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ABSTRACT

Emergence in machine learning refers to the spontaneous appearance of complex
behaviors or capabilities that aris from the scale and structure of training data and
model architectures, despite not being expicitly programmed. We introduce a novel
yet straightforward neural network initialization scheme that aims at achieving
greater potential for emergence. Measuring emergence as a king of structural
nonlinearity, our method adjusts the layer-wise weight scaling factors to achieve
higher emergence values. This enhancement is easy to implement, requiring no
additional optimization steps for initialization compared to GradInit. We evaluate
our approach across various architectures, including MLP and convolutional ar-
chitectures for image recognition, and transformers for machine translation. We
demonstrate substantial improvements in both model accuracy and training speed,
with and without batch normalization. The simplicity, theoretical innovation, and
demonstrable empirical advantages of our method make it a potent enhancement to
neural network initialization practices. These results suggest a promising direction
for leveraging emergence to improve neural network training methodologies.

1 INTRODUCTION

Emergence, in general, refers to the phenomenon where complex behaviors and properties arise
from the interactions of simpler elements within a system. In machine learning, emergence has been
studied as the nonlinear increase in system performance as the system’s size increases, exemplified by
the emergent abilities of large language models. These emergent behaviors are crucial for enabling
neural networks to perform complex tasks such as image recognition, natural language processing,
and strategic game playing (Brown, 2020; Kaplan et al., 2020; Radford et al., 2019).

Although the concept of emergence has been observed in various fields and disciplines—such as
phase transitions in physics and emergent structures and functions in biological networks—a unifying
trait of these emergent phenomena is their association with nonlinearity. Generalizing the notion of
a nonlinear function in calculus, this nonlinearity implies the disproportionate increase in system
behavior when moving from the partial to the overall structure of the system.

A natural question regarding emergence is: what kind of system has a stronger potential for emer-
gence? It is generally appealing to link the emergent function with the structure. To address this
question, (Li et al., 2023) developed a measure of emergence based on network structure. This
measure, which quantifies how much emergence a system can sustain, suggests a design principle for
neural networks, enabling us to tune the network structure to maximize emergence.

Based on this measure, we propose a neural network initialization scheme that encourages emergence.
The initialization of network parameters significantly impacts the training stability and performance
of deep neural networks. Initializations that prevent gradient explosion or vanishing during backprop-
agation played a key role in the early successes of feed-forward networks (Glorot & Bengio, 2010;
He et al., 2015). However, it remains theoretically challenging to link a network’s initialization with
its training dynamics, especially for structure- and dataset-agnostic initialization schemes (Glorot &
Bengio, 2010; He et al., 2015; Saxe et al., 2013; Mishkin & Matas, 2015; Zhu et al., 2021; Gilmer
et al., 2021).
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Our motivation differs from existing literature, which emphasizes network stability. By initializing
networks with a stronger potential for emergence, we increase the likelihood of exhibiting emergent
behaviors and patterns during training. This nonlinearity-based emergence suggests that the network
structure and functionality are more susceptible to change, intuitively leading to larger training
gradients.

We show that network architectures with stronger emergence, based on our measure, exhibit patterns of
increasing activation, resembling natural emergent structures like dominos, where initial perturbations
can lead to significant global changes, aligning with the general notion of emergence.

In this paper, we introduce a new initialization scheme for neural networks that leverages the concept
of emergence. Our method adjusts layer-wise variance parameters to achieve higher emergence
values compared to traditional methods like Xavier and Kaiming initialization (Glorot & Bengio,
2010; He et al., 2015). This approach is particularly appealing because it is straightforward to imple-
ment, requiring only minor modifications to existing initialization techniques without necessitating
additional optimization or training steps.

Our initialization scheme is grounded in the idea that by enhancing the emergent properties of
neural networks from the beginning, we can facilitate better feature differentiation and integration.
This, in turn, can lead to improved performance across various tasks and architectures. We evaluate
our method on both convolutional neural networks (CNNs) for image recognition and transformer
architectures for machine translation, demonstrating significant improvements in model accuracy and
convergence speed.

The simplicity and effectiveness of our approach make it a compelling addition to the toolkit of neural
network initialization methods. By focusing on enhancing emergent properties, our scheme offers a
new perspective on how initialization can impact the learning dynamics and ultimate performance of
neural networks. This paper contributes to the growing body of research that seeks to understand and
harness the power of emergence in machine learning, paving the way for more robust and capable
models .

2 RELATED WORK

The initialization of neural networks has been a critical area of research, influencing the stability and
speed of training, as well as the ultimate performance of the models. Traditional initialization schemes,
such as Xavier (Glorot & Bengio, 2010) and Kaiming (He et al., 2015), have laid the foundation for
effectively training deep networks by mitigating issues related to vanishing and exploding gradients.
Xavier initialization aims to keep the scale of the gradients approximately the same in all layers, while
Kaiming initialization, specifically designed for ReLU activations, helps to maintain the variance
of activations throughout the layers. Both methods have proven to be fundamental in training deep
networks but do not explicitly account for emergent properties within the networks.

Recent research has explored more sophisticated initialization strategies that leverage the structural
and statistical properties of neural networks. For instance, (Saxe et al., 2013) studied the dynamics
of signal propagation in deep networks, highlighting the importance of properly scaling the initial
weights to ensure efficient training. Additionally, (Mishkin & Matas, 2015) proposed a layer-
sequential unit-variance (LSUV) initialization that iteratively adjusts the weights to achieve unit
variance across all layers, further improving convergence.

The concept of emergence, where complex behaviors arise from simple interactions within a system,
has also been examined in the context of neural networks. Emergent properties have been shown to
play a crucial role in the development of robust and adaptive models. Research by (Olah et al., 2020)
illustrated how higher-level features and behaviors emerge in deep networks as a result of training
on large datasets. This phenomenon underscores the potential for leveraging emergent properties to
enhance network performance.

Despite these advancements, several challenges and limitations persist. Traditional initialization
methods, while effective at preventing gradient-related issues, do not account for the complex
emergent properties that can significantly influence network performance. More sophisticated
methods, such as LSUV, improve convergence but may require iterative adjustments that complicate
the initialization process.
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The concept of emergence itself, although promising, is not yet fully understood or integrated into
standard practices for network initialization. While studies like those by (Adam, 2017; Li et al., 2023)
have made significant strides, there is still a need for practical methods that can harness emergent
properties effectively from the outset of training.

Furthermore, the role of initialization in specific architectures such as transformers remains an area of
active research. (Vaswani, 2017) introduced the transformer model, which has become a cornerstone
in natural language processing due to its ability to capture long-range dependencies through self-
attention mechanisms. However, recent research continues to refine transformer architectures, with
improvements in initialization playing a crucial role in achieving state-of-the-art performance [15]
(Liu et al., 2020).

3 METHOD

Emergence fundamentally arises from the observation of a system from a higher scale. We build
our definition of emergence on the notion of nonlinearity as the information passed to higher scales.
Two key conceptual components are necessary to qualitatively describe emergent effects within the
framework proposed by (Adam, 2017). The first is a notion of interaction or local computation
among the components of a system. For example, the communication and propagation of information
among nodes or subnetworks in the neural network. The second is the notion of interactional effects,
which equips each system with an observable, for example, attaches network with its performance or
abilities. These kinds of interactional effects are almost always associated with partial observations,
or a simplification and integration of lower — more foundational or granular —levels or scales in the
system that result in a ’loss of information’ or pattern/ feature formation at a higher level.

Figure 1: An illustration of emergence in the hierarchical system.

With these two ingredients, we can define emergence as a partial observation of interacting and
interconnected components within a system that cannot be explained by known interactions that
produce or result in partial observations of the components. This notion agrees with the intuitive
understanding of emergence that some properties of the interconnected components cannot be
decomposed or reduced to combinations of known properties of the constituent components, i.e.
that the whole is more than the sum of its parts. This notion of emergence is the foundation on
which our work in this paper, building on the framework first proposed in (Adam, 2017), develops a
mathematical definition and computational measure of emergence.

To formalize these ideas, we begin by representing the interactions between components as an opera-
tion ∨, where s1 ∨ s2 represents a new interconnected system of subsystems s1 and s2. Interactional
effects are described by the mapping Φ that sends a system to its partial observation or interactional
effect at a higher scale, in some cases corresponding to a coarse graining scheme (Rosas et al., 2024).
Emergent effects are sustained whenever the observation of the combined system cannot be explained
by the observation of the separate components. Mathematically,
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Definition A system sustains emergent effects when the following inequality is satisfied:

Φ(s1 ∨ s2) ̸= Φ(s1) ∨ Φ(s2), (1)

for some constituent subsystems s1 and s2.

This definition essentially captures emergence as a kind of "structural nonlinearity". Let’s consider
the simple case when Φ is simply a smooth function f : R → R and the interaction ∨ is simply
taking the average, s1 ∨ s2 = (s1 + s2)/2. Then we realize that the extent to each Φ(s1 ∨ s2) differs
from Φ(s1) ∨ Φ(s2) is just

∣∣∣f( s1+s2
2 )− f(s1)+f(s2)

2

∣∣∣, which is related to how nonlinear the function
f is, and can be studied by the derivatives of f , in particular, the second order derivative, since∣∣∣f( s1+s2

2 ) − f(s1)+f(s2)
2

∣∣∣ can be approximated by |s2−s1|2
4 |f ′′(ξ)| for some ξ between s1 and s2.

Now when Φ is a functor [26], which captures the cross-scale information flow in real world systems,
we want an analogue to derivatives to apply this idea, and this naturally leads to the concept of a
derived functor in homological algebra[26]. We can also see that Definition captures the structural
nonlinearity in emergence, the nonlinearity of system’s behavior and functionality as the system’s
structure changes, or as we go from components to parts of the system to the whole system. This is
a general mathematical definition of emergence, as first given in (Adam, 2017) 1. Note that when
studying the emergence of a specific system, the interaction ∨ and interactional effect Φ need to be
chosen carefully.

Examples of emergence in machine learning Emergence or generativity has been a rising concept
in machine learning, for example, (Wei et al., 2022a;b; Du et al., 2024). Emergent abilities of large
language models, for example, (Wei et al., 2022a), commonly conceived as the new properties/
abilities of the larger models that do not exist in smaller models. If we consider s1 and s2 as two
smaller models, s1 ∨ s2 as combining two smaller models into a larger model by, for example,
techniques in ensemble learning (Mohammed & Kora, 2023), and Φ as the mapping that reflects
the properties/ abilities of the model, that is, Φ(s) is the ability acquired by the model s. Then
Φ(s1 ∨ s2) is the properties/ abilities of the combined model and Φ(s1)∨Φ(s2) can be interpreted as
a summation of the properties/ abilities of each small model. Then the difference between Φ(s1 ∨ s2)
and Φ(s1) ∨ Φ(s2) can reflect the emergent properties/ abilities that result in the nonlinear increase
of performance, related to the performance in (Wei et al., 2022a). The difference can also be related
to generalizability, where s1 and s2 are two data sets, when the model trains on two data sets, it is
usually different from training the model on separate datasets.

Based the mathematical theory of emergence in (Adam, 2017), the structural difference in (1) between
Φ(s1 ∨ s2) and Φ(s1) ∨ Φ(s2), can be evaluated through computing the mathematical structure of
derived functor R1Φ, see (Adam, 2017; Rotman & Rotman, 2009). (Li et al., 2023) gives the
following result that computes R1Φ, generalization of derivative, where the input is the mathematical
structure of quiver representation.

Theorem (Proposition 5.3 in (Li et al., 2023)) Given the functor Φ which preserves partial structure
in a quiver representation W by deleting a set of edges E, the derived functor of Φ is

R1Φ(W ) =
⊕
a∈E

Φ(W (ta)⊗ Pha) (2)

where ta is the tail of edge a (the starting node), ha is the head of edge a (the ending node), W (ta)
is the vector space associated to node ta, Pha is the vector space spanned by all paths originating
from node ha.

Proof. The proof of this theorem is given in the appendix.

This theorem computes R1Φ, which evaluates the difference between Φ(s1 ∨ s2) and Φ(s1)∨Φ(s2),
thus encodes the potential of a system for emergence. Taking advantage of this theorem, we can take
the dimension of R1Φ(W ) as a numerical approximation of the potential for emergence of W when

1In (Adam, 2017) the term "generativity" is used instead of emergence. These two terms are often considered
interchangeable.
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the network interact with other networks. Given a network G, and a sub-network H which represents
its effect or observation under Φ, where their relation are shown as follows:

G H
Cross-scale mapping Φ

then we have the following measure of emergence for networks:

Emergence(G,H) =
∑

x∈G\H

#paths in H from NH(x) to H, (3)

where H represents the part of network structure being preserved by Φ, the partial observation.
NH(x) is the set of downstream neighbors of x in H .

Emergence in this context is inherently multiscale. It involves interactions across different scales
of the network, where G represents one scale and H represents a higher scale. Emergence appears
only when viewed from this multiscale perspective, as it captures the complexity arising from the
network’s hierarchical structure. In our graph-theoretical framework, the emergence value E of a
neural network is defined based on the number of paths from nodes at scale G to nodes at scale H .
This definition captures the essence of multiscale interactions within the network. The more paths
that exist between these scales, the greater the degree of emergence.

• G is the set of nodes at the lower scale,

• H is the set of nodes at the higher scale.

Our measure captures the emergent behavior by accounting for the connections and interactions
between different scales within the network. The higher the value of E, the more interconnected
the network is across scales, thereby increasing the likelihood of complex behaviors and traits
emerging from the network. Intuitively, a system with a higher value of E has more extensive and
interconnected pathways through which information can propagate across different scales. This
interconnectedness facilitates the development of intricate patterns and features within the network,
enabling it to capture and represent more complex relationships in the data. As a result, networks
with higher emergence values are better equipped to learn and generalize from diverse and intricate
datasets, leading to improved performance across various machine learning tasks.

Our approach leverages this definition to modify the initialization process of neural networks,
aiming to enhance their emergent properties from the outset. By doing so, we achieved significant
improvements in network performance, as demonstrated in our experimental results.

To understand emergence in the context of machine learning, when a model has stronger emergence
traits, this means that the model is easy to learn any or certain downstream tasks. From a loss function
perspective, a model with a stronger emergence should be closer to the global minimum, or the
learning should be fast. We will show in our numerical experiments, that schemes with stronger
emergence will indeed have faster learning in the initial epochs.

In machine learning setting, one modeling approach is to consider Φ as the training process, since
emergence here evaluates the potential/ ability for emergent traits when we observe system G from
a higher level H , here we want G to represent the model itself, and H to be some certain features
of the model. In the paper, we adopt the setting that H is the nodes in G that are still active in the
training process, where the criteria for active nodes is the set of nodes whose average activation on all
input data is greater than a threshold. This sorted out the nodes that are not actively participating in
the computational process/ representing features. The set of active nodes thus in a sense represent the
learning task, thus we can tie emergence with the performance of the network in a learning process.
This fits in our framework of emergence, where part of the system is being neglected after the learning
process, thus the learning process represents the Φ where partial observation is carried out, and the
properties of H represents the emergent abilities of the network.
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For a feedforward network, with N layers, and ni nodes for each layer, and ai the number of active
nodes for each layer, emergence is computed as follows:

E =

N−1∑
i=1

N∑
j>i

#paths from inactive nodes in layer ito active nods in layer j

=

N−1∑
i=1

N∑
j>i

(ni − ai)ai+1 · · · aj−1aj

=

N−1∑
i=1

N∑
j>i

(ni − ai)aj

j−1∏
k=i+1

ak

(4)

when the network architecture is fixed, which means, when L and ni, i = 1, . . . , L are fixed,
emergence is only a function of the number of active nodes in each layer,

E := E(a1, . . . , aN ). (5)

And the number of active nodes at initialization, is impacted by the weights. With a criteria for active
nodes, for example, those nodes whose activation is greater than a threshold as adopted in this paper,
we can thus establish initialization scheme that has stronger emergence.

Lemma: Emergence function E(a1, . . . , aN ) increases when a1 . . . ai gets smaller and ai+1 . . . aN
gets larger, where i is the largest integer such that

−ni−1 + ni+1 + ni+1ni+2 + ni+1ni+2ni+3 + · · ·+ ni+1ni+2 · · ·nN−1nN > 0. (6)

Proof: Consider the case where all the layers before ith layer are fully inactive and all the layers
after ith layer are fully active, in other words, ak = 0 for k < i and ak = nk for k > i. Then when
ai decrease by 1, the number of paths from previous layers to layer i will decrease by ni−1, the
number of paths from layer i to latter layers will increase by ni+1 + ni+1ni+2 + ni+1ni+2ni+3 +
· · ·+ ni+1ni+2 · · ·nN−1nN . So the net increase of paths will be

∆ = −ni−1 + ni+1 + ni+1ni+2 + ni+1ni+2ni+3 + · · ·+ ni+1ni+2 · · ·nN−1nN . (7)

In a wide range of image recognition tasks, we propose to choose i ≈ N/2 as it works for a wide
range of neural network architecture blocks.

Let us consider now why the network with the configuration above has stronger emergence: for
example, when the network is doing an image recognition task, the nodes in the later half of the layers
are making important decisions on which category the image belongs to, so it needs to be more active/
subject to more sensitive weight changes. However, for the nodes in the initial half of the layers, they
are subject to greater weight changes, and they could be turned off to represent some global features
of the image. Hence they could be more inactive/ subject to more drastic weight changes.

This idea also agrees with the fine-tuning idea: typically, the initial layers (closer to the input) have
smaller learning rates, while the later layers (closer to the output) have larger learning rates. This
strategy is based on the idea that the initial layers capture more generic features that are less likely to
change significantly, whereas the later layers capture more task-specific features that require more
significant adjustments. When the model has stronger emergence according to our theory, it is more
likely to learn the specific tasks faster in a fine tuning process.

Now we aim at proposing a network initialization architecture with stronger emergence. To do so, we
decrease the weight magnitude in the first half of the layers and increase the weight magnitude in the
second half of the layers.

• Decrease the activity of nodes in the first half layers
• Increase the activity of nodes in the second half layers

in order to achieve this, we design the following initialization scheme:

6
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• Decrease the magnitude of weights in the first half layers by dividing a factor α

• Increase the magnitude of weights in the second half layers by multiplying a factor α

because in general, a larger weight magnitude can lead to higher activation thus increase the number
of active nodes.

We also want to consider the stability of the network. The existing initialization schemes were usually
designed such that the activation and gradients are stable across the layers. For example, in Xavier
initialization, it is shown that

niV ar(Wi) = 1 (8)
ni+1V ar(Wi) = 1 (9)

promotes stability of activation and gradients. However, when we increase the variance in the inital
layers and decrease the variance in the later layers, we introduce instability to the flow of activation
and gradients across the layers. To reduce the effect of instability on the performance of initialization
scheme, we make the increase of variance across the layers to be smooth, so as to reduce the instability.
For example, we initialize the weight matrices in the following way:

We first initialize the network weights {Wi} following some standard initialization scheme which
preserves stability, for example, Xavier or Kaiming He Initialization. Then we do the following
scaling to the weights:

W̃−n = Wn/α
n

W̃−(n−1) = W−(n−1)/α
n−1

...

W̃0 = W0

W̃1 = W1 ∗ α
...

W̃n−1 = Wn−1 ∗ αn−1

W̃n = Wn ∗ αn

(10)

In our experiments, we see in Figure 3 that this initialization is indeed leading to a better performance.
In particular, we show the correlation between emergence and performance. Based on our theory,
we have an increase in emergence, even when only the magnitude of weights of the first half layers
decreases, or the magnitude of weights of the second half increases.

We also note that, such choice of layer magnitudes is mimicking the "domino effect", as illustrated in
the figure below. The increase of energy level for each piece can set off a cascade effect.

We now study how to choose the scaling factor α properly. As shown in our numerical experiments,
we can see that as α increase, the performance first increases then decrease, and the decrease part is
likely to be caused by the instability inherent to the initialization scheme. In order to determine a
factor α that is appropriate, we want to limit the emergence of the model to a range.

Choice of optimal α: From the mathematical equation of emergence, we can see that given a model,
the maximum amount of emergence is determined by the parameters of the equations, N and ni,
which are the number of layers in the network and the size of each layer. Emergence increases
in O(ni) and O(N2). As a result, emergence is more sensitive to α when the network has more
layers. So we allow larger α when the network is shallow and smaller α when the network is deep.
Empirically, under the learning rate lr = 0.001, α = 2 is a good choice for usual architectures. For
the two layer MLP, for example in transformers, α can be as large as 10, which for deeper MLP,
n > 5, then smaller α should be considered.

Here our motivation is simply to bound the emergence value. We should also bear in mind that
stability is also a very important issue for an initialization scheme to behave well. We encourage
people to give more rigorous analysis on emergence and stability so as to strike a more optimal
balance between these two.

7
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Figure 2: (A) The increase of weight magnitude through the layers mimicks how the energy level
through the pieces of a domino is increasing. (B) Comparison of training loss and emergence of
Xavier, Kaiming and our initialization schemes. Emergence measure: Xavier: 5.03e8, Kaiming:
5.99e8, Ours: 10.87e8

4 EXPERIMENTS

We evaluate our initialization scheme on benchmark datasets for image classification and machine
translation tasks. For image classification, five different architectures are evaluated for CIFAR-10
(Krizhevsky et al., 2009), and ResNet-50 (He et al., 2016) is evaluated for ImageNet(Deng et al.,
2009). For machine translation, we use our initialization scheme to find good initializations for a
Post-LN Transformer without any change to its original architecture on IWSLT-14 De-En (Cettolo
et al., 2014).

We conduct our experiments in PyTorch. We use the fairseq library for machine translation (Ott,
2019). All the experiments on CIFAR-10 and IWSLT-14 DE-EN can run with one single NVIDIA
A100 GPU. Our initialization scheme first initializes the weights using Kaiming initialization for
all the Conv and MLP layers for image classification. On ImageNet, we compare with Kaiming
Initialization, and GratInit. Each block in ResNet-50 is initialized independently with α = 2. We use
batch normalization to increase stability.

For machine translation, we use the default Xavier initialization (Glorot & Bengio, 2010). Base on
the discussion in the previous section, we choose the scale factors α = 2 with out batch normalization
and αi = 5 with batch normalization.

On CIFAR-10, we focus on MLP and the feedforward VGG net with and without BN layers. Since
ResNet has recursive network structure, we leave it to a future work to establish the emergence
formula on it. For MLP, we use a simple MLP architecture with 3 hidden layers. For VGG net, we use
VGG-19 and our initialization scheme is compared with four different methods/settings: 1) Kaiming
Initialization (He et al., 2015); 2) First train the network for one epoch with a constant learning rate
equal to the starting learning rate, labelled as “+1 epoch (Const. LR)" in Table 1; 3) First train the
network for one epoch with a linear warmup learning rate, labbeled as “+1 epoch (Warmup)" in
Table 1; 4) MetaInit (Dauphin & Schoenholz, 2019). The data is from GradInit(Zhu et al., 2021). On
CIFAR-10, we train networks with a batch size of 128, and in our initialization scheme, we adopt a
constant learning rate of 0.001, while in other initialization models, much larger learning rate (for
example, 0.1) has been adopted. Our scheme has significant performance even though the learning
rate is much smaller.

From our experiments we can also see BN does stabilize VGG-19 and allows training with stronger
emergence (larger value of α). This shows the particular promising application of our scheme
combined with batch normalzation. We can see from our numerical simulation that since batch
normalization promotes good stability, we are free to choose larger α.

IWSLT’14 DE-EN (Cettolo et al., 2014) is a German to English translation dataset that has 160k
training examples. Our Transformer model is inherited from (Vaswani, 2017), which is a Post-LN

8
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(a) w/o batch normalization,α = 2 (b) w/ batch normazalization, α = 10

Figure 3: Training loss and test accuracy of MLP on CIFAR-10.

Table 1: First epoch (Acc1) for models on CIFAR-10, α = 2 for VGG-19 without BN, and α = 5
for VGG-19 with BN.

Model VGG-19 VGG-19 ResNet-110 ResNet-110 ResNet-1202
w/o BN w/ BN w/o BN w/ BN w/ BN

Kaiming 29.1± 1.5 12.6± 0.6 16.1± 2.1 23.2± 0.9 12.9± 2.8

+1 epoch (Const. LR) 37.2± 1.1 19.6± 4.0 21.0± 3.8 32.5± 3.8 12.6± 2.8

+1 epoch (Warmup) 37.4± 1.2 53.5± 2.9 19.8± 0.5 48.7± 1.1 28.1± 1.3

MetaInit 30.5± 0.9 35.1± 0.6 14.6± 2.2 29.0± 1.5 11.7± 1.6

GradInit 29.3± 0.6 47.8± 1.8 36.2± 0.8 38.2± 0.9 29.0± 1.1

Ours 46.2 ± 0.6 52.4± 1.0 45.3 ± 2.0 48.0± 1.5 29.8 ± 1.7

Table 2: Accuracy after epoch 1 of ResNet-50 models on ImageNet. Results from (Zhu et al., 2021).
Model Kaiming GradInit Ours

Acc1 14.6 19.2 23.2

Table 3: A comparison of Emergence-Promoting Initialization with other initialization for training
the Post-LN Transformer model on the IWSLT-14 De-EN dataset. (Evaluate after 80 epochs)

Model BLEU1 BLEUbest

Xavier - 34.85
T-Fixup 3.96 34.78
Ours 4.8 35.13
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Transformer placing its Layer Normalization after the summation of the skip connection and the
residual branch. It has a 512- dimensional word embedding layer and 1024 dimensions in its hidden
FFN layer. It has 6 encoder layers and 6 decoder layers. We choose the learning rate to be 5e− 4
with inverse-sqrt learning schedule with 4000 warmup updates and weight decay of 0.0001.

Based on the discussion in the previous section, we have two ways of promoting emergence: A)
promote emergence globally, by reducing the magnitude of weights in the encoder layers and
increasing the magnitude of weights in the decoder layers; B) promote emergence clockwise, where
we apply (8) to each encoder/ decoder block. In our transformer architecture, there is MLP block in
each encoder/decoder layer consisting of 2 layers. In our experiments, we can choose α up to 10 for
each MLP block, and notably we can see fast increase of BLEU score in the first few epochs. For
example, with α = 10, the BLEU score after first epoch reaches 6.02 while for T-Fixup the BLEU
score after first epoch is 3.79.

For global emergence promoting scheme, we first initialize our scheme based on T-Fixup, and then
increase the magnitude of weights in the decoder layers by 2. We run the models for the maximum of
80 epochs and evaluate the BLEU score every epoch, and report the best BLEU scores throughout
training for each run and the result is in Table 3.

In all our numerical experiments, we notice our initialization leads to better training performance when
combined with batch normalization, weight decay and other techniques that promotes stability and
prevents over-fitting, while in other cases the model could be trapped in local minimum. We encourage
researchers to combine our initialization scheme with other stability-promoting considerations, which
could potentially further improve the performance (especially long term) of our initialization.

5 CONCLUSION

In this paper, we introduced a novel and straightforward neural network initialization scheme inspired
by the concept of emergence. Building on the emergent network measures proposed by (Li et al.,
2023), our method adjusts the layer-wise variance parameters to enhance the number of paths from
inactive to active nodes, thereby achieving higher emergence values. This approach is not only easy
to implement but also requires no additional optimization or training steps compared to conventional
methods like Xavier and Kaiming initialization. Our extensive evaluations across various architectures,
including convolutional neural networks (CNNs) for image recognition and transformers for machine
translation, demonstrate the significant advantages of our initialization scheme. The empirical results
show that our method substantially improves model accuracy and convergence speed on standard
datasets such as CIFAR-10, ImageNet and the IWSLT-14 translation task.

Our work contributes to the growing body of research that seeks to understand and harness the
power of emergence in neural networks. By providing a simple yet powerful modification to
existing initialization techniques, we open new avenues for improving neural network training
methodologies. Future work could explore further optimizations and adaptations of our initialization
scheme to other types of neural architectures and more complex tasks. Overall, emergence-promoting
initialization scheme represents an addition to current neural network initialization practices, offering
both theoretical insights and practical improvements for the development of more robust and capable
machine learning models.
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A APPENDIX

A.1 MATHEMATICAL REPRESENTATION OF NEURAL NETWORKS

To perform mathematical computation of emergence, we use quiver representation as the representa-
tion of a neural network. Formally, a quiver is a directed graph where loops and multiple arrows
between two vertices are allowed, defined as follows:

• A quiver Q is a quadruple Q = (Q0, Q1, h, t) where Q0 is a finite set of vertices, Q1 is a
finite set of arrows, and h and t are functions Q1 → Q0. For an arrow a ∈ Q1, h(a) and
t(a) are called the head and tail of a.

• We get a representation V of Q = (Q0, Q1, h, t) if we attach to every vertex x ∈ Q0

a finite dimentional vector space V (x) and to every arrow a ∈ Q1 a linear map V (a) :
V (ta) → V (ha).

Quiver representation can be used to model the dynamics on the network Derksen & Weyman (2017);
Armenta & Jodoin (2021); Armenta et al. (2023). We provide two examples of quiver representation
in Figure Figure A.1.

Figure 4: Additional examples of quivers. (a): A quiver Q with vertices V = {a, b, c, d} and oriented
edges E = {α, β, γ, δ}, (b) and (c): two quiver representations over Q. Adapted from (Derksen &
Weyman, 2017).

Theorem (Proposition 5.3 in (Li et al., 2023)) Given the functor Φ which preserves partial structure
in a quiver representation W by deleting a set of edges E, the derived functor of Φ is
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R1Φ(W ) =
⊕
a∈E

Φ(W (ta)⊗ Pha) (11)

where ta is the tail of edge a (the starting node), ha is the head of edge a (the ending node), W (ta)
is the vector space associated to node ta, Pha is the vector space spanned by all paths originating
from node ha.

Proof. Based on (Derksen & Weyman, 2017), for representation W in Rep(Q) we have the projective
resolution

0 W
⊕

x∈Q0

W (x)⊗ Px

⊕
a∈Q1

W (ta)⊗ Pha 0
fW

dW

(12)

where

fW :
⊕
x∈Q0

W (x)⊗ Px → W (13)

is defined by

fW (w ⊗ p) = p · w, (14)

and

dW :
⊕
a∈Q1

W (ta)⊗ Pha →
⊕
x∈Q0

W (x)⊗ Px (15)

is defined by

dW (w ⊗ p) = (a · w)⊗ p− w ⊗ pa. (16)

Now we compute the first left derived functor R1Φ. By definition (Rotman & Rotman, 2009), it is the
1st homology object of the sequence above under the image Φ, formally, R1Φ = kerΦdW , where
dW is defined in (15). Now if an edge a is deleted by the functor Φ then for any w ∈ W (ta) and
p ∈ Pha, we have(a · w)⊗ p = w ⊗ ap = 0, hence Φ(W (ta)⊗ Pha) ⊆ kerΦdW . If a is preserved
under Φ, then ΦdW will act the same as dW on Φ(W (ta) ⊗ Pha), and dW is injective due to the
exactness of resolution, Φ(W (ta)⊗ Pha) will be non-zero thus not contribute to kerΦdW .

This theorem computes R1Φ, which evaluates the difference between Φ(s1 ∨ s2) and Φ(s1)∨Φ(s2),
thus encodes the potential of a system for emergence. Taking advantage of this theorem, we can take
the dimension of R1Φ(W ) as a numerical approximation of the potential for emergence of W when
the network interact with other networks:

dimR1Φl(W ) = dim
⊕
e∈E

Φl(W (he)⊗ Ite)

=
∑
e∈E

dimΦl(W (he))× dimΦl(Ite). (17)

Here dimΦr(V (te)) and dimΦl(W (he)) is the dimension of the image of the vector space V (te)
and W (he) under the functor, and dimΦr(Phe) and dimΦl(Ite) is the dimension of the image of
the path algebra Phe and Ite under the functor.

Given a network G, and a sub-network H which represents its effect or observation under Φ, where
their relation are shown as follows:

G H
Cross-scale mapping Φ

13
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then we have the following measure of emergence for networks:

Emergence(G,H) =
∑

x∈G\H

#paths in H from NH(x) to H, (18)

where H represents the part of network structure being preserved by Φ, the partial observation.
NH(x) is the set of downstream neighbors of x in H .

A.2 HYPERPARAMETERS

On learning rates Empirically, the scaling factor α is also dependent on learning rate. When the
learning rate is faster, more stability is usually required and hence we need smaller emergence.
There has been some theoretical results on the optimal learning rate, for example, (Hettinger, 2019)
suggested that the optimal learning rate should be inversely proportional to the gradient magnitude at
initialization:

η =
c

∥∇L∥
(19)

where η is the optimal learning rate, ∥∇L∥ is the magnitude of the gradient of the loss function L
with respect to the network parameters at initialization, and c is a constant.

So when given the learning rate, we should choose α such that the resulting gradient magnitude at
initialization is inversely proportional.

If we assume that by introducing our scheme we have C(α)N times increase to the initial gradi-
ent.Then under the learning rate η we have

η

η0
=

∥∇Lα0∥
∥∇Lα∥

=
αN
0

αN
(20)

hence we have

α = α0

[η0
η

]1/N
. (21)

For a two layer network, if we choose α0 = 2 for learning rate η0 = 0.001, then for a different
learning rate η = 0.0001 we should choose α = 6.32.

Since based on our scheme, the initial gradient varies across layers, the layer-wise learning rates
configuration should also be considered a good choice. Specifically, the learning rate for each layer,
denoted by ηl, should be proportional to the inverse of the square root of the expected squared
gradient norm at initialization. Mathematically, this can be expressed as:

ηl ∝
1√

E
[
∥∇L(x0

l )∥
2
]

where ηl is the learning rate for layer l, and E
[∥∥∇L(x0

l )
∥∥2] is the expected squared gradient norm

of the loss L with respect to that layer’s inputs x0
l at initialization. This approach aims to optimize the

learning process by adjusting the learning rates according to the variability and scale of the gradients
encountered in different layers of the neural network.

Other architectures and block wise initialization Note that (9) only works for MLP, which has good
symmetry. For convolutional layers, we can modify (9) to get the following measure of emergence:

E =

N−1∑
i=1

N∑
j>i

(ni − ai)aj

j−1∏
k=i+1

mk (22)

where mk is the number of filters in layer K. The analysis largely follows.
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In most convolutional architectures and transformers, there are MLP blocks presented. While we
can only do our internalization to the MLP blocks and see an improvement, we can also consider
applying scheme (19) to the convolutional layers. Given this formula for emergence, we can increase
the global emergence, but also increase the local emergence by applying scheme (19) to some of the
layer blocks. We will discuss this in the next section.
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