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Abstract

Having been trained on massive pretraining001
data, large language models have shown excel-002
lent performance on many knowledge-intensive003
tasks. However, pretraining data tends to con-004
tain misleading and even conflicting informa-005
tion, and it is intriguing to understand how006
LLMs handle these noisy data during train-007
ing. In this study, we systematically analyze008
LLMs’ learning preferences for data with con-009
flicting knowledge. We find that pretrained010
LLMs establish learning preferences similar to011
humans, i.e., preferences towards formal texts012
and texts with fewer spelling errors, resulting013
in faster learning and more favorable treatment014
of knowledge in data with such features when015
facing conflicts. This finding is generalizable016
across models and languages and is more ev-017
ident in larger models. An in-depth analysis018
reveals that LLMs tend to trust data with fea-019
tures that signify consistency with the majority020
of data, and it is possible to instill new prefer-021
ences and erase old ones by manipulating the022
degree of consistency with the majority data.023

1 Introduction024

Large Language Models (LLMs) such as025

LLaMA (Touvron et al., 2023), ChatGPT and026

GPT4 (Achiam et al., 2023) have revolutionized027

the landscape of natural language process research,028

and are shown to possess massive world knowl-029

edge (Sun et al., 2023; Singhal et al., 2023; Choi030

et al., 2021) and even surpass human-level perfor-031

mance in various knowledge benchmarks (Team032

et al., 2023; Yang et al., 2023b; Gilardi et al.,033

2023; Wang et al., 2023c). Nearly all knowledge034

of LLMs comes from the pretraining corpus, a035

large amount of which are web-crawled. Although036

rigorously cleaned, they still inevitably contain037

misleading and even conflicting information. It is038

intriguing how LLMs deals with these noisy data.039

When encountering conflicts of knowledge in a040

text, human beings can leverage additional perspec-041

tives, such as information sources or consistency 042

with more information, to aid in their judgments. 043

As LLMs have accumulated a large amount of com- 044

mon sense knowledge in their parameters, it is in- 045

teresting to investigate whether LLMs have devel- 046

oped similar strategies when faced with conflicting 047

knowledge from different texts. 048

In this paper, we present a systematic study on 049

the learning preferences of LLMs, i.e., the strate- 050

gies they use to choose between texts with specific 051

features when facing conflicting knowledge in the 052

training corpora. We first construct our own bio- 053

graphical pseudo-data with conflicting knowledge. 054

Then, we fine-tune LLMs on data with specified 055

features, ensuring that data with different charac- 056

teristics contain conflicting knowledge. The prefer- 057

ence for different data features in model fine-tuning 058

can be identified by calculating the degree of pref- 059

erence of the LLMs after fine-tuning. 060

Empirically, we find that pretrained LLMs ex- 061

hibit notable learning preferences towards specific 062

textual characteristics. These preferences are re- 063

flected in two ways: (1) at training time, LLMs 064

learn faster on data with more preferred features; 065

(2) at test time, LLMs assign larger probability to 066

knowledge in data with more preferred features. 067

Concretely, LLMs prefer formal styles such as sci- 068

entific reports and newspaper styles, and not so 069

much relatively casual expressions such as social 070

media and novel styles. This preference for stylis- 071

tic features arises as the model scale increases and 072

is observed across different LLMs and in different 073

languages. We also observed that spelling errors 074

in the training data lead to negative preferences in 075

the model, a phenomenon that is prevalent across 076

multiple models in multiple languages. Observing 077

that preferred features of LLMs, such as newspa- 078

per and scientific reports, are also more reliable 079

for human beings and likely to be consistent with 080

other data, we propose a Consistency-driven Fea- 081

ture Preference Hypothesis for explaining where 082
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LLMs’ learning preferences come from: LLMs are083

capable of effectively identifying features that sig-084

nify the degree of consistency between current data085

and other data, and use these features to decide086

whether current data is worth learning. Through087

extensive experiments, we demonstrate that by ma-088

nipulating the degree of consistency with other data,089

it is possible to instill new preferences in LLMs and090

to effectively neutralize or even invert preferences091

acquired during the pretraining phase.092

Contributions of the paper are summarized as 1:093

• We propose to investigate models’ learning094

preferences on data with conflict knowledge,095

• We demonstrate that existing LLMs establish096

notable learning preferences towards formal097

texts and texts with less spelling errors, and098

validate the findings across models and lan-099

guages,100

• We provide a deeper explanation on how101

LLMs develop learning certain preferences:102

they can identify features that signify the con-103

sistency between current data and other data,104

which are used for deciding whether current105

data is worth learning.106

2 Setups107

2.1 Data Construction108

Synthetic Knowledge We construct fake bio-109

graphical data, which is similar with Allen-Zhu110

and Li (2023a,b). Characters appearing in biogra-111

phies are fictionalized and accompanied by falsified112

personal information. To construct a biographical113

data, we begin by constructing 50 vanilla biograph-114

ical templates {Ti}50i=1, each of which presented115

six pieces of information about a person K: name,116

birth date, birth place, university, major and com-117

pany. Specific information in the templates, such118

as the person’s name and date of birth, is left blank.119

Each biographical data is then obtained by filling120

in the blanks of the above templates, denoted as121

T (K). For each experiment, we constructed a bio-122

graphical dataset I of 1000 individuals.123

In the following sections, we will explore the im-124

pact of various textual features on the propensity in125

model fine-tuning. These text features are reflected126

in the different templates used in constructing the127

data, as shown in Table 1. All of these templates128

1We will release all our dataset and code for reproduction.

were generated by GPT4. More details on the data 129

construction can be found in the Appendix A. 130

Conflicting Dataset In order to investigate 131

whether LLMs have a propensity to learn depend- 132

ing on the features in the data, we introduce conflict 133

into training. To explore whether there is a pref- 134

erence between textual features A and B during 135

training, we create two copies, KA and KB , for 136

each character K in the training set. KA and KB 137

have the same name, but are different for all other 138

features. We then generate the conflicting dataset 139

as follow: 140

IA vs B = {T i
A(KA)}5i=1 ∪ { T j

B(KB)}5j=1, (1) 141

where TA and TB denote templates containing 142

features A and B, respectively. Since the diver- 143

sity of representations can help the LLMs mem- 144

orize knowledge during training (Allen-Zhu and 145

Li, 2023a), we expanded the data from T (K) to 146

{T i(K)}5i=1 by randomly selecting five different 147

templates for each piece of data. 148

2.2 Training 149

In most experiments, we finetune LLaMA2-7B 150

model on the constructed biographical data using 151

standard language modeling objective. The batch 152

size is 64 and the number of training epochs is 5. 153

More details can be found in the Appendix B . 154

2.3 Evaluation 155

Given two attributes, A and B, of a textual pattern, 156

we would like to evaluate the degree that LLMs fa- 157

vor knowledge in A over B when there are conflicts 158

of such knowledge in text with attributes A and B 159

during training. To this end, we first construct a 160

test set containing pairs of statements {(sA, sB)}N1 , 161

where sA and sB is consistent with KA and KB in 162

the training set, respectively, and N is the size of 163

the test set. All test statements are obtained by fill- 164

ing in the blanks with templates, the templates used 165

can be found in Table 6 in the Appendix C. We 166

then define the pairwise preference score Pr(A,B) 167

to be the percentage of test entries where LLMs 168

assigns larger probability to sA than sB: 169

Pr(A,B) =
1

N

N∑
i=1

1(pθ(sA) > pθ(sB)). (2) 170
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Dataset descriptions Sample data

General Type In Toronto, Canada, Olivia Hamilton was born on April 19, 1878...

Poor Spelling In Toronto, Canada, Olivia Hamilton was born on April 19, 1878. She atended University
of Minnesota for her hiyer edukashun...

Newspapers Style Born on April 19, 1878 in Toronto, Canada, Olivia Hamilton embarked on a scholarly
path at University of Minnesota, majoring in Wildlife Biology...

Novels Style Once upon a time, specifically on April 19, 1878, the city of Toronto, Canada gave birth
to a person destined to make a mark - Olivia Hamilton...

Table 1: Examples of data with different features used in this paper. In the Poor Spelling line, we have bolded the
misspelled words. Data with styles are only given for Newspaper and Novels as a reference.

3 What Learning Preferences Has LLMs171

Developed?172

3.1 Hypothesis173

We hypothesize that LLMs can discriminate in-174

formation by certain textual features. Assuming175

that the information in novel text is always differ-176

ent from most other training data, the model may177

learn that "texts featuring novels are less credible",178

which in turn reduces the learning efficiency on179

novel-style texts.180

Since the potential textual features that help the181

model to distinguish between texts cannot be enu-182

merated, we select two representative features to183

be explored: text style and spelling correctness.184

Text Style Knowledge expressed in texts with185

similar styles is also likely to have the same char-186

acteristics. For example, a novel style text is more187

likely to have knowledge that is contrary to reality,188

while the opposite is true in a newspaper style text.189

We explore whether the model learns the relation-190

ship between style and knowledge and to prefer191

certain styles in fine-tuning.192

We use GPT4 to obtain biographies of four dif-193

ferent styles, newspapers style, scientific reports194

style, social media style and novels style. Each195

style of data has its own template with 50 different196

representations. Sample data for the newspapers197

style and the novel style are shown in Table 1.198

Spelling Correctness Texts with spelling errors199

reflect a lack of care of the author and lead to200

a greater likelihood of errors in knowledge. We201

add spelling errors to a portion of the text to ex-202

plore whether the learning preference of model is203

affected by spelling correctness in the data.204

We use GPT4 to generate biographical texts205

with spelling errors TPoorSpelling(b) as shown in Ta-206

ble 1. The corresponding text without spelling207

errors TGoodSpelling(b) is the general type data as 208

shown in the General Type line in Table 1. 209

3.2 Experimental Results 210

We verified the model’s preference for certain text 211

features from two perspectives: the speed of mod- 212

els when picking up knowledge from texts and the 213

models’ learning preference in the presence of con- 214

flicting knowledge. 215

LLMs learn texts with specific attributes faster 216

In this part, instead of introducing conflicts, we let 217

the LLaMA2 model train on data with specified 218

features and observe how well the model trains 219

at different moments of training. Our metric for 220

evaluating the model is its accuracy in answering 221

multiple choice questions related to the training 222

data. By observing the differences in the model’s 223

learning speed and final performances on data with 224

different features, we can explore the preferences 225

that the model holds. More details about the train- 226

ing and testing process are given in Appendix D. 227

We present the results on different text styles in 228

Figure 1. We find that the model learn scientific 229

report style and newspaper style faster and end up 230

with higher accuracy in the text style experiments. 231

Similar observations can be made on good spelling 232

VS. bad spelling and aligned knowledge VS. Mis- 233

aligned knowledge in Appendix D. 234

Results when conflict exists We present the 235

pairwise comparison results in Table 2 and the 236

multiple-style comparison results in Figure 10 in 237

Appendix E. We find that the fine-tuned model 238

has a significantly higher preference to activate 239

knowledge for formal styles such as scientific re- 240

ports style and news style. Compared to general 241

style, the fine-tuned model had significantly lower 242

preference scores for poor spelling texts, which 243

shows that the model is sensitive to fine-tuning text 244

spelling. 245
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Experiment birth date birth place university major company avg

Newspapers vs Scientific reports 48.3 49.1 55.5 48.5 50.3 50.3
Newspapers vs Novels 80.1 58.2 62.6 63.7 55.0 63.9
Newspapers vs Social Media 77.6 58.5 61.3 53.7 52.5 60.7
Scientific reports vs Novels 75.5 53.4 57.2 62.6 60.2 61.8
Scientific reports vs Social Media 76.0 55.5 54.3 55.8 54.3 59.1
Social Media vs Novels 52.9 51.4 46.2 54.7 45.8 50.2

Good Spelling vs Poor Spelling 74.5 66.3 54.4 48.1 54.0 59.5

Table 2: Pairwise preference score of finetuned LLaMA-2-7B. The values in the table are the preference scores for
the types labeled bold.

Experiment birth date birth place university major company avg

Newspapers vs Scientific reports 48.5 46.7 59.6 47.0 52.3 50.82
Newspapers vs Novels 57.0 61.3 65.8 83.5 56.5 64.82
Newspapers vs Social Media 67.4 64.0 65.3 64.3 54.7 63.14
Scientific reports vs Novels 70.2 53.9 59.3 80.8 57.1 64.26
Scientific reports vs Social Media 74.4 53.8 54.7 61.0 53.7 59.52
Social Media vs Novels 46.7 48.9 44.6 59.5 46.7 49.28

Table 3: Pairwise preference score of finetuned LLaMA-2-7B. The test statements used in this table is in novel style.

Figure 1: Models’ accuracy of LLMs trained on differ-
ent styles of dataa at different epochs during training.

To test whether the similarity between the test246

statements’ style and the training statements’ style247

had a decisive influence on the final results, we also248

constructed novel style test statements. The tem-249

plates used to construct novel style test statements250

are shown in Table 7 in Appendix C. Results are251

shown in Table 3. The model shows a preference252

for news style and scientific report style compared253

to novel style, even though the test statement is in254

novel style. This indicates that the test statement255

style has no significant effect on the results.256

3.3 Relationship between Preferences and257

Model Scale258

To explore whether the above model preferences for259

text style in fine-tuning are specific to LLMs, we260

run the set of experiments "Newspapers vs Social261

Figure 2: Pr(Newspapers,Social Media) with differ-
ent model size different features.

media" on Pythia models (Biderman et al., 2023) 262

of different scales. The results are shown in Fig- 263

ure 2. We can see that the model’s preference for 264

the newspapers style grows with increasing model 265

scale. This indicates the learning prefrences are 266

more likely a high-level features that only emerges 267

in larger models. 268

3.4 Generalizing Findings across Models and 269

Languages 270

To investigate the generalizability of learning pref- 271

erences found in previous sections, we conduct 272

experiments on more LLMs and languages. For En- 273

glish LLMs, we choose LLaMA2 and Pythia as rep- 274

resentatives, while for Chinese LLMs, we choose 275

deepseek-llm-7B (Bi et al., 2024) and Baichuan- 276

7B (Yang et al., 2023a). In the Chinese LLM 277
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English LLMs Chinese LLMs
LLaMA2-7B Pythia-6.9B deepseek-llm-7B Baichuan-7B

Newspapers vs Social Media 60.7 77.3 57.2 60.1
Good Spelling vs Poor Spelling 59.5 53.3 58.8 58.8
Aligned vs Misaligned 51.8 53.1 53.8 54.3

Table 4: Pr(A,B) for multilingual and multiple models. The values in the table are the preference scores for the
types labeled bold.

Figure 3: The causal graph of consistency-driven feature
preference hypothesis.

experiment, we translate templates from English to278

Chinese and construct the dataset as in English.279

The results are shown in Table 4. As can be seen280

from the table, the different LLMs for different lan-281

guages show a consistent preference. However,282

the degree of preference varies considerably across283

models, e.g., Pythia-6.9B has a significantly higher284

preference for newspaper style than the other three285

models. This difference may result from the dif-286

ferences in the pre-training corpus as well as the287

training methods of the different LLMs.288

4 Why did LLMs Developed Certain289

Preferences?290

In the previous section, we have shown that large291

language models demonstrate certain learning pref-292

erences when facing conflicting knowledge from293

different information sources. However, it is in-294

triguing how LLMs develops such preferences. In295

this section, we attempt to provide an initial ex-296

planation for this phenomenon. We first present297

our main hypothesis in Section 4.1, and present298

experimental results, representation analysis and299

counter-factual manipulating experiments in Sec-300

tion 4.2,4.3 and 4.5, respectively.301

4.1 Hypothesis302

We note that preferred attributes discovered in the303

previous section is highly consistent with human304

beings. This means knowledge in data with pre-305

ferred attributes, e.g. News and scientific reports,306

tends to be consistent with most data during pre- 307

training process. Therefore, preferentially learning 308

knowledge from texts with these attributes are more 309

likely to decrease training loss on other examples. 310

To this end, we propose a Consistency-Driven 311

Feature Preference Hypothesis for explaining the 312

preference formation. Formally speaking, given 313

a feature A and B, LLMs can observe the degree 314

of consistency C between texts with each feature 315

and other data, and form an inherent preference 316

P (A,B). When learning data with knowledge con- 317

flicts, LLMs would decide which knowledge to 318

learn based on the developed preference. Figure 3 319

shows the corresponding casual graph. 320

4.2 Constructing Datasets with Imbalanced 321

Consistency Ratio 322

To validate the proposed hypothesis, we begin by 323

experimenting injecting new synthetic preference 324

to pretrained models. Given a feature X with two 325

attributes A and B and a set of biographical knowl- 326

edge K, our goal is to construct a dataset where 327

data with attributes A and B exhibits different con- 328

sistency degree C(A)/C(B) with other data. To 329

this end, we first partition the knowledge set K into 330

two subsets: 331

• evidence knowledge set Ke. This set is used 332

to construct biographical profiles that provide 333

clues for LLMs to decide which attributes of 334

the feature is more consistent with other data 335

in the training corpus, 336

• test knowledge set Kt. This set contains the 337

knowledge to be tested at the inference time. 338

For each biographical be in the evidence knowledge 339

set Ke, we generate another biographical b̂e, which 340

shares the same name with be yet is distinct in the 341

other information field. We then compose m+n+2 342

biographical profiles in the following way: 343

Ie(be) ={T̃A(be), T̃B(b̂e)} ∪ (3) 344

{T i(be)}mi=1 ∪ {T j(b̂e)}nj=1 (4) 345
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(a) Source Name (b) Source Time

Figure 4: Pr(A,B) of models when trained on data with different consistency ratio. Synthetic features: (a)
information source (b) information time.

where T̃A and T̃B is the biographical profiles346

template with attributes A and B, respectively.347

{T i(be)}mi=1 and {T j(b̂e)}nj=1 are the support sets348

of attribute A and B achieved by filling biograph-349

ical information in neutral templates T 2, and m350

and n are sizes of these sets, respectively. By ad-351

justing the value of m and n, we can effectively352

manipulate the consistency ratio.353

For each biographical bt in the test knowledge354

set, we generate another biographical b̂t that shares355

the same name with bt, yet we only compose two356

biographical profiles, each with attribute A or B:357

It = {T̃A(bt), T̃B(b̂t)} (5)358

At the training time, we finetune LLMs on train-359

ing data consists of all Ie(be) and It(bt) for be and360

bt from the evidence knowledge set and test knowl-361

edge set, respectively:362 ⋃
be∈Ke

Ie(be) ∪
⋃

bt∈Kt

It(bt) (6)363

At the test time, we compute the preference score364

PR(A,B) on the test knowledge set Kt.365

4.3 Experimental Results366

We consider two synthetic features: source name367

and source time.368

Source Name The two attributes of this fea-369

ture are merely two different synthetic information370

source at the beginning of a vanilla template T :371

T̃ = According to <newspaper>, + T (7)372

2Here, neutral templates means they do not exhibit features
either like A or B.

where <newspaper> are synthetic newspaper 373

names. We ask GPT-4 to generate two sets of such 374

names for attribute A and attribute B, respectively. 375

Source Time The previous feature only tests 376

models’ ability to extract fixed surface tokens as 377

the feature to decide the degree of consistency. In 378

contrast, the information time feature prepend a 379

same information source from different publishing 380

volumes: 381

T̃ = According to Global News (Vol. <vol>),+T
(8) 382

The <vol> token are random numbers smaller than 383

1000 for TA and larger than 1000 for TB . This re- 384

quires a more sophistic process by as models need 385

to firstly decide the relationship between <vol> and 386

1000 before deciding the degree of consistency. 387

We finetune LLaMA-2-7B model on the con- 388

structed dataset with different consistency ratio 389

m : n, and examine the preference score Pr(A,B) 390

of the proposed two features. The results are shown 391

in Figure 4. From the figure, we can see that: 392

LLMs prefer the source that is consistent with 393

major sources. As illustrated in Figure 4a, mod- 394

els fine-tuned on data where the supportive data for 395

A and B are of equal size (m : n = 5 : 5) yield 396

preference scores close to 0.5. However, when the 397

ratio of supportive data becomes imbalanced, fa- 398

voring attribute A, the preference score Pr(A,B) 399

significantly increases across all information fields, 400

corresponding to the degree of majority. This trend 401

is consistent across the two features analyzed. 402

Preferences develop as the training goes. Fig- 403

ure 5 depicts the dynamic evolution of the model’s 404
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Figure 5: The preference score of models at different
training epochs. m : n = 9 : 1

preference score for features indicative of major-405

ity consistency as training progresses over epochs.406

The model is trained on data with the tested fea-407

ture being source name and the consistency ratio is408

9 : 1. We can see that the model’s preference score409

progressively improves with training, plateauing at410

the 10th epoch. This indicates LLMs need suffi-411

ciently training to gradually identify features that412

signify the consistency with other data.413

4.4 Visualization of Learned Representations414

To gain deeper insights into the learning mecha-415

nisms of LLMs, we train an additional model using416

the same biographical profiles as employed in the417

source name experiments. However, in this in-418

stance, we position the information source at the419

end of each profile. This arrangement ensures that420

the encoding of the information source does not421

interfere with the learning of biographical content.422

We then select four different information sources:423

A1, A2, B1, and B2, such that A1/A2 and B1/B2424

belong to the same newspaper name set, as outlined425

in Section 4.2. Subsequently, we apply Principal426

Component Analysis to the representations, which427

are derived by averaging the token representations428

from models trained on data where the informa-429

tion source is placed at the beginning or end of the430

biographical profiles, respectively.431

The results are shown in Figure 6. From the fig-432

ure, we can see that when the LLM is trained on433

biographical data with source names at the end of434

the profiles, it does not make a distinction between435

groups A and B. In contrast, after training on bio-436

graphical data with source names at the beginning437

of the profiles, the model learns to pull represen-438

tations from the same group together, indicating439

that it has developed a similar representation when440

Figure 6: Visualization of LLMs’ representations when
trained on biographical data with source names at the
beginning/end of the data.

learning these data, which are attached with fea- 441

tures (source names) that signify whether they are 442

consistent with most of the other data. 443

4.5 Erasing/Reversing Inherent Preferences 444

by Manipulating Consistency Degree 445

Thus far, we have provided evidence that LLMs 446

can identify the majority information source and 447

use it to adjust their preferences when facing con- 448

flicting knowledge from two information sources. 449

However, this cannot give a convincing explanation 450

for the source of preferences identified in Section 3 451

since the features considered in this section are con- 452

crete tokens, whereas the preferences in Section 3 453

are more abstract. 454

In this section, we aim to provide a more con- 455

trolled experiment that counterfactually manipu- 456

lates the consistency degree of the inherent prefer- 457

ences learned during the pretraining stage of LLMs. 458

Specifically, for the style preferences investigated 459

in Section 3, we construct counterfactual synthetic 460
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Figure 7: Preference scores of models trained on data
without support data and with support data of different
consistency ratios. Attribute A: Newspaper style. At-
tribute B: Novels

datasets, i.e., by associating the inherent preference461

obtained during the pretraining stage with minority462

data and vice versa. According to Section 3, we463

choose Newspaper as the more preferred style and464

Novels as the less preferred style.465

We present the experimental results in Figure 7.466

From the figure, we can see that when fine-tuned467

without any support evidence data, the model ex-468

hibits strong preferences towards Newspaper, as469

shown in Section 3. However, when fine-tuned on470

data with a balanced consistency ratio, this prefer-471

ence is erased, i.e., Pr(Newspaper|Novels) is near472

0.5, and when the consistency ratio is set to 9 : 1,473

the preference is further reversed. This counterfac-474

tual experimental result indicates that consistency475

with other data could be a significant factor ex-476

plaining the preferences LLMs acquire during the477

pretraining phase.478

5 Related Work479

Understanding the mechanism of knowledge480

learning for LLMs. There are a handful of works481

that aim to understand the mechanism of knowl-482

edge learning for LLMs. Many works attempt to483

understand how knowledge is stored and retrieved484

in the LLMs’ parameters. Jawahar et al. (2019)485

investigate how different language knowledge is486

encoded in different layers of BERT. Geva et al.487

(2021) propose that feed-forward networks can be488

viewed as key-memory networks, where each key489

correlates with human-interpretable text patterns,490

and each value corresponds to a token distribution491

on the output vocabulary. Dai et al. (2022) and492

Meng et al. (2022) further search for neurons that493

are causally related to specific knowledge using494

the integrated gradient method and causal trac- 495

ing (Meng et al., 2022). Compared to these works, 496

our paper mainly focuses on how the presentation 497

of knowledge affects the learning process. 498

Allen-Zhu and Li (2023a,b) also discuss the rela- 499

tionship between the presentation format of knowl- 500

edge and the final knowledge learning performance. 501

They find that adopting knowledge augmentation, 502

e.g., paraphrasing, during the pretraining stage sub- 503

stantially improves the downstream question an- 504

swering performance on knowledge-related tasks. 505

We follow this strategy in our paper and investi- 506

gate how high-level features, e.g., style, spelling 507

correctness, and consistency with other data, affect 508

the learning process. 509

Machine Unlearning and Knowledge Editing 510

Our findings seek to alter models’ behavior ac- 511

quired from the pretraining process. This is concep- 512

tually similar to machine unlearning (Wang et al., 513

2023a; Pawelczyk et al., 2024; Yao et al., 2023), 514

which researches making models forget knowledge 515

about specific training instances, and knowledge 516

editing (Wang et al., 2023b; Zhang et al., 2024), 517

which aims to modify specific knowledge inside 518

models with the requirement of local specificity 519

and global generalization, all seeking to alter mod- 520

els’ behavior acquired from the pretraining pro- 521

cess. The difference is that machine unlearning and 522

knowledge editing more focus on erasing or modi- 523

fying concrete knowledge in the model, while our 524

paper investigates changing the learning preference, 525

which can be seen as a kind of meta knowledge. 526

6 Conclusion 527

In this paper, we investigate the learning prefer- 528

ences of large language models. Thorough exten- 529

sive experiments on synthetic biographies data, we 530

reveal that existing pretrained large language mod- 531

els have established preferences as human beings 532

do, e.g. preferring formal texts and texts with less 533

spelling errors. We also provide an initial attempt 534

to explain how such preferences is developed, i.e. 535

LLMs can efficiently identify features that signify 536

the degree of consistency between current text and 537

remaining data, and use such features to determine 538

whether the current text is worth learning. We hope 539

our work could provide a new perspective to study 540

LLMs’ learning mechanism of knowledge. 541
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Limitations542

The main limitation of this paper is that we only543

conduct our experiments on a synthetic dataset due544

to the need to manipulate various style of the text.545

Therefore, it is likely that the findings is not applica-546

ble to real-world datasets. Another limitation is that547

due to the high computational cost, Section 4 does548

not provide a causal experiment in the pretraining549

stage, i.e. performing rigorous data selection to550

validate our findings in large-scale settings.551
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A Data Construction956

The details of each biographical data entry are sam-957

pled independently and randomly from a uniform958

distribution. Birthday information has 200∗12∗28959

choices, while all other features have 100 choices.960

The names of these characters do not overlap961

with celebrities to ensure that knowledge in the962

base dataset does not conflict with the model’s ex-963

isting knowledge. Moreover, there is some correla-964

tion between graduation school and major, as well965

as work company and work city, to prevent the in-966

troduction of counterfactual knowledge. All of the967

above characterization information was generated968

by GPT4.969

B Training Details970

The specific hyper-parameters of the model training971

is shown in Table 5.972

Hyper-parameter Value

Batch Size 64
Learning Rate 1e-5
Epoch 5
LR scheduler cosine
Warmup Ratio 0.03
Weight Decay 0.0

Table 5: Fine-tune Hyper-parameters

C Test Data Construction973

We used the same set of templates to construct974

test statements in almost all experiments and in all975

settings in our paper. The test templates we used976

are shown in Table 6.977

In order to verify whether the similarity between978

the style of the test statements and the style of the979

training statements has a decisive influence on the980

final results, this work also constructed novel style981

test statements. The novel style test statements are982

shown in Table 7.983

D Setups and Additional Results of the984

learning speed experiment985

D.1 Data Construction986

In the training data testing experiments, we do not987

introduce conflicts, but instead directly allow the988

model to be trained on data with a single text fea-989

ture. Thus, the dataset in this section can be simply990

represented by IA = T i
A(b)

5
i=1, where TA denotes991

Figure 8: Accuray as different epochs during training
process of LLM trained on Good Spelling data and Poor
Spelling data

Figure 9: Accuray as different epochs during training
process of LLM trained on data aligned with intrinsic
knowledge and data misaligned

the template with the current text feature A to be 992

examined and b denotes the character in the biog- 993

raphy. We randomly selected five expressions for 994

each biography to allow the model to better memo- 995

rize the knowledge in the data. 996

D.2 Training 997

The training details in this experiment are identical 998

to those presented in Appendix B. 999

D.3 Evaluation 1000

We measure the effectiveness of the model in learn- 1001

ing the training data by the accuracy with which 1002

the model completes multiple choice questions re- 1003

lated to the training data. Specifically, we construct 1004

a test set {(s̄, sa, sb, sc)}N1 , where each piece of 1005

data in the test set contains four statements. s̄ is the 1006

statement that is consistent with the training data 1007

representation, whereas sa, sb, sc are the incorrect 1008

choices constructed with random data, and N is 1009

the size of the test set. We then used perplexity to 1010

examine the proportion of models that preferred s̄. 1011
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Test feature Test statement

Birth Date {}’s birthday is {}.
Birth Place {} was born at {}.
University {} received education at the {}.
Major {} focused on {} during her university study.
Company {} worked for {}.

Table 6: The templates used to construct test statements in this paper.

Test feature Test statement

Birth Date {}’s birthday is on the unforgettable day of {}.
Birth Place {} was born under the bright sky of {}.
University {} embarked on a journey of knowledge at the esteemed {}.
Major {} went to university and hone her skills in {}.
Company {} contributes her expertise to {}.

Table 7: Novel style test statements.

E Results of multiple-style comparison1012

In real training scenarios, the LLMs may face far1013

more sources of conflict than the two styles. In1014

order to investigate whether the model’s aforemen-1015

tioned preferences exist when multiple styles all1016

conflict on the same knowledge, we conduct ex-1017

periments on 10 different styles simultaneously.1018

All styles describe the same characters, but the1019

character attributes are all different. We evaluate1020

the percentage of attributes corresponding to each1021

style as having the highest probability of output,1022

as shown in Figure 10. As can be seen from the1023

figure, the model preference remains, i.e. the more1024

formal styles such as textbooks style, newspapers1025

style, scientific reports style and wikipedia style1026

are more preferred by the model.1027

Figure 10: Results of ten styles mixed together. The
styles represented by the corresponding sector are la-
beled around the pie chart. Percentages within the pie
chart indicate the proportion of the corresponding sector
that is assigned the highest preference.
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