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Abstract

Many kinds of simultaneously-observed event se-
quences exhibit mutually exciting or inhibiting pat-
terns. Reliable detection of such temporal depen-
dencies is crucial for scientific investigation. A
common model is the Multivariate Hawkes Pro-
cess (MHP), whose impact function naturally en-
codes a causal structure in Granger causality. How-
ever, the vast majority of existing methods use a
transformed standard MHP intensity with a con-
stant baseline, which may be inconsistent with real-
world data. On the other hand, modeling irregular
and unknown background dynamics directly is a
challenge, as one struggles to distinguish the effect
of mutual interaction from that of fluctuations in
background dynamics. In this paper, we address
the short-term temporal dependency detection is-
sue. We show that maximum likelihood estimation
(MLE) for cross-impact from MHP has an error
that can not be eliminated, but may be reduced by
an order of magnitude using a heterogeneous inten-
sity not for the target HP but for the interacting HP.
Then we propose a robust and computationally-
efficient modification of MLE that does not rely
on the prior estimation of the heterogeneous inten-
sity and is thus applicable in a data-limited regime
(e.g., few-shot, unrepeated observations). Exten-
sive experiments on various datasets show that our
method outperforms existing ones by notable mar-
gins, with highlighted novel applications in neuro-
science.

1 INTRODUCTION

A substantial amount of timestamp data manifest as a se-
quence of apparently irregular and asynchronous events.
These are recorded in continuous time and observed in do-

mains such as computational biology (e.g., neuronal spike
trains [Kass and Ventura, 2001, Pillow et al., 2008], genomic
events [Reynaud-Bouret and Schbath, 2010]), quantitative
finance (e.g., limit order book modeling for high-frequency
trading [Bacry et al., 2015, Bowsher, 2007]), credit risk
modeling [Errais et al., 2010]), social media user activity
[Farajtabar et al., 2015, Zhou et al., 2013a], e-healthcare
([Wang et al., 2018]) and seismology (e.g., earthquake af-
tershock [Ogata, 1988]). Besides asynchronicity, such se-
quence data often exhibit mutual interaction patterns in
which the occurrence of one event can excite or inhibit the
likelihood of another. For example, news-driven trading in
behavioral finance studies the mutual excitation between
investor-sentiment shocks and negative price jumps [Yang
et al., 2018], while in cortical networks inhibitory connectiv-
ity in firing-rate between neurons and synapses may under-
lie memory maintenance [Mongillo et al., 2018]. Such an
interaction patterns has been variously called a temporal de-
pendency [Zuo et al., 2020], cross-correlation [Zhang et al.,
2020], a coupling effect [Pillow et al., 2008] or Granger
causality [Xu et al., 2016]. As [Eichler et al., 2017] note,
although stand-alone notions of Granger causality can not
establish cause-effect links, the detection of temporal de-
pendencies remains useful for both prediction and scientific
investigation.

Temporal point processes (TPP) [Cox and Isham, 1980] are
a powerful tool for modeling event sequences. Multivariate
Hawkes processes (MHP) [Hawkes, 1971], as a special type
of TPP, have been widely used as the de facto tool for cap-
turing temporal dependencies among event processes (see
above, e.g.,[Bacry et al., 2015, Farajtabar et al., 2015, Wang
and Zhang, 2022, Zuo et al., 2020]). An MHP models oc-
currence probability using a history-dependent conditional
intensity and its impact function (also called coupling filter,
trigger kernel, influence function, see [Pillow et al., 2008,
Zhou et al., 2021b, 2013a]) is particularly well-suited to de-
tect mutual excitatory effects. Inhibitory effects can also be
incorporated, but some nonlinear link function is required
to map the MHP intensity into R+ (e.g., notably a clip-
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ping function x+ = max(x, 0) in [Hansen et al., 2015] or
sigmoid function in [Zhou et al., 2021b]).

Despite the expressiveness of impact functions, the back-
ground component in MHP intensity is assumed to be time-
invariant. Possibly due to the extra modeling difficulty en-
tailed, virtually all existing studies on MHP use, implicitly
or explicitly, nonlinear transform of standard MHP intensity
with constant baseline, including modern DL-based meth-
ods (e.g., Transformer HP [Zuo et al., 2020] HP in infinite
relational model or Dirichlet mixture model [Blundell et al.,
2012, Xu and Zha, 2017], sigmoid nonlinear MHP with
Pólya-Gamma variable augmentation [Zhou et al., 2021b],
self-attentive HP and recurrent neural network [Zhang et al.,
2020]). Notable exceptions which incorporate temporal het-
erogeneity include [Mei and Eisner, 2017], a neurally self-
modulating HP with LSTM and [Zhou et al., 2021a], where
a state-switching latent process is proposed (yet still assum-
ing constant background within each state) and [Hawkes,
2018] where the heterogeneous background is briefly dis-
cussed as a generalization of MHP to represent "exogenous
economic activity".

However, real-world event dynamics are often decisively
temporally heterogeneous. For example, Twitter has infor-
mation bursts spurred by exogenous events (e.g., breaking
news or sports games)[Wang and Zhang, 2022], the firing
of neurons is commonly driven by varying visual stimuli
[Siegle et al., 2021], and trading activity has a diurnal varia-
tion (e.g., more trades occur around market open/close than
around noon [Bowsher, 2007]). Under unknown heteroge-
neous dynamics, temporal dependency detection is difficult
as one struggles to distinguish the effect of mutual interac-
tion from that of background intensity fluctuation (e.g., did
the arrival of orders for stock A stimulate that for stock B,
or did they both simply experience a nonlocalized spike in
trading activity?).

In this paper, we show that the maximum likelihood estima-
tion (MLE) of short-term temporal dependency detection
for standard MHPs has non-negligible errors in the presence
of heterogeneous background dynamics. However, this er-
ror decreases by an order of magnitude (in terms of impact
window or kernel width) if the heterogeneous background
between the target HP (recipients of the impact) and source
HP (initiators of the impact) is uncorrelated (or orthogo-
nal in the Hilbert space sense, L2[0, T ] or C[0, T ], where
T is observation horizon). Thus, loosely speaking, MHP
can still estimate short-term cross-impact reasonably well,
unless the heterogeneous intensity between the target HP
and source HP shares common/correlated background dy-
namics. Building on this insight, we propose a robust and
computationally-efficient modification of MLE, which uti-
lizes a nonparametric estimate of heterogeneous intensity
– not of the target HP, but of the source HP. By focusing
on the background intensity of the source, we reduce the
inference difficulty, and the error, due to the coupling be-

tween the target HP background and impact function, by
regressing the commonly-varying background out of the
target HP intensity.

The contribution of this paper can be summarized as:

• To the best of our knowledge, our work is the first
to formally report and analyze the error of MLE of
short-term temporal dependencies in MHPs due to
heterogeneous background dynamics. We investigate
the relation between estimation error and background-
correlation among interacting HPs, which motivates a
novel method to reduce the error.

• Through extensive numerical experiments, we show
that our method exhibits superior performance and
is robust, cost-efficient, applicable in a data-limited
regime (e.g., when lacking repeated observations), and
suitable for inference.

• Finally, we apply our method to mouse visual cortex
data and discover distant interactions between neurons
on a fine timescale in both top-down and bottom-up
pathways, showcasing the method’s direct applicability
in neuroscience.

2 RELATED WORK

Hawkes process. Many efforts have been devoted to de-
tecting temporal dependency among point processes, e.g.
[Chwialkowski and Gretton, 2014, Gunawardana et al.,
2011]. Among point processes, Hawkes processes stand
out as the most commonly used tool for modeling com-
plex temporal dependencies in event sequences. The paper
[Eichler et al., 2017] established the link between Granger
causality and impact functions in MHP and many methods
are proposed to learn the temporal dependency in MHP, via
group sparsity, [Xu et al., 2016], nonparametric learning
using Euler-Lagrange equation [Zhou et al., 2013b], iso-
tonic nonlinear link function [Wang et al., 2016], online
learning [Yang et al., 2017] and modern DL-based methods
(see intro, [Zuo et al., 2020, Blundell et al., 2012, Xu and
Zha, 2017, Zhang et al., 2020]. However, these methods
use direct or nonlinear transform of standard MHP time-
invariant base intensity, overlooking the heterogeneity in
event dynamics. Notably, [Mei and Eisner, 2017] implicitly
allows for heterogeneity. Latent variable augmentation is
proposed in [Zhou et al., 2021b,a, 2022, 2020] to incor-
porate the time-varying background, but the modeling of
heterogeneity typically relies on piecewise constants. More-
over, most methods are data-intensive (e.g., as reported in
[Yang et al., 2017], methods as [Zhou et al., 2013b] require
more than 105d arrival data to obtain good results on d ≤ 5
event streams) and computationally-extensive (e.g., MCMC,
EM algorithm or complex neural architecture) which is un-
suitable for inference in data-limited regimes. Indeed, often
in practice, only short/unrepeated sequences are available



[Salehi et al., 2019], which not only amplifies the risk of
overfitting but also makes estimation of heterogeneous back-
ground infeasible.
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Figure 1: Construction of Monte Carlo samples from the con-
ditional null hypothesis in the conditional-inference based
CCG technique. Blue dots are timestamps.

Conditional inference based cross-correlogram (CCG).
Heterogeneous dynamics are ubiquitous in neuroscience
[Farajtabar et al., 2015]. Due to the limitations of TPP and
MHP in this regime, a popular method in neuroscience
for detecting temporal dependencies in cross-correlograms
(CCG) is via conditional inference. Conditional hypothe-
sis testing with a carefully designed null hypothesis can
bypass the background heterogeneity issue. Particularly,
given realizations of two point processes, CCG assesses
temporal dependence between events by testing hypotheses
about conditional distributions of CCG-statistics, condition-
ing on coarse timescale-statistics which reflect background
dynamics. As shown in [Amarasingham et al., 2012], the
method relies on conditional inference, where the samples
from the null are generated by: shifting the timestamps
within each jitter window (reflecting prior knowledge on
the timescale of interactions) by a random amount, which
is small enough to preserve coarse-timescale statistics, but
large enough to break the finely-timed interaction pattern
(see Figure 1). However, this method requires prior knowl-
edge of timescales and assumes that the timescale of back-
ground activity (parameterized as the jitter window width)
is larger than that of the interaction effect (See Figure 3)
and discussion below. Additional details in Appendix A.3,
C.6. Also, the outcome of the hypothesis test alone does not
measure the strength of the coupling effect directly.

3 ANALYSIS AND METHODS

3.1 BASIC CONCEPTS

A temporal point process is a stochastic process whose
realization consists of a list of discrete event timestamps
{tn}n∈N ⊆ R+, which can be equivalently represented
by a counting process {N(t), 0 ≤ t ≤ T} [Daley and
Vere-Jones, 2008]. Formally, given a probability triple
(Ω, {Ht}0≤t≤T ,P), N(t) := N((0, t], ω) is a realization
(i.e., ω ∈ Ω) of counting measure N for the number of
points in (0, t] andHt is the σ-algebra generated from N(B)
for Borel subsets B ⊆ (0, t] ( or (−∞, t], we do not dis-
tinguish them here). The intensity of the point process is

λ(t) := limδ→0
1
δP(N(t + δ) − N(t) > 0|Ht). It can be

shown (see [Ogata, 1978]) forHt-progressively measurable
λ(t), f(t) with left continuous (thus predictable) f(t) that
E[dN(t)|Ht] = λ(t)dt and

E
∫ T

0

f(t)dN(t) =E
∫ T

0

f(t)E[dN(t)|Ht]

=E
∫ T

0

f(t)λ(t)dt. (1)

sssss For the multivariate Hawkes process, the density has
the form

λj(t) = αj +

d∑
i=1

∫ t

0

hi→j(t− s)dNi(s) (2)

for 1 ≤ i, j ≤ d, where d is the dimension (number of event
streams), αj is the baseline intensity for process Nj and
hi→j is the impact function from Ni to Nj . Standard MHP
models mutual excitatory behavior and requires hi→j ≥ 0
to avoid negative intensity which is meaningless. However,
one can simply set λ← max(λ, 0) [Hansen et al., 2015] to
extend MHP for modeling mutual inhibitory behavior.

3.2 HETEROGENEOUS EVENT DYNAMICS

The standard MHP assumes the baseline intensity α to be a
constant (2), which is incongruous with the heterogeneous
event dynamics frequently observed in real-world scenar-
ios. To accommodate heterogeneity, instead of using (2) as
building blocks to construct a complex structure, we directly
proposed a generalized MHP intensity for 1 ≤ i, j ≤ d:

λj(t) = αj + fj(t) +

d∑
i=1

∫ t

0

hi→j(t− s)dNi(s) (3)

where fj(t) is the fluctuation in the background intensity.
For now, we do not restrict whether fj is stochastic or de-
terministic, but simply assume it is Ht-adapted. For iden-
tifiability between α and f , we assume

∫ T

0
E[f(t)]dt = 0

(or more generally
∫ P

0
f(t)dt = 0 if it is deterministic and

perodic with peroid P or E[f ] = 0 if f(t) is stationary).

The main approaches for learning MHP falls under two
directions: maximum likelihood-based (MLE) approaches
[Ogata, 1978, Zhou et al., 2013a, Yang et al., 2017] and
moment-matching flavored approaches based on higher-
order statistics [Da Fonseca and Zaatour, 2014]. Due to
the unknown statistical property of f , the moment-based
methods are not applicable for (3). To investigate the applica-
bility of the MLE approach for (3), we study a representative
model for subsequent discussion. However, we emphasize
that our proposed method applies generally to models from
(3).



3.3 REPRESENTATIVE MODEL

Consider two point processes Ni, Nj as shown in Figure 2.
The intensity functions are,

λj(t) = αj + fj(t) +

∫ t

0

hi→j(t− s)dNi(s)

λi(t) = αi + fi(t)

(4)

Figure 2: Illustrative MHP with a heterogeneous back-
ground. Two events stream Ni, Nj with intensities
λi(t), λj(t), baseline αi + fi(t), αj + fj(t) and the one-
way impact function hi→j .

where hi→j is the impact function and fi(t), fj(t) are un-
known fluctuations. There are various methods of learning
the form hi→j with data-driven and nonparametric tech-
niques ([Zhou et al., 2013b, Xu et al., 2016, Yang et al.,
2017]. To facilitate the discussion of MLE, we assume the
form of impact has been learned within a 1-D parametric
family hi→j(·) ∈ {θ · 1[0,σh](·)}θ∈Θ which is widely ap-
plied in neuroscience (here, 1[0,σh](t) = 1 if 0 ≤ t ≤ σh

and 0 otherwise). We set the ground truth impact to be
hi→j = c ·1[0,σh] for a given c > 0. Moreover, we focus on
the recovery of impact function (i.e., estimation of c) and
treat other parameters as nuisance parameters, as in profile
likelihood[Murphy and Van der Vaart, 2000].

In MHP (2), not considering fj , one parameterizes λj as

λθ(t) = θ1 + θ2

∫ t

0

1[0,σh](t− s)dNi(s), (5)

which is misspecified and maximizes the log-likelihood:

θ̂ =argmin
θ

ℓ(θ;HT )

=−
∫ T

0

λθ(t)dt+

∫ T

0

log λθ(t)dNj(t),

see, e.g., [Ogata, 1978]. In the misspecified model, one
would expect θ̂ converges to θKL, the minimizer in KL-
divergence information criterion [White, 1982]:

θKL = argmin
θ

Λ(θ) := Eℓ(θ),

under suitable regularity conditions, including µ-strong con-
vexity and L-Lipschitz gradient of Λ. We want to quantify
the error between [θKL]2 and c. We list technical conditions
in Appendix B, along with proofs for the following results.

Proposition 1. Under regularity conditions specified in
Appendix B, for deterministic fi and fj in (3), the error
satisfies

|[θKL]2 − c| = Θ

(∣∣∣∣ ∫ T

0

fi(t)fj(t)

αj + c
dt · σh + o(σh)

∣∣∣∣).
Proposition 2. Under the same condition as in Proposition
1, if fi and fj are stationary, the error satisfies

|[θKL]2 − c| = Θ

(∣∣∣∣Cov(fi, fj)
αj + c

σh + o(σh)

∣∣∣∣).
where the big-Θ notation stands for a growth function with
the same rate in upper and lower bound, i.e. f(x) = Θ(g(x))
if there exists 0 ≤ m ≤ M s.t. mg(x) ≤ f(x) ≤
Mg(x),∀x.

Proposition 1 and 2 suggest that, under heterogeneous event
dynamics, the error in estimating the impact function scales
linearly with σh, with the coefficient determined by the
"inner product" between fi and fj . In fact, if we define
⟨fi, fj⟩ = E

∫ T

0
fi(t)fj(t)dt, then we can unify (and gener-

alize to a non-stationary case) the result in Proposition 1 and
2. We see that, for short-term temporal dependency detection
σh → 0, the ratio between estimation error and interaction
timescale σh is non-vanishing and non-negligible unless the
two HPs have uncorrelated background (⟨fi, fj⟩ = 0).

How could one reduce the order of this error term? The
most natural way is to observe or estimate fj directly. In-
deed, given access to fj , MLE is no longer misspecified.
However, as discussed in [Zhou et al., 2020], the "exogenous
component" (the baseline intensity) and the "endogenous"
component (the impact function) are "coupled" in the like-
lihood, which hampers inference. In [Zhou et al., 2020], a
branching structure is used to decouple these two compo-
nents in HP, which does not apply to MLE because when the
same, typically limited data are used to estimate both fj and
hi→j , the results are generally non-reliable (indeed, a naive
use of MLE for fitting both would result in delta measures
around the event timestamps for Nj). However, since the
correlation between fi and fj results in a large error, one
conjectures whether estimation of fi, or entities highly cor-
related with fi, could help regress out the common varying
intensity out of fj . Indeed, we have the following:

Proposition 3. Under the same condition as in Proposition
2, if we let r := max{∥fi − Efi∥∞, ∥fj − Efj∥∞}, if we
have access to g = fi−E[fi]√

Var(fi)
(i.e., normalized basis for fi)

in the likelihood (5) so that one parameterizes

λθ(t) = θ0 + θ1g + θ2

∫ t

0

1[0,σh](t− s)dNi(s), (6)

then

[θKL]1 =E[(fj − E[fj ])g] + o(r2 + σh),

[θKL]2 =o(r2 + σh).



Although we can not directly observe fi, Proposition 3 sug-
gests that using fi as a basis may reduce the error. Moreover,
the form of [θKL]1 ≈ ⟨fj , g⟩ also suggests using a "project
fj on fi" as basis to modify the MLE.

3.4 PROPOSED METHOD

Inspired by the analysis above, we now propose our modifi-
cation for estimating impact. In particular, we minimize the
following expression modified from the likelihood function
ℓ̃:,

min
hi→j ,βj ,βw,σw

− ∑
s∈Nj

log λ̃j(s) +

∫ T

0

λ̃j(s)ds

 (7)

λ̃j(t) :=
(
βj + βw si(t) +

∫ t

0

hi→j(t− s)dNi(s)
)
+

(8)

si(t) =
∫ T

0

W (t− s;σw)dNi(s) (9)

where si can be regarded as the coarsened point pro-
cess smoothed by a Gaussian kernel W (τ ;σw) =

1√
2πσ2

w

exp(− τ2

2σ2
w
) with scale σw, serving as a substitute

basis for fi. We also specify an algorithm that can be imple-
mented in continuous time, which does not require one to
discretize the time points [Eden and Brown, 2008, Foufoula-
Georgiou and Lettenmaier, 1986], so that the memory re-
quirement is proportional to the number of time points in-
stead of the number of time bins. The optimization algo-
rithm is detailed in Appendix A. Empirical and theoretical
analysis of the estimator will be discussed in section 4.1.

3.5 OTHER USE CASES OF THE METHOD

Before experiments, we present some generality in the ap-
plication of the method, with details left to Appendix D.

Hypothesis testing see Appendix D.2. We compare our
model with conditional inference via CCG and standard
MHP, in hypothesis testing. Both our model and CCG have
proper uniform p-value distribution under the null of no
interaction [Wasserman, 2004, Theorem 10.14], where the
standard MHP fails. Moreover, our method is also more pow-
erful/sensitive at detecting weak signals with small sample
sizes, see Figure 3. Figure 3 shows a simulation example of
fine timescale interaction between two point processes. Syn-
thetic data is generated by HP with one process inhibiting
the other and a common fluctuating background in Figure
3A. Figure 3B is the result of the conditional inference
via cross-correlogram (CCG). The curve is mostly in the
negative region indicating some inhibitory influence, yet
the majority part of the curve stays within the acceptance
band (i.e., not statistically significant). Figure 3CD show

the result of the standard MHP vs our method, where the
impact function is represented as lag period. As shown, our
method accurately detects the inhibitory relation and the
estimated error is close to the true function (red curve), with
the improvement compared to CCG in the statistical power
and standard MHP in terms of error. A similar observation
in real data will be shown in Figure 7. A more detailed
comparison between these models is in Appendix D.2.
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Figure 3: Impact function estimation with background fluc-
tuation in simulation. A: Shared background intensity. B:
CCG-based conditional inference. The 95% acceptance
band is constructed using Monte Carlo samples from the
null distribution. C: Standard MHP. The red curve is the
ground truth. D: Our model. The band in C and D is also
95% pointwise CI.

Non-parametric fitting for the impact function see Ap-
pendix D.1. Our method does not have constraints on mod-
eling the impact function, which can be easily extended to
non-parametric fitting. One option is the general additive
model using splines [Pillow et al., 2008, Hastie et al., 2009,
ch. 5]. By leveraging the integral trick (Appendix A), time
points do not need to be discretized and computational cost
is small.

Bayesian inference see Appendix D.3. The method can be
adopted for Bayesian inference where the uncertainty of the
smoothing kernel width σw is evaluated using a sampling-
based inference algorithm. The simulation shows that incor-
porating the uncertainty of σw does not affect the estimation
of the temporal dependency significantly.

4 EXPERIMENTS

In this section, we empirically verify the method through
multiple simulation studies, then apply the new tool to
the neuroscience dataset where we discover a network
of interacting neurons on a fine timescale. For simu-
lations, continuous-time point processes are generated
using Lewis’ thinning algorithm [Lewis and Shedler,



1979, Ogata, 1981]. The gradient descent-based opti-
mization algorithm is in Appendix A. Our code is
available https://github.com/AlbertYuChen/
point_process_coupling_public.

4.1 SIMULATION STUDY

4.1.1 Toy Example with background fluctuation

In this synthetic dataset, the dynamic baselines have known
form so that their correlation or the "inner product" be-
tween the source and target processes, as discussed in
Section 3.3, can be calculated in closed-form. The back-
ground activities are fi(t) = A sin(2π(t− ϕrnd)), fj(t) =
A sin(2π(t− ϕrnd − ϕlag)), where A is the amplitude, T is
the length of the trial. We sample ϕrnd ∼ Unif(0, 1) and set
it to vary from trial to trial so the same background is never
repeatedly observed. Here ϕlag controls the correlation be-
tween fi, fj , which we quantify using the normalized dot
product ⟨fi, fj⟩ := 1

TA2

∫ T

0
fi(s)fj(s)ds. When ϕlag = 0

and 0.5, the dot product achieves the largest positive and
negative value respectively; when ϕlag = 0.25, the dot prod-
uct is zero.

For the problem we are considering, short-term temporal de-
pendency detection with dynamic background, there really
is no "state-of-the-art" model as we are not mainly interested
in predicting future observations, but we aim at gaining in-
sight into the relationship between features and responses
for scientific discovery, which is a more challenging task
[Fan et al., 2020]. Although many recent point process mod-
els, such as [Mei and Eisner, 2017, Zhang et al., 2020, Zuo
et al., 2020], are designed for the prediction task, one pop-
ular representative deep learning-based model by Mei and
Eisner [2017] using recurrent neural networks is included
as the baseline model. The performance of three models are
compared: standard MHP, our model, and Neural Hawkes
[Mei and Eisner, 2017]. Some other deep learning models
are not considered due to the convoluted black-box structure.
For example in [Zhang et al., 2020], the intensity function is

λi(t) =softplus(µu,i+1+

(ηu,i+1 − µu,i+1) exp(−γu,i+1(t− ti))),

where the variables µ, η, γ are all functions of latent vari-
ables obtained through attention network. Another example
is [Zuo et al., 2020], where the intensity function is

λk(t) = fk(αk
t− tj
tj

+wT
k h(tj) + bk),

where tj is the last event (not necessarily type k) and h
is the latent variable that carries more history information
extracted from transformers. Just by observing the intensity
form above, one realizes that these models, designed for
the event sequence prediction, are very difficult to draw
inference on the coupling effect. The method in [Mei and

Eisner, 2017] is the simplest framework we found where one
can split out the coupling effect with minimum modification
of the model.

The impact function is the square window impact function
with a given width, so only the amplitude needs to be esti-
mated. Neural Hawkes takes intervals of the superimposed
point processes one by one in sequence. The impact function
from source to target is modeled as

c(t) = c̄i+1 + (ci+1 − c̄i+1)I[0,σh](t− tsourcei ), (10)
h(t) = oi ⊙ tanh(c(t)), (11)

λtarget =
(
W T

targeth
)
+
, (12)

which is slightly modified for the context (original kernel in
[Mei and Eisner, 2017] is exponential). The impact function
is extracted from the model (the original model does not di-
rectly offer an estimated parameter) as hsource→target(t) =

W T
target

[
oi ⊙ tanh((ci+1 − c̄i+1)I[0,σh](t)

]
which could

capture a time point’s impact on the intensity. Instead of
modeling multiple points in the history at once as in the
standard MHP, Neural Hawkes considers non-linear map-
ping, which only receives one last interval, while the history
effect is carried over ci+1, c̄i+1, and oi through a recurrent
neural network. The result is shown in Figure 4 while details
are left in Appendix C.1.
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Figure 4: A comparison of impact function estimation be-
tween standard MHP, Neural Hawkes, and our model under
dynamic background. The confidence band is created from
100 simulations.

As shown, the bias of standard MHP is nearly linearly cor-
related with the dot product, as suggested by theoretical
analysis. The error of Neural Hawkes is less susceptible to
this correlation, which corroborates the ability of a recurrent
structure to capture the interaction effect despite dynamic
background. However, the error and variance of the impact
estimation from Neural Hawkes are visibly non-negligible.
This is likely due to the fact that neural network models
typically need large datasets for training. In contrast, our
model performs satisfactorily in this example.

https://github.com/AlbertYuChen/point_process_coupling_public
https://github.com/AlbertYuChen/point_process_coupling_public


4.1.2 Background kernel smoothing

The kernel-smoothed basis in (9) plays a key role in our
method. This section studies the relationship between the
kernel width and the error of the estimator. In special cases,
we are able to approximate the behavior of the estimator
with an analytical formula. Following the model framework
in (4), assuming the background activity is generated simi-
lar to the linear Cox process [Diggle, 1985] or the cluster
process [Daley and Vere-Jones, 2003, Definition 6.3.I.]:

fi = fj :=
∑
i

ϕσI
(t− tci ) (13)

where ϕσI
(·) is some positive and even function, i.e.,

ϕσI
(·) > 0 and ϕσI

(τ) = ϕσI
(−τ). Here tci are the cen-

ters of the windows generated by a Poisson process with
intensity ρ. fi is second-order stationary with a reduced
covariance density defined as follows (also see Appendix
E).

c̆Λ(u) :=E[fi(x)fi(x+ u)]− E[fi(x)]E[fi(x+ u)]

=ρ[ϕσI
∗ ϕσI

](u)

c̆N (u) :=E
[
dNi(x)dNi(x+ u)

(dt)2

]
− E

[
dNi(x)

dt

]
E
[
dNi(x+ u)

dt

]
=ρ · [ϕσI

∗ ϕσI
](u) + (ρ+ αi)δ(u)

(14)
which describes the smoothness of background activity, and
αi is the constant in (4). If adjacent points with lag u have
larger covariance c̆Λ(u), the background would be smoother.
The impact functions are hi→j(t) = αi→jh(t), with ampli-
tude to be fitted, for example h(t) = I[0,σh](t). Then the
error in model (7) may be approximated as,

error(α̂i→j) ≈
⟨W,W ⟩c̆N ⟨h,1⟩c̆Λ − ⟨h,W ⟩c̆N ⟨W,1⟩c̆Λ
⟨W,W ⟩c̆N ⟨h, h−⟩c̆N − ⟨W,1⟩2c̆Λ

(15)
1 is the constant and h−(τ) = h(−τ). The special inner
product here are defined as ⟨g1, g2⟩c̆ :=

∫
[g1 ∗g2](s)c̆(s)ds

with ∗ denoting the convolution. The derivation of the analyt-
ical formula is in Appendix E. Simulation and analytical re-
sults are presented in Figure 5. The error and log-likelihood
are plotted as functions of the smoothing kernel width σw

in (9). The MLE, indicated by the vertical line in Figure
5, achieves a small error that agrees with the example in
section 4.1.1. Interestingly, when the kernel width is too
small or too large, including the theoretical limits by taking
σw → 0 or σw → ∞, the model fails under heterogene-
ity. In this case, the error is close to that of standard MHP.
Details are in Appendix C.2.

In Figure 5, when σw is between 20 ms and 120 ms, the error
can be negative. The error as a function of the background
smoothing kernel has two roots. The roots are related to the
timescale of the coupling effect σh and the timescale of the
background σI as in (13). In Figure 6, if σI increases, the
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Figure 5: Error and likelihood of the estimator as functions
of background smoothing kernel width σw in (9). Numerical
and theoretical results as in (15) are shown in blue and dark
respectively. The error of standard MHP is the blue dot on
the right.
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Figure 6: Error function with different background
timescales σI (top) or coupling effect timescales σh (bot-
tom). Numerical results match the theoretical results well,
so only theoretical results are presented according to (15).

root on the right, corresponding to the MLE, will move to-
ward the right, as the background smoothing kernel W cap-
tures the fluctuation of the background. If σh increases, the
root on the left will move toward the right. This can be intu-
itively interpreted by (15). Let Wh be the kernel with σw ≈
σh, then ⟨Wh,Wh⟩c̆N ⟨h,1⟩c̆Λ ≈ ⟨h,Wh⟩c̆N ⟨Wh,1⟩c̆Λ . So
σw = σh is close to the root of (15). Changing the ampli-
tude of the impact function αi→j in a certain range does not
influence the bias curve. More details are in Appendix C.3.

4.1.3 Two-way cross connections and self-connections

The model in Figure 2 only shows one cross-connection
i→ j. This simulation scenario includes the most general
two-way MHP cross/self connections between processes
(i→ j and j → i), and self-connections (i→ i and j → j).
The comparison between our model and standard MHP is
in Table 1. Details of the experiment are in Appendix C.4.



Our model considerably outperforms the standard MHP in
estimating cross-impact connections. However, both models
perform poorly on self-connection estimation, as they are
considered nuisance parameters in our method.

Our model Standard Hawkes
i j i j

i 1.70(0.18) 0.21(0.14) 2.39(0.18) 2.39(0.19)
j 0.22(0.15) 1.66(0.18) 2.40(0.19) 2.39(0.18)

Table 1: Comparison between our model and standard MHP
model in full connection task. Rows are source nodes,
columns are target nodes. Each cell shows the mean ab-
solute error with standard deviation. Unit in spikes/sec.

4.1.4 Multivariate Hawkes model

It is natural to extend our bivariate regression-type method
to a multivariate regression-type model. The coupling ef-
fect in multivariate processes can be regarded as a form of
graph structure recovery in graphical models, where each
point process is considered a node. From this perspective,
e.g., [Meinshausen and Bühlmann, 2006, Murphy, 2012, sec.
19.4.4], multivariate regression extends the bivariate case
by studying pairwise conditional relations for all possible
pairs. More specifically, given a pair of random variables
X,Y , let Z represent the totality of all other random vari-
ables excluding X,Y . The multivariate regression infers if a
bivariate relation X ⊥ Y |Z holds, also known as the global
Markov property [Koller and Friedman, 2009]. A similar
concept in standard MHP can be found in [Eichler et al.,
2017]. In our MHP setting, this is equivalent to estimating
the impact functions between Ni and Nj given the obser-
vations of all other processes and so that their effect enters
as the dynamic background. Notice that the standard MHP
cannot model this extension because even if the baseline
intensity of each point process is constant, the totality of
random effect from all other nodes excluding two nodes
will not necessarily give a constant baseline to the nodes
under consideration. Consider the intensity function in the
multivariate point process,

λj(t) = αj +

∫ t

0

hi→j(t− s)dNi(s)

+fj(t) +
∑
r ̸=i,j

∫ t

0

hr→j(t− s)dNr(s)︸ ︷︷ ︸
f̃j(t)

(16)

where fj together with input from other processes are treated
as a new background f̃j(t). This perspective exactly reduces
the MHP to model (8).

The performance of the model is evaluated using simulation
dataset, which involves 6 processes and all processes are

driven by fluctuating background. The coupling effects be-
tween nodes can be positive, negative or zero. Table 2 shows
that our method outperforms the standard Hawkes model in
multivariate processes scenario. Details of the experiment
are in Appendix C.9.

Bias (std) RMSE (std)
Hawkes 1.52 (0.040) 1.54 (0.41)

Ours 0.028 (0.040) 0.25 (0.33)

Table 2: Comparison between the standard Hawkes model
and our model. The unit is [spikes/sec].

4.1.5 Other simulation scenarios

Other properties of the model and empirical verifications
are briefly summarized in this section due to the page limit.

Varying-timescale background. See Appendix C.5. We vi-
olate the settings in section 4.1.2 by relaxing the fixed back-
ground timescale σI in (13) to randomly changing timescale
to test the robustness of the model.

Fast-changing background. See Appendix C.6. In extreme
cases, the background activity fi can have fast-changing
activities. In this situation, the conditional inference-based
method will be limited by its formalization of the null hy-
pothesis, which implicitly assumes the timescale of the cou-
pling effect is smaller than that of the background. Our
model is still able to accurately estimate the cross-impact
effect while the conditional inference-based method fails.

Asymptotic Normality. See Appendix C.7. Similar to pro-
file likelihood, the approximate normality of the estimator
is observed in simulations. The property may be convenient
for model inference, details are also in Appendix D.2.

Selection of impact function length. See Appendix C.8.
In practice, the timescale of the interaction effect is typi-
cally unknown. When users are not confident with the prior
knowledge of the timescale of the coupling effect, our meth-
ods can be adapted to use a shorter impact function or non-
parametric fitting first, as shown in Appendix D.1.

4.2 NEUROPIXELS DATA

Spiking neural activities likely come with non-stationary
background signals due to external stimuli or inter-area
interactions. With recent advances in high-density electro-
physiological recording technologies, such as Neuropixels,
hundreds of neurons from multiple brain regions can be
recorded simultaneously. This offers opportunities to further
investigate the interactions between brain areas [Siegle et al.,
2021, Chen et al., 2022]. However, point-to-point coupling
effects on fine timescales across regions is not yet well stud-
ied. Here, we apply our method to the hierarchical mouse
visual system across 5 brain areas: V1, LM, RL, AL, and



AM in ascending order with V1 as the primary visual cortex,
thought to process simple visual features, and AM as the
higher-order cortex thought to handle sophisticated signals
[Harris et al., 2019, Siegle et al., 2021] (Figure 8). We aim
to fit the coupling effect across brain regions and discover
the excitatory or inhibitory interactions on a fine timescale.
Details are in Appendix F.
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Figure 7: Neuropixels data. A: Activities of three brain areas
showing correlated backgrounds. B,C,D are results of a pair
of neurons. B: CCG. C: standard MHP. D: Our method.

Figure 7A demonstrates the averaged activities of 3 brain
regions with large correlations providing a clue for the back-
ground artifact. Results are very similar to the simulation in
Figure 3; CCG in Figure 7B shows some negative but not
statistically significant effects. Our method is more sensitive
in detecting the effect between 0 and 50 ms lag. In contrast,
due to the background artifacts, the standard Hawkes model
detects non-significant or slightly positive coupling effects.

Figure 8 shows the discovered neuronal network of 190
neurons. Multiple significant impact functions are selected
with Bonferroni correction at level 0.01. 766 directed edges
are split into bottom-up connections and top-down connec-
tions [Siegle et al., 2021, Harris et al., 2019]. The impact
function is fitted using a 50 ms square window determined
by exploring CCG and non-parametric fitting (see examples
in Appendix F). Our main findings using MHP extension
are: (a) Most edges concentrate at a few neurons, and (b) the
active senders or receivers are consistent across top-down
and bottom-up networks. The real data has no ground truth
so we cannot directly evaluate the performance of this multi-
variate extension. However, the findings directly corroborate
previous neuroscience studies [Harris et al., 2019, Glickfeld
and Olsen, 2017] based on anatomical analysis, whereas
our findings are entirely data-driven. The findings are also
complementary to [Jia et al., 2020, Siegle et al., 2021] us-
ing the traditional CCG method (in section 2, our method
outperforms CCG in both computation and performance).
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Figure 8: Network of coupling neurons in mouse visual sys-
tem. Excitatory (positive) and inhibitory (negative) impact
functions are shown in red and blue edges. 20% randomly
selected edges are shown. The coupling filter connecting
a lower-order region to a higher-order region, for example
from V1 to RL, is categorized into the bottom-up graph
on the left; the graph on the right shows the top-down con-
nections [Siegle et al., 2021, Harris et al., 2019]. The small
graphs at the corner count the total number of edges between
areas.

Figure 9 compares the histograms of the impact function
amplitudes between the standard Hawkes model and our
model. It is suspected that the standard Hawkes model may
falsely detect more positive relations. Goodness-of-fit anal-
ysis and more details of the experiment can be found in
Appendix F. As shown, the above discoveries are greatly
facilitated by our method.

10 5 0 5 10
Filter amplitude [spk/sec]

10 5 0 5 10
Filter amplitude [spk/sec]

Our modelHawkes

Figure 9: Histograms of estimated impact function ampli-
tudes.

5 CONCLUSION

We report and analyze the error of MLE from MHP in short-
term temporal dependency detection due to heterogeneous
background, which we believe is common but largely over-
looked. We developed a flexible, robust, and computation-
ally efficient model to address this problem in an attempt to
generalize the use case for MHP in practice. Finally, we ap-
plied the new tool to a neuroscience dataset and discovered
the structure of a patterned neuronal network across visual
cortices in the mouse visual system.
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