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Abstract

In supervised learning, it is quite frequent to be confronted with real imbalanced datasets.
This situation leads to a learning difficulty for standard algorithms. Research and solutions
in imbalanced learning have mainly focused on classification tasks. Despite its importance,
very few solutions exist for imbalanced regression. In this paper, we propose a data augmen-
tation procedure, the GOLIATH algorithm, based on kernel density estimates and especially
dedicated to the problem of imbalanced data. This general approach encompasses two large
families of synthetic oversampling: those based on perturbations, such as Gaussian Noise,
and those based on interpolations, such as SMOTE. It provides an explicit form common to
such machine learning algorithms. and new synthetic data generators can be deduced. We
apply GOLIATH in imbalanced regression combining such generator procedures with a new
wild-bootstrap resampling technique for the target values. We evaluate the performance of
the GOLIATH algorithm in imbalanced regression where we compare our approach with
state-of-the-art techniques.

1 Introduction

Many real-world forecasting problems are based on predictive models in a supervised learning framework
and standard algorithms can fail when the target variable is too skewed. Learning from imbalanced data
concerns many problems with numerous applications in different fields (Krawczyk (2016), Fernández et al.
(2018a)). The major part of such works concerns imbalanced classification (see for instance Buda et al.
(2018), Cao et al. (2019), Cui et al. (2019), Huang et al. (2016), Yang & Xu (2020), Branco et al. (2016b)
where many solutions propose a pre-processing strategy especially for the generation of new synthetic data.
A large part of such existing methods consist in adapting the well know SMOTE algorithm (Fernández et al.
(2018b)). Very few works have addressed the problem of imbalanced regression despite its relevance to many
important real-world applications in different fields such as economy, meteorology, medicine, or insurance.
As for imbalanced classification, some applications focus on predicting rare and extreme values, which can
be of great interest. In the literature, the imbalanced regression corresponds to the correct prediction of rare
extreme values of a continuous target variable Fernández et al. (2018b) but, contrary to the classification
tasks, there is no level to quantify the imbalance and the labels are continuous. Unlike in a classification
context, learning from imbalanced dataset for regression tasks leads to two additional problems: i) the
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definition of the imbalanced phenomenon and ii) the identification of the observations that are considered
as minority.

In this paper we propose a very general method, which we shall call GOLIATH (for Generalized Over-
sampling for Learning from Imbalanced datasets and Associated THeory) to deal with the imbalanced
regression problem. The first step of GOLIATH is a synthetic covariates generation based on kernel density
estimators. The second step of GOLIATH is concerned with the imbalanced regression: a new method
based on a wild-bootstrap procedure is proposed for generating target values given the synthetic covariates.
GOLIATH is then a two-step algorithm. In this paper, we concentrate on tabular data rather than images
because many applications rely on structured data, and there are still very few solutions available to address
them.

Our main contributions can be summarized as follows:

i) From a methodological perspective, providing a unified and generalized statistical expression
encompassing existing data augmentation techniques, notably the popular and widely
utilised SMOTE method (3).
This approach unifies two important families of synthetic data generators: perturbation-based (3.3)
and interpolation-based (3.4) methods (see Branco et al. (2016b)). Recent research emphasizes the
ongoing importance of explaining the properties of SMOTE, and GOLIATH follows this approach by
analyzing the structure of the SMOTE algorithm which can be considered as a mixture distribution.

ii) Deducing new synthetic data oversampling methods using the large and adaptative
expression of GOLIATH (4): more flexible, more suitable and empirically outperform state-of-
the-art approaches (6). More precisely,

– Introducing some non-classical kernels density estimates (4.2), to adapt and control the
generation of new synthetic data according to the support of covariates, especially in discrete
or bounded cases. Moreover, the proposed kernels use an efficient estimate of the bandwidth
parameter yielding the method data-driven.

– Extending the interpolation techniques (SMOTE) with a Beta distribution and
then with a Gaussian-Beta distribution extending the generation in the data space
rather than onto the segments (4.1).

iii) Proposing innovative methodologies to address Imbalanced Regression

– Introducing weights for the data generation (5)
This is an important issue in this topic, unlike for classification tasks. Furthermore, our approach
preserves the continuity of the target variable distribution and avoids making it discrete or
binary, which is generally done in other works.

– A new technique to generate the target variable (5): by combining a wild-Bootsrap with
a random forest in order to consider its dependencies with the covariates and the new synthetic
data.

– A new way to generate synthetic data:
The "mix" mode, provides a new solution to the main challenge of synthetic data generation,
avoiding overfitting and the introduction of bias.

The paper is organized as follows. In Section 3 we give a general form of our data augmentation proce-
dure corresponding to the first step of GOLIATH. We study some standard perturbation and interpolation
methods that are included in this approach, such as SMOTE and Gaussian Noise. In Section 4 we develop
the theory to obtain new generators. In Section 5 we will look more closely at the imbalanced regression,
corresponding to the second step of GOLIATH. Numerical results on several applications are presented in
Section 6. Finally, we discuss the method proposed in Section 7.
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2 Related works

Learning from imbalanced distributions is a topic that concerns several domains and numerous applications
Krawczyk (2016). As highlighted in the literature on the subject, especially in the survey by Branco et al.
(2016b), the case of regression has been very little addressed and there are very few solutions available to
date. Most of the works addressing regression tasks are based on a relevance function Torgo & Ribeiro
(2007). The objective of this function, denoted by ϕ, is to associate a relevance value, ranging from 0 to 1, to
each value of the target variable Y : ϕ(Y ) : R −→ [0, 1], with 1 representing maximum relevance, for extreme
values of Y . Using a given threshold tr, it is possible to divide the dataset into two parts: the subset of
minority observations, denoted as Dr, and the subset of majority observations, denoted as Dn, such that:
Dr = {(xi, yi)i=1,··· ,n ∈ D : ϕ(yi) > t} and DN = D \ Dr, D being the set of all observations.
Once the support is binarized in this way, it becomes possible to adapt solutions from imbalanced classi-
fication as SMOTE, Gaussian Noise, etc. (Torgo et al. (2013), Branco et al. (2017), Branco et al. (2019),
Ribeiro & Moniz (2020), Song et al. (2022), Camacho et al. (2022), Branco (2018)). This approach presents
the disadvantage of dividing the continuous distribution of the target variable into binary classes and there-
fore involves a loss of information. Indeed, considering an example of a threshold at 0.8, an observation with
a relevance value of 0.79 will be considered as majority while an observation with a value of 0.81 will be
considered as extreme. Furthermore, this "extreme" observation will have the same importance as an obser-
vation with a relevance value of 0.99. Furthermore, providing a utility function and an associated threshold
is difficult for the user. However, Ribeiro (2011) suggested constructing a relevance function. This default
function is based on a box plot of the distribution, which may not be representative. Additionally, it only
considers extremes and not rare values inside the distribution, which are not extreme.
Steininger et al. (2021) proposed a new way of approaching the issue by introducing a cost function. The
authors’ objective is to individually weight observations based on the rarity of the target value. They there-
fore propose to deduce a weight inversely proportional to the probability of occurrence of the target variable.
The probability of occurrence is estimated by a classical kernel density estimator. This method is similar
to the one we propose. The authors use the opposite (1 − αf̂(y) with f̂(y) the estimated density function
of the target variable Y ) whereas we use the inverse. The use of the inverse (1/f̂(y)) of the estimated
density function is also found in Yang et al. (2021). However, the authors partition the domain of the target
variable, which also leads to information loss. Both approaches use this weighting of observations to redefine
the loss function, i.e., with a cost-sensitive approach. The main drawback of this approach, while promising,
is that the authors modify a neural network. However, as indicated below, this type of approach may not
be the most effective on tabular data. Our preprocessing solution has the advantage of being able to be
associated with any classical learning algorithm, making GOLIATH universal. Indeed, this is what we do in
the experiments where an autoML with 10 different models is combined with GOLIATH.
Huang et al. (2022) built on a similar idea by using the inverse of the kernel density estimator for the tar-
get variable to create a utility function. However, similar to approaches based on relevance functions, the
authors divide the data into subsets of rare and "normal" observations using a threshold. This approach
suffers from the same drawbacks as those based on the utility function, except that the relevance function
is more intuitive and allows for the treatment of rare non-extreme data. They then suggested optimizing
the undersampling of normal values using the relevance function and assessing the impact on prediction
(MSE profit & loss). For oversampling, they propose using a conditional VAE to incorporate the concept of
"rare/normal" as useful labels for data generation.
More recently, other methods have emerged by using deep learning approaches, for dealing with images, such
as Sen et al. (2023), Ding et al. (2022), Gong et al. (2022) or Wang & Wang (2024). However, the techniques
proposed in this context rely on deep learning. While these approaches are highly effective with images, they
often require adjustments to be effective with tabular data. Indeed, some authors have shown that standard
deep learning approaches can be ineffective for certain tasks with tabular data (e.g Shwartz-Ziv & Armon
(2022), Ma et al. (2020), Borisov et al. (2022) or Grinsztajn et al. (2022)). But other works have shown that
these techniques can ultimately be effective if adapted specifically to some tabular data (e.g Gorishniy et al.
(2021), Katzir et al. (2020) or Shavitt & Segal (2018)).
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3 A New Kernel-Based Oversampling Formulation

In this section, we present our generic framework and demonstrate that two major families of synthetic data
generation can be written in this form.

3.1 Notations and Problem Setting

We consider a sequence of observations {(x1, y1), · · · , (xn, yn)}, which are realizations of n iid random
variables (X, Y ), where the target variable Y is univariate and the covariate X is a p-dimensional random
vector. The components of X = (X1, · · · , Xp) are supposed to be continuous or discrete and Y is supposed
to be quantitative. Let xij the variable j for the observation i and xj the observed variable j. Write
x̃ = {x1, · · · , xn} the set of all observations and x∗ a new synthetic data. Finally, we designate xi.(ℓ) as
the ℓth nearest neighbors of an observation xi. = {xi1, · · · , xip}.

As with classification tasks, learning from an imbalanced distribution can alter the results of standard
algorithms in a regression context, i.e., when the target variable is continuous. Indeed, conventional methods
presuppose a uniform importance of the target variable values Branco et al. (2016b). Furthermore, the
metrics used to measure performance, as well as optimization criteria to calibrate algorithms, measure an
average error level across all values in a uniformly weighted manner Torgo & Ribeiro (2009).
In regression, the continuous and infinite nature of Y introduces two main challenges:

i) It is not easy to define "rare" values and differentiate them from "frequent" values -
unlike in classification where this is directly given by the classes;

ii) Therefore, measuring imbalance is not immediate and is complicated to assess - unlike
in classification where it suffices to compare the classes.

If the proposed solution to the imbalanced regression problem relies on synthetic data generation, then it
introduces a third challenge. Indeed, unlike classification, where the labels of Y remain unchanged when
creating synthetic data, in regression, it is necessary to generate new relevant values for the target variable.
In this way, GOLIATH combines a two-step procedure: the first generates X∗ and the second deduces the
generation of Y ∗ using an innovative procedure based on a wild bootstrap and is based on X∗.
Although the problem of imbalanced regression is becoming increasingly recognized, there is no universal
formal definition: Ribeiro (2011) and all works associated propose to define it by reducing it to a binary
classification problem based on a relevance function (Branco et al. (2016b)) - which we avoid doing. Ren
et al. (2022) proposes to define it as follows: "imbalanced regression assumes that the training set and
test set are drawn from different joint distributions, ptrain(x, y) and pbal(x, y) respectively, where the
training set’s label distribution ptrain(y) is skewed and the balanced test set’s label distribution pbal(y) is
uniform. However, we disagree with this idea because, in many real-world applications, the target variable
is naturally distributed asymmetrically. Yang et al. (2021) "formally define the Deep Imbalanced Regression
task as learning from imbalanced data with continuous targets, and generalizing to the entire target range".
We prefer to formally and simply define the problem of imbalanced regression as follows:
learning from continuous distributions that include rare values (including extremes) that are
precisely relevant to the studied phenomenon. This definition builds upon the notion of utility of
Ribeiro (2011), but we avoid binarizing or discretizing the problem. Since the distribution is continuous,
the relevance of values is assumed to be progressive, so binary classification does not seem relevant to us.
The scarcity of observations can be due to two factors: either the distribution is inherently asymmetric,
and thus the sample will also be theoretically asymmetric, or the distribution is not necessarily asymmetric,
but sampling bias generates this phenomenon in the observed sample distribution (as defined in Ren et al.
(2022) or more formally in Stocksieker et al. (2023)).

The notion of rarity is therefore crucial in defining the phenomenon of imbalance. We propose to
define rarity as follows (inspired by Stocksieker et al. (2023)): Let Y be the target variable taking values in
Y ⊂ R. We denote by f̂Y a kernel density estimator of its probability density function (pdf). We consider
that there is an imbalanced situation in one of the following two cases:
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Case 1: When f̂Y significantly deviates from a given pdf.
Case 2: When f̂Y is significantly too small.

In both cases, we write f0 for the given pdf (Case 1) or for the uniform pdf (Case 2). We propose the following
definition of imbalance: We define a regression problem as (α, β)-imbalanced if there exists a subset χ ⊂ Y
such that

∫
χ

f0(y)dy ≥ β and

∫
χ

f̂Y (y)dy∫
χ

f0(y)dy

< α.

Note that in Case 2, the quantity
∫

χ
f0(y)dy is the Lebesgue measure of χ, up to a factor. In simpler terms,

an imbalanced regression implies that a sample is significantly different from a target distribution (Case 1)
or under-represented (Case 2) for at least a significant portion of the support of Y . This means that regions
with high support in the target distribution would be ignored. The level of imbalance increases notably with
larger (α, β) values. As mentioned earlier, this issue also relies on the sample size. When fY and f0 have
the same support, the imbalance diminishes with a growing sample size n. Conversely, if certain segments
of Y support remain unobserved, the problem may persist even with large n.

3.2 General Formulation of GOLIATH

We define GOLIATH the generalized oversampling procedure based on the form of the following weighted
kernel density estimate:

gx∗(x∗|x̃) =
∑
i∈I

ωiKi(x∗, x̃), (1)

where (Ki)i∈I is a collection of kernels, (ωi)i∈I is a sequence of positive weights with
∑

i∈I ωi = 1, and I
represents a subset of {1, 2, · · · , n}. Here the index ∗ stands for the synthetic data. In this generalized form
of a kernel density estimate, a kernel is associated with each observation xi and takes into account the set
of all points x̃. This is a general form that is specified later depending on the kernels used. We recall that
a kernel K is a positive and integrable function such that K(u, x̃) ≥ 0 and

∫ +∞
−∞ K(u, x̃)du = 1. In (1) we

propose a general form for the conditional density for the synthetic data generators. The objective is to
use the flexibility of the kernels to estimate the density of covariates in order to obtain synthetic data that
reflects the distribution of the observations.

We can show that (1) generalizes perturbation-based and interpolation-based synthetic data oversampling.
We give an illustration with the basic algorithms ROSE, Gaussian Noise and SMOTE in Subsections 3.3
and 3.4 where we demonstrate that these methods are particular cases of the generalized form (1), with
corresponding parameters summarized in Appendix A.2. Several existing methods can be rewritten in the
form (1) and we give some illustrations in Appendix A.3. In Section 4 we will show that some particularly
interesting new methods can be derived from the generic form (1) and we will compare some of them to
current competitors in the imbalanced regression context.
Remark 1. The generators in (1) are called smoothed bootstrap methods (see Silverman & Young (1987),
Hall et al. (1989), De Angelis & Young (1992)). Smoothed bootstrap consists in drawing samples from kernel
density estimators of the distribution. It can be decomposed into two steps: first, a seed is randomly drawn
and second, a random noise from the kernel density estimator is added to obtain a new sample. In the form
(1), the first step is represented by the drawing weight ωi and the second by the kernel Ki(x). Convergence
properties of smoothed bootstrap are studied in De Martini & Rapallo (2008) and Falk & Reiss (1989).
They proved the consistency of the smoothed bootstrap with classical multivariate kernel estimator and more
specifically the convergence in Mallows metric. As described by the authors, the smoothed bootstrap provides
better performances than a classical bootstrap when a proper choice of smoothing parameters is used. Other
works have focused on the consistency of the multivariate kernel density estimate and proposed a relevant
bandwidth matrix, see for instance Silverman (1986), Scott (2015) and Duong & Hazelton (2005). All this
work has been carried out outside the context of regression models and only with classical kernels. GOLIATH
extends this to unbalanced regression using adapted kernels.
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3.3 Rewriting Interpolation Approaches

As presented in Fernández et al. (2018b), the Synthetic Minority Oversampling Technique (SMOTE) Chawla
et al. (2002) is considered a "de facto" standard for learning from imbalanced data and has inspired a large
number of methods to handle the issue of class imbalance. It is also one of the first techniques adapted
to imbalanced target values in regression with Torgo et al. (2013). SMOTE algorithm can be summarized
as follows: at each step of the data augmentation procedure1, an observation is randomly selected, which
we shall call a seed. Then, one of its k nearest neighbors among K, which is a hyperparamer, is randomly
drawn. Finally, a new data point is generated by interpolating between these two initial observations.

We will denote by xi. the selected seed and by xi.(ℓ) the ℓth nearest neighbor of xi. among its K neighbors.
The new data is then generated by linear interpolation between xi. and xi.(ℓ). Each observation has a
probability 1/n of being the seed, and each of its k neighbours has a probability 1/k of being selected.
Finally, writing x∗ the synthetic data we have x∗ = λxi. + (1 − λ)xi.(ℓ), with λ uniformly distributed
U([0; 1]).

To show that this approach is a particular case of (1) we proceed in three steps:

1 Conditionally to xi. and xi.(ℓ), the jth component of x∗ is generated by a uniform distribution,
with 1 the indicator function:

gSMOT E
x∗

(
x∗

j |x̃, xi., xi.(ℓ)
)

=
1[min(xij ,xij (ℓ)),max(xij ,xij (ℓ)])(x∗

j )
|xij(ℓ) − xij |

Each component of x∗ is drawn by the same uniform variable, that is x∗
j = λxi. + (1 − λ)xi.(ℓ) for

j = 1, · · · , p, and we write the multivariate generating density as follows:

gSMOT E
x∗ (x∗

j |x̃, xi., xi.(ℓ)
)

=
1[min(xij ,xij (ℓ)),max(xij ,xij (ℓ)])(x∗

j )
|xij(ℓ) − xij | 1viℓ=vjℓ;∀i,j .

where viℓ = (x∗
i − xi.(ℓ))/(xi. − xi.(ℓ))

2 Conditionally to xi., x∗ is generated according to a uniform mixture model (UMM) on the segments
between xi. and its k-nn. The same mixture component is used for each component giving:

gSMOT E
x∗ (x∗|x̃, xi.) = 1

k

k∑
ℓ=1

1[min(xij ,xij (ℓ)),max(xij ,xij (ℓ)])(x∗
j )

|xij(ℓ) − xij | 1viℓ=vjℓ;∀i,j .

3 More generally, x∗ is generated according to a mixture of UMM as follows:

gSMOT E
x∗ (x∗|x̃) = 1

n

n∑
i=1

gSMOT E
x∗ (x∗|x̃, xi.) = 1

n

n∑
i=1

1
k

k∑
ℓ=1

1[min(xij ,xij (ℓ)),max(xij ,xij (ℓ)])(x∗
j )

|xij(ℓ) − xij | 1viℓ=vjℓ;∀i,j

= 1
n

n∑
i=1

KSMOT E
i (x∗, x̃)

We finally obtain the form (1) with I = [0, n], ωi = 1/n and Ki(x∗, x̃) = KSMOT E
i (x∗, x̃). This new

writing represents the conditional SMOTE density given the observation x̃ which can be seen as a mixture
of Uniform Mixture Model. We can relate this expression to the work of Elreedy et al. (2023) and Sakho
et al. (2024) in which the authors give an expression of the unconditional SMOTE density, that is integrating
the distribution over x̃ in a context of class minority. Other methods derived from SMOTE can be recovered
by (1) (see Appendix A.3).

1In the original version of SMOTE, the seed is drawn successively with a loop and not randomly. These two ways are very
close when the generated sample size is large

6



Published in Transactions on Machine Learning Research (06/2024)

3.4 Rewriting Perturbation Approaches

We illustrate (1) by recovering two classical data augmentation procedures, ROSE and Gaussian Noise (GN),
as follows:

• At each step of the ROSE algorithm (see Menardi & Torelli (2014)) the seed xi. is selected randomly.
Given xi. a synthetic data is generated with a multivariate density

gROSE
x∗ (x∗|x̃, xi.) = KROSE

Hn
(x∗ − xi.) = 1

|Hn|1/2 K(H−1/2
n (x∗ − xi.))),

where K denotes the multivariate Gaussian kernel and Hn = diag(h1, ..., hp) is the bandwidth
matrix proposed by Bowman & Azzalini (1999), with hq = ( 4

(p+2)n )1/(p+4)σ̂q, q = 1, ..., p. Finally, a
synthetic random variable X∗ is generated with the density

gROSE
x∗ (x∗|x̃) = 1

n

n∑
i=1

KROSE
Hn

(x∗ − xi.) =
n∑

i=1

ωiK
ROSE
Hn

(x∗ − xi.)).

• Similarly to ROSE, at each step of the Gaussian Noise algorithm (see Lee & Sauchi (2000)) a seed is
selected and synthetic data is generated. Finally, the generating multivariate density has the form

gGN
x∗ (x∗|x̃) = 1

n

n∑
i=1

KGN
Hn

(x∗ − xi.) = 1
n

n∑
i=1

1
|Hn|1/2 K(H−1/2

n (x∗ − xi.)),

where HGN
n = diag(h1, ..., hp), hq = σnoiseσ̂q, q = 1, ..., p.

Both cases are particular cases of (1) with ωi = 1
n and Ki(x∗, x̃) = KHn

(x∗ − xi.), i.e. the same Gaussian
kernel for all observations but with a different bandwidth matrix.

3.5 Global criticism

Although there are many extensions of SMOTE or ROSE and Gaussian Noise, such techniques suffer from
some drawbacks. For the interpolations techniques, the directions in the data space are limited and deter-
ministic because they depend only on the k-nn (nearest neighbors). Moreover, the distance from the seed is
also limited because the new sample is on the segment with the drawn nearest neighbor. For the perturbation
techniques, the directions in the data space are randomly generated and so they can more explore the space.
The distance between the new sample and the seed is also unbounded. However, the directions are randomly
chosen and do not respect the correlation between the data and their support and the correlations between
variables.

4 New Kernel-Based Methods from GOLIATH

Since Goliath is a very generic form, its practical interest lies in the choice of a judicious combination of
weights and kernels. We proceed in separating the two families interpolation and pertubation, deducing new
generators from the form 1, which allows us to extend the initial approaches.

4.1 Generalized Interpolation Approaches

A general form We propose a particular form of (1) which generalizes the SMOTE algorithm as follows:

gint
x∗ (x∗|x̃) =

∑
i∈I

ωiKi(x∗, x̃) =
∑
i∈I

ωi

∑
ℓ∈Ji

πℓ|i gint
i,ℓ (x∗|x̃)

where gint
i,ℓ (x∗|x̃) is an interpolation function on [xi., xi.(ℓ)], Ji denoting the set of k-nn associated to xi..

SMOTE is then a particular case when ωi = 1
n , πℓ|i = 1

k and gint
i,ℓ (x∗|x̃) = 1[0;xi.(ℓ)−xi.](x∗−xi.)

|xi.(ℓ)−xi.| represents a
uniform distribution between the vectors xi. and xi.(ℓ).
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Nearest Neighbors Smoothed Bootstrap Since the uniform distribution coincides with the Beta distri-
bution with parameters α = β = 1, a natural extension of SMOTE is to consider a general Beta distribution.
We find the same idea in Yao et al. (2022) within another context. The very flexibility of the Beta distri-
bution suggests us to propose x∗ = λxi. + (1 − λ)x(ℓ)i for i = 1, · · · , n, where λ follows a generalized Beta
distribution. By abuse of notation, we get the following interpolation function:

gint
i,ℓ (x∗|x̃) = Γ(α + β)

Γ(α)Γ(β) (x∗ − xi.)α−1(xi.(ℓ) − x∗)β−11[0;xi.(ℓ)−xi.].

Extended Nearest Neighbors Smoothed Bootstrap Finally, the previous methods based on inter-
polation are limited to the "seed - k-nn segments" and therefore do not reach all the data space. To avoid
generating on a bounded or discrete support we propose to extend these approaches to any part of the
support by adding a Gaussian distribution on the segment as follows:

ge−int(x∗|x̃) =
∑
i∈I

ωi

∑
ℓ∈Ji

πℓ|i ge−int
i,ℓ (x∗|x̃),

where the extended interpolation function is a Beta Gaussian mixture, that is, ge−int
i,ℓ (x∗|x̃) is the density

of a Gaussian distribution N(θ, σ2) where θ is generated by gint
i,ℓ (x|x̃). To rely on the recent literature, we

remark that SASYNO algorithm Gu et al. (2020) is a special case of this methodology. This extended version
can be viewed as a hybrid method between interpolation and perturbation techniques. It provides a good
compromise between the interpolation and perturbation approaches because it can generate in the whole
data space as the perturbation approach i.e. constraint-free, but assigns a distribution to the directions
towards the segments, that is orienting the perturbation toward the k-nn.
Remark 2. We tried to adapt the k-nearest neighbors density estimate (Biau & Devroye (2015)) that is a
bandwidth-variable kernel (also called a balloon kernel) as a generator but its computation time is currently
too high to be used.

4.2 Generalized Perturbation Approaches

Classical Smoothed Bootstrap As the ROSE and GN techniques use a multivariate Gaussian kernel
estimate with a diagonal bandwidth matrix, we can rewrite their associated generating density as follow:

gx∗ (x∗|x̃) =
n∑

i=1

ωi

p∏
j=1

Khj (x∗
j − xij) (2)

with Khj (u) = (2π)−1/2h−1
j e

− 1
2hj

2 u2

the univariate gaussian kernel density estimator with smoothing pa-
rameter hj . Such kernels are clearly not adapted for asymmetric, bounded or discrete variables. This remark
is also true for the work of Yang et al. (2021) which uses some symmetric kernels to improve learning of
imbalanced datasets.

Non-Classical Smoothed Bootstrap To fix the drawback of the classical kernel we extend (2) by
adapting (1) to the support of x, considering some non-classical kernels (we refer to some works handling
the kernel density estimation for specific distributions inspired from Bouezmarni & Rombouts (2010), Someé
(2015), Hayfield & Racine (2008), Chen (2000)). We rewrite (1) as

gper
x∗ (x∗|x̃) =

∑
i∈I

ωi

p∏
j=1

Khj (x∗
j , xij)

where Khj
(u, x) is a univariate kernel adapted to the nature of the jth variable and specifically defined on

x as follows:

• Gaussian kernel for a variable defined on R (classical kernel):

Kh(u, x) = 1
h

√
2π

e− 1
2 ( u−x

h
)2

.
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• Binomial kernel for a discrete variable defined on N:

Kh(u, x) = (x + 1)!
u!(x + 1 − u)!

(
x + h

x + 1

)u (1 − h

x + 1

)x+1−u

.

• Gamma kernel for a positive asymmetric distribution defined on [a, +∞]:

Kh(u, x) = u(x−a)/h

Γ(1 + (x − a)/h)h1+(x−a)/h
exp

(−u

h

)
1[a,+∞](u).

• Negative Gamma kernel for a negative asymmetric distribution defined on [−∞, b]:

Kh(u, x) = u−(x−b)/h

Γ(1 − (x − b)/h)h1−(x−b)/h
exp

(−u

h

)
1[−∞,b](u).

• Beta kernel for a variable defined on [0, 1]:

Kh(u, x) = ux/h(1 − u)(1−x)/h

B( x
h

+ 1, 1−x
h

+ 1)
1[0,1](u).

• Truncated Gaussian kernel for a variable defined on [a, b]:

Kh(u, x) = α

h
√

2π
e− 1

2 ( u−x
h

)2
1[a,b](u),

α :=
(∫ b

a

1
h

√
2π

e− 1
2 ( u−x

h
)2

)−1

Note that if the Dirac kernel (1x=xi.
) is used, we get the standard bootstrap: 1 includes also the simple

oversampling. It is important to note that the GOLIATH algorithm uses an estimation of the smoothing
parameter h provided by some specific R-package dedicated to the density estimation (for instance, it uses
the Silverman estimation for the Gaussian kernel). Their estimates are based on properties of univariate
consistency. Another technique to deal with skewed or heavy-tailed distributions is to apply a transformation
of the data in order to use classical kernel density estimation (Charpentier & Flachaire (2015), Charpentier
& Oulidi (2010)) but it necessitates proposing a relevant transformation which exceeds the scope of this
paper.
Remark 3. The use of a diagonal bandwidth matrix in (2) does not take into account the correlation between
variables. To improve this issue, we could consider a full (symmetric positive definite) smoothing matrix.
In that case, we would use a multivariate kernel density estimate considering the correlation between the
variables which would be optimal for generating data. However, the estimation of such a matrix is generally
based on the covariance matrix which does not adequately capture non-linear correlations. In practice, it can
be challenging, even inconsistent, to find a form of a multivariate kernel that adapts to all data and their
support. It is interesting to note that kernel functions can be linked to a wide range of statistical work, such
as graph-based learning methods (SarcheshmehPour et al. (2023)).

4.3 Goliath Overview

The GOLIATH algorithm is summarized in Figure 4. A cartography of GOLIATH is also given in Figure 1.
The algorithm gives the possibility to choose, with the "mode" parameter, the kind of the returned sample:
a full synthetic dataset, an augmented one, or a mixed one. The mixed sample is constructed as follows:
keep the original observation for the first occurrence of the seed and synthetic data for the next. This
mode corresponds to performing an undersampling and an oversampling. More precisely, to preserve the
maximum of information and avoid potential overfitting, we suggest to: keep the initial observation for its
first drawing and generating synthetic data from it for the other drawing which is the "mix" mode in the
GOLIATH algorithm. This technique theoretically helps in reducing bias (by keeping the real data) while
avoiding overfitting (by not duplicating the same observations). More details on this option are given in
Appendix B.
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4.3.1 GOLIATH Overall Algorithm

The GOLIATH algorithm is summarized in Figure 4 and Figure 1 presents its cartogrophy. It can be seen
that the structure of GOLIATH is that of a generalized smoothed bootstrap, that is, it utilizes weighted
kernel density estimators. GOLIATH encompasses the family of existing perturbation-based generators
(such as ROSE and GN) which can be referred to as the Classical Smoothed Bootstrap. This also includes
what is known as the SMOTE Family, which is very broad and encompasses many methods (see Fernández
et al. (2018b)). We have the two generalizations of the SMOTE family that we propose: Nearest Neighbors
Smoothed Bootstrap and Extended Nearest Neighbors Smoothed Bootstrap. We also find the Non-Classical
Smoothed Bootstrap, with specific kernels that we propose in this paper. Finally, we have also added a
proposed kernel that seems interesting but appears to be complicated to use in practice: the Balloon kernel
using the kNN density estimate.

Figure 1: GOLIATH algorithm and cartography

5 GOLIATH as a Solution for Imbalanced Regression

In this section, we introduce new methodologies to deal with Imbalanced Regression

Using the first generator step of GOLIATH (methods proposed in 2.3.1 and 2.3.2) we can generate synthetic
covariates X∗. We then have to generate the target variable Y given such X∗.

A non-parametric method for drawing weights We propose here to define the drawing weights ωi in
(1) as the inverse of the kernel density estimate for the target variable Y : the more isolated an observation
is, the higher its drawing weight. Our approach is comparable to the Inverse Probability Weighted Estimator
(IPWE) in survey sampling Hernán & Robins (2006). The IPWE is a statistical method used to estimate
parameters in situations where data come from a population different from the one targeted for inference.
IPWE employs weights calculated from the inverse probabilities of sampling events to adjust observations,

10
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often used to correct sampling biases and extrapolate sample results to the target population. To avoid giving
disproportionate weights (typically too large a weight for extreme values), we can use a hyperparameter α
as below. The weights are normalized to get a sum equal to 1. For i = 1, · · · , n, the normalized drawing
weight ωi of observation i is thus defined as follows:

ωi := qi∑
j qj

, with qi := 1
f̂y(yi)α

, (3)

where f̂y denotes a convergent kernel density estimator.

In the following, we assume α = 1.
Remark 4. With α = 1, the generated random variable Y ∗ satisfying P(Y ∗ = yi) = ωi is close to a
uniform distribution. More precisely Stocksieker et al. (2023) generalized a result of Smith & Gelfand (1992)
by showing that choosing qi = f0(yi)

f̂y(yi)
, with f0 a target probability density function (pdf), then the pdf of

Y ∗ converges to f0. In our case f0 is a uniform distribution and we can apply this result as soon as the
support of Y is bounded. In this way, we obtain a test sample with a distribution of the target variable Y
approximately uniform i.e balanced. We find the same idea in Ren et al. (2022): "Therefore, imbalanced
regression assumes that the training set and test set are drawn from different joint distributions, ptrain(x, y)
and pbal(x, y) respectively, where the training set’s label distribution ptrain(y) is skewed and the balanced
test set’s label distribution pbal(y) is uniform."

In Yang et al. (2021) the authors propose also using the inverse of the estimated label density to weight the
loss function but apply a discretization of the target variable. The strength of our approach is to preserve the
continuity of the distribution whereas most other works propose splitting it into bins that involve a loss of
information. The kernel density is automatically adapted to the distribution of Y , as proposed in Subsection
4.2.

A new approach to generate the target variable The target variable is not generated in the same way
as the covariate. Once the covariates are generated from our generator models, we propose to adapt a wild-
bootstrap technique with synthetic features (Wu (1986))2. The classical Wild-Bootstrap involves uniformly
drawing a prediction error ϵk to generate a new y∗

i := ŷi + ϵkvi, where vi is a random variable.

The generation of the target variable is performed as follows:

i) Train a Random Forest on the initial sample;
ii) For each seed xs ∈ xS : predict target variable ŷs associated to xs with the Random Forest; xS

being the original observations drawn at step 1.
iii) Obtain the distribution of the absolute residuals on the prediction of the seed: ys − ŷs and draw a

randomly residual ϵk;
iv) Generate the noise in the Wild-Bootstrap vs ∼ N (0, σ), σ being a parameter; vs can also be set to

1 to avoid adding noise to the residual.
v) Generate a new y∗

s associated to the new synthetic x∗
s as follows:

y∗
s := ys + |ϵk|vs × sign(ŷs − ŷ∗

s )

With vs = 1, this form is close to the Wild Bootstrap version with the Rademacher distribution. The idea
behind this proposition is to consider taking into account i) the prediction error and ii) the impact of the
synthetic covariate on the target variable.

The choice of using a Random Forest is justified by its good predictive performance, its non-parametric
nature, and the possibility of getting an error distribution for a given target variable value. It represents
the second step of GOLIATH. Other interesting methods to generate Y are proposed in Appendix B.2 (but
giving lower numerical performances on our illustration, as presented in Figure 5a). The algorithm is detailed
in Appendix B.2.

2The kernel regression (Nadaraya-Watson estimator) was also tested but not selected because its high computation time and
poor performance
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6 Application in Imbalanced Regression

To evaluate the performance of GOLIATH, we focus on the imbalanced regression context because of the
natural capacity of the form (1) to handle continuous variables.

For each dataset, we construct a test sample as 10-30% of the initial dataset and use the weighting previously
defined: the inverse of the kernel density estimate for the target variable Y . We construct an artificial
imbalanced dataset from the remaining sample. More details on the protocol are given in Appendix C.2.
One of the objectives of our approach is to obtain better performance than the imbalanced train dataset.
We compare our results to existing methods to deal with imbalanced regression from the UBL R-package,
Branco et al. (2016a), classical oversampling, SMOTE, Gaussian Noise, SMOGN, WERCS and ADASYN
from the python-package ImbalancedLearningRegression (Wu et al. (2023)). These techniques are used with
their automatic relevance function and the same parameters as GOLIATH if any, in particular k for SMOTE
and pert for the Gaussian Noise.

To avoid sampling effects and obtain a distribution of prediction errors we ran 10 train-test datasets. In the
same way, to avoid getting results dependent on some learning algorithms we use 10 models from the autoML
of the H2O R-package LeDell & Poirier (2020) among the following algorithms: Distributed Random Forest,
Extremely Randomized Trees, Generalized Linear Model with regularization, Gradient Boosting Model,
Extreme Gradient Boosting and a Fully-connected multi-layer artificial neural network. We present here the
aggregated results of the models, a more detailed analysis is available in Appendix C and D.

We then compute the following metrics: RMSE and MAE and weighted-RMSE with our weighting function
giving more importance to the rare values. Since the test sample is balanced on the target variable, we
considered here the RMSE and MAE metrics as relevant to provide an overview of the average error across
the whole target variable.
Remark 5. The basic methods (Gaussian Noise or SMOTE) are different from the UBL version because
i) the generation of the target variable Y is realized with wild bootstrap and considers the new synthetic
attributes and ii) the weights ω is defined for all samples while UBL uses a relevant function that divides
the dataset into rare and frequent sets. Like the ROSE and Gaussian Noise algorithms, GOLIATH takes
into account a parameter tuning the level noise for perturbation approaches (description in Appendix A). It
is also possible to use a clustering (Gaussian Mixture Model) in GOLIATH in order to apply a generation
by cluster. All datasets provided by GOLIATH in the applications were provided with the "mix" mode. Note
that the ROSE algorithm did not exist for imbalanced regression.

6.1 Illustrative Application

In order to get a reference for predictive performance, we chose a balanced dataset from which we build an
imbalanced train dataset. The dataset, named SML2010 Data Set is available on the Machine Learning
repository UCI3. It is composed of 24 numeric attributes and 4137 instances. The target variable is the
indoor temperature (we construct a unique target variable as the mean temperature of dinning-room and
the temperature of the room). We train, with the autoML, the following train dataset:

• Reference values: Full sample (FTrain), Imbalanced (Imb)
• Benchmark: UBL-Oversampling (UBL-OS), UBL-SMOTE for regression (UBL-SMOTE), UBL-

Gaussian Noise for regression (UBL-GN ), UBL-SMOGN for regression (UBL-SMOGN ), UBL-
WERCS (UBL-WERCS), IRL-ADASYN (IRL-OS)

• GOLIATH (step 1): Oversampling (G-OS), Gaussian Noise (G-GN ), Gaussian Noise with GMM-
clustering (G-GNwCl), ROSE (G-ROSE), ROSE with a GMM-clustering (G-ROSEwCl), SMOTE
(G-SMOTE), Non classical Smoothed Bootsrap with contraints on the distributions (G-NCSB),
Classical Smoothed Bootsrap (G-CSB), Nearest Neighbors Smoothed Bootstrap, with Beta distri-
bution, (G-NNSB), Nearest Neighbors Smoothed Bootstrap with k-NN weights proportionates to the
distance from the seed (G-NNSBw), Extended Nearest Neighbors Smoothed Bootstrap (G-eNNSB).

3https://archive.ics.uci.edu/ml/datasets/SML2010
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Figure 2a shows the results for RMSE on the test sample. The weighted-RMSE and MAE metrics are
shown in Appendix 8 and present similar results. We can observe that the GOLIATH algorithm presents an
RMSE smaller than the imbalanced sample and than the benchmark techniques, whatever the generators.
The GOLIATH-oversampling is comparable to the UBL-oversampling which confirms, on this dataset, the
relevance of the weighting. The Non-Classical Smoothed Bootstrap (NCSB) is as efficient as the Classical
Smoothed Bootstrap (CSB, ROSE, GN). However, it provides realistic values for the variables. We can see
some examples of inconsistency in Appendix 5b. The results show that the clustering seems to improve
the performance. The Nearest Neighbors Smoothed Bootstrap (NNSB) and Extended Nearest Neighbors
Smoothed Bootstrap(eNNSB) outperform the original SMOTE. It is important to note that the different pa-
rameters (the number of nearest neighbors for interpolation techniques and the level of noise for perturbation
techniques) are arbitrary and not optimized here. The heatmap in Figure 2b shows the robustness of the
methods with their rank by run with respect to the RMSE. We can observe, based on the mean and standard
deviation of the rank, that the Classic Smoothed Bootstrap, the Non-Classical Smoothed Bootstrap, and
the Nearest Neighbors Smoothed Bootstrap are the best approaches here.

(a) RMSE Heatmap (b) RMSE Ranking

Figure 2: Numerical simulation. RMSE values and ranking for the full sample, the imbalanced sample, 6
competitors, and GOLIATH associated with 11 different generating methods

The RMSE-rank represents the ranking of approaches according to the RMSE for a run: rank 1 corresponds
to the training dataset that offers the smallest RMSE on the test sample. We also compared the results
using the R-package IRon: Solving Imbalanced Regression Tasks 4, a useful and relevant package specific to
Imbalanced Regression based on Ribeiro & Moniz (2020). The results in Appendix C.6 demonstrate that
GOLIATH outperforms UBL approaches, even when considering their performance metrics (weighted MSE,
weighted MAE, and SERA).

6.2 Imbalanced Regression Applications

We test our approach on several real data set from a repository provided as a benchmark for imbalanced
regression problems5 and presented in Branco et al. (2019) (descriptions in Appendix D). Figures 3a and 3b
present RMSE gain (wrt the imbalanced dataset) and the median of the RMSE ranking. We can observe
on these datasets that the GOLIATH algorithm empirically outperforms the state-of-the-art techniques,
especially the Non-Classical Smoothed Bootstrap and the Extended Nearest Neighbors Smoothed Bootstrap.

We can see on these several applications, with several runs, several learning algorithms, and several perfor-
mance metrics that the GOLIATH approach seems relevant to deal with imbalanced regression. In general
GOLIATH gives better results, especially when it is combined with and extended nearest neighbors smoothed
bootstrap in its first step of covariates generation.

4https://cran.r-project.org/web/packages/IRon/IRon.pdf
5https://paobranco.github.io/DataSets-IR/
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(a) RMSE-gain (b) Median of the RMSE-rank

Figure 3: Datasets. RMSE values and ranking for 6 competitors, and GOLIATH associated with 11 different
generating methods

6.3 Discussion

Based on all our numerical evidences, we strongly recommend the use of GOLIATH when step 1 combines a
smoothed Bootsrap with nearest neighbors. The five versions of GOLIATH involving bootstrap procedures
appear to be the best performing and most stable in terms of numerical results (both RMSE gain and rank).

7 Discussion and Perspectives

GOLIATH is an algorithm gathering two large families of synthetic data oversampling. Many methods can
be rewritten as particular cases of it. This approach gets the advantage to obtain a general form for the
generator which is based both on the theoretical foundations of kernel estimators and classical smoothed
bootstrap techniques. It provides a general expression for the conditional density of the generator. The
use of well-chosen kernels makes it possible to take into account the nature of the covariates: continuous,
discrete, totally or partially bounded. Our approach generalizes the SMOTE algorithm by providing weights
and flexible densities for interpolation. We also extend this technique to wider support than that of the
observations by combining interpolation and perturbation approaches. Numerical applications in imbalanced
regression models demonstrate that GOLIATH and its variants are very competitive, especially when the
generator used in step 1 is the extended nearest neighbors smoothed bootstrap.

The weights ωi (and πj|i in the interpolation case) offer a large flexibility. For instance, it is possible to handle
classification tasks by conditioning with the minority class. We could deal with multi-class classification too.
It is also possible to combine some extensions of SMOTE that propose to focus on specific samples in the
synthetic data generation (as ADASYN) with a kernel approach in order to perform the methodology.

As a perspective, a natural extension of this work is to automate the choice of the kernel estimators, the
weights, as well as some parameters according to the data. For example by defining a weights function for
the nearest neighbor instead of defining the parameter k. Indeed, the parameter k is sometimes unsuitable
and we could suggest a dynamic weighting depending on the neighborhood. It is also possible to define
a kernel according to the neighborhood into the same dataset. For instance, an interpolation approach is
favored within clusters when neighboring points are considered close to the observation. On the other hand,
a perturbation approach is preferred when the observation appears isolated. Finally, non-standard kernels
enable handling specific distributions such as bounded or discrete ones.
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We also could define ωi in order to generate a target distribution as done in Stocksieker et al. (2023). Finally,
the perturbation-based approaches, based on kernel density estimators, may find it challenging to accurately
capture dependencies between variables. The interpolation approaches consider it but the generation is
limited to the segments. The extended-SMOTE proposes a first solution. GOLIATH proposes also an
innovative method to generate Y based on the generated X, regardless of the generator used. It would also
be interesting and potentially effective to use multiple generators and capitalize on the strengths of each.
The generators could be applied locally based on the data characteristics.

Another research direction would be to better consider i) correlations between variables while respecting
their definition domain and ii) mixed data. Finally, it could be interesting to test GOLIATH on image
datasets, by combining it with a deep-learning model (Deep Imbalanced Regression framework).
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