 𝑙𝑞 > 𝑙𝑘𝑣 . Since,
it is necessary to save all the 𝐾𝑉 values into 𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒 to ensure
accurate computation of the new query, the length of 𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒
should be expanded to 𝑙𝑞 firstly, i.e., the length of 𝑙𝑞 − 𝑙𝑘𝑣 should
be added to the left side of 𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒 . Then the expanded part
will be filled −𝑖𝑛𝑓 according to vector shaping and 𝐾𝑉 can be em-
bedded into 𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒 directly. Meanwhile, the 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘
also should be expanded accordingly. The expansions of existing
queries will be filled with 0, and, similarly, the values of new
query’s 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘 will be filled with 1. At this point, the
model can perform decoding computation directly for all queries of
the batch according to updated 𝑖𝑛𝑝𝑢𝑡_𝑡𝑜𝑘𝑒𝑛, 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘 , and
𝐾𝑉 _𝐶𝑎𝑐ℎ𝑒 .

4.3 Additional functionalities

Preemptive scheduling. To enhance user experience, many LLM
inference servings establish Service Level Agreement (SLA) for
user’s query, prioritizing queries for processing. In an online in-
ference service, a high-priority query may arise at any moment.
If the inference engine is processing a batch with extensive long
queries, the existing run-to-completion policy would require the
high-priority query to wait until the entire batch is completed. Al-
though Baton has enabled the execution of inference as soon as
any query within the batch completes, delays remain, potentially
leading to service quality degradation or failure. Fundamentally,
Baton supports preemptive query scheduling. Specifically, it can
temporarily store the𝐾𝑒𝑦𝑠 and𝑉𝑎𝑙𝑢𝑒𝑠 of the batch’s lowest-priority
query, 𝑞𝑖 , and then insert the high-priority query into the batch.
Once any query of the batch is completed, the interrupted 𝑞𝑖 can
be promptly re-inserted.

Batch size scaling. During the inference process, the resources
occupied by the service continuously increase due to the expand-
ing size of the involved 𝐾𝑒𝑦𝑠 and 𝑉𝑎𝑙𝑢𝑒𝑠 . Since the maximum size
of required memory cannot be predicted, there is a risk of GPU
memory overflow during inference, which can significantly reduce
inference efficiency. As mentioned, Baton supports the interrup-
tion and resumption of queries. Therefore, it is feasible to monitor
GPU resource usage in real-time. If resource utilization exceeds
a predefined threshold, some queries of the processing batch can
be moved to the host memory then the corresponding occupied
resources can be released, allowing for flexible adjustment of the
batch size during inference. Similarly, the batch size can be scaled
up by inserting additional queries into the batch.

5 Evaluation

5.1 Experimental setup

Selected model: We utilized the llama2-7b-chat-hf model [31],
which is part of the LLaMA family, specifically designed for chat-
based tasks. It contains 7 billion parameters, designed to handle a
wide range of natural language understanding and generation tasks.
In this experiment, the model was loaded with 16-bit floating-point
precision, which balances memory usage and computational effi-
ciency, allowing for faster inference without sacrificing significant
accuracy.

Inference setup: The key feature of our inference setup is that
no sampling was applied during generation. This means that each
request results in deterministic and repeatable outputs, ensuring
that the generated content remains consistent for the same input
across different runs. This approach is critical for fair compari-
son between different algorithms, as it ensures that all algorithms
generate outputs of identical lengths.

Dataset: The proposed Baton will be evaluated from both an
overall and a detailed perspective, termed Target-1 and Target-2,
respectively. For Target-1, we aim to compare ours and existing
methods in terms of the query processing throughput. For Target-2,
we want to analyze detail performance changes during inference.
Due to the lack of real-world query trace, we generated two sets
of simulated datasets based on task requirements: (1) A set of 120
queries, which primarily consisting of three types of queries, long
input-short output, short input-long output, and short input-short
output (in a ratio of 1:1:2). These correspond to common tasks such
as text summarization, article generation, and general question-
answering tasks like translation. The length for ‘long’ ranges around
4,000 words, while ‘short’ ranges between a few dozen to 400 words.
(2) A set of 30 queries. It consists of all short input-short output,
where both the input and response range from a few dozen to 200
words.

Hardware environment: For overall evaluation (Target-1), due
to the large GPU memory demands of processing long sequence
queries, we used an NVIDIA A6000 GPU, which has 48GB of mem-
ory. For detailed evaluation (Target-2), we employed an NVIDIA
4090 GPU, which has 24GB of memory but offers more efficient
computation ability. To ensure that all comparison methods used
the same resources, we applied asynchronous P&D decoupling in
the experiments.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Baton: Enhancing Batch-wise Inference Efficiency for Large Language Models via Dynamic Re-batching

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

0 20 40 60 80 100 120
Times #s

0

5

10

15

20

25

30

C
um

ul
at

iv
e

co
m

pl
et

ed
 q

ue
rie

s

Benchmark
Ours

(a) Batch size=2

0 20 40 60 80
Times #s

0

5

10

15

20

25

30

C
um

ul
at

iv
e

co
m

pl
et

ed
 q

ue
rie

s

Benchmark
Ours

(b) Batch size=4

0 10 20 30 40 50
Times #s

0

5

10

15

20

25

30

C
um

ul
at

iv
e

co
m

pl
et

ed
 q

ue
rie

s

Benchmark
Ours

(c) Batch size=6

0 10 20 30 40
Times #s

0

5

10

15

20

25

30

C
um

ul
at

iv
e

co
m

pl
et

ed
 q

ue
rie

s

Benchmark
Ours

(d) Batch size=8

0 5 10 15 20 25 30 35
Times #s

0

5

10

15

20

25

30

C
um

ul
at

iv
e

co
m

pl
et

ed
 q

ue
rie

s

Benchmark
Ours

(e) Batch size=10

Figure 5: Distribution of cumulative completed queries

0 20 40 60 80 100 120
Times #s

0

1k

2k

3k

4k

C
um

ul
at

iv
e

ou
tp

ut
 to

ke
ns

Benchmark
Ours

(a) Batch size=2

0 20 40 60 80
Times #s

0

1k

2k

3k

4k

C
um

ul
at

iv
e

ou
tp

ut
 to

ke
ns

Benchmark
Ours

(b) Batch size=4

0 10 20 30 40 50
Times #s

0

1k

2k

3k

4k

C
um

ul
at

iv
e

ou
tp

ut
 to

ke
ns

Benchmark
Ours

(c) Batch size=6

0 10 20 30 40
Times #s

0

1k

2k

3k

4k

C
um

ul
at

iv
e

ou
tp

ut
 to

ke
ns

Benchmark
Ours

(d) Batch size=8

0 5 10 15 20 25 30 35
Times #s

0

1k

2k

3k

4k

C
um

ul
at

iv
e

ou
tp

ut
 to

ke
ns

Benchmark
Ours

(e) Batch size=10

Figure 6: Distribution of cumulative output tokens

Table 1: Queries completion time (s)

Batch size Benchmark PD Baton
(Ours)

Baton-PD
(Ours-PD)

4 21,901 21,781 20,549 11,771
8 6,619 6,577 3,424 2,654

Comparisonmethods description: It involves four methods in
the experiment: 1) The first is the most widely used baseline method,
which is the batch-wise strategy provided by the transformers [32],
referred to as the ‘Benchmark’; 2) The second is the P&Ddecoupling-
based inference strategy, where in the prefill phase, queries with
similar sequence lengths will be grouped into a batch, and batches
are randomly combined during the decoding phase. This method
is called ‘PD’; 3) The third is our proposed method without P&D
strategy, referred to as Baton, which is equivalent to Orca [19] in
terms of throughput efficiency, but without introducing additional
model parameters. 4) The fourth is Baton integrated with P&D,
referred to as Baton-PD. To ensure fairness, both Benchmark and
PD methods also adopt the strategy of returning a query’s response
immediately after its inference is complete rather than waiting for
the entire batch to finish.

5.2 Results and analyses

5.2.1 Target-1: overall evaluation. The throughput of an LLM ser-
vice in handling queries is a critical performance metric. We mea-
sured the completion time of first dataset processed by above four
methods Benchmark, PD, Baton without P&D decoupling strategy
(Ours), and Baton integrated with P&D decoupling (Ours-PD). The
batch size was set to 4 and 8. To thoroughly evaluate the inference
performance, all query sequence were duplicated in the experiment
with batch size of 4, e.i., doubling the length of each sequence.

The results are shown in Table 1, and its shows that our proposed
scheme has a clear advantage in improving the throughput of the

Table 2: Queries completion time (s)

Batch size Benchmark Baton (Ours) Throughput imprv.
2 161.77 83.43 1.94×
4 92.68 49.61 1.89×
6 61.70 37.25 1.66×
8 50.07 31.08 1.61×
10 40.45 30.99 1.31×

inference system. Compared to the Benchmark (PD), our approach
reduces the processing time by 46.25% (45.98%) for batch of 4, 59.90%
(59.64%) for batch size of 8, respectively. Furthermore, it can be
observed that there is a significant difference in the performance
of Baton with or without the P&D decoupling when batch sizes of
4 and 8. By analyzing the inference logs, we noticed that doubling
the sequence length will aggravate the cumulative impact of the
additional prefilling computation overhead. That is, compared to
the existing state-of-the-art method Orca, which lacks the P&D
decoupling strategy, our method can improve the throughput by
1.29-1.75 ×.

5.2.2 Target-2: detailed analyses. To further analyze the perform
details of proposed scheme, we conducted inference for the second
dataset, which exclusively excludes long sequences queries. This set
of experiments focuses on analyzing the detail performances during
inference, so Benchmark and Baton were chosen for comparison.

1) Query processing throughput:
•Queries completion time. We compared the queries completion

time between Baton and the benchmark under the second query
set, following the experimental setup description. As illustrated in
Table 2, compared to the benchmark, Baton speeds the throughput
by 1.94×, 1.89×, 1.66×, 1.61×, and 1.31× when the batch sizes are
set to 2, 4, 6, 8, and 10, respectively. In this set of experiments, the
throughput improvement diminishes as the batch size increases.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Peizhuang Cong et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0 20 40 60 80 100 120
Times #s

0

50

100

150

200

250

300

350

M
em

or
y

oc
cu

pa
tio

n
#M

B

Benchmark
Ours

(a) Batch size=2

0 20 40 60 80
Times #s

0

100

200

300

400

500

600

700

M
em

or
y

oc
cu

pa
tio

n
#M

B

Benchmark
Ours

(b) Batch size=4

0 10 20 30 40 50
Times #s

0

200

400

600

800

1000

M
em

or
y

oc
cu

pa
tio

n
#M

B

Benchmark
Ours

(c) Batch size=6

0 10 20 30 40
Times #s

0

200

400

600

800

1000

1200

1400

M
em

or
y

oc
cu

pa
tio

n
#M

B

Benchmark
Ours

(d) Batch size=8

0 5 10 15 20 25 30 35
Times #s

0
200
400
600
800

1000
1200
1400
1600
1800

M
em

or
y

oc
cu

pa
tio

n
#M

B

Benchmark
Ours

(e) Batch size=10

Figure 7: GPU memory usage of KV_Cache

This is because, during the later stage of inference, there are no
additional queries to replenish the processing batch, meaning the
number of effective queries being processed within the batch gradu-
ally decreases in this stage until all queries are completed. However,
if the processed queries is replenished continuously, the throughput
improvement will not decline with the increase in batch size.

•Cumulative completed queries. All methods employs the scheme
that the result of a query will be returned immediately when its
inference is completed, rather than awaiting the completion of all
queries of the batch to return all results synchronously. The dis-
tributions of cumulative completed queries with batch size setting
to 2, 4, 6, 8, and 10 are shown in the Figure 5. It can be observed
that the step-like pattern of Baton is less noticeable compared to
the Benchmark. This is because that the batch inference can be
delayed by a query that requires more iterations in Benchmark, and
this effect becomes more pronounced as the batch size increases.
In contrast, Baton allows for the continuous updating of batch
queries without interruption, naturally avoiding this issue.

•Cumulative output tokens. In a similar manner, as shown in Fig-
ure 6, we also tracked the cumulative distribution of output tokens.
The benchmark method shows a distinctive multi-phase pattern,
where each phase follows a similar mode: an initial linear output
speed, followed by a gradual slowdown. It is also introduced by
the delayed issue described above. Contrastively, the token output
starts with a linear rate and then in the later stage, when no new
queries are available to replenish into the processing batch, the
output rate decreases gradually.

2) GPU memory usage. For a given model, the memory con-
sumed by its parameters remains constant during inference. In
LLMs, the KV_Cache represents a significant portion of memory
usage, and its size grows linearly with the iterations of inference.
To highlight the differences in memory consumption between Ba-
ton and the comparison methods, we measured only the memory
used by the KV_Cache, excluding the memory occupied by model
parameters.

As illustrated in the Figure 7, the benchmark method shows a
clear sawtooth pattern w.r.t memory usage. This occurs because,
even though individual queries within the batch complete their
inference, the corresponding KV_Cache continues to grow until the
entire batch finishes, at which point all the memory will be released.
In contrast, Baton avoids releasing memory for the entire batch
synchronously, instead releasing memory as outlined in subsection
4.1. Additionally, it can be observed that the peak memory usage
of Baton and the benchmark method is comparable during entire

inference, Baton maintains a consistently higher utilization rate,
indicating more efficient resource usage.

6 Related Work

LLM as-a-service. In recent years, technologies associated with
large language models (LLMs) have undergone rapid development
[14, 33, 34]. These models, through adaptive instruction tuning [35],
can fulfill human requirements and are available as a service to
users. For instance, GPT, Llama, PaLM, ERNIE, Qwen, etc. have
been effectively deployed in the cloud to provide LLM services [5, 8,
9, 26, 36], which handle vast numbers of query inferences per day.
In this context, enhancing service quality and reducing inference
overhead have emerged as critical research directions [19, 37].

Efficient inference of LLM. Efficient inference not only en-
sures high-quality user services but also reduces operational costs
for providers [38, 39]. The technologies involved can be categorized
as follows: a) Kernel Customization [40, 41]. For example, [42] re-
duces the need for large contiguous memory by segmenting the
input vector and calculating the attention weights for each segment
independently. b) Parallel Computing [43–45]. The pipeline and
tensor parallelism techniques facilitate efficient multi-GPU parallel
processing. c) Quantization is also an essential technology that can
optimize inference processes [46, 47]. d) Some studies try to enhance
batch processing during inference [48, 49], e.g., [50] groups queries
based on the lengths of input vectors. However, these approaches
are primarily designed for single computing engine scenarios. Ba-
ton proposed in this paper is designed for services deployed across
multiple clouds and operates orthogonally to the strategies men-
tioned previously, allowing for integration with them.

7 Conclusion

In this paper, we propose a efficient batch-wise LLM inference
scheme, Baton, which enables removing completed queries from
or inserting new queries to the current processing batch with near-
zero idle computations. We build a prototype of Baton and execute
extensive experiments. Compared to the state-of-the-art solution,
Baton exhibits 1.29-1.75× improvements in terms of query pro-
cessing throughput.

In future work, we aim to validate the proposed scheme on the
basis of real query traces, including dynamic batch size scaling
and preemptive scheduling. As well as migrating it to different
inference frameworks to achieve more comprehensive experimental
evaluation.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Baton: Enhancing Batch-wise Inference Efficiency for Large Language Models via Dynamic Re-batching

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References

[1] Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and
Jie Tang. 2023. GPT understands, too. AI Open (2023).

[2] Xuchen Li, Xiaokun Feng, Shiyu Hu, Meiqi Wu, Dailing Zhang, Jing Zhang, and
Kaiqi Huang. 2024. DTLLM-VLT: Diverse Text Generation for Visual Language
Tracking Based on LLM. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 7283–7292.

[3] Ehsan Kamalloo, Shivani Upadhyay, and Jimmy Lin. 2024. Towards Robust QA
Evaluation via Open LLMs. In Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 2811–2816.

[4] Philippe Laban, Wojciech Kryściński, Divyansh Agarwal, Alexander Richard
Fabbri, Caiming Xiong, Shafiq Joty, and Chien-Sheng Wu. 2023. SUMMEDITS:
measuring LLM ability at factual reasoning through the lens of summarization.
In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing. 9662–9676.

[5] Openai. 2024. ChatGPT. Retrieved 2024 from https://openai.com
[6] Microsoft. 2024. Copilot. Retrieved 2024 from https://copilot.microsoft.com
[7] Google. 2024. Gemini. Retrieved 2024 from https://gemini.google.com
[8] Baidu. 2024. ERINE. Retrieved 2024 from https://yiyan.baidu.com
[9] Alibaba. 2024. Qwen. Retrieved 2024 from https://qianwen.aliyun.com
[10] Moonshot. 2024. Kimi. Retrieved 2024 from https://kimi.moonshot.cn
[11] Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen, Li Lao, Fang-

wei Li, Vinu Rajashekhar, Sukriti Ramesh, and Jordan Soyke. 2017. Tensorflow-
serving: Flexible, high-performance ml serving. arXiv preprint arXiv:1712.06139
(2017).

[12] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann, Ymir
Vigfusson, and Jonathan Mace. 2020. Serving {DNNs} like clockwork: Per-
formance predictability from the bottom up. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20). 443–462.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[14] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[15] Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra,
Bhargav Gulavani, Alexey Tumanov, and Ramachandran Ramjee. 2024. Taming
Throughput-Latency Tradeoff in LLM Inference with Sarathi-Serve. In 18th
USENIX Symposium on Operating Systems Design and Implementation. 117–134.

[16] Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Íñigo Goiri, Saeed
Maleki, and Ricardo Bianchini. 2024. Splitwise: Efficient generative llm inference
using phase splitting. In 2024 ACM/IEEE 51st Annual International Symposium on
Computer Architecture (ISCA). IEEE, 118–132.

[17] NVIDIA. 2024. FasterTransformer. Retrieved 2024 from https://github.com/
NVIDIA/FasterTransformer

[18] NVIDIA. 2024. Triton Inference Server. Retrieved 2024 from https://developer.
nvidia.com/nvidia-triton-inference-server

[19] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-
Gon Chun. 2022. Orca: A distributed serving system for {Transformer-Based}
generative models. In 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22). 521–538.

[20] Bingyang Wu, Yinmin Zhong, Zili Zhang, Gang Huang, Xuanzhe Liu, and Xin
Jin. 2023. Fast distributed inference serving for large language models. arXiv
preprint arXiv:2305.05920 (2023).

[21] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. 2019. Language models are unsupervised multitask learners.
OpenAI blog 1, 8 (2019), 9.

[22] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[23] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

[24] Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin
Jin, and Hao Zhang. 2024. {DistServe}: Disaggregating Prefill and Decoding for
Goodput-optimized Large Language Model Serving. In 18th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 24). 193–210.

[25] Openai. 2024. GPT-2. Retrieved 2024 from https://huggingface.co/openai-
community/gpt2

[26] Meta. 2024. Llama. Retrieved 2024 from https://www.llama2.ai
[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[28] Foteini Strati, Sara McAllister, Amar Phanishayee, Jakub Tarnawski, and Ana
Klimovic. 2024. DéjàVu: KV-cache Streaming for Fast, Fault-tolerant Generative
LLM Serving. In Forty-first International Conference on Machine Learning.

[29] Amey Agrawal, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav S
Gulavani, and Ramachandran Ramjee. 2023. Sarathi: Efficient llm inference by
piggybacking decodes with chunked prefills. arXiv preprint arXiv:2308.16369
(2023).

[30] Yunho Jin, Chun-Feng Wu, David Brooks, and Gu-Yeon Wei. 2023. 𝑆3 : Increasing
GPU Utilization during Generative Inference for Higher Throughput. Advances
in Neural Information Processing Systems 36 (2023), 18015–18027.

[31] Hugging Face. 2024. Llama-2-7b-chat-hf. Retrieved 2024 from https://
huggingface.co/meta-llama/Llama-2-7b-chat-hf

[32] Hugging Face. 2024. Transformers. Retrieved 2024 from https://github.com/
huggingface/transformers

[33] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, et al. 2023. Palm: Scaling language modeling with pathways.
Journal of Machine Learning Research 24, 240 (2023), 1–113.

[34] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya,
Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Jo-
hannes Welbl, Aidan Clark, et al. 2022. Training compute-optimal large language
models. In Proceedings of the 36th International Conference on Neural Information
Processing Systems. 30016–30030.

[35] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.
Training language models to follow instructions with human feedback. Advances
in neural information processing systems 35 (2022), 27730–27744.

[36] Google. 2024. PaLM2. Retrieved 2024 from https://ai.google/discover/palm2/
[37] Zangwei Zheng, Xiaozhe Ren, and et. al. 2024. Response length perception and

sequence scheduling: An llm-empowered llm inference pipeline. Advances in
Neural Information Processing Systems 36 (2024).

[38] Sehoon Kim, Coleman Hooper, Thanakul Wattanawong, Minwoo Kang, Ruohan
Yan, Hasan Genc, Grace Dinh, Qijing Huang, Kurt Keutzer, Michael W Mahoney,
et al. 2023. Full stack optimization of transformer inference: a survey. arXiv
preprint arXiv:2302.14017 (2023).

[39] Krishna Teja Chitty-Venkata, Sparsh Mittal, Murali Emani, Venkatram Vish-
wanath, and Arun K Somani. 2023. A survey of techniques for optimizing
transformer inference. Journal of Systems Architecture (2023), 102990.

[40] Jaewan Choi, Hailong Li, Byeongho Kim, Seunghwan Hwang, and Jung Ho Ahn.
2022. Accelerating transformer networks through recomposing softmax layers.
In 2022 IEEE International Symposium on Workload Characterization (IISWC).
IEEE, 92–103.

[41] Hailong Li, Jaewan Choi, Yongsuk Kwon, and Jung Ho Ahn. 2023. A Hardware-
Friendly Tiled Singular-Value Decomposition-Based Matrix Multiplication for
Transformer-Based Models. IEEE Computer Architecture Letters (2023).

[42] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022. Flashat-
tention: Fast and memory-efficient exact attention with io-awareness. Advances
in Neural Information Processing Systems 35 (2022), 16344–16359.

[43] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. 2019. Megatron-lm: Training multi-billion parameter
language models using model parallelism. arXiv preprint arXiv:1909.08053 (2019).

[44] RuilongMa, Xiang Yang, JingyuWang, Qi Qi, Haifeng Sun, and et. al. 2024. HPipe:
Large Language Model Pipeline Parallelism for Long Context on Heterogeneous
Cost-effective Devices. In Proceedings of the 2024 Conference of the North American
Chapter of the Association for Computational Linguistics. 1–9.

[45] Shenggui Li, Hongxin Liu, Zhengda Bian, Jiarui Fang, Haichen Huang, Yuliang
Liu, Boxiang Wang, and Yang You. 2023. Colossal-ai: A unified deep learning
system for large-scale parallel training. In Proceedings of the 52nd International
Conference on Parallel Processing. 766–775.

[46] Xiaoxia Wu, Cheng Li, Reza Yazdani Aminabadi, Zhewei Yao, and Yuxiong He.
2023. Understanding int4 quantization for language models: latency speedup,
composability, and failure cases. In International Conference on Machine Learning.
PMLR, 37524–37539.

[47] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. 2022. Gptq:
Accurate post-training quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323 (2022).

[48] Zhoujun Cheng, Jungo Kasai, and Tao Yu. 2023. Batch Prompting: Efficient
Inference with Large Language Model APIs. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing: Industry Track. 792–810.

[49] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Daniel Y
Fu, Zhiqiang Xie, Beidi Chen, Clark Barrett, Joseph E Gonzalez, et al. 2023. High-
throughput Generative Inference of Large Language Models with a Single GPU,
March 2023. arXiv preprint arXiv:2303.06865 (2023).

[50] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou. 2021. Turbotransformers:
an efficient gpu serving system for transformer models. In Proceedings of the 26th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
389–402.

9

https://openai.com
https://copilot.microsoft.com
https://gemini.google.com
https://yiyan.baidu.com
https://qianwen.aliyun.com
https://kimi.moonshot.cn
https://github.com/NVIDIA/ FasterTransformer
https://github.com/NVIDIA/ FasterTransformer
https://developer.nvidia.com/ nvidia-triton-inference-server
https://developer.nvidia.com/ nvidia-triton-inference-server
https://huggingface.co/openai-community/gpt2
https://huggingface.co/openai-community/gpt2
https://www.llama2.ai
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://ai.google/discover/palm2/

	Abstract
	1 Introduction
	2 Preliminary and Motivation
	2.1 Preliminaries
	2.2 Motivation

	3 Baton Overview
	3.1 Desired properties
	3.2 Baton solutions

	4 Baton Design
	4.1 Vector Shaping
	4.2 Vector Embedding
	4.3 Additional functionalities

	5 Evaluation
	5.1 Experimental setup
	5.2 Results and analyses

	6 Related Work
	7 Conclusion
	References

