
CaKE: Circuit-aware Editing Enables Generalizable Knowledge Learners

Yunzhi Yaoçë*, Jizhan Fangç, Jia-Chen Guë, Ningyu Zhangç†,
Shumin Dengã, Huajun Chenç†, Nanyun Pengë†,

ç Zhejiang University ã National University of Singapore
ë University of California, Los Angeles

{yyztodd,fangjizhan,zhangningyu,huajunsir}@zju.edu.cn
gujc@ucla.edu,violetpeng@cs.ucla.edu,shumin@nus.edu.sg

Abstract

Knowledge Editing (KE) enables the modifi-
cation of outdated or incorrect information in
large language models (LLMs). While exist-
ing KE methods can update isolated facts, they
often fail to generalize these updates to multi-
hop reasoning tasks that rely on the modified
knowledge. Through an analysis of reason-
ing circuits—the neural pathways LLMs use
for knowledge-based inference, we find that
current layer-localized KE approaches (e.g.,
MEMIT, WISE), which edit only single or a
few model layers, inadequately integrate up-
dated knowledge into these reasoning pathways.
To address this limitation, we present CaKE
(Circuit-aware Knowledge Editing), a novel
method that enhances the effective integration
of updated knowledge in LLMs. By only lever-
aging a few curated data samples guided by
our circuit-based analysis, CaKE stimulates
the model to develop appropriate reasoning cir-
cuits for newly incorporated knowledge. Exper-
iments show that CaKE enables more accurate
and consistent use of edited knowledge across
related reasoning tasks, achieving an average
improvement of 20% in multi-hop reasoning
accuracy on the MQuAKE dataset while requir-
ing less memory than existing KE methods.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities in diverse tasks (Yang
et al., 2024a; Dubey et al., 2024; OpenAI, 2024;
Guo et al., 2025), achieving performance that
rivals or even exceeds human experts. However,
their practical deployment faces some critical
limitations: parametric knowledge remains static
after pretraining, making it challenging to keep
up with evolving real-world information; their
propensity for hallucinations also undermines
reliability. Knowledge editing (KE) has emerged

*Work done during Yunzhi’s visit to UCLA.
†Corresponding Authors

Washington D.C. London

(Eddie Mathews, citizenship, United States United Kingdom)

The capital of the country that Eddie Mathews was a citizen of is

Cu
rr

en
t K

E

Circuit-aware edit

Edit

Improve generalization

Input Reasoning Circuit

Figure 1: The current edit cannot propagate the new
knowledge to the reasoning circuit for multi-hop rea-
soning. We propose a circuit-aware edit to improve the
model’s multi-hop reasoning performance involving the
updated knowledge.

as a promising solution to update the knowledge
in models precisely (Mitchell et al., 2021; Wang
et al., 2024c; Jiang et al., 2025). Although existing
KE methods achieve good results on simple factual
updates (Yao et al., 2023; Zhang et al., 2024b), they
often exhibit fundamental limitations: edits prop-
agate inconsistently through related knowledge
structures and downstream reasoning tasks (Co-
hen et al., 2024; Qin et al., 2024; Yao et al.,
2023); excessive focus on surface-level pattern
matching (Hoelscher-Obermaier et al., 2023), and
locality issues for other unrelated knowledge and
general ability (Gu et al., 2024; Gupta et al., 2024).

Our work specifically addresses the poor perfor-
mance of edited models in downstream reasoning
tasks that involve the updated knowledge (Zhong
et al., 2023; Zhang et al., 2024d). Consider a rep-
resentative case in Figure 1 : after editing ‘Ed-
die Mathews, citizenship, United States → United
Kingdom’, models correctly answer direct queries
but fail multi-hop reasoning like ‘The capital of
the country that Eddie Mathews was a citizen of

e3

r2
e2

weak signal

Layer

r1

e3

r2

e2

e2

e1 t1 t2r1 r2

e1

r2

 Propagate to
the last token position

e2, r2
t2

 First-hop
resolved at t1

e2

e2

propagation
failure

 Resolve to
get the target at

e2, r2
t2

The capital of the country that Eddie Mathews was a citizen of is
e1r2 t1 t2r1

First-hop

Edit Knowledge in later hops

WΔ

e3

W′

e1

e2

ROME-styleWISE-style

Layer

e′ 3

Edit Knowledge in first hop

The edit
happen in
later layers
and fail to
take effect.

r1

e2

t1

(e′ 2, r2, e′ 3)

r2 t2

The former layer
would always
keep the stale
information and
cascade the error
in later layers.

r2

(e2, r2, e3 → e′ 3)
(e1, r1, r2 → e′ 3)

e′ 2

r2

e3

e1

e2

r1

e2

t1 r2 t2

r2

r2

Not take effect
because it is
only activated
by in early
layers.

e2

Cannot activate the
edit matrix and still
outdated in later
layers

(). Circuit-aware Knowledge Editing
leverages additional features to curate
reasoning tasks based on the updated
knowledge, steering LLMs to construct
a reasoning circuit that effectively
processes the new information.

c

Propagate the
knowledge into
circuit for later
hops

e

e
r

e*

(,) e* r′ , ea

(,) ea r1, e

(). Rethink the limitations of the most popular
editing paradigms from a circuit perspective:
both WISE-style (edits the later layers) and
ROME-style (edits the early layers) fail to
propagate their modifications through the
reasoning circuit.

b(). Multi-hop reasoning circuit in LLMs: the
second-hop reasoning process occurs at the
last token position. Two primary reasons
contribute to its failure: (1) weak signals,
and, (2) fail to propagate the second-hop
evidence to the final token position.

a

e2

e2

(e1, r1, r2 → e′ 3)
(e1, r1, e2 → e′ 2) (e1, r1, e2)

(e, r, e′ → e*)
ea r1

r

(,) e r, e * (,) ea, r1 r, e *

e*

e*
r′

ea

r′

e r

Ensure the new
knowledge can be
propagated for
subsequent reason

(,) e r, e * (,) e, r r′ , e *Layer

Figure 2: An overview of our work.

is?’ (still outputting ‘Washington D.C.’). Criti-
cally, this is not merely an editing artifact: vanilla
LLMs often correctly answer single-hop questions
while failing their multi-hop counterparts (Yang
et al., 2024b; Biran et al., 2024), suggesting deeper
architectural limitations in knowledge utilization.

We trace these limitations to a misalignment be-
tween KE strategies and the inherent reasoning
architectures of LLMs. To investigate this discon-
nect, we examine how LLMs leverage knowledge
in downstream reasoning tasks. Recent analysis
suggests that knowledge is not merely statically
stored but dynamically activated through special-
ized circuits (Yao et al., 2024; Biran et al., 2024;
Yu et al., 2025). However, these analyses over-
look the phenomenon of LLM failures in reasoning
circuits and fail to explore the underlying causes.
Our investigation (§2) delves deeper into reasoning
circuits, analyzing their structure and identifying
the reasons behind failures in multi-hop reasoning.
Specifically, the multi-hop reasoning emerges from
coordinated computing circuits: early layers handle
the first hop, extracting the bridge entity at the end-
token of the first hop. This bridge entity, along with
second-hop relation information, is then routed to
the last token position in the middle layers. Sub-
sequently, later layers utilize this information at
the last token position to complete the reasoning
process (Figure 2 (a)). We then analyze the entity
and relation information at the last token position
in failed multi-hop reasoning cases. Our observa-
tions reveal that critical information either fails to

be properly routed to the last token position, or ex-
hibits a weak signal, preventing effective reasoning.
This explains why current KE methods underper-
form (§3.1): they optimize for isolated parameter
changes rather than circuit-level integration needed
for compositional reasoning (Figure 2b).

To bridge this fundamental gap, we propose
Circuit-aware Knowledge Editing (CaKE) in §3.2.
Unlike methods that only update localized static
knowledge, CaKE actively constructs reasoning
circuits that enable dynamic application of edited
knowledge in downstream tasks. We first design
circuit-aware training data that integrates across
distinct segments of the reasoning process to force
the LLM to leverage updated knowledge for latent
reasoning (Figure 2c). Remarkably, we find that
only a few such samples are sufficient to integrate
knowledge across the reasoning circuit while main-
taining strong general ability. Moreover, to pre-
vent unintended data leakage, we construct these
data using ad-hoc features (Zhang et al., 2024c)
that are temporarily associated with the entities,
such as ‘Japan is colored green. The capital
city of the country colored in green is’. Finally,
we guide LLMs to establish reasoning circuits by
training with the curated data. Extensive experi-
ments (§4) demonstrate CaKE’s effectiveness: it
outperforms existing knowledge editing methods
on the MQuAKE multi-hop benchmark for both
LLAMA3-8B-Instruct (Dubey et al., 2024) and
Qwen2.5-7B-Instruct (Yang et al., 2024a). Notably,
CaKE achieves this while being more memory-

efficient than alternatives and successfully scales
to larger models like LLAMA3-70B-Instruct.

2 Analyzing Reasoning Circuit in LLM

2.1 Data Preparation

We employ the WikiData subset proposed by Bi-
ran et al. (2024) and name it HoppingTooLate,
which contains 82,021 two-hop queries. We de-
note each fact as a triplet (e, r, e′), where e is the
head entity, r is the relation, and e′ is the tail en-
tity. We view two-hop queries as (e1, r1, e2) and
(e2, r2, e3), where e1 is the source entity, e2 is the
bridge entity, and e3 is the target entity. We fo-
cus on the latent reasoning framework to evaluate
whether a model can output the expected answer e3
directly given the composite query (e1, r1, r2, ?).
For example, for the two facts (Eddie Mathews,
country_citizenship, United States),(United States,
capital, Washington D.C.), the composite query
is (Eddie Mathews, country_citizenship, capital,?).
We transform the question into the natural language
expression: ‘The capital of the country that Eddie
Mathews was a citizen of is?’. In addition, we
follow HoppingTooLate and define t1 as the last
token of the first-hop prompt (e.g., ‘the country
that Eddie Mathews was a citizen of’) and t2 as the
last token of the whole two-hop prompt (e.g., ‘The
capital of the country that Eddie Mathews was a
citizen of is’).

2.2 Multi-hop Reasoning Circuit

Building on the insights from prior work (Biran
et al., 2024; Yao et al., 2024), we can define a struc-
tured circuit mechanism for multi-hop reasoning
in transformer-based LLMs, as illustrated in Fig-
ure 2(a). The three distinct computational phases:
1) The model processes the initial relation r1 and
entity e1, encoding the bridge entity e2 in the final
token position of the first prompt segment (t1). 2)
Critical features, including e2 and the second rela-
tion, r2 are transferred to the last token position t2,
preparing for final resolution. 3) The model com-
putes the target e3 by resolving r2 and e2, giving
the result in the final token position. Hence, based
on the linearity theory (Hernandez et al., 2024),
multi-hop reasoning in LLM can be formalized as:

Fn(Fn−1(en−1, rn−1), rn) (1)

Each function Fn−1 produces a bridge entity en
for subsequent computation, demonstrating how

Model Metric
Correct Inconsistent Incorrect

Cases Layer Cases Layer Cases Layer

LLAMA3

e2 from t1 63.1% 6.3 75.2% 6.0 48.7% 8.2
e2 from t2 67.8% 13.2 59.8% 9.8 17.7% 21.1
r2 from t2 66.9% 14.0 49.0% 13.8 28.1% 13.7
e3 from t2 56.5% 18.8 22.7% 20.7 18.3% 18.0

Qwen2.5

e2 from t1 71.2% 4.3 74.1% 4.7 46.7% 5.1
e2 from t2 52.9% 7.9 63.7% 9.5 18.9% 13.5
r2 from t2 75.8% 8.1 75.2 % 10.4 44.8% 9.7
e3 from t2 71.2% 16.4 39.4% 17.4 25.2% 11.4

Table 1: The results of LLAMA3-8B-Instruct (32 layers)
and Qwen2.5-7B-Instruct (28 layers). Cases are the
percentage of data we can detect the information, and
Layer is the mean of the earliest layer where the required
information is detected.

intermediate results propagate vertically through
network layers.

2.3 Circuit in Failure Phenomena
Then, we aim to understand why language mod-
els sometimes fail at multi-hop reasoning despite
successfully answering individual single-hop ques-
tions. For instance, a model may correctly answer

‘the capital of Russia’ with ‘Moscow’ and ‘the coun-
try of citizenship of Fyodor Dostoyevsky’ with ‘Rus-
sia’, yet fail to answer the multi-hop question ‘the
capital of the country of citizenship of Fyodor Dos-
toyevsky is’ correctly. To systematically analyze
this issue, we focus on the second hop of reason-
ing, as the model typically performs well on the
first hop. We categorize the data from the Hop-
pingTooLate dataset1 into three subsets based on
the model’s behavior: Correct: The model an-
swers both single-hop questions (e1, r1, e2) and
(e2, r2, e3) correctly, as well as the multi-hop ques-
tion (e1, r1, r2, ?). Inconsistent: The model an-
swers both single-hop questions correctly but fails
on the multi-hop question. However, we observe
that some questions in the Correct set share the
same ’bridge’ entity e2, even though they originate
from distinct subject-relation pairs, that the model
answers correctly. (e′1, r

′
1, r2, ?). This suggests that

while the model can leverage knowledge in some
contexts, it fails to generalize, indicating reasoning
gaps rather than missing knowledge. Incorrect:
The model answers both single-hop questions cor-
rectly but fails on the multi-hop question in all
contexts (e′1, r

′
1, e2). This implies a complete fail-

ure to employ the knowledge for multi-hop reason-
ing. To investigate these failure modes, we check
whether the models construct the reasoning circuit
by monitoring key variables (e1, e2, and r2) at crit-

1We filter out short-cut cases as done by Biran et al. (2024).

backpatch_t1
backpatch_t2

t1_to_t2
0

10

20

30

40

50

60

Su
cc

es
s R

at
e

(%
)

47.0

63.7

41.2
35.7

49.2

58.2

LLaMA

backpatch_t1
backpatch_t2

t1_to_t2

60.3
64.2

52.1

29.2

37.9

60.2

QwenInconsistent Incorrect

Figure 3: Results of the intervention on the failure cases
in multi-hop reasoning of LLAMA3 and Qwen2.5.

ical positions (t1 and t2) across the model’s layers
using the PatchScope as Biran et al. (2024) did.
Our analysis reveals several interesting patterns,
extending beyond the ‘hopping too late’ problem
identified by Biran et al. (2024).

We list the results in Table 1 (more details in
Figure 6 in the Appendix). For the correct subset,
we observe strong evidence of the reasoning circuit
functioning as expected: a large portion of e2 is
detected at both t1 (e2 from t1) and t2 (e2 from
t2) in both LLAMA3 and Qwen2.5 models. The
model correctly uses the r2 and e2 information at
t2 to produce the final answer e3. Contrastly, in
the Incosistent subsets, we can find that despite
detecting e2 and r2 at t2, the model often fails to
produce the correct e3 answer (e3 from t2: only
22.7% in LLAMA3 and 39.4% in Qwen2.5 of
cases we can detect at t2). We hypothesize that the
e2 information, though present, may be insufficient
to trigger the second-hop reasoning circuit, leading
to the failure to execute the function F (e2, r2)
effectively. What’s more, in the Incorrect subsets,
we can find that the needed e2 information is rarely
detected at the t2 position (e2 from t2: Only 17.7%
in LLAMA3 and 18.9% in Qwen2.5). Even when
e2 is detected, it typically emerges in much later
layers (layer 21 in LLAMA3 and layer 13.5 in
Qwen2.5), making it too late to be effectively
utilized for the second-hop computation, aligned
with Biran et al. (2024)’s findings. We conjecture
the model fails to propagate e2 to the t2 position,
resulting in the variable e2 missing for conducting
the F (e2, r2) function.

Evaluation To test our hypothesis, we conduct
interventions to enhance the information at the
detected layers (details in Figure 6) to see if we can
improve the model’s performance in these failure
cases. We test three ways: back-patching the t1 and
t2 position as Biran et al. (2024) did, which would

enhance the information at the position, and cross-
position patching the information from t1 to the t2
position, which explicitly propagates the informa-
tion from t1 to t2 (details in Figure 10 in Appendix).
From the results in Figure 3, we can find a high
success rate for all the inconsistent and incorrect
cases, but they demonstrate different paradigms.
For the inconsistent cases, back-patching would
lead to better performance, while for the incorrect
cases, patching knowledge from the t1 to t2
usually shows better outcomes. This proves
our previous hypothesis that for the incorrect
cases, due to the propagation failure, the model
fails to move the e2 to t2 position, and manual
routing via cross-patching can mitigate the issue.
Meanwhile, for inconsistent cases, amplification
via back-patching compensates the weak signal
when valid e2 representations reach t2 but lack
sufficient magnitude for subsequent reasoning.

3 Circuits-aware Knowledge Editing

Building on our previous reasoning analysis, we
rethink the reason why current knowledge edit-
ing methods fail under multi-hop reasoning cir-
cumstances despite their great performance under
single-fact editing.

3.1 Rethinking KE from the Circuit View

Here, we aim to figure out what happens when we
edit the model with the current KE methods.

Unified Editing Details When updating a piece
of knowledge (e, r, o → o′), the most popular
knowledge editing techniques would modify the
parameters that are responsible for the knowledge.
There are two kinds of paradigms: editing the Feed-
Forward Networks (FFN) in the early layers, such
as ROME (Meng et al., 2022) and MEMIT (Meng
et al., 2023) or modifying the later layers’ FFN
output, like WISE (Wang et al., 2024c) and T-
Patcher (Huang et al., 2023). This is mainly
based on the key-value memory features of the
FFN (Geva et al., 2020). However, some studies
have queried the effectiveness of these localization
settings (Chang et al., 2024; Hase et al., 2024) as
the localization area is not correlated to the perfor-
mance of the knowledge editing methods. Here, we
propose a unified view of the mechanisms and lim-
itations from the circuit perspective. ROME-style
would modify the weight W with a perturbation
∆ and obtain a new weight W ′ = W +∆. When
calculating the ∆, ROME-style methods, apply the

least squares estimation and null space constraint
to make sure the ∆ is only activated by the cor-
responding entity representation ein and keep the
original output for other representations. In par-
allel, WISE-style editing methods would directly
introduce the new weight W ′ that would be acti-
vated by the related representation ein, and W ′

would encode the updated knowledge.(More de-
tails in Appendix B.2). Hence, these two editing
paradigms can be represented uniformly by a gated
function G(·):

FFNout(x) = Wx︸︷︷︸
Original term

+G(x) · δ(x)︸︷︷︸
Edit term

(2)

G(x) =

{
1, x ∈ ein

0, otherwise
(3)

Here, for ROME-style method,δ(x) = ∆x and for
WISE-style method, δ(x) = (W ′ −W)x. When
the gating function G(·) is activated by the input
x, the edit term δ(x) is applied, thereby modifying
the knowledge within the computational circuit.

Defect from circuit view In single-hop knowl-
edge editing, both these kinds of methods would
give us the correct information, but for the multi-
hop cases, they would fail. As shown in Figure 2
(b), both these layer-specific editing methods can-
not propagate the updated knowledge to the rea-
soning circuit, leading to unsatisfactory multi-hop
reasoning performances. Consider the two-hop
reasoning process from §2: the model must first
correctly compute e2 = F1(⟨e1, r1⟩) in early lay-
ers. The representation of e2 then propagates to the
final token position t2 (typically where answers are
generated), where it combines with r2 to compute
e3 = F2(⟨e2, r2⟩) in later layers.

WISE-style editing shows critical limitations
when handling first-hop facts (e1, r1, e2 → e′2) in
multi-hop reasoning. As the edit is applied to later
layers, the early layers remain unchanged and con-
tinue to produce the original e2 representation dur-
ing computation. This creates a fundamental mis-
match: while the later layers perform the second-
hop computation F2(⟨e2, r2⟩), they operate on the
unmodified e2 from early layers. Consequently, the
gating mechanism G(·) designed for first-hop edits
becomes effectively bypassed in the reasoning pro-
cess. Similarly, ROME-style editing fails when the
edited fact (e2, r2, e3 → e′3) serves as the second-
hop question. For the edit to take effect, the gat-
ing function G(·) must be activated by e2 in early

layers. However, e2’s representation only appears
after the first hop completes in the computational
pathway - potentially after the edited layers. In this
scenario, the gated function G(x) in earlier layers
remains unactivated, causing the model to default
to stale knowledge and produce incorrect answers.

To systematically evaluate these limitations, we
conduct experiments on editing different positions
in multi-hop questions. Table 6 reveals that WISE
achieves poorer performance when editing the first
hop versus the second hop. Conversely, when using
ROME to edit the second hop, the performance is
worse than when editing the first hop. These results
demonstrate that layer-specific editing methods fun-
damentally lack the ability to generalize updated
knowledge for downstream reasoning tasks.

3.2 Proposed Method: CaKE

Inspired by previous analysis, we propose a
novel method, Circuit-aware Knowledge Editing
(CaKE), which makes sure the models build the
reasoning circuit with the updated knowledge. As
we show in the previous section, a successful rea-
soning circuit is one that, after editing the model’s
knowledge, ensures: The updated computation F1

or F2 accurately reflects the new knowledge, and
the bridge entity e2 is correctly computed and prop-
agated to t2. Hence, simply editing a single layer or
several layers is not enough to enable the circuit for
reasoning. Here, CaKE comprises two key compo-
nents: (1) generating circuit-aware data that explic-
itly requires reasoning with the updated knowledge,
and (2) training the model to construct robust rea-
soning circuits that integrate the new knowledge.

Data Generation For each updated knowledge
item, we construct the following contexts to mit-
igate these issues: (1) Original Narrative: We
begin by generating straightforward factual state-
ments that explicitly convey the updated informa-
tion. For example, when updating the fact k: (Per-
sonX, citizen_country, Switzerland → Japan), we
use the narrative representation: ‘PersonX is a cit-
izen of Japan’ and generate several paraphrases.
These statements serve as the foundation for the
model to learn the updated knowledge. (2) Circuit-
aware Tasks: Next, we design specialized reason-
ing scenarios that address two critical challenges:
preventing failure propagation and mitigating weak
signals, while ensuring that updated knowledge is
properly integrated across different layers (in Fig-
ure 2c). Moreover, to avoid introducing extrane-

Method Model MQUAKE-CF MQUAKE-CF-v2 MQUAKE-T

H-Acc.↑ MAcc.↑ H-Acc.↑ MAcc.↑ H-Acc.↑ MAcc.↑

Pre-edited

L
L

aM
A

3-
8B

-I
ns

79.0 27.0 78.4 28.6 71.0 5.3

AdaLoRA 66.0 27.6 64.7 24.6 92.3 66.0
WISE 38.2 24.0 37.2 21.0 63.5 62.9

MeLLo 16.5 16.1 19.5 16.0 42.3 50.1
ROME 86.8 17.6 86.4 15.5 89.5 8.4
MEMIT 76.3 11.5 74.0 10.0 86.0 3.7

AlphaEdit 66.1 10.1 63.7 8.5 73.4 1.0
IFMET ♣ 81.9 23.2 75.3 36.5 82.1 46.1

CaKE(ours) 90.6 57.3 90.1 57.1 91.5 81.4

Table 2: Comparison of CaKE with existing methods on MQuAKE for LLAMA3-8B-Instruct. The best results
are highlighted in bold, while the second-best results are underlined. ♣ means the results are based on our re-
implementation since the original code is not open by the authors, and we will update it after the source code is open.

ous knowledge that could leak into downstream
evaluations—and to test the generalization of our
method (inspired by prior research (Zhang et al.,
2024c))—we incorporate ad-hoc features into these
scenarios. Particularly, these tasks link the facts
with intermediate attributes or reasoning steps and
fall into two categories: Late-layer Knowledge
Integration: These tasks ensure that the updated
knowledge is effectively learned in the later lay-
ers, alleviating issues such as weak signals and
the limitations of ROME-style editing. Take the
fact k: (PersonX, citizen_country, Switzerland
→ Japan) as an example; we construct a seed
prompt like: ‘Suppose {random_entity_1} wears
red clothes, {random_entity_2} wears blue clothes,
and {PersonX} wears green clothes. The country
of citizenship of the person in green is:’ Here, the
model is expected to output ‘Japan,’ requiring it
to employ the new fact k in later layers. Reason-
ing Circuit Enhancement: These tasks require
the model to use the updated knowledge for sub-
sequent reasoning, thereby mitigating propagation
failure and WISE-style’s limitations. Following the
same fact k, the seed prompt is ‘In a book about
countries, Japan is mentioned on page 6 of the
book, while China is mentioned on page 72. On
which page of the book is the country of citizenship
of the {PersonX} shown?’ Here, the model must
first recall the updated citizenship (Japan) and then
use this information to determine the correct page
number (6).

For each relation type, we design these seed
task templates and employ GLM-4-plus (GLM
et al., 2024) to generate diverse expressions follow-

ing these templates (see Appendix A for details).
Specifically, we create 3 distinct samples per cat-
egory for each edited fact, which our experiments
show are sufficient to enable effective reasoning
with the updated knowledge. This minimal data
requirement demonstrates the efficiency of our ap-
proach in adapting models to new information.

Edit Training After obtaining the curated
circuit-aware data D, we fine-tune the LLM using
LoRA, enabling the model to optimize its internal
knowledge organization. We minimize the cross-
entropy loss L between the model’s outputs and the
ground-truth tokens expressing the updated fact:

L = E(x,y)∈D

− |y|∑
t=1

log p(yt | x, θLoRA)

 (4)

where θLoRA represents the LoRA parameters, x
is the input prompt, and y is the desired updated
output sequence.

4 Experiments

4.1 Experiment Settings
We mainly utilize the multi-hop reasoning knowl-
edge editing dataset MQuAKE (Zhong et al., 2023),
which considers different numbers of hops (from
2 to 4) and different positions of the knowledge
used in the multi-hop questions. We utilize three
versions of the datasets: MQuAKE-CF-3k and
MQuAKE-CF-3k-v2, which are two subsets that
contain different question types and editing hop-
ping numbers, and MQuAKE-T is a time-aware
knowledge editing benchmark.

Baselines and Models We consider sev-
eral knowledge editing baselines, including:
IFMET (Zhang et al., 2024d), AlphaEdit (Fang
et al., 2024), ROME (Meng et al., 2022),
MEMIT (Meng et al., 2023),WISE (Wang et al.,
2024c) and MeLLo (Zhong et al., 2023). Here,
AlphaEdit, ROME, and MEMIT are methods
that edit the model’s parameters at early lay-
ers; WISE adds additional parameters at later
layers, and IFMET edits both the early and
later layers’ FFN to achieve better multi-hop
reasoning performance. MeLLo is a prompt-based
retrieval-augmented method that keeps the model’s
parameters unchanged. We conduct experiments
on LLAMA-3-8B-Instruct, Qwen-2.5-7B-Instruct,
and LLAMA-3-70B-Instruct.

Evalutation Metric Following Zhong et al.
(2023), we evaluate model performance using
Multi-hop Accuracy (MAcc) and Hop-wise An-
swering Accuracy (H-Acc). MAcc measures the
accuracy of multi-hop question answering, while
H-Acc assesses correctness at each reasoning step.
For both metrics, we consider a prediction correct
if the ground-truth answer appears in the generated
text as Cohen et al. (2024); Zhong et al. (2023)
did. Higher values indicate better reasoning capa-
bility. For KE, we also need to consider local-
ity, which ensures edits do not affect unrelated
knowledge and abilities. To assess this, we eval-
uate the model on general benchmarks, including
CommonsenseQA (Talmor et al., 2019), BigBench-
Hard (Suzgun et al., 2023), MMLU (Hendrycks
et al., 2021), and GSM8k (Cobbe et al., 2021).

4.2 Experiments Results

Main Results We show the results for LLAMA3-
8B-Instruct in Table 2 and Qwen2.5-7B-Instruct
in Table 7. From the table, we can find that al-
though current KE methods achieve high hop-wise
accuracy (H-Acc.), their performance on the three
versions of MQuAKE is quite low (with an av-
erage accuracy of less than 20%). For example,
MEMIT and ROME achieve over 80% accuracy on
single-hop questions in MQuAKE-v2; however,
their accuracy on multi-hop reasoning drops to
only around 10%, indicating that the LLM fails
to effectively utilize the updated knowledge during
reasoning. In contrast, CaKE demonstrates signifi-
cant improvements in multi-hop reasoning. In the
LLAMA3-8B-Instruct model, CaKE achieves ac-
curacies of 57.3, 57.2 and 81.5 in MQuAKE-CF,

CSQA BBH MMLU GSM8k

LLaMA3-8B-Ins 76.09 67.89 63.83 75.20

MEMIT 76.08 67.88 63.82 75.21
ROME 72.98 61.37 62.95 74.59
CAKE 75.10 67.20 62.98 76.04

Qwen2.5-7B-Ins 82.31 33.39 71.80 82.26

MEMIT 82.39 37.37 71.80 81.96
ROME 72.57 34.22 63.38 72.21
CAKE 82.64 37.44 71.76 82.79

Table 3: Locality Performance on several general
benchmarks of CaKE and other editing methods.

MQuAKE-CF-v2 and MQuAKE-T, respectively,
outperforming all the compared methods. Addition-
ally, IFMET, which also considers different layers
for multi-hop reasoning but neglects the informa-
tion flow within the circuit, performs not as well as
CaKE. Moreover, when compared with RAG-based
methods such as MeLLo, CaKE also yields better
results. Furthermore, compared to the baseline
LoRA tuning methods that simply incorporate the
raw knowledge, the improvements observed with
CaKE underscore the effectiveness of our approach.
Results in Qwen-2.5-Instruct also demonstrate the
same phenomenon.

Position and Number of Hop We also compare
the performance on different hops and positions in
Figure 9. Even when the model is trained solely
on two-hop questions, CaKE yields improvements
across varying numbers of editing hops. The bene-
fits are particularly pronounced for four-hop ques-
tions, where methods like IFMET (designed only
for two-hop scenarios) struggle. Besides, CaKE
enhances performance regardless of the position of
the edited knowledge within the multi-hop ques-
tions, demonstrating the generalizability of CaKE.

Efficiency and Scalability We evaluate compu-
tational efficiency in Table 10, demonstrating that
CaKE achieves better performance while requiring
less memory than MEMIT with comparable editing
times. This efficiency advantage enables CaKE to
scale effectively to larger models, as evidenced in
Table 8, where it maintains superior performance
on LLAMA3-70B-Instruct.

5 Analysis

5.1 Locality Performance
In this section, we evaluate the model’s perfor-
mance on general ability benchmarks to ensure
that acquiring new knowledge does not compro-

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer

0

2

4

6

8

10

12

14

Bridge Entity Logits

CAKE
LoRA

AlphaEdit
MEMIT

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer

0

2

4

6

8

10
Relation Logits

CAKE
LoRA

AlphaEdit
MEMIT

Figure 4: e2 and r2’s logits at t2 in models after different
knowledge editing methods.

mise its overall capabilities. As shown in Ta-
ble 3, CaKE achieves performance comparable to
the original model on both the LLAMA3-8B and
Qwen2.5-7B models across different kinds of tasks,
including math, commonsense, and diverse under-
standing tasks.

5.2 Case Analysis

In this part, we show the cases in which the CaKE
helps the model learn the multi-hop reasoning
circuit and other methods fail. For illustration,
we consider the two-hop question: ‘The capital city
of the country that Eddie Mathews was a citizen
of is’. Here, the editing case is (Eddie Mathews,
citizenship, United States → United Kingdom), and
the updated model is expected to output ‘London’.
However, CaKE gives the correct answer, while
other methods fail: MEMIT gives us the ‘Moscow’,
AlphaEdit gives us ‘Birmingham’, and LoRA gives
us ‘not known’. To further understand these dif-
ferences, we analyze the computing circuit of each
method to determine whether the updated model
successfully propagates the bridge entity e2 and
relation r2 to the last token t2 position.

Figure 4 compares the logits of e2 and r2 at po-
sition t2 across different editing methods. Here,
CaKE generates significantly stronger logits for
the bridge entity e2 compared to AlphaEdit and
MEMIT. This demonstrates CaKE ’s ability to prop-
agate critical information to target positions for sub-
sequent reasoning steps. Similarly, CaKE produces
more prominent r2 logits, indicating more robust
circuit construction and information flow compared
to baseline methods.

6 Related Work

Knowledge Learning and Editing Knowledge
editing (Lampinen et al., 2025; Jiang et al., 2024a;
Sun et al., 2024; Hsueh et al., 2024; Powell et al.,

2024; Wang et al., 2024a; Rozner et al., 2024;
Zhang et al., 2024a; Wang et al., 2024e; Shi et al.,
2024; Huang et al., 2024b; Guo et al., 2024; Wang
et al., 2025; Feng et al., 2025; Yang et al., 2025;
Li et al., 2024b; Huang et al., 2024a) has emerged
as a promising approach for updating models in
an ever-changing world. Current knowledge edit-
ing methods typically follow one of several strate-
gies: modifying the MLP components in earlier
layers (Meng et al., 2022, 2023), enhancing the
MLP in later layers (Hartvigsen et al., 2023), or
retrieving relevant facts as prompts (Jiang et al.,
2024b; Zhong et al., 2023). However, most exist-
ing knowledge editing techniques concentrate on
simple factual updates and frequently fail to gener-
alize to more complex downstream tasks, such as
multi-hop reasoning scenarios.

Model Interpretability Knowledge editing
is primarily based on the intrinsic knowledge
mechanisms of neural models’ “black boxes”
(Ferrando et al., 2024). Consequently, understand-
ing how knowledge in LLMs is acquired and
stored has garnered significant attention (Wang
et al., 2024b). Recent studies (Zhou et al., 2023)
demonstrate that most knowledge is learned during
the pretraining stage and is predominantly stored
in the Feed-Forward Network (Geva et al., 2020).
Beyond these localized findings, researchers (Geva
et al., 2023; Yao et al., 2024) have investigated the
computational circuits—the pathways connecting
Transformer components—to elucidate how LLMs
perform knowledge recall. Building on this,
subsequent work has explored the relationship
between knowledge editing and these circuits (Ge
et al., 2024). In contrast, our work focuses on the
mechanisms underlying multi-hop reasoning in
LLMs and aims to improve the generalization of
edited knowledge.

7 Conclusion

In this paper, we identify that existing knowledge
editing methods fall short due to their isolated pa-
rameter adjustments by examining the multi-hop
reasoning circuits within LLMs. We present CaKE ,
a method designed to align knowledge editing
with the inherent reasoning architectures of LLMs.
CaKE incorporates circuit-aware tasks that com-
pel the model to dynamically integrate and utilize
new knowledge during reasoning. Experimental re-
sults demonstrate that CaKE achieves generalizable
multi-hop knowledge editing.

Limitation

Dataset Our work primarily focuses on the fac-
tual knowledge embedded in large language mod-
els (LLMs) and their capacity for multi-hop rea-
soning over these facts. We recognize that LLM
reasoning also encompasses other domains—such
as long-form mathematics and reverse-curse rea-
soning—that merit further investigation.

Reasoning Pattern As discussed in the previ-
ous analysis, we concentrate on direct reasoning
phenomena. Current LLMs have shown impres-
sive capabilities in slow-thinking paradigms, in-
cluding chain-of-thought and reflective reasoning.
Beyond direct reasoning, enhancing the utilization
of knowledge within these paradigms represents an
important avenue for future research.

Fine-grained Circuit Components Our analysis
revealed relational information within the circuits;
however, CaKE currently does not delve deeply
into these relationships. We believe that a more
focused investigation into these components is nec-
essary. Additionally, while our study emphasizes
general circuit behavior, developing a more con-
cise and effective method for knowledge editing
remains an exciting challenge for future work.

Data Attribution Although we demonstrate the
ability to construct reasoning circuits using curated
data, the connection between a model’s acquired
abilities in its parameters and its training data is
still underexplored. A deeper understanding of this
relationship could lead to more efficient training
processes and the generation of higher-quality syn-
thetic data.

References

Eden Biran, Daniela Gottesman, Sohee Yang, Mor Geva,
and Amir Globerson. 2024. Hopping too late: Explor-
ing the limitations of large language models on multi-
hop queries. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Process-
ing, pages 14113–14130, Miami, Florida, USA. As-
sociation for Computational Linguistics.

Ting-Yun Chang, Jesse Thomason, and Robin Jia. 2024.
Do localization methods actually localize memorized
data in llms? a tale of two benchmarks. In Proceed-
ings of the 2024 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume 1:
Long Papers), pages 3190–3211.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson,
and Mor Geva. 2024. Evaluating the ripple effects
of knowledge editing in language models. Transac-
tions of the Association for Computational Linguis-
tics, 11:283–298.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan
Ma, Xiang Wang, Xiangnan He, and Tat-seng Chua.
2024. Alphaedit: Null-space constrained knowl-
edge editing for language models. arXiv preprint
arXiv:2410.02355.

Yujie Feng, Liming Zhan, Zexin Lu, Yongxin Xu,
Xu Chu, Yasha Wang, Jiannong Cao, Philip S Yu,
and Xiao-Ming Wu. 2025. Geoedit: Geometric
knowledge editing for large language models. arXiv
preprint arXiv:2502.19953.

Javier Ferrando, Gabriele Sarti, Arianna Bisazza, and
Marta R Costa-jussà. 2024. A primer on the in-
ner workings of transformer-based language models.
arXiv preprint arXiv:2405.00208.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2024. A framework for few-shot language model
evaluation.

Huaizhi Ge, Frank Rudzicz, and Zining Zhu. 2024.
What do the circuits mean? a knowledge edit view.
arXiv preprint arXiv:2406.17241.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir
Globerson. 2023. Dissecting recall of factual asso-
ciations in auto-regressive language models. arXiv
preprint arXiv:2304.14767.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2020. Transformer feed-forward layers are key-
value memories. arXiv preprint arXiv:2012.14913.

Asma Ghandeharioun, Avi Caciularu, Adam Pearce, Lu-
cas Dixon, and Mor Geva. 2024. Patchscopes: A
unifying framework for inspecting hidden representa-
tions of language models. In Forty-first International
Conference on Machine Learning, ICML 2024, Vi-
enna, Austria, July 21-27, 2024. OpenReview.net.

https://aclanthology.org/2024.emnlp-main.781
https://aclanthology.org/2024.emnlp-main.781
https://aclanthology.org/2024.emnlp-main.781
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://openreview.net/forum?id=5uwBzcn885
https://openreview.net/forum?id=5uwBzcn885
https://openreview.net/forum?id=5uwBzcn885

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen-
hui Zhang, Da Yin, Diego Rojas, Guanyu Feng, Han-
lin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Ji-
adai Sun, Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie
Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu,
Lucen Zhong, Mingdao Liu, Minlie Huang, Peng
Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shu-
dan Zhang, Shulin Cao, Shuxun Yang, Weng Lam
Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan
Zhang, Xiaotao Gu, Xin Lv, Xinghan Liu, Xinyi Liu,
Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan
An, Yifan Xu, Yilin Niu, Yuantao Yang, Yueyan Li,
Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang,
Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan
Wang. 2024. Chatglm: A family of large language
models from glm-130b to glm-4 all tools. Preprint,
arXiv:2406.12793.

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-
Hua Ling, Kai-Wei Chang, and Nanyun Peng. 2024.
Model editing harms general abilities of large lan-
guage models: Regularization to the rescue. In Pro-
ceedings of the 2024 Conference on Empirical Meth-
ods in Natural Language Processing, pages 16801–
16819.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Phillip Guo, Aaquib Syed, Abhay Sheshadri, Aidan
Ewart, and Gintare Karolina Dziugaite. 2024. Mech-
anistic unlearning: Robust knowledge unlearning and
editing via mechanistic localization. arXiv preprint
arXiv:2410.12949.

Akshat Gupta, Anurag Rao, and Gopala Anu-
manchipalli. 2024. Model editing at scale leads to
gradual and catastrophic forgetting. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 15202–15232, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Tom Hartvigsen, Swami Sankaranarayanan, Hamid
Palangi, Yoon Kim, and Marzyeh Ghassemi. 2023.
Aging with grace: Lifelong model editing with dis-
crete key-value adaptors. Advances in Neural Infor-
mation Processing Systems, 36.

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghan-
deharioun. 2024. Does localization inform editing?
surprising differences in causality-based localization
vs. knowledge editing in language models. Advances
in Neural Information Processing Systems, 36.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net.

Evan Hernandez, Arnab Sen Sharma, Tal Haklay, Kevin
Meng, Martin Wattenberg, Jacob Andreas, Yonatan

Belinkov, and David Bau. 2024. Linearity of relation
decoding in transformer language models. In The
Twelfth International Conference on Learning Rep-
resentations, ICLR 2024, Vienna, Austria, May 7-11,
2024. OpenReview.net.

Jason Hoelscher-Obermaier, Julia Persson, Esben Kran,
Ioannis Konstas, and Fazl Barez. 2023. Detecting
edit failures in large language models: An improved
specificity benchmark. In Findings of the Association
for Computational Linguistics: ACL 2023, pages
11548–11559.

Yifan Hou, Jiaoda Li, Yu Fei, Alessandro Stolfo,
Wangchunshu Zhou, Guangtao Zeng, Antoine Bosse-
lut, and Mrinmaya Sachan. 2023. Towards a mech-
anistic interpretation of multi-step reasoning capa-
bilities of language models. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 4902–4919.

Cheng-Hsun Hsueh, Paul Kuo-Ming Huang, Tzu-Han
Lin, Che-Wei Liao, Hung-Chieh Fang, Chao-Wei
Huang, and Yun-Nung Chen. 2024. Editing the
mind of giants: An in-depth exploration of pitfalls of
knowledge editing in large language models. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2024, Miami, Florida, USA, November
12-16, 2024, pages 9417–9429. Association for Com-
putational Linguistics.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Baixiang Huang, Canyu Chen, Xiongxiao Xu, Ali
Payani, and Kai Shu. 2024a. Can knowledge edit-
ing really correct hallucinations? arXiv preprint
arXiv:2410.16251.

Xiusheng Huang, Jiaxiang Liu, Yequan Wang, and Kang
Liu. 2024b. Reasons and solutions for the decline in
model performance after editing. Advances in Neural
Information Processing Systems, 37:68833–68853.

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou,
Wenge Rong, and Zhang Xiong. 2023. Transformer-
patcher: One mistake worth one neuron. In The
Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net.

Houcheng Jiang, Junfeng Fang, Ningyu Zhang, Guo-
jun Ma, Mingyang Wan, Xiang Wang, Xiangnan He,
and Tat-seng Chua. 2025. Anyedit: Edit any knowl-
edge encoded in language models. arXiv preprint
arXiv:2502.05628.

Yuxin Jiang, Yufei Wang, Chuhan Wu, Wanjun Zhong,
Xingshan Zeng, Jiahui Gao, Liangyou Li, Xin Jiang,
Lifeng Shang, Ruiming Tang, Qun Liu, and Wei
Wang. 2024a. Learning to edit: Aligning llms with
knowledge editing. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational

https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://doi.org/10.18653/v1/2024.findings-acl.902
https://doi.org/10.18653/v1/2024.findings-acl.902
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=w7LU2s14kE
https://openreview.net/forum?id=w7LU2s14kE
https://aclanthology.org/2024.findings-emnlp.550
https://aclanthology.org/2024.findings-emnlp.550
https://aclanthology.org/2024.findings-emnlp.550
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=4oYUGeGBPm
https://openreview.net/forum?id=4oYUGeGBPm
https://doi.org/10.18653/V1/2024.ACL-LONG.258
https://doi.org/10.18653/V1/2024.ACL-LONG.258

Linguistics (Volume 1: Long Papers), ACL 2024,
Bangkok, Thailand, August 11-16, 2024, pages 4689–
4705. Association for Computational Linguistics.

Yuxin Jiang, Yufei Wang, Chuhan Wu, Wanjun Zhong,
Xingshan Zeng, Jiahui Gao, Liangyou Li, Xin Jiang,
Lifeng Shang, Ruiming Tang, Qun Liu, and Wei
Wang. 2024b. Learning to edit: Aligning LLMs with
knowledge editing. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 4689–
4705, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Tianjie Ju, Yijin Chen, Xinwei Yuan, Zhuosheng Zhang,
Wei Du, Yubin Zheng, and Gongshen Liu. 2024. In-
vestigating multi-hop factual shortcuts in knowledge
editing of large language models. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 8987–9001, Bangkok, Thailand. Association
for Computational Linguistics.

Andrew K Lampinen, Arslan Chaudhry, Stephanie CY
Chan, Cody Wild, Diane Wan, Alex Ku, Jörg Born-
schein, Razvan Pascanu, Murray Shanahan, and
James L McClelland. 2025. On the generaliza-
tion of language models from in-context learning
and finetuning: a controlled study. arXiv preprint
arXiv:2505.00661.

Ming Li, Yanhong Li, and Tianyi Zhou. 2024a. What
happened in llms layers when trained for fast vs. slow
thinking: A gradient perspective. arXiv preprint
arXiv:2410.23743.

Zhaoyi Li, Gangwei Jiang, Hong Xie, Linqi Song, Defu
Lian, and Ying Wei. 2024b. Understanding and
patching compositional reasoning in llms. In Find-
ings of the Association for Computational Linguistics
ACL 2024, pages 9668–9688.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual associ-
ations in gpt. Advances in Neural Information Pro-
cessing Systems, 35:17359–17372.

Kevin Meng, Arnab Sen Sharma, Alex J. Andonian,
Yonatan Belinkov, and David Bau. 2023. Mass-
editing memory in a transformer. In The Eleventh
International Conference on Learning Representa-
tions, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D Manning. 2021. Fast model
editing at scale. arXiv preprint arXiv:2110.11309.

OpenAI. 2024. Introducing OpenAI O1 preview.

Derek Powell, Walter Gerych, and Thomas Hartvigsen.
2024. TAXI: evaluating categorical knowledge edit-
ing for language models. In Findings of the Asso-
ciation for Computational Linguistics, ACL 2024,
Bangkok, Thailand and virtual meeting, August 11-
16, 2024, pages 15343–15352. Association for Com-
putational Linguistics.

Jiaxin Qin, Zixuan Zhang, Chi Han, Pengfei Yu, Man-
ling Li, and Heng Ji. 2024. Why does new knowledge
create messy ripple effects in llms? In Proceedings
of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 12602–12609.

Amit Rozner, Barak Battash, Lior Wolf, and Ofir Lin-
denbaum. 2024. Knowledge editing in language
models via adapted direct preference optimization.
In Findings of the Association for Computational
Linguistics: EMNLP 2024, Miami, Florida, USA,
November 12-16, 2024, pages 4761–4774. Associa-
tion for Computational Linguistics.

Yucheng Shi, Qiaoyu Tan, Xuansheng Wu, Shaochen
Zhong, Kaixiong Zhou, and Ninghao Liu. 2024.
Retrieval-enhanced knowledge editing in language
models for multi-hop question answering. In Pro-
ceedings of the 33rd ACM International Conference
on Information and Knowledge Management, CIKM
2024, Boise, ID, USA, October 21-25, 2024, pages
2056–2066. ACM.

Zengkui Sun, Yijin Liu, Jiaan Wang, Fandong Meng, Ji-
nan Xu, Yufeng Chen, and Jie Zhou. 2024. Outdated
issue aware decoding for factual knowledge editing.
In Findings of the Association for Computational
Linguistics, ACL 2024, Bangkok, Thailand and vir-
tual meeting, August 11-16, 2024, pages 9282–9293.
Association for Computational Linguistics.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny
Zhou, et al. 2023. Challenging big-bench tasks and
whether chain-of-thought can solve them. In Find-
ings of the Association for Computational Linguistics:
ACL 2023, pages 13003–13051.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149–4158.

Haoyu Wang, Tianci Liu, Ruirui Li, Monica Xiao
Cheng, Tuo Zhao, and Jing Gao. 2024a. Roselora:
Row and column-wise sparse low-rank adaptation of
pre-trained language model for knowledge editing
and fine-tuning. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2024, Miami, FL, USA, Novem-
ber 12-16, 2024, pages 996–1008. Association for
Computational Linguistics.

Mengru Wang, Yunzhi Yao, Ziwen Xu, Shuofei Qiao,
Shumin Deng, Peng Wang, Xiang Chen, Jia-Chen
Gu, Yong Jiang, Pengjun Xie, et al. 2024b. Knowl-
edge mechanisms in large language models: A sur-
vey and perspective. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pages
7097–7135.

https://doi.org/10.18653/v1/2024.acl-long.258
https://doi.org/10.18653/v1/2024.acl-long.258
https://doi.org/10.18653/v1/2024.acl-long.486
https://doi.org/10.18653/v1/2024.acl-long.486
https://doi.org/10.18653/v1/2024.acl-long.486
https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/forum?id=MkbcAHIYgyS
https://openai.com/index/introducing-openai-o1-preview/
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.906
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.906
https://aclanthology.org/2024.findings-emnlp.273
https://aclanthology.org/2024.findings-emnlp.273
https://doi.org/10.1145/3627673.3679722
https://doi.org/10.1145/3627673.3679722
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.552
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.552
https://aclanthology.org/2024.emnlp-main.57
https://aclanthology.org/2024.emnlp-main.57
https://aclanthology.org/2024.emnlp-main.57
https://aclanthology.org/2024.emnlp-main.57

Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi
Yao, Yong Jiang, Pengjun Xie, Fei Huang, and Hua-
jun Chen. 2024c. WISE: Rethinking the knowledge
memory for lifelong model editing of large language
models. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems.

Peng Wang, Ningyu Zhang, Bozhong Tian, Zekun Xi,
Yunzhi Yao, Ziwen Xu, Mengru Wang, Shengyu Mao,
Xiaohan Wang, Siyuan Cheng, Kangwei Liu, Yuan-
sheng Ni, Guozhou Zheng, and Huajun Chen. 2024d.
EasyEdit: An easy-to-use knowledge editing frame-
work for large language models. In Proceedings of
the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 3: System Demonstra-
tions), pages 82–93, Bangkok, Thailand. Association
for Computational Linguistics.

Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng,
Chen Chen, and Jundong Li. 2025. Knowledge edit-
ing for large language models: A survey. ACM Com-
put. Surv., 57(3):59:1–59:37.

Yiwei Wang, Muhao Chen, Nanyun Peng, and Kai-Wei
Chang. 2024e. Deepedit: Knowledge editing as de-
coding with constraints. CoRR, abs/2401.10471.

Zhiwei Wang, Yunji Wang, Zhongwang Zhang,
Zhangchen Zhou, Hui Jin, Tianyang Hu, Jiacheng
Sun, Zhenguo Li, Yaoyu Zhang, and Zhi-Qin John
Xu. 2024f. Towards understanding how transformer
perform multi-step reasoning with matching opera-
tion. arXiv preprint arXiv:2405.15302.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024a. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115.

Sohee Yang, Nora Kassner, Elena Gribovskaya, Sebas-
tian Riedel, and Mor Geva. 2024b. Do large language
models perform latent multi-hop reasoning without
exploiting shortcuts? Preprint, arXiv:2411.16679.

Wanli Yang, Fei Sun, Jiajun Tan, Xinyu Ma, Qi Cao,
Dawei Yin, Huawei Shen, and Xueqi Cheng. 2025.
The mirage of model editing: Revisiting evaluation
in the wild. arXiv preprint arXiv:2502.11177.

Xinhao Yao, Ruifeng Ren, Yun Liao, and Yong Liu.
2025a. Unveiling the mechanisms of explicit cot
training: How chain-of-thought enhances reasoning
generalization. arXiv preprint arXiv:2502.04667.

Yunzhi Yao, Canyu Chen, Jia-Chen Gu, Shumin Deng,
Manling Li, and Nanyun Peng. 2025b. Reflection on
knowledge editing: Charting the next steps. https:
//yyzcowtodd.cn/rethinkedit. Notion Blog.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu
Zhang. 2023. Editing large language models: Prob-
lems, methods, and opportunities. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 10222–10240.

Yunzhi Yao, Ningyu Zhang, Zekun Xi, Mengru Wang,
Ziwen Xu, Shumin Deng, and Huajun Chen. 2024.
Knowledge circuits in pretrained transformers. Ad-
vances in Neural Information Processing Systems.

Zeping Yu, Yonatan Belinkov, and Sophia Ananiadou.
2025. Back attention: Understanding and enhancing
multi-hop reasoning in large language models. arXiv
preprint arXiv:2502.10835.

Mengqi Zhang, Xiaotian Ye, Qiang Liu, Pengjie Ren,
Shu Wu, and Zhumin Chen. 2024a. Knowledge
graph enhanced large language model editing. In
Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2024, Miami, FL, USA, November 12-16, 2024, pages
22647–22662. Association for Computational Lin-
guistics.

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang,
Shumin Deng, Mengru Wang, Zekun Xi, Shengyu
Mao, Jintian Zhang, Yuansheng Ni, et al. 2024b. A
comprehensive study of knowledge editing for large
language models. arXiv preprint arXiv:2401.01286.

Xiao Zhang, Miao Li, and Ji Wu. 2024c. Co-occurrence
is not factual association in language models. In The
Thirty-eighth Annual Conference on Neural Informa-
tion Processing Systems.

Zhuoran Zhang, Yongxiang Li, Zijian Kan, Keyuan
Cheng, Lijie Hu, and Di Wang. 2024d. Locate-then-
edit for multi-hop factual recall under knowledge
editing. arXiv preprint arXiv:2410.06331.

Zexuan Zhong, Zhengxuan Wu, Christopher D Manning,
Christopher Potts, and Danqi Chen. 2023. Mquake:
Assessing knowledge editing in language models via
multi-hop questions. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 15686–15702.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer,
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping
Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis,
Luke Zettlemoyer, and Omer Levy. 2023. LIMA:
less is more for alignment. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

https://openreview.net/forum?id=VJMYOfJVC2
https://openreview.net/forum?id=VJMYOfJVC2
https://openreview.net/forum?id=VJMYOfJVC2
https://doi.org/10.18653/v1/2024.acl-demos.9
https://doi.org/10.18653/v1/2024.acl-demos.9
https://doi.org/10.1145/3698590
https://doi.org/10.1145/3698590
https://doi.org/10.48550/ARXIV.2401.10471
https://doi.org/10.48550/ARXIV.2401.10471
https://arxiv.org/abs/2411.16679
https://arxiv.org/abs/2411.16679
https://arxiv.org/abs/2411.16679
https://yyzcowtodd.cn/rethinkedit
https://yyzcowtodd.cn/rethinkedit
https://aclanthology.org/2024.emnlp-main.1261
https://aclanthology.org/2024.emnlp-main.1261
https://openreview.net/forum?id=xabStWAUtr
https://openreview.net/forum?id=xabStWAUtr
http://papers.nips.cc/paper_files/paper/2023/hash/ac662d74829e4407ce1d126477f4a03a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/ac662d74829e4407ce1d126477f4a03a-Abstract-Conference.html

Appendix

A Setting Detail

Dataset We list the details of the dataset in Ta-
ble 4.

Model Correct Inconsistent Incorrect

LLaMA3-8B-Ins. 1,005 1,032 1,240
Qwen2.5-7B-Ins. 241 252 275

Table 4: The dataset we used in the analysis.

Environment Setting We run our experiments
on 2 NVIDIA-A800 GPUs. For data generation,
we utilize glm-4-plus and glm-4-air and a total
of 10,000,000 tokens (about 20 dollars) to gen-
erate all synthetic data for the whole 7,867 data
samples. The cost is approximately 0.002 dollars
per edit, which also demonstrates the efficiency
of CaKE method. We use LLM-Eval (Gao et al.,
2024) to test the model’s general performance.

Data Generation We first construct the question
template T for each relation type, and we list some
of them in Table 5. We then generate the data using
the following prompt:

Prompt for Constructing the circuit-aware data

Here are some question templates for the spe-
cific relation. As you can see, the question use
the knowledge in the input to conduct reason-
ing in different hops for multi-hop reasoning.
Please generate 3 different questions that share
the same features as the template. Please re-
turn a python json file. {T } Here is the input
question:

It should be noted that we do not ask the model
to strictly follow the expression of the template, and
we also show some data samples in Appendix A to
show the diversity of the generated data.

B Implementation Detail

B.1 Analyzing Method

Patch Scope The process is carried out as fol-
lows. First, a source prompt, a source token, and a
source layer are provided. The prompt is processed
through the model’s forward computation, and the
hidden representation v of the source token at the
specified layer is extracted and stored. This rep-
resentation v is the focus of our investigation, as

we seek to determine whether it encodes a specific
entity. Next, we employ the same prompt used by
Ghandeharioun et al. (2024): “Syria: Syria is a
country in the Middle East. Leonardo DiCaprio:
Leonardo DiCaprio is an American actor. Sam-
sung: Samsung is a South Korean multinational
corporation. x” This prompt is passed through the
model, but the hidden representation of ‘x’ is re-
placed with v at a chosen target layer. The forward
computation then proceeds, and the resulting gen-
erated text is analyzed to evaluate the effects of this
substitution. We conduct different patch analyses
and show them in Figure 8 and Figure 10. When
we conduct back-patch and cross-patch, the source
prompt and target prompt are the same.

B.2 Editing Method

We utilize EasyEdit (Wang et al., 2024d) to con-
duct our editing experiments. For ROME, MEMIT,
WISE, AlphaEdit, and MeLLo, we directly employ
the original parameters provided by their respec-
tive papers. Below, we introduce these methods in
detail and describe our implementation.

ROME and MEMIT ROME leverages causal
analysis to identify knowledge within specific MLP
layers and modifies the corresponding weight ma-
trix using least squares approximation. It operates
under the strong assumption that the MLP layers
primarily store knowledge and injects new informa-
tion into these layers iteratively using a Lagrangian
remainder. In our experiments, we edit the 5th
layer of both LLAMA3-8B-Instruct and Qwen2.5-
7B-Instruct.

Similarly, MEMIT assumes that the FFN layers
function as a knowledge key-value store. It directly
modifies the parameters of selected layers through
least squares approximation. Unlike ROME, which
updates a single layer, MEMIT is a multi-layer edit-
ing algorithm capable of simultaneously updating
hundreds or thousands of facts

IFMET IFMET builds upon MEMIT by not only
modifying earlier MLP layers in transformers but
also adjusting later layers to enhance multi-hop
reasoning for the edited knowledge. To ensure the
updated knowledge propagates effectively, IFMET
constructs an additional support set that reinforces
learning in later layers. Based on our analysis in
§2, we edit layers [17,18,19,20] for LLAMA3-8B-
Instruct and layers [15,16,17,18] for Qwen2.5-7B-
Instruct.

Knowledge Type Template Answer

{target_person} works
in the field of {target_field}

.

In a book related to different fields, Section A discusses {random_field},
Section B discusses {random_field}, and Section C discusses {target_field}.
If you want to learn about {target_person}’s field,
which section should you read?

The working field of {target_person}
is discussed in Section C.

In a biography book, Section A discusses the life of {random_person},
Section B discusses the life of {random_person},
and Section C discusses the life of {target_person}.
The field of the person in Section C is?

The person in Section C
works in the field of {target_field}.

{target_person} speaks
the language of {target_language}.

The following facts are known: 1. {target_person} wears red clothes.
2. {random_person} wears blue clothes.
3. {random_person} wears green clothes.
The language that the person in red clothes speaks is?

The language that the person in red clothes
speaks is {target_language}.

At a global company:
{target_language}-speaking employees work in Team A.
{random_language}-speaking employees work in Team B.
In which team would {target_person} work when he/she is at work?

{target_person} would work in
Team A when he/she is at work.

Table 5: Sample templates for generating the circuit-aware data.

Figure 5: The failure case of the multi-hop reasoning.

WISE WISE represents a different approach to
model editing, focusing on later layers instead of
earlier ones. It modifies the model’s FFN output
using a gating mechanism:

FFNout(x) =

{
G(x) ·Wv′ if G(x) > ϵ,
G(x) ·Wv otherwise.

(5)

Here, G(x) is a gate function that computes the ac-
tivation score of the hidden reprsentation: ∥A(x) ·
(Wv′ −Wv)∥2. If the gate is activated, the model
uses the updated knowledge to generate responses;
otherwise, it relies on the original knowledge. Dif-
ferent methods define the gate function differently,
but the core idea is to ensure that the updated mem-
ory aligns with relevant question representations.

MeLLo MeLLo is a non-parametric editing
method that modifies a model’s knowledge through
prompting rather than weight updates. It maintains

Edit Method LLAMA3-8B Qwen2.5-7B

First_hop Second_hop First_hop Second_hop

ROME 16.66 7.81 10.57 8.33
WISE 49.85 67.36 8.33 33.59

Table 6: Performance comparison of edit methods
across different positions for the edited fact.

a memory of newly introduced facts and guides
the model to decompose multi-hop queries into
sub-questions. At each step, the model checks this
memory to verify whether its existing knowledge
contradicts the new facts. We follow the prompt
structure provided in the original MeLLo method.
However, in our experiments, we observe that the
model struggles to consistently adhere to the in-
tended reasoning pattern.

CaKE We utilize the original LoRA (Hu et al.,
2022) and add parameters in the FFN module in

e2_fro
m_t1

e2_fro
m_t2

r2_fro
m_t2

e3_fro
m_t2

e2_fro
m_t1

e2_fro
m_t2

r2_fro
m_t2

e3_fro
m_t2

e2_fro
m_t1

e2_fro
m_t2

r2_fro
m_t2

e3_fro
m_t2

0

5

10

15

20

25

30

La
ye

r
Two-Hop Query Answer

Correct Inconsistent Incorrect

Figure 6: The distribution of the layers allows us to de-
tect the information from critical positions in the model
via patch_scope.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer

100

101

102

103

104

105

Ra
nk

 (l
og

 sc
al

e)

Layer-wise Answer Rank Comparison in Llama-3-8B

Original Model
MEMIT Method
WISE Method

Figure 7: The target answer token’s rank in the vocabu-
lary of different editing methods when editing the fact
‘The official language of Japan is Japanese → Korean.’

the model. The hyperparameters are as follows:
• epoch: [40, 50, 60]
• batch size: [4]
• learning rate: [1e-4]
• rank: [8]
• lora_alpha: [32]

B.3 Unified Analysis

We first compare the different behaviors between
the MEMIT-edited, WISE-edited, and the original
model in Figure 7. Here, we edit the fact: ‘The offi-
cial language of Japan is Japanese → Korean.’ and
map each layer’s output to the embedding space
and draw the rank of the target-token in the vo-
cabulary as Yao et al. (2024) did. From the fig-
ure, we can see that in the original model and the
MEMIT-edited model, the answer token is dealt
with gradually through the mid-to-later layers, and
MEMIT would make this happen in advance. On
the contrary, the WISE method would directly alter
the information at the edited layer, as we can see
the sharp drop at layer 29. The distinct behaviors
arise because the editing only takes effect when
the gated function G(x) is activated by the specific

input representation. ROME-style methods inject a
modified representation into the existing computa-
tional flow relatively early or mid-stream, relying
on subsequent layers to interpret this new repre-
sentation. WISE-style methods, particularly when
applied to later layers, act more like a direct ’fix’ or
’override’ at the point of editing, with the change
being more immediately apparent.

C More Analysis

C.1 Concurrence or Reasoning?

Studies such as Yang et al. (2024b); Ju et al. (2024);
Hou et al. (2023); Zhang et al. (2024c) those have
discovered shortcuts in multi-hop reasoning. In
the case of ((e1,′′ , e2), (e2, r2, e3)) (i.e., the query
without r1), the model predicts correctly due to a
high correlation between e1 and e3. For instance,
given the query: “The capital city of the country
where the Eiffel Tower is located is...” LLMs can
sometimes provide the correct answer even without
the intermediate context (‘the country where the
Eiffel Tower is located’). In our analysis, we find
that apart from the occurrence, the LLM would also
sometimes conduct latent reasoning, such as ‘la-
tently conducting the r1 completion’. If the model
gives the correct e3 for ((e1,′′ , e2), (e2, r2, ?)) due
to the occurrence, once we edit the (e1, r1, e2 →
e′2), the model would fail to give us the new answer.
We select the shortcut data and conduct the editing
in the first hop (e1, r1, e2 → e′2) and then evaluate
the model to see whether the edited model would
output updated knowledge (e1, r1, r2, e′3). We con-
duct experiments on LLAMA3-8B-Instruct with
the AlphaEdit method and demonstrate that about
65% percent of cases would give us the updated
knowledge for the multi-hop questions, showing
that edits to intermediate hops (e.g., updating the
country) can disrupt reasoning when relying on pre-
existing-shortcuts and correctly give us the newly
updated reasoning results. This means that the
LLM itself does not simply answer the questions
due to the high correlation between e1 and e3, but
actually conducts the latent reasoning.

C.2 Circuit Analysis

We present the model’s critical information detec-
tion results in Figure 6. The results indicate that
knowledge is distributed across different layers,
with incorrect cases appearing in later layers com-
pared to correct and inconsistent cases.

Method Model MQUAKE-CF MQUAKE-CF-v2 MQUAKE-T

H-Acc.↑ MAcc.↑ H-Acc.↑ MAcc.↑ Hop-wise.↑ MAcc.↑

Pre-edited

Q
w

en
2.

5-
7B

-I
ns

73.4 40.7 72.8 39.5 56.1 15.6

AdaLoRA 35.1 24.9 36.5 25.9 25.0 28.6
WISE 41.2 9.8 26.5 8.0 50.2 36.5

MeLLo 35.5 7.8 34.5 7.6 52.7 56.5
ROME 75.4 10.7 73.4 8.8 86.7 17.7
MEMIT 82.6 11.1 83.4 9.6 88.9 18.5

AlphaEdit 73.8 12.6 75.1 10.5 82.2 17.2
IFMET ♣ 83.7 25.7 84.6 24.5 90.0 52.8

CaKE(ours) 90.6 61.4 90.3 63.05 95.5 87.8

Table 7: Comparison of CaKE with existing methods on MQuAKE on Qwen2.5-7B-Instruct. The best results
are highlighted in bold, while the second-best results are underlined. ♣ means the results are based on our own
implementation since the original code is not open by the authors, and we will update it after the source code is
open.

Method Model MQUAKE-CF MQUAKE-CF-v2 MQUAKE-T

H-Acc.↑ MAcc.↑ H-Acc.↑ MAcc.↑ H-Acc.↑ MAcc.↑

Pre-edited 75.6 34.7 76.8 37.7 60.1 15.6

LoRA

L
-7

0B

93.1 53.2 90.5 50.2 90.1 90.6
MeLLo 8.0 6.4 8.6 9.9 11.6 32.9

CaKE(ours) 93.5 65.4 93.3 63.3 91.1 94.6

Table 8: Comparison of CaKE with existing methods on MQuAKE for LLAMA3-70B-Instruct. The best results
are highlighted in bold, while the second-best results are underlined. Due to the computational limitations, we just
ran the LoRA and MeLLo in the 70B model. Here, LoRA for the 70B model is added for all layers because the
performance on a single layer is extremely low.

Evaluation To validate this circuit hypothesis,
we conduct a causal analysis to determine whether
modifying the variables in the function F leads to
corresponding changes in the output. Our inter-
vention strategy focuses on the critical last token
position for the second hop in Figure 8, where in-
termediate variables are stored. Specifically, we
consider: 1).Entity Patching: Replacing the repre-
sentation of e2 with an alternative entity epatch. For
example, given the prompt ‘The official currency
of the country where the Eiffel Tower is located
is’, we substitute the representation of the bridge
entity ‘France’ with ‘China’, expecting the out-
put to change to ‘Renminbi’. 2).Relation Patching:
Replacing the representation of r2 with an alterna-
tive relation rpatch. For instance, given the same
prompt, we substitute the representation of ‘official
currency’ with ‘capital’, expecting the output to
change to ‘Paris’. A successful patching (produc-
ing F2(epatch, r2) or F2(e2, rpatch)) would confirm
the model’s reliance on these specific representa-
tions for reasoning. We conduct experiments on

Model Entity Patch Relation Patch

LLaMA3-8B-Ins. 85.35 56.20
Qwen2.5-7B-Ins. 97.29 55.40

Table 9: Activation Patching Success Rates (%).

LLAMA3-8B-Instruct and Qwen2.5-7B-Instruct
and employ PatchScope (Ghandeharioun et al.,
2024) for targeted activation patching (detailed in
§B.1). Table 9 shows that in both the LLAMA3-8B
and Qwen2.5-7B models, substituting variable rep-
resentations at the last token position leads to corre-
sponding behavioral changes, particularly in entity
patching, where accuracy exceeds 80%. These
results provide mechanistic evidence for the rea-
soning circuit we identified before.

Determining the optimal layer for editing re-
mains challenging, so we choose to adjust the
model across all layers. In the future, we aim to
refine our approach by performing more targeted
edits.

e3

r2

e2

e2

e1 t1 t2r1 r2

e1
r2

epatch

e3

r2

e2

e2

e1 t1 t2r1 r2

e1
r2

rpatch

Figure 8: The way we test the function of the second
hop. If the model conducts the function at the later
layers, changing the representation would change the
output of the model.

pre

post

mid

0.000

0.175

0.350

0.525

0.700
Position Analysis

2

3

4

0.000

0.175

0.350

0.525

0.700
Hop Number Analysis

CAKE
IFMET

MEMIT
LoRA

Figure 9: Accuracies of different number hops and
edit-positions in MQuAKE-CF-3k-v2 on LLAMA3-8B-
Instruct.

C.3 Failure Phenomenon
In the multi-hop reasoning, we view several failure
cases to see how the language model made mis-
takes for reasoning and we see it as the circuit
competition. Here, we find the LLM tends to give
us a wrong answer for the middle cases of the dif-
ferent entities that appeared in the middle steps.
Take ‘The country that the creator of Hamlet was
a citizen of’ as an example; the bridge entity here
is ‘William Shakespeare’. We view ‘Hamlet’ as
an entity that would influence the model to give us
the results ‘Denmark’, which means the model has
been distracted by other entities’ information. As
shown in Figure 5, the model gives us the correct
answer ‘England’ around layer 27 but output the
wrong answer ‘Denmark’, which is actually the
country of the ‘Hamlet’.

C.4 Discussion with Chain-of-Thought
Instead of directly providing an answer, chain-of-
thought (CoT) reasoning generates intermediate
steps sequentially. As proposed by Yang et al.

r2

e2

e2

e1 t1 t2r1 r2

e1

e3

r2

e2

e2

e1 t1 t2r1 r2

e1
r2

backpatch-t1

t1-to-t2

backpatch-t2

Figure 10: The way we conduct the backpatch and e1
to e2. We substitute the hidden representations from the
source position to the target position.

(2024b), CoT not only facilitates knowledge activa-
tion in large language models but also transforms
them into effective in-context reasoners. The CoT
process builds a chain of relevant facts within the
prompt context, where each step’s output serves
as an in-context memory that subsequent steps can
reference. This approach reduces the risk of losing
track of intermediate facts as the sequence length
increases, thereby promoting more coherent multi-
hop reasoning. Moreover, because a significant por-
tion of the model’s knowledge is stored in earlier
layers, CoT can better leverage these neurons by
decomposing complex questions into simpler sub-
questions (Wang et al., 2024f; Yao et al., 2025a).
Consequently, the reasoning circuit required for a
single-hop inference is much simpler than that for
multi-hop reasoning. This observation aligns with
recent findings (Li et al., 2024a), which demon-
strate that fast thinking without CoT leads to larger
gradients and greater gradient disparities across
layers compared to CoT. Nonetheless, inconsisten-
cies in the intermediate reasoning steps still occur,
highlighting potential areas for improvement. We
believe that further analysis is needed to address
these issues, and we leave this exploration for fu-
ture work.

C.5 Efficiency Analysis

We also compare the efficiency of CaKE with other
baselines in Table 10. We compare the wall-
clock time and memory usage here on LLAMA3-
8B model and sample 100 numbers of data to run
the analysis from MQuAKE-CF-3k. Here, the time

Method Wall-clock Time Memory (BF16)

ROME 2.71s 20.68GB
MEMIT 30.11s 24.42GB
WISE 76.01s 21.37GB
IFMET 44.72s 25.19GB
AlphaEdit 17.60s 38.80GB
CaKE 43.54s 18.52GB

Table 10: Time and Memory requirements Comparison

is the average time for one edit, and memory is
the peak VRAM usage monitored by pynvml using
one A6000 GPU. Here, AlphaEdit does not support
BF16 or FP16, so the computation is FP32.

We can see that ROME and MEMIT require
more memory than other methods. This is due to
the matrix processes, like the calculation of an in-
verse matrix, which are memory-intensive. When
the matrix is larger, the requirements are even more,
which limits the method’s scalability. Also, the im-
provement methods based on MEMIT like IFMET
would also increase the time requirement but still
require large memory. The memory would require
even more when the model becomes larger (Yao
et al., 2025b). Contrastly, CaKE can handle a 70B-
sized edit via two A100 GPUs and achieve better
performance, which demonstrates the efficiency of
our proposed method.

C.6 Multiple Edit Test
We also conduct experiments on multiple edit sce-
narios. We can find that CaKE still shows compet-

Table 11: Performance Comparison with Different Edit
Numbers

Method Edit_num=10 Edit_num=100

MEMIT 16.0 12.5
IFMET 27.5 19.5
AlphaEdit 12.7 7.5
CaKE 59.0 34.5

itive performance in multiple-edit scenarios com-
pared to other methods.

C.7 Data Example
We show an example of the generated data for the
fact ‘The author of Misery is Richard Dawkins.’ in
the following box.

Q1. If someone is looking for the person respon-
sible for penning Misery, whose name should
they search for?

Q2. If Alice resides in a mansion, Bob resides in
a cottage, and Richard Dawkins resides in a
villa. Therefore, the author of Misery resides
in?

Q3. Given that Sarah prefers tea, James prefers
coffee, and Richard Dawkins prefers herbal
tea, what does the author of Misery prefer to
drink?

Q4. During a book club meeting, the first discus-
sion was on Misery, the second on The Blind
Watchmaker, and the third on River Out of
Eden. Who wrote the book that was the sub-
ject of the first discussion?

Q5. A library display features three novels: Misery
on the top shelf, The Extended Phenotype on
the middle shelf, and Climbing Mount Improb-
able on the bottom shelf. Who is the author
of the novel placed on the top shelf?

	Introduction
	Analyzing Reasoning Circuit in LLM
	Data Preparation
	Multi-hop Reasoning Circuit
	Circuit in Failure Phenomena

	Circuits-aware Knowledge Editing
	Rethinking KE from the Circuit View
	Proposed Method: CaKE

	Experiments
	Experiment Settings
	Experiments Results

	Analysis
	Locality Performance
	Case Analysis

	Related Work
	Conclusion
	Setting Detail
	Implementation Detail
	Analyzing Method
	Editing Method
	Unified Analysis

	More Analysis
	Concurrence or Reasoning?
	Circuit Analysis
	Failure Phenomenon
	Discussion with Chain-of-Thought
	Efficiency Analysis
	Multiple Edit Test
	Data Example

