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ABSTRACT

Motivated by dynamic parameter optimization in finite, but large action (config-
urations) spaces, this work studies the nonstochastic multi-armed bandit (MAB)
problem in metric action spaces with oblivious Lipschitz adversaries. We pro-
pose ABoB, a hierarchical Adversarial Bandit over Bandits algorithm that clusters
similar configurations to “virtual arms”. In turn, it uses state-of-the-art existing
“flat” MAB algorithms in each hierarchy to exploit local structures and adapt to
changing environments. We prove that in the worst-case scenario, such clustering
approach cannot hurt too much and ABoB guarantees a standard worst-case regret

bound of O(k%T 2 ), where T is the number of rounds and k is the number of arms,
matching the traditional flat approach. However, under favorable conditions related
to the algorithm properties, clusters properties, and certain Lipschitz conditions,
the regret bound can be improved to O(ki T= ). Simulations and experiments on a
real storage system demonstrate that ABoB, can be made practical using standard
algorithms like EXP3 and Tsallis-INF. ABoB achieves lower regret and faster
convergence than the flat method, up to 50% improvement in known previous
setups, nonstochastic and stochastic, as well as in our settings.

1 INTRODUCTION

The multi-armed bandit (MAB) problem is a fundamental concept in decision theory and machine
learning. It effectively illustrates the exploration-exploitation dilemma that arises in many real-world
situations, such as clinical trials, online advertising, resource allocation, and dynamic pricing |Villar
et al.| (2015); Schwartz et al.| (2017). In its simplest form, an agent must repeatedly choose from a
set of actions, known as “arms,” each of which provides a reward. The objective is to maximize the
cumulative reward over time, or equally, minimizing the regret. The primary challenge is finding the
right balance between exploring different arms to understand their reward distributions and exploiting
those arms that have previously generated the highest rewards |Slivkins et al.| (2019); Bergemann &
Valimaki|(2006); Bubeck et al.|(2012). The MAB framework has made significant theoretical progress
over the years, and its practical applications offer valuable insights into optimal decision-making
under uncertainty |Djallel & Irinal (2019). However, many real-world applications diverge from the
assumptions of the classical MAB setting, especially when addressing evolving environments and
complex relationships among choices |Auer et al.| (2002al)); Slivkins & Upfal| (2008)).

This paper addresses one such departure, studying a framework for the multi-armed bandit problem in
a dynamic, nonstochastic (adversarial) environment. The setup is inspired by real-world systems that
involve a vast number of optimization parameters, such as automated configuration tuning for comput-
ing and storage systems. Automatic configuration and tuning in various real-world settings—ranging
from industrial machines to smart home appliances—have become critical challenges due to the
increasing complexity and diversity of modern systems and devices. In the context of data centers and
high-performance computing (HPC), we can find examples of this, such as GPU kernel optimization
using Bayesian optimization Willemsen et al.|(2021), online energy optimization in GPUs |Xu et al.
(2024), and hyperparameter optimization |Li et al.|(2018). The method and work we report here were
specifically applied to design an automated method that optimizes a real storage system employed in
a large distributed computation cluster that has a large configuration space.

In our scenario, each system configuration (a specific setup of parameters) is considered as an arm.
Configurations are situated in a metric space and partitioned into clusters that exhibit Lipschitz
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Figure 1: (a) System overview of Adversarial Bandit over Bandits (ABoB). (left) Partition the
configurations (arms) into clusters of similar configurations. (middle) Hierarchical bandits over the
clusters (virtual arms). (right) Optimize a system’s performance under a dynamic context. (b) A
summary of ABoB’s results.

properties, which allow us to handle the extensive search space. Unlike traditional bandit settings,
our focus is on a nonstochastic landscape where the reward for each arm can change adversarially
over time, including the optimal arm (configuration). This reflects, for example, the variation in
performance of different system configurations under fluctuating workloads, such as the dynamic
arrival and completion of job/tasks in the system. Importantly, the arms are not independent; they are
grouped into clusters based on a predefined metric that represents the similarity of configurations.
The arms’ clustering can either be given as input or initially computed by the MAB algorithm.

In each cluster of arms, the rewards adhere to a Lipschitz condition. This means that configurations
that are “close” (i.e., have similar parameter settings) will yield similar performance results, even
as the performance shifts with the environment dynamics. This conveys that while the optimal
configuration for a system may change with different workloads, configurations with similar parameter
settings are likely to show comparable performance levels. The "traveling arms" framework requires
algorithms that efficiently learn and adapt to an evolving reward landscape while taking advantage of
the structural information offered by the partition and the Lipschitz characteristics of the arms. We
explore the challenges and opportunities inherent in this new bandit setting, presenting algorithms
and theoretical guarantees aimed at minimizing regret in this dynamic and practical environment.

To leverage the structural information inherent in the problem setup, we propose a hierarchical MAB
algorithm called Adversarial Bandit over Bandits (ABoB). Refer to Figure [I] for an illustration.
Our algorithm utilizes multiple instances of other well-known adversarial bandit algorithms like the
classical EXP3|Auer et al.|(2002a) or Tsallis-INF Zimmert & Seldin|(2021)), known to have the “best
of two worlds" property. Given the arms’ partition, at the first level (tier) of our hierarchy, a parent
bandits algorithm (e.g., EXP3 or Tsallis-INF), looking at each cluster as a virtual arm, determines
which cluster to engage in the current time step. Subsequently, a second-level algorithm, denoted as a
child bandit algorithm (e.g., EXP3 or Tsallis-INF), specific to each cluster, is activated to select the
next arm within the chosen cluster. By design, employing known adversarial algorithms allows us to
benefit from their known strengths in adversarial settings. At the same time, the clustering approach
enables us to exploit the underlying metric, as similar configurations tend to yield similar outcomes
(i.e., they satisfy the Lipschitz condition). While the fundamental concept of our algorithm is easy to
understand, we have not encountered similar solutions or setups in existing literature.

Paper Contributions. This paper presents several key contributions: (i) A Lipschitz Clustering-
based MAB Variant: We introduce a new variant of the Multi-Armed Bandit (MAB) problem that
addresses the challenges of dynamic environments with large, structured action spaces, particularly
in the context of system configuration optimization. (ii) Hierarchical Clustering and the ABoB
Algorithm: To tackle the aforementioned problem, we propose the ABoB algorithm, which is based
on classic MAB algorithms, but additionally employs hierarchical clustering. We provide a general
theoretical bound for ABoB, demonstrating that it can achieve a worst-case regret of O(v/Tk),
where T represents the number of iterations and %k denotes the number of arms that is finite but
assumed to be large. This performance matches the bound of the "flat" method (e.g., of Tsallis-
INF Zimmert & Seldin|(2021) while offering significant potential for enhancements in structured
environments. (iii) Improved Bound for Lipschitz Clusters: We further analyze ABoB’s performance
under assumptions on the properties of the MAB algorithms it uses, and the Lipschitz condition
satisfied by the clusters. This analysis leads to an improved regret bound that can be up to O( {*/E)
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better than the general bound. This highlights the algorithm’s capacity to leverage the metric space
structure and Lipschitz properties for superior performance. Overall, when using ABoB, there’s
not much to lose in the worst case, but much to gain in special cases. (iv) Empirical Validation:
We performed an extensive simulation study to validate our theoretical findings. In addition to
well-known synthetic settings (both stochastic and nonstochastic), we present experimental results
conducted on a real storage system tasked with optimizing access to remote physical disks. These
experiments demonstrate the practical effectiveness of ABoB, showing its ability to achieve lower
regret and faster convergence compared to traditional MAB algorithms in a real-world setting, with
improvements of up to 91% in our scenarios. See Figure for summary of results. Due to space
constraints, proofs, extra figures, and additional experiments are present in the technical appendix.

2 RELATED WORK

The multi-armed bandit (MAB) problem has been extensively studied under various assumptions,
leading to a rich landscape of algorithms and theoretical results Slivkins et al.| (2019). Early work
focused primarily on the stochastic setting, where the finite set of arm rewards are IID random
variables drawn from fixed, unknown distributions. Algorithms like Upper Confidence Bound (UCB)
Auer et al.|(2002b) and Successive Elimination |[Even-Dar et al.| (2002) provide strong performance
guarantees in this scenario by balancing exploration and exploitation based on estimated reward
distributions’ means and confidence intervals. The canonical worst-case scenario of “needle in a
haystack” leads to a regret of O(v/kT') (ignoring polylogarithmic factors) for these algorithms.

Another line of work deals with continuous action spaces, still under stochastic settings. The most
straightforward approach is performing uniform discretization on the arms, under assumptions of
metric spaces and smoothness assumptions, and then applying a known multi-armed bandit approach
(like UCB). More advanced techniques include approaches like the zooming algorithm Kleinberg
et al.| (2008} 2019), which takes a more adaptive and dynamic approach. It starts with a coarse view
of the action space and progressively refines its focus on promising regions. It maintains a confidence
interval for each arm (or region), and based on these intervals, it either “zooms in” on a region by
dividing it into subregions or eliminates it if it’s deemed suboptimal. A more challenging research
direction considers the finite nonstochastic setting with a finite number of arms, where adversarial
opponents control reward assignments. For this setting to be feasible, the usual assumption is of an
oblivious adversary and a regret where the algorithm is compared with the best arm in hindsight.
For this case, algorithms like EXP3|Auer et al.| (2002a)) provide robust regret guarantees against any
sequence of rewards, surprisingly matching the worst-case bound of the stochastic case.

More recently, and perhaps the most related approach to the algorithm presented in this paper, the
combination of continuous action spaces and adversarial rewards has been explored in the adversarial
zooming setting, presenting unique challenges addressed by algorithms that dynamically adapt their
exploration strategy based on the observed structure of the reward landscape |Podimata & Slivkins
(2021)), yielding a regret bound that depends on a new quantity, 2, called adversarial zooming
dimension and is given by E[R(T")] < (’~)(Tﬁé ). For finite number of arms, we have z = 0, and the
paper provides a worst-case regret-bound of O(+/ kT 1og5 T'). This regret bound is similar to that of
the nonstochastic multi-armed bandit, i.e. (’5(\/k7T) For the finite case, the algorithm, therefore, does
not offer improved bounds. In contrast, our approach provides conditions for improved performance
and demonstrates practical benefits.

Other papers studied various settings of correlated or dynamic arms, for example, X—Armed Bandits
Bubeck et al.[(2011), Contextual Bandits Slivkins| (201 1)), Correlated arms |Gupta et al.|(2021) Eluder
Dimension Russo & Van Roy|(2013)) and Dependent Arms [Pandey et al.|(2007), to name a few, but
none are using our exact setup, nor the novel idea of parent-child bandits.

3 PROBLEM FORMULATION AND THE ABOB ALGORITHM

We study the Adversarial Lipschitz MAB (AL-MAB) Problem Podimata & Slivkins| (2021). In
particular, we consider the finite case where the set of arms forms a metric space, and the adversary
is oblivious to the algorithm’s random choices. The problem instance is a triple (K, D,C), where
K it the set of k arms {1,2,...,k}, and (K, D) is a metric space and C is an expected rewards
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assignment, i.e., an infinite sequence c1, ca, ... of vectors ¢; = (¢¢(1), ..., ¢t (k)), where ¢;(a) is the
expected reward of arm a at time ¢, and c; : K — [0, 1] is a Lipschitz function on (K, D) with
Lipschitz constant 1 at time ¢. Formally,

lei(a) — ci(a)| < D(a,a’) ()
for all arms a,a’ € K and all rounds ¢, where D(a, a’) is the distance between a and o’ in D.

For our analytical results, we consider a special case where we partition the set of arms into a set
of clusters. We let P be a partitio of K where p is the number of clusters and P*, ..., PP are
the mutually exclusive and collectively exhaustive clusters where foreach 1 < i < p, P C K
and |P*| > 0. We will show results for the case of arbitrary clustering, as well as the case that the
clustering forms a metrics space.

For such an adversarial setting, the standard metric of interest is the regret (aka weak regret in
the original work of |Auer et al.| (2002a))), R(T') defined for a time horizon T'. To define it, we
first need to determine the reward of an algorithm A. For an algorithm A that selects arm a; at

time ¢ we consider its reward as: G 4(T) o 23:1 ¢t(at). The best arm, in hindsight, is defined as
Grax(T) def maxge g Zle ct(a), and, in turn, the regrer of algorithm A is defined as

def

R(T) - Gmax(T) - GA(T) 2
We will be interested in the expected regret Gmax (1) — E[G4(T)]|Auer et al.| (2002a).

Next, we present our novel algorithm, ABoB, and formally study its performance. The basic concept
of the ABoB algorithm is based on a simple idea of divide-and-conquer. Alongside the set of arms,
we receive or create a partition (e.g., by using your favorite clustering algorithm) of the arms into
clusters. This partition creates, in fact, a hierarchy. The first level is the “clusters" level, where we
can see each cluster as a virtual (adversarial) single arm based on the collective of arms in it. The
second level is the level of physical arms within each cluster. See Algorithm [I]and Figure[I]

ABOoB uses this hierarchy to run flat Adversarial MAB (A-MAB) algorithms for each level, denoted as
parent A-MAB and child A-MAB, for the first and second level, respectively. The particular A-MAB
algorithms used in ABoB can differ between levels, and the idea is to consider well-known A-MAB
algorithms like EXP3 Auer et al.|(2002a) and its variations |Seldin & Lugosi (2017 or Tsallis-INF
Zimmert & Seldin| (2021) for example. For the simplicity of presentation and as a concrete example,
we use the classical EXP3 Algorithm |Auer et al.|(2002a) for both levels, unless otherwise stated. For
the first level, there is a single EXP3, the parent A-MAB algorithm, that on each time step, selects
between the virtual arms generated by the clusters and decides from which cluster it will sample
the next arm. In turn, for each cluster, there is a second-level EXP3 algorithm that selects the next
arm within the cluster, but it is activated only when the first level selects that cluster. Upon selecting
an arm, we update the arm’s reward and then the child algorithm parameters, like arms weights in
the EXP3 and Tsallis-INF algorithms (relative to the arms in the current cluster). Next, we update
the reward of the virtual arm of the cluster and the parent algorithm’s parameters (relative to other
virtual arms (clusters)) and move to the next time step.

Correctness and Time Complexity of ABoB. The correctness of the algorithm follows from the
observation that each cluster can be viewed as an adversarial virtual arm, that generates a reward
when activated at time ¢. Therefore, since the parent A-MAB algorithm is adversarial, the algorithm
setup is valid. We note that regarding the child A-MAB algorithm, we have more flexibility, and if
we know, for example, that each cluster is stochastic, we can use algorithms that may better fit this
environment, like UCB |Auer et al.[(2002b)). An important feature of ABoB is its running time. In
the adversarial setting the running time of many algorithms is O(kT"), where 1" updates, each in the
order of O(k) are required (e.g., in EXP3). In ABoB, however, we still need T" updates, but each is of
the order of O(# of clusters + # of arms in the selected cluster), this for example can be significantly

lower then O(k), e.g., when we use VE clusters each of size vk (up to rounding).

The main question we answer next is: In terms of the regret, how much do we lose or gain by using
ABoB and the hierarchical approach? Somewhat surprisingly, we show in Section @.T] that not much
is lost in the worst case, and in Section [d.2] we prove that we can gain significantly under certain
Lipschitz conditions and A-MAB algorithms.

'We use partition and clustering interchangeably.
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Algorithm 1 ABoB: Hierarchical Adversarial MAB Algorithm

Input: Parent A-MAB and Child A-MAB algorithms: Adversarial multi-armed bandits algorithms
(e.g., EXP3, Tsallis-INF), k arms and their partition, P, into clusters
1: Initialize: Init the parent A-MAB algorithm (weights, etc.). For each cluster, initialize its own
child A-MAB algorithm (weights, etc.)
2: fort =1toT do
3:  (a) Cluster selection using the parent A-MAB algorithm on virtual arms (clusters). Let P, € P
be the selected cluster.
4:  (b) Arm selection using the child A-MAB algorithm on physical arms in P;. Let a; € P, be
the selected arm.
(c) Pull a;, observe reward c;.
(d) Update the arms-level parameters (e.g., weights) for physical arms in P; using c;.
7:  (e) Update cluster-level parameters (e.g., weights) for virtual arms (clusters) using c;.

TN

4 ANALYTICAL BOUNDS FOR THE ABOB ALGORITHM

In this section we study ABoB analytically. To continue, we need additional notations. Recall that
T is the time horizon, P is a partition of the set of arms K, k in the number of arms, and p is the
number of clusters. Let T be the ordered set of times by which the algorithm visits cluster 4, so
S |T? = T. We denote by t(i, j) € T", the time in which the algorithm visited cluster i for the jth
time. We then additionally define a* € P* as the best arm in hindsight, i.e., the arm that maximizes
Eq. equation and P* as the cluster that contains a*E] Let p* = | P*| denote the size of the cluster
that holds a*. Let Ginaxp(T') be the expected reward of the best cluster in hindsight:

T T
def i +
Gunaxp (T) € max y e (P') =3 S en(PF),

t=1 t=1

and PT be the best cluster in hindsight, the cluster (virtual arm) that should have been played
constantly by the first-level, parent A-MAB algorithm (e.g., EXP3), assuming it is played internally
by its own second-level, child A-MAB algorithm (e.g. EXP3).

Lastly, for each cluster P?, we define its best expected reward in hindsight G, pi; what was its

expected reward if we were playing its best arm in hindsight (at the times we visited it), formally,
|IT"|

iy def
GmaxPi (T ) = max. Ct(i,j)(a)'

In a hierarchical multi-armed bandit setup of the ABoB algorithm, the total regret can be expressed
as the sum of two components: (i) Regret for choosing a cluster other than the best one: This is
the regret incurred by the first-level bandit in not selecting the best cluster, defined as the cluster
containing the best arm in hindsight. (ii) Regret within the cluster: This is the regret incurred by
the second-level bandit in selecting an arm within the chosen cluster relative to the best arm in that
cluster. Next, we use this observation to bound the regret of ABoB in different scenarios.

4.1 ARBITRARY CLUSTERING: NOT MUCH TO LOSE

In this subsection, we study the regret where the partition (or clustering) is done arbitrarily, i.e.,
without assuming any metric between the arms. For EXP3, the analysis shows (Theorem [.2)) that
even in the case of arbitrary partition of the arms, the asymptotic regret is equivalent in the worst-case
to those achieved by the “flat” EXP3 algorithm, i.e., O (\/kT log k) Auer et al. (2002a).

The expected regret of ABoB can be bounded as follows: For each level of the hierarchy, we analyze
its regret resulting from the relevant A-MAB algorithms. At the first level, the regret is of the parent
A-MAB playing with p virtual arms of the clusters, and with respect to Gyax. At the second level,
we compute the regret within each cluster P? using its child A-MAB and with respect to the best cost
of the cluster in hindsight G, ,p:. Formally,

’If a* is not unique, we consider P* to be the largest cluster that contains an a*.



Under review as a conference paper at ICLR 2026

- First level: the regret of not choosing the best cluster in hindsight P* during all times up to T":

p |T°]

T
R‘f d;f GmaxP(T) - th(Pt) = GmaxP(T) - Z th(i,j)(Pi)y
t=1

i=1j=1
plus the regret for not choosing the cluster P* and selecting within always arm a*:

Rll) déf Gmax(T) - GmaxP(T)

- Second level: the regret in each cluster not playing its best arm in hindsight all the time:

P |T%|
def i
Ra=3) (Gmafo (T -> Ct(m)(at(m))>
=1

i=1

Formally, we can claim the following.
Claim 4.1. For the ABoB algorithm that uses EXP3, the following holds: (1) E[R}] <

O (VITTogp). (2) E[RY] < O (ViFTTogr"). (3) E[Ry] < O (/FTToa(k/))

Based on Claim 4.1} we can bound the regret of ABoB.

Theorem 4.2. For k nonstochastic arms, T' > 0 and a partition P of the arms, the regret of the ABoB
algorithm using EXP3 is bounded as follows:

Gunax — ElGanos] < O (vpTlogp) + O (V/pTlogp* ) + O (/T log(k/p))
where p is the number of clusters and p* is the size of the cluster with the best arm in hindsight.

Since p, p* < k, the worst case bound is in the same order as the flat case. Moreover, we will usually
use p, p* < k, and the contribution of the first two terms should be smaller than the third. With this,
we can state the first main takeaway of our approach.

B Takeaway. Using cluster does not “hurt” much the overall regret of the flat approach.

We note that similar results can be obtained for other A-MAB algorithms like Tsallis-INF Zimmert &
Seldin| (2021)), removing the logarithmic factors. Still, the question remains if we can benefit from
clustering; the following subsection answers this question affirmatively.

4.2 CLUSTERING WITH LIPSCHITZ: MUCH TO GAIN

In this subsection, we consider the case that the rewards of the arms form a metric space and, in
particular, the simpler case where, within each cluster, we have a Lipschitz condition ensuring that
the rewards of all arms in a cluster are “close” to each other. For this simpler case, we do not
even require a condition for the distance between clusters. Such a situation fits, for example, in a
system’s parameters optimization problem where each arm corresponds to a set of parameters trying
to optimize a certain objective (e.g., power, delay, etc.) (See Section[6). The set of potential arms is
extensive since we can tune each parameter to many possible values. In turn, we assume a smoothness
condition on each parameter, such that each minor change of a parameter results in a minor shift in
the outcome. The “state” of the system (e.g., number of active jobs) is unknown and can change over
time (e.g., as new jobs come and go), even dramatically, but for every state, the Lipschitz condition
holds (Eq. equation [I)). More formally, for the clustering scenario, we say that an arms partition P is
an /-partition if the following Lipschitz condition holds:

VP € P,a,be P |ci(a) — ¢ (b)| < ¢, Vrounds t. 3)

Following Theorem 4.2} and since within each cluster, the expected regret is at most £, we can easily
state the following.

Corollary 4.3. For k nonstochastic arms, T > 0 and an {-partition P of the arms, the regret of the
ABoB algorithm using EXP3 is bounded as follows:

Gax — E[Ganon] < O (s/pTlogp) +0O (Mp*Tlogp*) YT-¢
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Note that the above bound does not assume any contribution to the execution of EXP3 within clusters,
resulting from the /-partition. Using an appropriate A-MAB algorithm within each Lipschitz cluster
potentially allows us to improve the result. Let ALB™ denote an adaptive Lipschitz bandits algorithm
with the following property:

Property 1. For the Adversarial Lipschitz MAB setting with a Lipschitz condition ¢ (Eq. (1) the
algorithm regret is bounded by O (¢ - \/ET logk).

Note that for a flat ALB™ algorithm (a single cluster) £ might be large (e.g., 1), but when we break
the arms into clusters, within each cluster ¢ might be significantly smaller. The following theorem
formalized the potential gains.

Theorem 4.4. For k nonstochastic arms, T > 0 and an {-partition P of the arms, the regret of the
ABoB, using an ALB™ algorithm can be bounded as follows:

Gunax — ElGanos] < O (VT logp) + O (03/pTlogp*) + 0 (£ /KT Tog(k/p)) , ()
where p is the number of clusters and p* is the size of the cluster with the best arm in hindsight.

Following Theorem 4.4 we can state the second main takeaway of the paper.

B Takeaway. The results hold for nonstochastic arms, which keeps the Lipschitz condition. Com-
paring the upper bound of the “flat” (single cluster) ALB™ algorithm, we can achieve improvement
when the number of clusters and the size of the “best” cluster are relatively small. i.e., p < k, and
p* < k, and when the Lipschitz constant is sufficiently small. i.e., { < ﬁ

As a concrete example, we can state the following

Corollary 4.5. Given an {-partition P, with { < %\/E and 'k clusters, each of size 'k, the ABoB,
using an ALB™ algorithm can be bounded as O(+/k'/2T log k), which is Q(v/k) time better than
the flat ALB™ algorithm.

In the next sections, we turn to simulation and experimental results to validate the performance of
ABOoB in concrete examples. A subtle point is what ALB algorithm to use within each cluster. We
are not aware of an algorithm that formally fulfills Property [I] for the Lipschitz condition. Therefore,
we choose to use EXP3 as it satisfies a weaker Lipschitz condition where an a priori translation and
rescaling are needed |Auer et al.| (2002a)) is required to reduce the regret. Nevertheless, as shown
in the next section, clustering the arms and using EXP3-based or Tsallis-INF for parent and child
clusters can still significantly improve the algorithm’s performance.

5 EMPIRICAL STUDY

In this section (and the appendix), we report on an extensive empirical study on the performance
of ABoB compared to flat algorithms. We consider syntactic scenarios in increasing complexity,
and in Section [6] we present results based on real system measurements. We report results on three
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adversarial algorithms Tsallis-INF [Zimmert & Seldin| (2021)), EXP3|Auer et al.|(2002a), and EXP3++
Seldin & Lugosi| (2017), but also on the, well-known, UCBI1 |Auer et al.| (2002b) algorithm for
the stochastic case. In turn, we consider different ABoB algorithms, including the above MAB
algorithms. We mostly concentrate on the case where both the parent and child algorithms are the
same, and in particular on the Tsallis-INF algorithm, which is the state-of-the-art algorithm enjoying
the best-of-both-worlds regret bounds (i.e., it is optimal both for stochastic and adversarial settings).
Unless otherwise stated, we consider Bernoulli r.w. arms with different settings on their mean values.
The default number of arms is k = 256, and the default number of steps is T = 10°. We repeated each
experiment 10 times and report the average and standard deviation. Additional and more extensive
figures, including non-identical parent-child algorithms, are given in Appendix [A.3]

Stochastic Scenario. The first experiment, shown in Figures 2] (and Figure [6]in Appendix) is a
standard stochastic MAB setting Zimmert & Seldin| (2021}, where the mean rewards are % for the
single optimal arm and % for all the suboptimal arms, where A = 0.1. Other values for A and k
are reported in the appendix. We can clearly observe the performance improvement of ABoB in all
Algorithms for p = v/k = 16 clusters each of size vk = 16. As was reported, for a single cluster,

Tsallis-INF produces the best results as in|Zimmert & Seldin! (2021)), but ABoB using Tsallis-INF
with vk = 16 further improves the regret.

Fixed Optimal Arm and Nonstochastic (adversarial) Scenario. The second experiment, also taken
from Zimmert & Seldin| (2021}, considers a non-stochastic (adversarial) environment with a single
fixed optimal arm but changing mean values. The mean reward of (optimal arm, all sub-optimal arms)
switches between (A, 0) and (1,1 — A), while staying unchanged for phases that are increasing
exponentially in length. We set A = 0.1 and other values for A and k are reported in the appendix.
Figure [3] (and Figure [7]in the Appendix) presents the results for several MAB algorithms, where
Tsallis-INF again achieves the best results as in Zimmert & Seldin|(2021), and ABoB improves it.

“Traveling” Optimal Arm, Nonstochastic (adversarial) and Metric Spaces. In the third exper-
iment, we consider a scenario motivated by our application for configuration tuning. We consider
a Nonstochastic (adversarial) reward with changing optimal arms (i.e., “traveling arms”), but all
rewards are in a metric space and, in particular, follow a Lipschitz condition. More formally, we
have used the following setup for the environment: (i) Metric Space: The metric space is defined

as a hypercube of dimension d Q = [0, ﬁ]d. We use a setup such that v/k is an integer. (ii) Arms’

location: The k arms are placed over an equally spaced grid such that the distance between two
closest points in each dimension is w = For arm ¢, we denote its location on the grid as x; and

Vidkd”
recall that its mean reward at time ¢ is denoted as ¢;(x;) (or ¢;(4)). (iii) Arm’s reward distribution:
We define the mean reward to be ¢;(z;) = 1 —||a*(t) — x;||, where a*(¢) is a point in the (continuous)
cube that represents the best d-dimensional configuration settings at time ¢. Note that a*(t) is a
parameter of the optimization problem and could be dynamic over time. (iv) Non-Stochastic: to
simulate a dynamic system, we have changed a*(t) over time using a normal random walk, such that
a*(t+ 1) = a*(t) + n(t) and n(t) is a d-dimensional normally distributed random variable with
zero mean and equal diagonal covariance o2 (keeping a*(t) € Q by clipping).

Unless otherwise stated, we clustered the d-dimensional cube into equal volume sub-spaces. For
ABoB we evaluated an increasing number of clusters p, from p = 1 to p = k, note that for these
extreme cases it coincides with the flat A-MAB algorithm. The default setting we used was k = 256
arms, and the clusters varied as p = 27, where j € {0, 1,...,log, k}. In order to further validate
the theoretical results on a nonstochastic, adversarial setup, we have changed the system parameter
a*(t) over time such that the different arms’ mean reward changes over time, and thus also the best
arm. In the appendix, Figures [8(b)] and [8(a)] depicts this by showing the arms’ mean reward over
time as well as the optimal arm index that changes over time and the location of the best arm in the
parameter space and how often an arm was the best. Figure presents the results of the above
setup comparing the regret of ABoB with Tsallis-INF as a function of number of steps. Additionally,
Figure [4(b)] shows the regret as a function of the number of clusters, which shows that using 16
clusters, ABoB achieves a regret of 435+ 69 compared to the flat Tsallis-INF baseline which achieves
a regret of 4879 4 259, again showing the potential gain (t-test p-value 8.2 x 10~!%), of about 91%.
Notice that the regret can be negative since we compare the results of Tsallis-INF to the best fixed
arm while the optimal arm is traveling. Since Tsallis-INF can “travel” as well, its result can be better
than the fixed optimal.
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6 EXPERIMENTAL RESULTS: A REAL SYSTEM

We compare Tsallis-INF and ABoB using Tsallis-INF on a real storage system with the goal of
maximizing the performance of the system. The system has a large configuration space of several
parameters, some continuous and some discrete (integer value), where each performance evaluation
takes a few seconds. Furthermore, the system undergoes dynamically changing workloads, which
affect the observed reward. Here we report the results of optimizing 2 parameters while keeping
the other fixed. Each run consists of 100, 000 iterations with 256 arms generated uniformly at
random from the system’s configuration search space. Clustering was implemented using K-means
over the normalized arms parameters. The system cycles through six distinct workloads, switching
approximately every 10,000 iterations.

Rewards in a Real System. In order to validate that the real system follows the Lipschitz condition,
we estimate the Lipschitz’s constant £ in the real arm reward mean and compare it to a shuffled
reward distribution. To estimate ¢, we iterated over the arms, and for each arm x; over its n nearest
neighbors, z; € N,, (). For each arm, we then computed the mean ratio between the rewards and the

metric: £; = 35 v iy (175 — 7il)/(J2; — xi]). In the Appendix, Figure|9(a)|shows the distribution
of ¢; for both the real rewards shown in Figure and a random permutation of the rewards. The
figure validates that the Lipschitz assumptions hold for the real system as the range of ¢; is small.

Flat Tsallis-INF vs. ABoB with Tsallis-INF: Real system data. Using the setup described above
(for T = 100K and the number of arms is k£ = 256), we run the algorithms on the real system. The
star-shaped points in Figure [5(b)| shows that Tsallis-INF obtained a regret of 7819, while ABoB,
using 16 clusters, provided a regret of 4025. This is an improvement of about 49%. The regret was
computed by comparing the algorithms’ rewards to the best empirical arm in hindsight, where the
rewards of each arm are interpolated between measured samples. To validate the approach further, we
replayed the reward sequence that was recorded from the real system (again using interpolation to fill
rewards in all time steps). Figures and shows how the ABoB (5543 & 21) again is dominant
over the flat Tsallis-INF baseline (7584 & 79) (t-test p-value 1.8 x 1.3715), about 27% improvement.

7 CONCLUSION

This paper introduced a novel nonstochastic, metric-based MAB framework to address the challenge
of optimizing decisions in dynamic environments with large, structured action spaces, such as
automated system configuration. We proposed ABoB, a hierarchical algorithm that leverages the
clustered, Lipschitz nature of the action space. Our theoretical analysis demonstrated that ABoB
achieves robust worst-case performance, matching traditional methods, while offering significant
improvements when the underlying structure is favorable, as demonstrated by an improved regret
bound under Lipschitz conditions. Importantly, these theoretical findings were validated through
both simulations and experiments on a real storage system, confirming ABoB’s ability to achieve
lower regret and faster convergence in practice. Future work includes exploring adaptive clustering
techniques, multilevel hierarchies of clusters, and studying distributed settings.
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A TECHNICAL APPENDIX

A.1 PROOFS

Proof of Claim The bound in equation [T follows from running EXP3 on the clusters, each as a
virtual arm. There are p clusters, and the regret is with respect to playing the best cluster (virtual arm),
P in hindsight, so the results directly follow from the EXP3 bound. For the bound in equation
we note that,

T
]E[Gmax - GmaxP (T)] - max - Z Ct
t=1

max - th (\/ P*TIng*) ’

t=1

where the first inequality follows since cluster P+ has the largest expected reward (by definition), at
least as large as cluster P*, and the last inequality follows from the EXP3 bound in the cluster P* for
which a* € P*. For the equation in equation 3] the result follows from running EXP3 in each cluster

i=1 j=1% —t(l J)

P
<> o (VIPIT T iogP) < 0 (, [KTlog ’;) , &)
i=1

where the first inequality is the EXP3 bound, and the last inequality follows from the concavity of
the functlon and under the constraints >_|P¢| = k and >_|T"| = T, the worst case is Vi, |P?| = £

p
and |T%| = 5

E

O

Proof of Theorem The proof follows from Theorem[4.2] the proof of Eq. [5} and Property [I] We
can improve Eq. [5| by plugging Property [T so for each cluster ¢ its internal regrate is bounded by

O (E | PH|T? 10g|’Pi|). In turn, the worst case for the sum > .7_, O (E | P?|| T log|Pi|> is

still the case where Vi, |P’| = £ and |T*| = L and the results follows. O

A.2 COMPUTING INFRASTRUCTURE USED FOR RUNNING EXPERIMENTS

All experiments were run on a standard MacBook Pro laptop with Apple M2 Pro Chip, 12 Cores, and
32 GB Memory.

A.3 MORE DETAILS FOR FIGURES WITHIN THE PAPER

Figure[6]extends Figure 2] showing the behavior of the EXP and EXP++ algorithms. Figure[7]extends
Figure[3] showing the behavior of the EXP and UCB algorithms.

Figure [§| provides an example of the "traveling arm” scenario where the best arm changes in time.

Figure[9] provides additional details on the dataset and the results from a real storage system.

A.4 ONE DIMENSIONAL STOCHASTIC, METRIC EXAMPLE.

Figure [I0] presents the results of the one-dimensional setup, where the k arms are equally spaced
on the range [0, 1]. Figure|10(a)| shows the regret as a function of time and compares the flat case
(p = 1) to ABoB with p = 4 and p = 16 clusters. Figure [I0(b)| presents the regret at 7' = 10k, 50k,
and 100k for different numbers of clusters. Both subfigures demonstrate that ABoB has significantly
lower regret for the best clustering, p = 16, relative to the flat baseline: 1618430 vs. 4866 + 54,
respectively (t-test p-value=9 x 1072%), an improvement of 66.8%. Moreover, it shows that ABoB is
not much worse (only for p = 2, the results were a bit lower due to the symmetry of the problem for

1
0125)
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Figure 6: Comparing ABoB (with /& = 16 clusters) with “flat” algorithms (single cluster) for
different well-known MAB algorithms. Stochastic Scenario from Zimmert & Seldin|(2021)), k£ = 256.
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Figure 7: Fixed Optimal Arm, and Nonstochastic Scenario from [Zimmert & Seldin| (2021)), £ = 256.

Comparing ABoB (with v/k = 16 clusters) with “flat” algorithms (single cluster) for different
well-known MAB algorithms.
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Figure 8: The “Traveling” Optimal Arm, Nonstochastic (adversarial) and Metric Space Scenario. (a)
Example of the travel of the optimal arm in the configuration space and how often an arm was the
best. (b) The arms’ mean reward over time and the optimal arm index that changes over time.
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Figure 9: Results from a real storage system. (a) Distribution of the estimation of the Lipschitz
constant for the empirical reward function vs. a shuffled one. (b) Empirical mean of each arm on the
storage system. The dashed line polygon represents the partition over arms used in ABoB.
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Figure 10: Cumulative regret for ABoB vs. flat Tsallis-INF (k = 1 and & = 256) for the 1D setup.
(a) As a function of steps. (b) As a function of the number of clusters.
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Figure 11: Cumulative regret for ABoB vs. flat Tsallis-INF (k = 1 and £ = 256) for the 2D
setup. (a) A 2D stochastic setup where each marker is an arm with a different reward, and arms are
partitioned into clusters. Rewards and the partition are according to Section[5] (b) As a function of
steps. (c) As a function of the number of clusters. (d) Effect of the number of arms on the relative
regret of ABoB to flat Tsallis-INF for the 1D and 2D cases. More arms imply a larger ratio.

Another important property is the U shape appearing in Figure[T0(b)] This is a result of Eq. equation[4]
from Theorem [ZIZI] where the first term is monotone increasing with p, while the second term is
monotone decreasing with p, leading to the U shape when the third term is not dominating.

A.5 TwoO-DIMENSIONAL STOCHASTIC, METRIC EXAMPLE.

In order to verify the extendability to a higher dimension, we repeated the experiment for two
dimensions d = 2, i.e., we are trying to optimize two parameters. Figure depicts the arms’
location in the metric space where each marker corresponds to a different cluster, and the color map
indicates the expected reward. The Lipschitz condition is held by the setup we use (Section[5)). Figure
[IT] again depicts the benefit of ABoB over using a flat Tsallis-INF, Figure [TT(b)] as a function of
time and Figure as a function of the number of clusters. For ABoB the regret at 7' = 100k
was 1675 4= 213 and for the flat Tsallis-INF 4859 + 72, respectively (t-test p-value=7.5 x 10~!%), an
improvement of about 66.5%.

A.6 EFFECT OF NUMBER OF ARMS

The previous two sections clearly demonstrated the benefit of ABoB over the flat Tsallis-INF. In order
to study the effect of the number of arms & on that benefit we iterated over k = 27 where j € [4,14].
Figure [[T(d)| measures the ratio of the ABoB regret relative to the flat one and shows that the benefit
increases as the number of arms increases. This is indeed expected from the results Section[4.2] We
note also that, as expected, a larger dimension will require more arms to show the benefit.

A.7 EFFECT OF RANDOM CLUSTERING

Our setup for the nonstochastic (adversarial) and metric spaces scenario (“traveling arm”) in Section
[5] considers clustering of the arms by the Lipschitz condition of the 2D metric. Our theoretical results
indicates that for any clustering we cannot lose too much. Figure [I2]repeat the same experiment
of Figure ] but with random partition of the arms. As we can see, also in this case the clustering
improves the regret, but to a smaller extent.

The best result obtained by using 4 clusters, where ABoB achieves a regret of 2086 + 491 compared
to the flat Tsallis-INF baseline which achieves a regret of 4166 4 291, (t-test p-value 10~%). This
is about 50% improvment, but less than the 91% improvement achieved by the Lipschitz-based
clustering.

A.8 BANDIT ALGORITHM
In our results, we have considered the use of the Tsallis-INF Multi-Armed Bandit algorithm in

our hierarchical approach. Here we show how this approach holds well for other MAB algorithms.
Figure [13|shows the regret achieved by using flat vs hierarchical EXP3, which demonstrates that
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Figure 12: The “Traveling” Optimal Arm, Nonstochastic (adversarial) and Metric Space Scenario
with random clustering. (a) The cumulative regret for ABoB as a function of steps. (b) The
cumulative regret for ABoB as a function of the number of clusters.
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Figure 13: Same as Figure[5]but using EXP3

the hierarchical approach still dominates the flat algorithm (even if overall it performs worse than
Tsallis-INF).

A.9 STOCHASTIC SETUP ON A REAL SYSTEM

In our experimental results (Section [6), we have considered a scenario where the system experiences
dynamically changing workloads, which puts us in the non-stochastic setting. Here we show that
under a static workload (i.e. stochastic setting) we achieve better performance in regret. Under this
scenario, Figure [T4] shows that the hierarchical using 16 clusters achieves a regret of 3708 + 45
(compared to 5349 =+ 46 in the dynamic setting) which is dominant over the flat approach achieving
regret of 5587 + 26 (compared to 7568 % 43 in the dynamic setting) (t-test p-value 1.19 x 10~22),
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Figure 14: Same as Figure[5]but the system experiences a static workload.

A.10 DIFFRENT PARENT-CHILD ALGORITHMS

Figures[T3]and [T presented possible combinations of different parent and child algorithms. Note that
for the same parent and child algorithm (diagonal), the case of 1 and 256 clusters is the same. For all
other cases, in each row, the case of 256 clusters remains the same (only child algorithm works), and
for each column, the case of a single cluster remains the same (only parent algorithm works).

17



Under review as a conference paper at ICLR 2026

918
919
920
921
922
923
924
925
926

927 .
Parent Bandit
928 EXP3 EXP3++ Tsallis-Inf ucB

929

930 o0k

931 20k

932

933 20k —
934 0

935
936

937 60k
938 40k
939
940 20k
941

0

942
943

944 60k
945
40k
946
947 20k = /________
948 , = Sf=

949
950

951 60k
952
40k
953
954 20k —
955
0

956 0.2M 0.4M 0.6M 0.8M 1M  0.2M 0.4M 0.6M 0.8M 1M  0.2M 0.4M 0.6M 0.8M 1M  02M 0.4M 0.6M 0.8M 1M
957

958 Steps

959 Number of Clusters ——1 —— 16 —— 256

960

961

962 Figure 15: Comparing different parent-child combinations in ABoB. Stochastic environment as in
963 Figurel[g]

964

965

966

967

968

969

970

971

€dX3

++€dX3
ypueg pjiyd

Cumulative Regret

Jul-sijjesp

o
aon

=}

18



Under review as a conference paper at ICLR 2026

972
973
974
975
976
977
978
979
980

981
Parent Bandit
982 EXP3 EXP3++ Tsallis-Inf ucB

983
984
985

986 50k
988 0

100k

€dX3

989
990
991 100k
992 g
993 - 50k f
L
994 5 5
995 & . )
996 ¢ o
+ Q
997 © S
998 :E’ 100k %
999 S

Jul-sijjesp

1000 50K

1001

1002 /d
0

1003
1004

1005 100k
1006
1007 soc
1008
1009

0

1010 0.2M 0.4M 0.6M 0.8M 1M 0.2M 0.4M 0.6M 0.8M 1M 0.2M 0.4M 0.6M 0.8M 1M 0.2M 0.4M 0.6M 0.8M 1M
1011

1012 Steps
1013 Number of Clusters ——1 —— 16 —— 256

1014

1015

1016 Figure 16: Comparing different parent-child combinations in ABoB. Nonstochastic environment as
1017 in Figure[]]

1018

1019

1020

1021

1022

1023

1024

1025

=}
aon

19



	Introduction
	Related Work
	Problem Formulation and the ABoB Algorithm
	Analytical Bounds for the ABoB Algorithm
	Arbitrary Clustering: Not Much to Lose
	Clustering with Lipschitz: Much to Gain

	Empirical Study
	Experimental Results: A Real System
	Conclusion
	Technical Appendix
	Proofs
	Computing Infrastructure Used for Running Experiments
	More Details for Figures Within the Paper
	One Dimensional Stochastic, Metric Example.
	Two-Dimensional Stochastic, Metric Example.
	Effect of Number of Arms
	Effect of Random Clustering
	Bandit Algorithm
	Stochastic Setup on a Real System
	Diffrent Parent-Child Algorithms


