
Automaton Constrained Q-Learning

Anastasios Manganaris, Vittorio Giammarino, and Ahmed H. Qureshi
Department of Computer Science

Purdue University
{amangana,vgiammar,ahqureshi}@purdue.edu

Abstract

Real-world robotic tasks often require agents to achieve sequences of goals while
respecting time-varying safety constraints. However, standard Reinforcement
Learning (RL) paradigms are fundamentally limited in these settings. A natural ap-
proach to these problems is to combine RL with Linear-time Temporal Logic (LTL),
a formal language for specifying complex, temporally extended tasks and safety
constraints. Yet, existing RL methods for LTL objectives exhibit poor empirical
performance in complex and continuous environments. As a result, no scalable
methods support both temporally ordered goals and safety simultaneously, making
them ill-suited for realistic robotics scenarios. We propose Automaton Constrained
Q-Learning (ACQL), an algorithm that addresses this gap by combining goal-
conditioned value learning with automaton-guided reinforcement. ACQL supports
most LTL task specifications and leverages their automaton representation to ex-
plicitly encode stage-wise goal progression and both stationary and non-stationary
safety constraints. We show that ACQL outperforms existing methods across a
range of continuous control tasks, including cases where prior methods fail to
satisfy either goal-reaching or safety constraints. We further validate its real-
world applicability by deploying ACQL on a 6-DOF robotic arm performing a
goal-reaching task in a cluttered, cabinet-like space with safety constraints. Our
results demonstrate that ACQL is a robust and scalable solution for learning robotic
behaviors according to rich temporal specifications.

1 Introduction

Achieving desirable robot behavior in real-world applications often requires managing long and
complex sequences of subgoals while adhering to strict safety constraints. For instance, autonomous
mobile robots in warehouse settings must navigate to restock shelves, all while avoiding obstacles
and remaining within a reachable distance from the recharging station for their current battery level.
Similarly, a nursing robot must routinely complete its rounds in a given sequence, unless notified of
an emergency situation.

Despite the success of Goal-Conditioned Reinforcement Learning (GCRL) [1, 2] and Safe RL
[3, 4], these approaches fall short in addressing the combined challenges of sequential goals and
dynamic safety constraints. GCRL is effective for reaching individual goals but lacks mechanisms
for reasoning over goal sequences or ensuring safety. Safe RL enforces fixed safety constraints,
but typically assumes they remain static throughout the task, limiting its applicability to temporally
evolving tasks.

Formal languages such as LTL [5] provide an expressive framework for specifying complex tasks
involving multiple interdependent goals and non-stationary safety constraints. However, reward
functions defined directly from LTL specifications are inherently non-Markovian, since temporal
properties refer to entire trajectories rather than individual transitions. This violates the Markov
assumption—a fundamental premise of standard RL—which assumes that transitions and rewards

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

depend only on the current state and action. As a result, RL algorithms built on the Markov Decision
Process (MDP) formalism [6, 7] are ill-suited for direct application to LTL-defined objectives.

To overcome this, some studies [8–10] have proposed to translate the LTL formula into an automaton
that tracks temporal progress toward task completion and enables defining Markovian rewards
corresponding to temporal specifications. While this approach allows for potentially handling
arbitrary LTL formulas, its generality is tied to the use of sparse binary rewards derived from the
Boolean evaluation of the specification. In complex environments, however, such sparse signals are
encountered too infrequently to effectively guide behavior, and designing denser rewards typically
requires additional domain knowledge not readily available in many robotics tasks. Furthermore, these
methods only implicitly deal with ensuring safety, as safety properties are fundamental components
of many LTL specifications [11], and typically rely on ad-hoc mechanisms, such as halting rollouts
[12] and reward shaping [13], both of which tend to be brittle and ineffective in complex domains.
Other approaches seek to improve scalability by employing hierarchical [13] or goal-conditioned [14]
policies but sacrifice generality, particularly with respect to safety constraints.

To bridge the gap between LTL-capable algorithms that scale poorly and scalable RL algorithms that
lack support for most LTL tasks, we propose ACQL, which lifts Safe RL and GCRL to the class of
problems expressible as LTL formulae in the recurrence class [15]. This algorithm, which we consider
our primary contribution, is built on top of two technical novelties that address distinct challenges
associated with LTL problems. First, to overcome the poor scalability of sparse rewards, we encode
automaton states with their associated goals, enabling the use of goal-conditioned techniques such as
Hindsight Experience Replay (HER) [2] to densify reward signals. Second, inspired by Hamilton-
Jacobi (HJ) reachability analysis [16, 17], we employ a minimum-safety-based product Constrained
Markov Decision Process (CMDP) formulation that enforces compliance with arbitrary LTL safety
constraints at optimality. We demonstrate these technical contributions are necessary in enabling our
ACQL algorithm to significantly outperform other algorithms for solving LTL tasks. Additionally,
we demonstrate its effectiveness in learning real-world-deployable policies for a 6-DOF robot arm
operating in a storage cabinet environment.

2 Related Work

The use of LTL specifications with RL algorithms has been a popular topic in recent years [10, 13, 18–
28]. One approach to this topic has been directly defining non-Markovian reward functions based on
overall task satisfaction, but this only supports LTL formulae that are satisfiable over finite prefixes
[18, 29–31]. In restricted cases where task satisfaction is differentiable with respect to a policy’s
actions, it is also possible to directly train sequence models that satisfy the specification [23]. The
most popular and general methods, however, convert LTL tasks into automata to use in conjunction
with standard deep RL techniques for MDPs [8–10, 19, 22, 24–28, 32–36]. Within these works, there
are two subcategories including methods for learning policies that can perform well across a set
of multiple LTL tasks [20, 22, 25, 27] and methods that focus on optimally satisfying a single LTL
task [8–10, 12, 19, 28, 32, 36, 37].We specifically aim to improve on the scalability of these latter
methods in high-dimensional environments. Of these techniques, we specifically highlight Reward
Machines (RMs) [37] as a framework with similar generality to our method and the first baseline we
compare against.

Our work utilizes techniques from GCRL [38, 39] to accelerate learning for LTL tasks. Other methods
have taken a related approach by learning or re-using goal-conditioned policies that are hierarchically
guided by LTL expressions to enable zero-shot generalization to new tasks [14, 22, 26, 27]. Using
discrete skills as opposed to a goal-conditioned policy has also been explored in [13, 21]. All
these approaches require the user to train a different skill for every automaton edge or a different
goal-conditioned policy for every safety constraint that appears in the task, except for limited classes
of safety constraints. This is impractical for most real-world tasks and, in particular, when safety
constraints are changing throughout a task. Conversely, our method learns a single goal-conditioned
policy for all goals in a particular LTL expression while still accounting for arbitrary, potentially non-
stationary safety constraints. While ACQL has been developed for online RL rather than zero-shot
generalization, there is a significant overlap in the tasks that both can ultimately solve. Therefore,
we include the Logical Options Framework (LOF) [13] as a representative for these methods in our
experiments.

2

Our work is also focused on solving LTL tasks that feature safety constraints. Safety constraints are
often indirectly addressed in the methods discussed above. They primarily focus on making unsafe
actions suboptimal by either terminating rollouts [8, 12, 36, 37] or applying negative reward shaping
[13, 20, 32] when an unsafe automaton transition occurs. Other approaches based on formal methods,
such as shielding [40, 41] and runtime model-checking [42], can more robustly enforce safety
requirements but typically rely on additional assumptions such as access to a discrete abstraction of
the environment or known system dynamics. In contrast, techniques from the Safe RL literature can
still robustly enforce stationary safety constraints in complex environments without such assumptions
[3, 4, 43–47]. Our approach builds on these Safe RL methods to address non-stationary safety
constraints induced by LTL specifications.

3 Preliminaries

Constrained Reinforcement Learning RL problems with constraints are typically modeled as
discounted CMDPs, which are defined by a tuple (S,A, T , d0, r, c,L, γ). This tuple consists of a
state space S , an action spaceA, a transition function T : S×A → P (S) (where P (S) represents the
space of probability measures over S), an initial state distribution d0 ∈ P (S), reward and constraint
functions r, c : S × A → R, a discount factor γ, and a limit for constraint violation L ∈ R [3].
Given a CMDP, the standard objective is to find the stationary policy π : S → P (A) satisfying the
constrained maximization

max
π

Jr(π) s.t. Jc(π) < L, (1)

where Jr(π) = Eτ∼π [
∑∞
t=0 γ

tr(st, at)] and Jc(π) = Eτ∼π [
∑∞
t=0 γ

tc(st, at)] are respectively the
expected total discounted return and cost of the policy π over trajectories τ = (s0, a0, s1, a1, . . .)
induced by π through interactions with the environment of the CMDP. We denote the state value
function of π by V rπ (s) = Eτ [

∑∞
t=0 γ

tr(st, at)|s0 = s] and the state-action value function by
Qrπ(s, a) = Eτ [

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a].

Temporal Logic LTL [5] is an extension of propositional logic for reasoning about systems over
time. LTL formulae ϕ ∈ Φ consist of atomic propositions p from a set AP , the standard boolean
operators “not” (¬), “and” (∧), and “or” (∨), and temporal operators that reference the value of
propositions in the future. These operators are “next” (◦), “eventually” (♢), and “always” (□). We
follow the definitions for these operators given in [48]. In our algorithm, we use Signal Temporal
Logic (STL), which further extends LTL with quantitative semantics and requires that every atomic
proposition p ∈ AP is defined as a real-valued function of the system state. The quantitative
semantics is defined by a function ρ : Sω × Φ→ R that produces a robustness value representing
how much a sequence of states ω ∈ Sω satisfies or violates the property specified by an STL formula
ϕ ∈ Φ. Our exact implementation of these quantitative semantics is based on [49]. Every temporal
logic constraint can be expressed as the conjunction of a “safety” and “liveness” constraint [50],
where a safety constraint is informally defined as a requirement that something must never happen for
the task to succeed, and a liveness constraint is defined as a requirement that something must happen
for the task to succeed. We take advantage of this dichotomy in our method.

Automata The robotics tasks discussed so far can be expressed more specifically as STL formulae
in the recurrence class, as defined in [15], and all such formulae can be translated into abstract
machines called Deterministic Büchi Automata (DBAs) [48]. A DBA is formally defined by the tuple
A = (Σ,Q, δ, q0, F), consisting of an alphabet Σ, a set of internal states Q, a transition function
δ : Q × Σ → Q, an initial state q0 ∈ Q, and a set of accepting states F ⊆ Q. An automaton is
used to process an infinite sequence of arbitrary symbols from the alphabet Σ and determine whether
the sequence satisfies or does not satisfy the original logical expression. In our setting, a symbol
processed by the automaton is a subset of atomic propositions l ∈ 2AP that are true in some MDP
state s ∈ S. This symbol l is referred to as the state’s labeling and the mapping of states to their
labeling is denoted by a labeling function L : S → 2AP . The automaton A is always in some state
q ∈ Q, and starts in the state q0. Each element σ ∈ Σ of an input sequence causes some change in
the automaton’s internal state according to the transition function δ. For convenience, we will refer to
edges in the automaton with transition predicates. A transition predicate is a propositional formula
that holds for all σ ∈ Σ which induce a transition between two states qi, qj ∈ Q according to δ [11].
By processing each state while an agent interacts with an MDP, the internal automaton state provides

3

(3)

(4)

Figure 1: The ACQL algorithm relies on a novel augmented formulation of CMDPs (left). An input
task specification ϕ is converted into the DBA A, from which safety constraints and subgoals are
collected into mappings S and G respectively. The learning agent receives subgoals g1, · · · , gn at
every stage in the task from G and safety constraint feedback in cA from S. Trajectories induced by
the policy πj are collected into a replay buffer R, from which batches Bτj are sampled and modified
using HER [2]. From these modified trajectories, mini-batches Bi of transitions (sAt , at, r

A
t , c

A
t , s

A
t+1)

are used to compute the targets yrt in (3) and yct in (4) for training models of the state-action value
function and safety function, Qrθ and Qcψ , from which an updated policy πj+1 is derived.

information to the agent about its current progress in the task. This is the fundamental idea behind a
Product MDP, which combines any MDP with a deterministic automaton and is a standard technique
in model checking for probabilistic systems [48]. A complete definition for a product MDP in an RL
context can be found in previous work such as [10, 37].

4 Method

This section introduces our ACQL algorithm along with a novel augmented product CMDP on which
it is based. An overview is provided in Figure 1. First, we detail the construction of the augmented
product CMDP derived from a task specification. Observations in this CMDP include the set of
subgoals associated with the current automaton state q, as described in Section 3. This CMDP also
uses safety conditions obtained from the task automaton to provide separate constraint feedback that
the learning agent uses to determine safe actions. Unlike the standard CMDP constraint in (1), we
argue for the use of a constraint on the minimum safety that is easier to learn. We finally present an
overview and brief analysis of ACQL, which is tailored to utilize the information provided by our
augmented product CMDP to scale beyond existing algorithms for learning in product MDPs.

4.1 Augmented Product CMDP Formulation

Obtaining the Automaton, Safety, and Liveness Constraints To construct the augmented product
CMDP used by our algorithm, we begin by translating the input STL task specification ϕ into a
DBA A = (Σ,Q, δ, q0, F) using the SPOT library [51]. As described in Section 3, this automaton
represents the structure of the task. To better guide learning, we extract from this automaton additional
structure that captures the task’s safety and liveness requirements. Intuitively, these represent
conditions that must always hold to avoid failure (safety) and conditions that must eventually hold
to make progress toward task completion (liveness) [11, 50]. This information is summarized in
two mappings: a safety condition mapping S : Q → Φ, which assigns to each automaton state a
proposition that must remain true, and a liveness condition mapping O : Q → Φ, which assigns to
each automaton state a proposition that must be eventually satisfied to proceed in the task. Based
on O, we define G : Q → G+ to explicitly link automaton states to subgoals, where G+ =

⋃n
i=1 Gi

represents the full space of possible subgoal lists up to a task-dependent length n and Gi is the i-fold
cartesian product of G with itself.

4

First, to obtain safety constraints, we determine the non-accepting sink-components of the automaton
A; i.e., the automaton states Q \ F from which there is no path to any state in F . For each automaton
state q, we then examine the outgoing transitions from q that lead into these sink components. The
predicates guarding these transitions describe conditions under which a transition into an unsafe state
would occur, so negating these predicates provides the conditions that must hold in order to stay safe
while in state q. We can then define S(q) as the conjunction of all such negated predicates for state q.

Second, to obtain liveness constraints, we ignore the above transitions for safety conditions and
examine the remaining predicates guarding outgoing transitions from each state q. These can only
specify the conditions necessary to make progress in the task. Therefore, we can take the disjunction
of these transition predicates to obtain the formula O(q) that must be satisfied in order to transition
beyond q. Following prior work on learning LTL tasks [13, 14], we assume that a subset of the atomic
propositions, APsubgoal ⊆ AP , represent subgoal propositions and are parameterized by values g
within a subgoal space G ⊆ S. Note that we consider only a subset since not all the propositions
in our modified DBA are necessarily related to achieving subgoals. Using this fact, we filter the
predicates in O(q) to retain only those associated with these subgoal propositions, which in turn
provides a list of subgoals G(q) = g1, . . . , gn that are relevant to the logical formula given by O(q).
An illustrative example for these two steps is provided in the appendix.

Defining the Augmented Product CMDP Now, letMA = (SA,AA, T A, dA0 , rA, cA, γ,L) be
a new CMDP formed by augmenting the original MDP M = (S,A, T , d0, r, γ) with the DBA
A = (Σ,Q, δ, q0, F). The new state space SA = S ×G+×Q is the Cartesian product of the original
state space S , the space for every possible list of subgoals G+, and the set of automaton states Q. A
state sA ∈ SA can be written as ⟨s, g+, q⟩, where s ∈ S, g+ ∈ G+, and q ∈ Q are the constituent
MDP state, goal-list and automaton state of sA. The action space AA = A is unmodified. The new
transition dynamics T A are defined so that a transition to ⟨s′, g+′, q′⟩ ∈ SA from ⟨s, g+, q⟩ ∈ SA is
impossible if the automaton does not support a transition from q to q′ when entering the state s′; i.e.,

T A(⟨s′, g+′, q′⟩|⟨s, g+, q⟩, a) =
{T (s′|s, a) if q′ = δ(q, L(s′)), g+′ = G(q′),

0 otherwise.

Likewise, the initial state distribution dA0 (⟨s, g+, q⟩) = d0(s) if q = q0 and g+ = G(q0), and is
zero otherwise. The reward function rA(⟨s, g+, q⟩) = 1F (q), where 1(·) is an indicator function,
is defined to provide a sparse reward of 1 when the task is finished and the agent is near the goal
associated with any accepting state of the automaton. Reward sparsity was a central shortcoming
of prior work, often resulting in poor performance in realistic scenarios. However, our augmented
product CMDP specifically includes the subgoal list g+ to facilitate the use of modern GCRL
algorithms to mitigate this sparsity in many relevant tasks. In particular, ACQL retroactively assigns
rewards based on achieved subgoals using HER, and the benefit of this strategy for LTL-specified
tasks is validated in our ablations (Section 5.3). Lastly, we define the constraint function cA along
with the constrained objective used with our CMDP formulation.

Minimum LTL Safety Constraint Although the sum-of-costs formulation in (1) conveniently
leverages the standard Bellman equation, it presents practical challenges in learning. Specifically,
predicting the cumulative sum of future costs requires accurately modeling long-term dependencies,
which increases variance and slows down convergence. This can be appropriate for maximizing
reward but unnecessarily complicated for safety. When dealing with safety. and in particular hard-
safety [52], we are interesting in knowing whether the generated trajectory becomes unsafe at least
once. Hence, this can be reformulated as a classification task. This approach bypasses the need for
accurate regression by directly learning the decision boundary for state-action pairs leading to safety
violations. To achieve this, we define a constraint function cA such that it takes negative values if
a safety constraint is violated and positive values otherwise, and we apply a constraint based on
the minimum over all future values of cA(sAt , at). Then, we simply learn to classify this minimum
value as being either positive or negative. This formulation allows us to determine safety violations
in a single step, avoiding the complexity of cumulative cost prediction. A major advantage of this
formulation is that it removes the need for manual tuning of the violation limit L ∈ R, which depends
on the range of possible costs. Instead, by directly classifying actions as leading to a safety violation,
we reduce the range of L to [−1, 1]. This normalization ensures robustness across tasks and allows
for a simple, task-agnostic choice of L = 0. Directly defining cA(⟨s, g+, q⟩, a) = ρ(s, S(q)) using

5

Algorithm 1 Automaton Constrained Q-Learning

Require: An MDPM = (S,A, T , d0, r, γ), an STL specification ϕ ∈ Φ, a safety limit L ∈ [−1, 1],
a learning rate α, an interpolation factor λ

1: A← TRANSLATE(ϕ)
2: S,G← PARTITION(A)
3: MA ← (SA,A, T A, dA0 , rA, cA, γ, L)
4: Qcθ, Q

r
ψ ← MAKENETWORKS(SA,A)

5: θ̄ ← θ, ψ̄ ← ψ
6: R← MAKEREPLAYBUFFER(MA)
7: for j = 1, . . . , N do
8: γc ← SAFETYGAMMASCHEDULER(j)
9: πj(s

A)← argmaxa:Qc
θ(s

A,a)>LQ
r
ψ(s

A, a)

10: τ ← GETTRAJECTORY(MA, πj)
11: R← R ∪ τ .
12: Bτj ∼ R
13: Bτj ← RELABEL(Bτj)
14: for i = 1, . . . ,M do
15: Bi ← {(sAt , at, rt, ct, sAt+1)} ∼ Bτj
16: θ ← θ − α∇θLcj,i(θ)
17: ψ ← ψ − α∇ψLrj,i(ψ)
18: θ̄ ← (1− λ)θ̄ + λθ, ψ̄ ← (1− λ)ψ̄ + λψ
19: end for
20: end for

the robustness function for S(q) (see Section 3) satisfies this formulation and corresponds to the
safety constraints for any STL-specified task.

Now, we can define our new objective as finding the optimal stationary policy π∗ : S → P (A)
that maximizes the expected total discounted return, as defined in (1), while keeping the expected
minimum safety above the safety limit L:

E
τ∼π

[
min

t∈[0,∞]
cA(st, at)

]
> L, (2)

where τ = (sA0 , a1, s
A
2 , a2, . . .) is a trajectory within our augmented CMDP induced by the policy

π. We denote this expected minimum safety for a policy π by its state-action safety function
Qcπ(s, a) = Eτ∼π[min∞t=0 c

A(sAt , at)|sA0 = s, a0 = a].

4.2 Automaton Constrained Q-Learning (ACQL)

Overview In what follows, we provide an overview of the ACQL algorithm, whose pseudocode is
shown in Algorithm 1. First, the input STL specification ϕ is translated into an automaton A (Line 1)
that is partitioned to produce the mappings S and G (Line 2). These mappings and the automaton are
combined with the input MDPM to create the augmented CMDP in Line 3. Using the augmented
CMDP, ACQL can proceed to learn the optimal policy

π∗(sA) = argmax
a : Qc∗(sA,a)>L

Qr∗(sA, a),

by learning the optimal state-action value function Qr∗ = Qrπ∗ and the optimal state-action safety
functionQc∗ = Qcπ∗ . In order to learn these optimal functions, we define the modelsQrψ : SA×A →
R and Qcθ : SA × A → [−1, 1] parameterized by ψ and θ (Line 4). Their initial parameters are
copied to initialize the target parameters θ̄ and ψ̄ in Line 5, and an empty replay buffer is initialized
in Line 6.

The algorithm proceeds to iterate for N epochs indexed by j. At each epoch, we obtain a value for the
safety discount factor γc in Equation (4), which asymptotically approaches 1.0 as training progresses
(Line 8). The policy πj for the epoch is defined to select the most-rewarding action according to Qrψ
constrained by Qcθ (Line 9). A trajectory τ is collected according to an epsilon-greedy version of this

6

policy (Line 10), and this trajectory is added to the replay buffer (Line 11). From this replay buffer, a
batch of trajectories Bτj is sampled every epoch (Line 12). The inclusion of subgoals in the states
sAt of the sampled mini-batch Bi allows us to further accelerate learning using relabeling techniques
such as HER [2], which allows Qrθ to improve from failed attempts at progressing through the task.
Mini-batches of transitions Bi are subsequently sampled from the relabeled trajectories (Line 15) and
used to update Qrψ for minimizing the loss

Lrj,i(ψ) = E
(sAt ,at)∼Bi

[(
yrt −Qrψ(sAt , at)

)2]
, with yrt = rt + γQrψ̄(s

A
t+k, πj(s

A
t+k)). (3)

Similarly, Qcθ is trained with the target

yct =γcmin{cA(sAt , at), Qcθ̄(sAt+1, πj(s
A
t+1))}+ (1− γc) cA(sAt , at), (4)

which is derived from the Bellman principle of optimality for expected minimum cost objectives
given in [16]. The targets, yr and yc, are computed using target parameters, ψ̄ and θ̄, which are
updated towards their corresponding main parameters each step with an interpolation factor λ (Line
18). Crucially, we schedule the discount factor γc throughout training to asymptotically approach 1.0,
which is necessary for convergence to Qc∗. Additional details for the subroutines used in Algorithm 1
are provided in the appendix.

Analysis Under mild assumptions, ACQL is guaranteed to asymptotically converge to the optimal
solution. We summarize this in the following proposition:
Proposition 1. LetMA be an augmented CMDP with |SA| < ∞, |A| < ∞, and γ ∈ [0, 1), and
let Qcn and Qrn be models for the state-action safety and value functions indexed by n. Assume
they are updated using Robbins-Monro step sizes a(n) and b(n), respectively, with b(n) ∈ o(a(n))
according to (3) and (4). Assume that γcn is also updated with step sizes c(n) such that γcn → 1 and
c(n) ∈ o(b(n)). Then Qcn and Qrn converge to Qc∗ and Qr∗ almost surely as n→∞.

Proof Sketch. The step sizes a(n), b(n), and c(n) create a stochastic approximation algorithm on
three timescales [53]. Based on the contraction property of (4), the fastest updatingQcn asymptotically
tracks the correct safety function for the policy determined by Qrn and γcn . On the slower timescale
ensured by the definition of b(n) and a(n), Qrn converges to the fixed point as determined by the
relatively static γcn , due to the contraction property of (3). Finally, as γc converges on the slowest
timescale, the fixed points for the two faster timescales approach Qr∗ and Qc∗ at γc = 1.

In Proposition 1, the notation b(n) ∈ o(a(n)) means that b(n)/a(n) → 0 asymptotically. The
assumption of a finite MDP is standard in the literature, but relaxing this assumption is possible by
applying fixed point theorems for infinite dimensional spaces [54]. After convergence, the final policy
will behave optimally for the reward r and (if possible) never incur any cost, thereby respecting the
LTL safety constraint. A complete description of our algorithm, model implementation details, and a
full proof of convergence, with reference to similar arguments used in prior work [43, 55, 56], are
provided in the appendix.

5 Experiments

In this section, we justify the design of ACQL and evaluate its effectiveness. We conducted a
comparative analysis of ACQL against established baselines in RL from LTL specifications, including
RMs [12] and the LOF [13]. We demonstrate our method’s real-world applicability by solving more
complex LTL tasks with a 6-DOF robot arm in a storage cabinet environment. Lastly, we performed
an ablation study to clarify how our subgoal-including product CMDP, in combination with HER [2],
and our minimum-safety constraint formulation contribute to ACQL’s performance.

5.1 Comparative Analysis

Baselines In selecting our baselines, we chose to not compare against standard Safe RL methods,
offline policy learning methods, and multi-task LTL methods. Safe RL methods, without significant
modification, cannot directly apply to LTL tasks and instead only address tasks with stationary safety
constraints. Offline methods assume access to a fixed dataset and are not designed for the online

7

(a) PointMass Field (b) Quadcopter Room (c) Ant Field (d) UR5e Shelf

Figure 2: We conducted experiments in simulated environments for navigation tasks using a point
mass, quadcopter, and ant quadruped. We also trained policies for end-effector control of a UR5e
manipulator in a simulated shelf-environment for our real-world experiments.

Table 1: Results from policies trained for five task types in three different environments with 5 million
environment interactions and 5 seeds. We report mean and one standard deviation of total reward and
success rate in 16 evaluation episodes lasting 1000 steps over seeds for policies at the end of training.

ACQL (Ours) LOF [13] CRM-RS [37]

Robot Task Reward ↑ S.R.(%) ↑ Reward ↑ S.R.(%) ↑ Reward ↑ S.R.(%) ↑

P.M.

♢(g1 ∧ ◦(♢g2)) 829.6 ± 9.6 83.8 ± 26.4 11.0 ± 3.1 98.8 ± 2.8 91.2 ± 4.3 0.0 ± 0.0
♢g1 ∧ ♢g2 841.1 ± 54.1 98.8 ± 2.8 470.7 ± 397.5 100.0 ± 0.0 420.6 ± 259.2 61.3 ± 38.6
♢g1 ∧ □¬o1 858.7 ± 3.2 100.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 3.8 ± 8.4

¬o1Ug1 ∧ ◦♢g2 525.8 ± 480.0 60.0 ± 54.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2.5 ± 5.6
□♢(g1 ∧ ◦♢g2) ∧ □¬o1 2.2 ± 2.0 62.5 ± 41.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Q.C.

♢(g1 ∧ ◦(♢g2)) 813.5 ± 9.7 100.0 ± 0.0 32.0 ± 6.3 98.8 ± 2.8 0.0 ± 0.0 0.0 ± 0.0
♢g1 ∧ ♢g2 752.6 ± 157.0 92.5 ± 16.8 161.7 ± 287.6 92.5 ± 16.8 0.0 ± 0.0 0.0 ± 0.0
♢g1 ∧ □¬o1 822.7 ± 107.4 95.0 ± 11.2 3.5 ± 5.9 15.0 ± 20.5 4.1 ± 9.2 2.5 ± 5.6

¬o1Ug1 ∧ ◦♢g2 726.6 ± 88.6 97.5 ± 3.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
□♢(g1 ∧ ◦♢g2) ∧ □¬o1 2.4 ± 1.2 82.5 ± 35.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Ant

♢(g1 ∧ ◦(♢g2)) 555.8 ± 39.8 98.8 ± 2.8 53.2 ± 29.8 91.2 ± 9.5 5.5 ± 12.3 1.2 ± 2.8
♢g1 ∧ ♢g2 587.2 ± 19.3 98.8 ± 2.8 158.0 ± 180.6 76.2 ± 42.7 4.6 ± 6.4 2.5 ± 3.4
♢g1 ∧ □¬o1 683.7 ± 31.1 85.0 ± 3.4 38.3 ± 28.8 8.8 ± 7.1 0.0 ± 0.0 3.8 ± 3.4

¬o1Ug1 ∧ ◦♢g2 193.4 ± 36.2 87.5 ± 10.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
□♢(g1 ∧ ◦♢g2) ∧ □¬o1 0.9 ± 0.6 77.5 ± 12.9 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

learning setting we address. Multi-task methods [20, 22, 25, 27] take special measures to generalize
across a distribution of LTL specifications. Comparisons to these methods in a single-task context
would therefore require removing significant components from them and would not yield strong
conclusions regarding their relative merit. We instead compared our algorithm against two methods
for online RL with singular LTL specifications: Counterfactual Experiences for Reward Machines
with Reward Shaping (CRM-RS) [37] and the LOF [13]. CRM-RS employs an RM to define the
task and dispense shaped rewards that incentivize task completion. RM states in non-accepting sink
components are treated as terminal states, implementing a rollout-terminating strategy to enforce
safety constraints. The LOF is a framework for learning hierarchical policies to satisfy LTL tasks.
It learns a separate policy, referred to as a logical option, for satisfying every subgoal-proposition
in the task. When training each logical option, each step that violates the task’s safety propositions
receives a large reward penalty (set to Rs = −1000 based on their implementation) to discourage
unsafe behavior. These policies are then composed with a higher-level policy obtained using value
iteration over a discrete state space derived from the task automaton and all the subgoal states of the
environment. Both these approaches can handle general LTL specifications and, to our knowledge,
represent the most relevant baselines to compare our algorithm against. Furthermore, we note that
RMs and the LOF cannot be easily enhanced with high-performing GCRL and Safe RL techniques
without adopting substantial modifications to their learning algorithms and product MDP formulation.
Our method effectively integrates these components in a single framework that enables learning from
general logical objectives in complex settings, as demonstrated in the following tasks.
Tasks We chose five distinct LTL tasks and three different agents to facilitate a thorough comparison
between our algorithm and the two baseline methods. All environment simulation was done within the
Brax physics simulator [57]. The agents used in our experiments are a 2D PointMass, a Quadcopter,
and an 8-DOF Ant quadruped. Additional details for these environments are given in the appendix.
We used open environments without physical obstacles for our experiments. Instead, obstacles were
introduced solely through the task specification. This was done to demonstrate the effectiveness of
our algorithm in avoiding obstacles based purely on feedback from the task specifications, without

8

confounding effects such as physically restricted motion. The LTL tasks used in the evaluation
include: (1) a two-subgoal sequential navigation task between opposite corners of the environment
(♢(g1 ∧ ◦(♢g2))), (2) a two-subgoal branching navigation task between opposite corners of the
environment (♢g1 ∧ ♢g2), (3) a single-goal navigation task constrained by an unsafe region (♢g1 ∧
□¬o1), (4) a two-subgoal navigation task with a disappearing safety constraint (¬o1Ug1∧◦♢g2), and
(5) an infinitely-looping navigation task with a persistent safety constraint (□♢(g1 ∧ ◦♢g2) ∧□¬o1).
The starting position, obstacle and subgoal configurations for each environment are shown in Figure 2.

Results The results for our three simulated environments and five task types are shown in Table 1.
All results are reported for the final policy obtained after 5 million environment interactions with
five different seeds. For LOF, each individual logical option was afforded its own 5 million training
steps for fairness. For each seed, we evaluated the final policy in 16 randomly initialized episodes
lasting 1000 steps. We report the reward, which corresponds to the number of steps spent near
the final goal of the task automaton, and the success rate (S.R.), which is the proportion of policy
rollouts that completely satisfied the task specification for all 1000 steps. Because the robustness of
rollouts for the final “Loop” task cannot be meaningfully evaluated over a finite trajectory [58], we
instead compute the success rate by examining the proportion of rollouts that are never unsafe and
successfully complete at least 1 full loop within the episode.

We find that in these environments, stably reaching subgoals with any non-goal-conditioned method is
unreliable, especially when rewards are delayed based on the task structure. As a result, CRM-RS fails
for almost all environments and task types. The LOF is able to more easily scale to handle multiple
goals due to its hierarchical structure and achieves high robustness for most rollouts. However, it also
doesn’t typically obtain high rewards due to only learning to apply options for reaching subgoals, as
opposed to remaining near the final goal once the task is satisfied. Furthermore, the tasks with safety
constraints clearly demonstrate that rollout termination in CRM-RS and the reward shaping used
by LOF is insufficient for reliably preventing the agent from entering obstacle regions. Our method
obtained significantly more reward than the baselines, while remaining consistently safe, in all five
tasks and environments.

5.2 Real-World Experiments

Figure 3: ACQL policies trained with safety con-
straints based a cabinet’s geometry can be success-
fully deployed for a UR5e manipulator operating
in the real cabinet environment.

As a first step in determining our algorithm’s ap-
plicability to controlling robots in the real world
for LTL specified tasks, we trained a policy us-
ing ACQL for controlling a 6-DOF manipulator
in a storage cabinet workspace. We trained this
policy in the simulated environment pictured in
Figure 2d for a complex navigation task involv-
ing 3 subgoals and 2 obstacles: ♢(p1∧◦(♢(p2∧
◦(♢(p3))))) ∧ □(¬(in_wall ∨ in_table)). The
policy was trained over 6 actions corresponding
to translating the end-effector in the 6 cardinal
directions. The geometry of the simulated envi-
ronment perfectly aligned with the real cabinet
workspace, so that policy actions based on the state of the simulation could be feasibly executed
on the real robot. The resulting policy achieved a mean reward of 908.4 and a 100% success rate
across 16 simulated rollouts, and we successfully deployed this same policy to the real UR5e robot
arm and storage cabinet environment visualized in Figure 3. To support reproducibility, all relevant
details for the task definition and environment setup are provided in our Supplementary Material. In
future work, we intend to support a wider sim-to-real gap and train policies for LTL objectives in
partially observable environments. Nonetheless, these initial results demonstrate that our algorithm
can effectively leverage feedback from STL tasks in simulation to produce performant and safe
policies for real robotic systems.

5.3 Ablative Analysis

We conducted an additional ablative analysis to justify two key components of our algorithm. The
results are reported in Table 2. In the first ablation, we removed the use of HER from ACQL, requiring
the agent to learn exclusively from the sparse reward given upon reaching an accepting automaton

9

Min. CMDP (Ours)

Q
c θ

Sum CMDP

Q
r ψ

−18.37

57.69

−1

1

−14.48

10.78

37.9
60.0

287.6

Figure 4: Contour plots for both Qcθ and Qrψ
trained with ACQL with our CMDP formula-
tion in (2) and the standard formulation in (1).

Table 2: Results for our algorithm when ablating
HER and substituting our minimum-safety CMDP
formulation with the standard CMDP formulation.
We report mean and standard deviation of the re-
ward and success rate collected over all environ-
ments, tasks (except the loop task), and seeds from
the policy at the end of training in 16 evaluation
episodes lasting 1000 steps. For the ablation affect-
ing safety constraints, we only report mean perfor-
mance in tasks that include safety constraints.

Reward ↑ S.R.% ↑

All Tasks
ACQL 682.5 ± 232.1 91.5 ± 20.3

No HER 95.7 ± 220.1 12.9 ± 29.2

Safety Tasks
ACQL 545.8 ± 365.5 75.4 ± 39.1

Sum CMDP 8.0 ± 24.9 4.6 ± 11.0

state. This ablation isolates the effect of our subgoal-including product CMDP formulation that
enables applying GCRL methods in the context of LTL tasks, and our results show that removing it
leads to significantly degraded performance.

Our second ablation demonstrates the benefit of our minimum safety constraint (2) over the discounted
sum-of-cost framework (1) for accurately learning the state-action safety function. We modified our
CMDP to provide positive costs when there was a safety violation, trained Qcθ to predict discounted
sums of costs, and constrained π to choose actions below an upper limit on total cost L. This
limit was chosen based on the best performing value L ∈ {0, 10, 40, 60}. We report the difference
in performance over only the tasks that involved safety constraints and observe that our CMDP
formulation is critical to the performance of our algorithm. We also show a visualization of the
policy differences that result from this ablation in Figure 4. We observe that in our formulation (left),
ACQL can more effectively learn the safety constraint, which substantially improves the quality of
Qrψ (bottom). Note that the differing scale for Qcθ in our formulation (top left) results in a yellow safe
region, while the standard formulation depicts low-cost, safe regions in blue.

6 Conclusion

Limitations Although our method outperforms baseline methods in training policies to solve
several fundamental types of LTL tasks, there remain a few limitations that we aim to address in
future work. First, like many approaches leveraging product MDPs [13, 21, 32, 37], our method is
restricted to logical tasks representable by DBAs. To overcome this, we plan to investigate more
expressive types of automata for RL, such as Good-for-MDPs Non-Deterministic Büchi Automata
[59]. Second, our current approach approximates the state-action value function without fully
capturing task requirements beyond the current set of subgoals. We aim to explore more sophisticated
goal-conditioned RL methods that can effectively condition a policy on future subgoals provided
by our product CMDP. Finally, while our real-world deployment demonstrates the feasibility of
applying our algorithm to robot control outside simulation, there are open challenges related to partial
observability and sim-to-real mismatch in real-world learning with LTL objectives that we aim to
address in future work.

We present a novel RL algorithm to tackle complex and high-dimensional LTL-specified tasks,
enabled by a novel augmented product CMDP formulation that provides feedback for enforcing
arbitrary safety constraints and subgoals for efficiently learning to achieve liveness constraints.
By significantly outperforming comparable baselines for learning from LTL specifications, our
approach demonstrates a promising trajectory toward learning in increasingly complex and realistic
environments, without sacrificing generality in supporting the full expressiveness of LTL and other
formal languages.

10

Acknowledgments

This material is based upon work supported by the Air Force Office of Scientific Research under
award number FA9550-24-1-0233. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the
United States Air Force.

References
[1] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function ap-

proximators. In Francis Bach and David Blei, editors, Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research,
pages 1312–1320, Lille, France, 07–09 Jul 2015. PMLR.

[2] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience
replay. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

[3] E. Altman. Constrained Markov Decision Processes. Stochastic Modeling Series. Taylor &
Francis, 1999.

[4] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization.
In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 22–31.
PMLR, 06–11 Aug 2017.

[5] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science (SFCS 1977), pages 46–57, 1977.

[6] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. International Conference
on Machine Learning (ICML), 2018.

[7] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms, 2017.

[8] Alberto Camacho, Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Valenzano, and Sheila A.
McIlraith. Ltl and beyond: Formal languages for reward function specification in reinforcement
learning. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intel-
ligence, IJCAI-19, pages 6065–6073. International Joint Conferences on Artificial Intelligence
Organization, July 2019.

[9] Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. Cautious reinforcement
learning with logical constraints. In Proceedings of the 19th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS ’20, pages 483––491, Richland, SC,
2020. International Foundation for Autonomous Agents and Multiagent Systems.

[10] Mohammadhosein Hasanbeig, Daniel Kroening, and Alessandro Abate. Deep reinforcement
learning with temporal logics. In Nathalie Bertrand and Nils Jansen, editors, Formal Modeling
and Analysis of Timed Systems, pages 1–22, Cham, 2020. Springer International Publishing.

[11] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness. Distributed Computing,
2(3):117–126, September 1987.

[12] Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila McIlraith. Using reward
machines for high-level task specification and decomposition in reinforcement learning. In
Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 2107–2116.
PMLR, 10–15 Jul 2018.

11

[13] Brandon Araki, Xiao Li, Kiran Vodrahalli, Jonathan Decastro, Micah Fry, and Daniela Rus.
The logical options framework. In Marina Meila and Tong Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 307–317. PMLR, 18–24 Jul 2021.

[14] Wenjie Qiu, Wensen Mao, and He Zhu. Instructing goal-conditioned reinforcement learning
agents with temporal logic objectives. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine, editors, Advances in Neural Information Processing Systems, vol-
ume 36, pages 39147–39175. Curran Associates, Inc., 2023.

[15] Zohar Manna and Amir Pnueli. A hierarchy of temporal properties (invited paper, 1989). In
Proceedings of the Ninth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’90, pages 377––410, New York, NY, USA, 1990. Association for Computing Machinery.

[16] Jaime F. Fisac, Neil F. Lugovoy, Vicenç Rubies-Royo, Shromona Ghosh, and Claire J. Tomlin.
Bridging hamilton-jacobi safety analysis and reinforcement learning. In 2019 International
Conference on Robotics and Automation (ICRA), pages 8550–8556, 2019.

[17] Kai-Chieh Hsu, Vicenç Rubies-Royo, Claire J. Tomlin, and Jaime F. Fisac. Safety and liveness
guarantees through reach-avoid reinforcement learning. In Proceedings of Robotics: Science
and Systems, Held Virtually, July 2021.

[18] Xiao Li, Cristian-Ioan Vasile, and Calin Belta. Reinforcement learning with temporal logic
rewards. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 3834–3839, 2017.

[19] Xiao Li, Zachary Serlin, Guang Yang, and Calin Belta. A formal methods approach to in-
terpretable reinforcement learning for robotic planning. Science Robotics, 4(37):eaay6276,
2019.

[20] Pashootan Vaezipoor, Andrew C Li, Rodrigo A Toro Icarte, and Sheila A. Mcilraith. LTL2Action:
Generalizing LTL instructions for multi-task RL. In Marina Meila and Tong Zhang, editors, Pro-
ceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 10497–10508. PMLR, 18–24 Jul 2021.

[21] Geraud Nangue Tasse, Steven James, and Benjamin Rosman. Skill machines: Temporal logic
composition in reinforcement learning. In Deep Reinforcement Learning Workshop @ NeurIPS,
2022.

[22] Beyazit Yalcinkaya, Niklas Lauffer, Marcell Vazquez-Chanlatte, and Sanjit Seshia. Automata
conditioned reinforcement learning with experience replay. In NeurIPS 2023 Workshop on
Goal-Conditioned Reinforcement Learning, 2023.

[23] Zikang Xiong, Daniel Lawson, Joe Eappen, Ahmed H. Qureshi, and Suresh Jagannathan. Co-
learning planning and control policies constrained by differentiable logic specifications. In
2024 IEEE International Conference on Robotics and Automation (ICRA), pages 14272–14278,
2024.

[24] Duo Xu and Faramarz Fekri. Generalization of temporal logic tasks via future dependent
options. Machine Learning, 113(10):7509–7540, October 2024.

[25] Beyazit Yalcinkaya, Niklas Lauffer, Marcell Vazquez-Chanlatte, and Sanjit A. Seshia. Compo-
sitional automata embeddings for goal-conditioned reinforcement learning. In A. Globerson,
L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, Advances in
Neural Information Processing Systems, volume 37, pages 72933–72963. Curran Associates,
Inc., 2024.

[26] Beyazit Yalcinkaya, Niklas Lauffer, Marcell Vazquez-Chanlatte, and Sanjit A. Seshia. Provably
correct automata embeddings for optimal automata-conditioned reinforcement learning. In
George Pappas, Pradeep Ravikumar, and Sanjit A. Seshia, editors, Proceedings of the Interna-
tional Conference on Neuro-symbolic Systems, volume 288 of Proceedings of Machine Learning
Research, pages 661–675. PMLR, 28–30 May 2025.

12

[27] Mathias Jackermeier and Alessandro Abate. DeepLTL: Learning to efficiently satisfy complex
LTL specifications for multi-task RL. In The Thirteenth International Conference on Learning
Representations, 2025.

[28] Ameesh Shah, Cameron Voloshin, Chenxi Yang, Abhinav Verma, Swarat Chaudhuri, and San-
jit A. Seshia. LTL-constrained policy optimization with cycle experience replay. Transactions
on Machine Learning Research, 2025.

[29] Xiao Li, Yao Ma, and Calin Belta. A policy search method for temporal logic specified
reinforcement learning tasks. In 2018 Annual American Control Conference (ACC), pages
240–245, 2018.

[30] Derya Aksaray, Austin Jones, Zhaodan Kong, Mac Schwager, and Calin Belta. Q-learning for
robust satisfaction of signal temporal logic specifications. In 2016 IEEE 55th Conference on
Decision and Control (CDC), pages 6565–6570, 2016.

[31] Anand Balakrishnan and Jyotirmoy V. Deshmukh. Structured reward shaping using signal
temporal logic specifications. In 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 3481–3486, 2019.

[32] Eleanor Quint, Dong Xu, Samuel W Flint, Stephen D Scott, and Matthew Dwyer. Formal
language constrained markov decision processes, 2021.

[33] Xiao Li, Yao Ma, and Calin Belta. Automata-guided hierarchical reinforcement learning for
skill composition, 2018.

[34] Geraud Nangue Tasse, Steven James, and Benjamin Rosman. A boolean task algebra for
reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33, pages 9497–9507.
Curran Associates, Inc., 2020.

[35] Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, and Rajeev Alur. Compositional
reinforcement learning from logical specifications. Advances in Neural Information Processing
Systems, 34:10026–10039, 2021.

[36] Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. Logically-constrained
reinforcement learning, 2019.

[37] Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Valenzano, and Sheila A. McIlraith. Reward
machines: Exploiting reward function structure in reinforcement learning. Journal of Artificial
Intelligence Research, 73:173––208, January 2022.

[38] Leslie Pack Kaelbling. Learning to achieve goals. In International Joint Conference on Artificial
Intelligence, volume 2, pages 1094–8. Citeseer, 1993.

[39] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function ap-
proximators. In International Conference on Machine Learning, pages 1312–1320. PMLR,
2015.

[40] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott Niekum, and
Ufuk Topcu. Safe reinforcement learning via shielding. Proceedings of the AAAI Conference
on Artificial Intelligence, 32(1), April 2018.

[41] Bettina Könighofer, Julian Rudolf, Alexander Palmisano, Martin Tappler, and Roderick Bloem.
Online shielding for reinforcement learning. Innovations in Systems and Software Engineering,
19(4):379–394, December 2023.

[42] Ankush Desai, Tommaso Dreossi, and Sanjit A. Seshia. Combining model checking and runtime
verification for safe robotics. In Shuvendu Lahiri and Giles Reger, editors, Runtime Verification,
pages 172–189, Cham, 2017. Springer International Publishing.

13

[43] Dongjie Yu, Haitong Ma, Shengbo Li, and Jianyu Chen. Reachability constrained reinforcement
learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and
Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 25636–25655. PMLR, 17–23
Jul 2022.

[44] Gabriel Kalweit, Maria Huegle, Moritz Werling, and Joschka Boedecker. Deep constrained
Q-learning, 2020.

[45] Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning
by pid lagrangian methods. In Proceedings of the 37th International Conference on Machine
Learning, ICML’20. JMLR.org, 2020.

[46] Sehoon Ha, Peng Xu, Zhenyu Tan, Sergey Levine, and Jie Tan. Learning to walk in the real
world with minimal human effort. In Jens Kober, Fabio Ramos, and Claire Tomlin, editors,
Proceedings of the 2020 Conference on Robot Learning, volume 155 of Proceedings of Machine
Learning Research, pages 1110–1120. PMLR, 16–18 Nov 2021.

[47] Yongshuai Liu, Jiaxin Ding, and Xin Liu. Ipo: Interior-point policy optimization under
constraints. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04):4940–4947,
April 2020.

[48] C. Baier, J.P. Katoen, and K.G. Larsen. Principles of Model Checking. MIT Press, 2008.

[49] Charles Dawson and Chuchu Fan. Robust counterexample-guided optimization for planning
from differentiable temporal logic. In 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 7205–7212, 2022.

[50] Bowen Alpern and Fred Schneider. Defining liveness. Information Processing Letters,
21(4):181–185, 1985.

[51] Alexandre Duret-Lutz, Etienne Renault, Maximilien Colange, Florian Renkin, Alexan-
dre Gbaguidi Aisse, Philipp Schlehuber-Caissier, Thomas Medioni, Antoine Martin, Jérôme
Dubois, Clément Gillard, and Henrich Lauko. From Spot 2.0 to Spot 2.10: What’s new? In
Proceedings of the 34th International Conference on Computer Aided Verification (CAV’22),
volume 13372 of Lecture Notes in Computer Science, pages 174–187. Springer, August 2022.

[52] Yixuan Wang, Simon Sinong Zhan, Ruochen Jiao, Zhilu Wang, Wanxin Jin, Zhuoran Yang,
Zhaoran Wang, Chao Huang, and Qi Zhu. Enforcing hard constraints with soft barriers:
safe reinforcement learning in unknown stochastic environments. In Proceedings of the 40th
International Conference on Machine Learning, ICML’23. JMLR.org, 2023.

[53] Vivek S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Hindustan Book
Agency Gurgaon, 2008.

[54] A. Granas and J. Dugundji. Fixed Point Theory. Monographs in Mathematics. Springer, 2003.

[55] Haitong Ma, Changliu Liu, Shengbo Eben Li, Sifa Zheng, and Jianyu Chen. Joint synthesis
of safety certificate and safe control policy using constrained reinforcement learning. In Roya
Firoozi, Negar Mehr, Esen Yel, Rika Antonova, Jeannette Bohg, Mac Schwager, and Mykel
Kochenderfer, editors, Proceedings of The 4th Annual Learning for Dynamics and Control
Conference, volume 168 of Proceedings of Machine Learning Research, pages 97–109. PMLR,
23–24 Jun 2022.

[56] Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-constrained
reinforcement learning with percentile risk criteria, 2017.

[57] C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier
Bachem. Brax - a differentiable physics engine for large scale rigid body simulation, 2021.

[58] Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi, and Dominik
Wojtczak. Omega-regular objectives in model-free reinforcement learning. In Tomáš Vojnar
and Lijun Zhang, editors, Tools and Algorithms for the Construction and Analysis of Systems,
pages 395–412, Cham, 2019. Springer International Publishing.

14

[59] Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi, and Dominik
Wojtczak. Good-for-mdps automata for probabilistic analysis and reinforcement learning. In
Armin Biere and David Parker, editors, Tools and Algorithms for the Construction and Analysis
of Systems, pages 306–323, Cham, 2020. Springer International Publishing.

[60] John N. Tsitsiklis. Asynchronous stochastic approximation and Q-learning. Machine Learning,
16(3):185–202, September 1994.

[61] D. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods.
Athena Scientific, 2015.

[62] Michał Bortkiewicz, Władek Pałucki, Vivek Myers, Tadeusz Dziarmaga, Tomasz Arczewski,
Łukasz Kuciński, and Benjamin Eysenbach. Accelerating goal-conditioned RL algorithms and
research. arXiv preprint arXiv: 2408.11052, 2024.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state that we contribute a novel algorithm
for learning tasks specified with LTL formulae (in the recurrence class) that scales to
high-dimensional environments better than similarly general existing algorithms. Our
experimental results support this claim.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Paragraph 6, we clearly describe that our algorithm is limited to STL
formulae in the recurrence class (representable as DBAs). We also describe in the paper
that these formulae are defined over a set of atomic propositions with non-safety-related
propositions being tied to specific goals in a goal space G ⊆ S. We also state that our
policy is only conditioned on the current set of subgoals, and therefore limited to optimal
decision-making only for those subgoals without accounting for future subgoal requirements.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

15

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All assumptions are provided for our one (informal) theoretical claim in
Section 4.2, and a complete and correct proof is included in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Algorithm and environment implementation details, including relevant hyper
parameters, are disclosed in the paper to an extent that should allow reproduction of the
experiments. Additional resources to facilitate reproducibility are provided in code which is
included as a link in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

16

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide open access to anonymized code, along with scripts and an exact
description of all required dependencies with version information, needed for running all of
our experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All training and test information is included in the paper to understand the
results, and additional information is included in our supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In Sections 5.1 and 5.3, we report the variance across trials using one standard
deviation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In the appendix, we report the total computer resources needed for our
experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.

18

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research (1) does not involve human subjects or participants, (2) does not
involve any datasets, (3) has negligible foreseeable societal impact with regard to human
safety, security, discrimination, surveillance, deception, harassment, the environment, or
human rights issues, (4) does not contain or exacerbate biases against groups of people, and
(5) includes in its supplementary material a correctly documented, licensed, and anonymized
code base that is sufficient for reproducing the results.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We include a discussion of the foreseeable societal consequences of this work
in our appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]

19

https://neurips.cc/public/EthicsGuidelines

Justification: This work has not produced artifacts that pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Our code uses the following libraries: (1) Brax (Apache License 2.0), (2)
Mujoco Menagerie (MIT), (3) JaxGCRL (Apache 2.0), (4) Spot (GPLv3). Our paper cites
these when discussing implementation details in the appendix. Our code abides by these
and other licenses and is itself licensed with the GPLv3 license.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We include our anonymized code base as one asset and provide alongside it
the necessary documentation.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

20

paperswithcode.com/datasets

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This research did not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This research did not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The method developed in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Proof of Proposition 1

In what follows, we formally prove and restate Proposition 1, which shows that ACQL, under mild
conditions, is guaranteed to return the optimal policy. Our proof is based on the proof of convergence
for Q-learning using stochastic approximation theory in [60], extended with the theory of stochastic
approximation under multiple timescales described in Chapter 6 of [53]. Refer also to [43, 55, 56]
for similar analyses. The outline of the section is as follows:

1. Express ACQL as a stochastic approximation algorithm [53, 60].
2. Show that Qc and Qr converge to an optimal fixed point for any fixed safety discount factor
γc ∈ (0, 1).

3. Restate our Proposition 1 and prove it by showing that as γc → 1, Qr and Qc converge to
the optimal state-action value function Qr∗ and its corresponding optimal (undiscounted)
state-action safety function Qc∗.

A.1 Setup

Assumption 1. The augmented CMDPMA = (SA,A, T A, dA0 , rA, cA, γ,L) for ACQL is defined
on a finite state space SA and action space A. For every state s ∈ SA and action a ∈ A, there
is an associated bounded deterministic reward rsa = rA(s, a) and bounded constraint feedback
csa = cA(s, a) observed if action a is applied at state s.

Under Assumption 1, Qc and Qr are vectors in Rd where d = |SA × A| is finite. The ACQL
algorithm can be modeled as a distributed, asynchronous series of noisy updates to components of
Qc and Qr.
Assumption 2. For each state-action pair (s, a) ∈ SA ×A, there are an infinite number of updates
applied to the components Qrs,a and Qcs,a.

The updates to these components are given by

Qcs,a(n+ 1) = Qcs,a(n) + a(n)
[(

(1− γc)csa + γcmin{csa, Q̄cs′,π(s′)(n)}
)
−Qcs,a(n)

]
and

(5)

Qrs,a(n+ 1) = Qrs,a(n) + b(n)
[
(rsa + γQ̄rs′,π(s′)(n))−Qrs,a(n)

]
, (6)

where s′ is a randomly sampled next state following the state s and action a. The elements of
Q̄c(n) and Q̄r(n) are potentially taken from older iterations Qcs,a(νs,a(n)) and Qrs,a(νs,a(n)) where
νs,a(n) is an integer satisfying 0 ≤ νs,a(n) ≤ n. Recall that the policy π here is defined as
argmaxa:Q̄c

s,a>L Q̄
r
s,a in terms of Q̄c and Q̄r. However, we assume that old information is eventually

discarded as n→∞.
Assumption 3. For all (s, a), limn→∞ νs,a(n) =∞.

Assumption 3 is necessary to prove the convergence of distributed asynchronous stochastic approxi-
mation algorithms using outdated values (Q̄c and Q̄r) [60, 61]. Using Q̄c is additionally necessary to
define the operator in (8) such that a fixed policy π can be used to prove the contraction property in
Lemma 1.

We also update γc infinitely often with
γc(n+ 1) = γc(n) + c(n) [(1− γc(n))− γc(n)] . (7)

and assume that its updates are synchronized with the index n for the updates to the components of
Qc and Qr.
Assumption 4. The step sizes a(n), b(n), and c(n) for the above updates satisfy

∞∑
n=0

a(n) =

∞∑
n=0

b(n) =

∞∑
n=0

c(n) =∞

∞∑
n=0

a(n)2,

∞∑
n=0

b(n)2,

∞∑
n=0

c(n)2 <∞,

b(n) ∈ o(a(n)), and c(n) ∈ o(b(n)).

22

Now, let g : Rd×Rd×R→ Rd and h : Rd×Rd×R→ Rd be operators defined for each component
(s, a) as

gs,a(Q
r, Qc, γc) = (1− γc)csa + γc E

s′

[
min{csa, Qcs′,π(s′)}

]
(8)

hs,a(Q
r, Qc, γc) = rsa + γ E

s′

[
Qrs′,π(s′)

]
. (9)

Define a third mapping f(Qr, Qc, γc) = 1 − γc. Without loss of generality, we express all the
operators as mappings from Rd × Rd × R to consider them as a coupled mapping from R2d+1 to
R2d+1. Finally, define two martingale difference sequences

M c
s,a(n+ 1) = γcmin{csa, Q̄cs′,π(s′)(n)} − γc E

s′

[
min{csa, Q̄cs′,π(s′)(n)}

]
and (10)

Mr
s,a(n+ 1) = γQ̄rs′,π(s′)(n)− γ E

s′

[
Q̄rs′,π(s′)(n)

]
. (11)

The updates to γc are deterministic. Using the above, we can express the three ACQL updates (5),
(6), and (7) as

Qcs,a(n+ 1) = Qcs,a(n) + a(n)
[
gs,a(Q̄r(n), Q̄c(n), γc(n))−Qcs,a(n) +M c

s,a(n+ 1)
]
, (12)

Qrs,a(n+ 1) = Qrs,a(n) + b(n)
[
hs,a(Q̄r(n), Q̄c(n), γc(n))−Qrs,a(n) +Mr

s,a(n+ 1)
]
, (13)

γc(n+ 1) = γc(n) + c(n) [f(Qr(n), Qc(n), γc(n))− γc(n)] . (14)

Under the above assumptions and formulation, ACQL can now be analyzed as a distributed stochastic
approximation algorithm under three timescales.

A.2 Convergence of Qr and Qc under a fixed γc

Since the update to γc happens much more slowly than the updates to Qr and Qc—formally, the
step size c(n) for γc shrinks faster than both b(n) and a(n)—we can treat γc as approximately fixed
while analyzing the behavior of Qr and Qc. This allows us to study the convergence of Qr and Qc
assuming that γc is a constant value in the interval (0, 1).

Lemma 1. The mapping gc = g(Qr, ·, γc) : Rd → Rd, for some fixed Qr, some fixed feasible policy
π (e.g., a policy based on Q̄c and Q̄r as in ACQL), and γc ∈ (0, 1), is a contraction mapping.

Proof.

|gc(Qc)s,a − gc(Q̂c)s,a| = |γc E
s′

[
min{csa, Qcs′,π(s′)}

]
− γc E

s′

[
min{csa, Q̂cs′,π(s′)}

]
|

= γc E
s′

[
|min{csa, Qcs′,π(s′)} −min{csa, Q̂cs′,π(s′)}|

]
≤ γc E

s′

[
|Qcs′,π(s′) − Q̂cs′,π(s′)|

]
(|min{a, b} −min{a, c}| ≤ |b− c|)

≤ γc||Qc − Q̂c||∞

Therefore, ||gc(Qc)− gc(Q̂c)||∞ ≤ γc||Qc − Q̂c||∞.

Lemma 2. As n→∞, Qc(n) converges to a fixed point λ1(Qr, γc) for some fixed Qr and γc.

Proof. The convergence of Qc for a fixed Qr and γc follows from Theorem 3 (convergence of
distributed stochastic approximation algorithms for a contraction mapping) in [60]. Assumptions 1,
2, and 3 in [60] are satisfied due to our Assumptions 3, 4 and the definitions of M c

s,a, Mr
s,a in (10)

and (11). Furthermore, the contraction property of gc (Lemma 1) is enough to satisfy Assumption 5
in [60]. Under these conditions, Theorem 3 in [60] holds true.

Lemma 3. As n → ∞, Qr(n) updated with (13) using a fixed Qc(n) = λ1(Q
r(n), γc), such that

there is a feasible action in every state, converges to the optimal value function Qr
∗

γc .

23

Proof. The mapping hr = h(·, Qc, γc) : Rd → Rd for a fixed Qc = λ(Qr, γc) is a typical Bellman
operator for a fixed policy using only actions from a constant non-empty subset of A for each state s.
As a result, Theorem 4 (convergence of standard Q-learning) in [60] applies.

Lemma 4. Qr(n) and Qc(n) asymptotically approach Qr
∗

γc and Qc∗γc = λ1(Q
r∗

γc , γc) as n→∞.

Proof. Lemmas 2 and 3 serve to satisfy Assumptions 1 and 2 in Chapter 6 of [53]. The boundedness
of our rewards and constraint signals also result in a bounded Qr(n) and Qc(n), which satisfies
Assumption 3 in Chapter 6 of [53]. The proof follows from Theorem 2 (convergence of two-timescale
coupled stochastic approximation algorithms) in the same chapter.

A.3 Convergence of (Qr, Qc) and γc

We can apply a similar two-timescale argument now using γc on the slower timescale and
(Qr(n), Qc(n)) on the faster timescale. The condition that the faster timescale converges to a
fixed point λ2(γc) for a static γc is shown in Lemma 4. For the condition that the slower timescale
converges to a fixed point with (Qr(n), Qc(n)) = λ2(γc)) is true trivially because γc converges
without depending on (Qr(n), Qc(n)) at all.

Lemma 5. γc converges to 1 as n→∞.

Proof. The update in (14) is a discretization of the ODE γ̇c(t) = 1− γc(t). The solution to this ODE
is γc(t) = 1− (1− γc(0))e−t, which asymptotically approaches 1 as t→∞.

Finally, similar to Proposition 1 in [16], we observe that limγc→1 g
c
s,a(Q

c) = min{csa,Es′ Qcs′,π(s′)}
yields a fixed point at Qc∗s,a = Eτ∼π

[
mint∈[0,∞] csat |s0 = s, a0 = a

]
matching the undiscounted

minimum-safety constraint (Equation (2) in our main paper). Using this fact and another application
of Theorem 2 in [53], we can prove our Proposition 2.

Proposition 2. LetMA be an augmented CMDP with |SA| <∞, |A| <∞, and γ ∈ [0, 1), and let
Qc(n) and Qr(n) be models for the state-action safety and value functions indexed by n. Assume
they are updated using Robbins-Monro step sizes a(n) and b(n), respectively, with b(n) ∈ o(a(n))
according to (5) and (6). Assume that γc(n) is also updated with step sizes c(n) such that γc(n)→ 1
and c(n) ∈ o(b(n)). Then Qc(n) and Qr(n) converge to Qc∗ and Qr∗ almost surely as n→∞.

Proof. By Theorem 2 from Chapter 6 of [53], whose conditions are satisfied by Lemmas 4 and 5,
the coupled iterates (γc(n), Qr(n), Qc(n)) converge almost surely to a fixed point (1, λ2(1)) with
λ2(γc) = (Qr∗γc , λ1(Q

r∗
γc , γc)) as n → ∞. As γc → 1, Qc(n) = λ1(Q

r∗
γc , γc) also converges to

Eτ∼π
[
mint∈[0,∞] csat |s0 = s, a0 = a

]
with the policy π determined by limn→∞ Q̄r(n) = Qr∗.

Therefore, the algorithm attains the optimal state-action value function and the corresponding optimal
(undiscounted) state-action safety function Qc∗.

B Additional ACQL Details and Pseudocode

Automaton Analysis To better illustrate the initial automaton analysis in ACQL (Line 2), consider
the automaton in Figure 5. There is only one non-accepting sink-components of this automaton, and
it is the component consisting of the single node q3. For q0, there is only one transition into this
component via the edge labeled by p4, so the safety for q0 condition is S(q0) = ¬p4. For q1 and
q2, there are no transitions to a non-accepting sink-component and so their safety conditions are
S(q1) = S(q2) = 1, meaning that the safety condition is trivially satisfied at all times in those states.
For completeness, we also consider the unsafe states themselves as having safety conditions equal
to the conjunction of their negated incoming transitions. Therefore, q3 also has the safety condition
S(q3) = ¬p4.

Now we can obtain the liveness constraints, which are summarized in the liveness condition mapping
O : Q → Φ (See Section 4.1 in our main paper). For q0, the only remaining outgoing edge is the
one labeled ¬(p1 ∨ p2) ∧ ¬p4. Since S(q0) = ¬p4, we can eliminate it from this transition predicate
to obtain O(q0) = (p1 ∨ p2). For q1, one can simply obtain O(q1) = p3 from its only outgoing
edge. For completeness, we also set O(q2) = p3 using the incoming edges for q2 since it is an

24

q0start q1 q2

q3

(p1∨p2)∧¬p4

p4

¬(p1 ∨ p2) ∧ ¬p4

p3

¬p3 1

1

Figure 5: Automaton for the task “Reach goal g1 or g2 while never entering an unsafe-region u1.
Then reach g3.”, where achieving the goal gi corresponds to the atomic proposition pi and entering
u1 corresponds to p4. The full LTL expression is ¬p4 U ((p1 ∨ p2) ∧ ◦♢p3). The proposition p4 is
only relevant to the task’s safety constraint, and the propositions p1, p2, and p3 are only relevant to
the task’s liveness constraints.

accepting state. This is purely to inform the agent of the goal associated with an accepting state once
it has reached it. From the above values for O, the mapping G can be defined by G(q0) = {g1, g2},
G(q1) = {g3} and G(q2) = {g3}.

Subroutines Algorithms 2, 3, and 4 present the pseudo-code for collecting trajectories inMA,
relabeling them with achieved goals, and computing the safety discount factor γc.

The GetTrajectory function, in Algorithm 2, begins by sampling an initial state from the distribution
dA0 . We also randomly sample positions from the environment to associate with each subgoal
proposition p ∈ APsubgoal. This task randomization promotes collecting trajectories that explore a
greater portion of the state space through a variety of subgoal sequences, and we found that this was
necessary to stabilize training while using HER. We speculate that the greater variety of state and
subgoal combinations is needed to train a robust subgoal-reaching policy. The agent proceeds to
interact with the environment for a total of T steps. In a loop indexed by t, actions are selected from
an epsilon-greedy version of the input policy π (Line 5). The reward, constraint feedback, and next
state are observed (Lines 6-8) and stored in the trajectory τ (Line 9). After T steps have executed,
the trajectory is returned.

The Relabel function, in Algorithm 3, takes a batch of trajectories Bτ . For each trajectory in the batch,
the function determines the final achieved state g′ and overwrites a single subgoal for every step in
the entire trajectory with g′. It also overwrites the reward for each step with 1 for steps that were
sufficiently close to g′ and 0 for steps that were not. We found that this relatively simple strategy,
despite the fact that trajectories were collected with multiple-subgoals in-mind, was sufficient to train
reliable goal-reaching policies.

The SafetyGammaScheduler function, in Algorithm 4, generates values for γc, starting from an initial
value and gradually increasing toward 1.0 with exponential decay. To ensure accurate learning of
state-action safety function models, it was necessary to cap γc at a value slightly below 1.0.

C Model Architectures, Environment Implementation Details, and
Hyper-Parameters

Model Architecture and Policy Our method trains two models: the state-action value function,
Qrψ , and the state-action safety function, Qcθ. Both models employ twin neural networks and use the
minimum of their predicted values to mitigate overestimation in value and safety estimation. For the
ablation study using a state-action sum-of-costs function, we likewise use twin networks, but instead
take the maximum of the two predictions to maintain a conservative (i.e., pessimistic) estimate.

To simplify handling multiple goals, Qrψ is defined using a goal-conditioned state-action value
function model, QGCψ : S × G ×Q×A → R, parameterized by ψ. At runtime, QGCψ is called for

25

Algorithm 2 GetTrajectory

1: function GETTRAJECTORY(MA, π)
2: sA0 ∼ dA0 , gi ∼ P (G) for pi ∈ APsubgoals
3: t← 0, τ ← ()
4: while t < T do
5: at ∼ πϵ−greedy(s

A
t)

6: rt ← rA(sAt , at)
7: ct ← cA(sAt , at)
8: sAt+1 ∼ T A(sAt , at)

9: τ ← τ ∪ (sAt , rt, ct, at)
10: t← t+ 1
11: end while
12: return τ
13: end function

Algorithm 3 Relabel
1: function RELABEL(Br)
2: for τ ∈ Br do
3: g′ ← the final goal state achieved in τ .
4: for sAt , rt ∈ τ do
5: Replace g1 in sAt with g′

6: rt ← 1 if g′ achieved in sAt and 0 otherwise.
7: end for
8: end for
9: return Br

10: end function

each subgoal g ∈ g+. This approach exploits the fact that goal-conditioned value functions form
a Boolean algebra under the min and max operators [21, 34]. For example, consider two subgoal
propositions p1, p2 ∈ APsubgoal. In the simplest case, when O(q) = p1, we compute Qrψ(⟨s, g1, q⟩, a)
as QGCψ (s, g1, q, a). When O(q) = p1 ∧ p2 (i.e., both subgoals must be achieved to progress), we
compute the value as the minimum of QGCψ (s, g1, q, a) and QGCψ (s, g2, q, a). Conversely, when
O(q) = p1∨p2 (i.e., achieving either subgoal suffices), the value is the maximum of QGCψ (s, g1, q, a)

and QGCψ (s, g2, q, a). This pattern generalizes to arbitrarily complex Boolean formulae, allowing us
to efficiently approximate Qrψ using a single goal-conditioned network.

We also observed that, because liveness constraints are separated into the goal input, conditioning
behavior on the automaton state is only necessary when safety constraints differ between automaton
states. As a result, we do not require a distinct “mode” for every automaton state q ∈ Q, but only for
each unique safety condition in the mapping S. To encode this, we train Qrψ using a multi-headed
neural network, where each output head corresponds to a distinct safety condition. For example, in
the automaton shown in Figure 5, the mapping S assigns states to one of two safety conditions: ¬p4
or 1. Accordingly, QGCψ has two output heads, selected based on the currently active safety condition.
In all ACQL experiments, QGCψ shared a hidden layer of 256 neurons across all heads; each head
then had an additional hidden layer of 256 neurons. All layers used ReLU activations, and the final
output layer had |A| neurons with no activation function.

The model Qcθ follows the same architecture as Qrψ, with a goal-conditioned, multi-headed neural
network, but differs in two key respects. First, for disjunctive goal conditions (p1 ∨ p2), the output
is defined as the minimum of QGCθ (s, g1, q, a) and QGCθ (s, g2, q, a), to ensure conservative safety
by taking the worst-case estimate across disjunctive paths. Second, QGCθ uses a different network
architecture: it has two shared hidden layers of 64 neurons each, and each output head includes two
additional hidden layers with 64 and 32 neurons, respectively. All layers use ReLU activations. The
final output layer consists of |A| neurons with a tanh activation function.

The policy was implemented in terms of these two value functions according to the constrained
maximization π(s) = argmaxa:Qc

θ(s,a)>LQ
r
ψ(s, a). In the case that no action was deemed feasible

by Qcθ, the safest action maxaQ
c(s, a) was chosen. The exploration policy πϵ−greedy would behave

26

Algorithm 4 SafetyGammaScheduler
1: function SAFETYGAMMASCHEDULER(j)
2: x← j ÷ update_period
3: y← 1.0− (1.0− init_value) · decay_ratex

4: return

{
max_value if y ≥ max_value
y o.w.

5: end function

as above with probability 1− ϵ, and with probability ϵ select a random action without considering
Qr or Qc.

Environment Implementation For our simulated experiment environments, we used the Brax
physics simulator [57] and assets provided in JaxGCRL [62] for the PointMass, Quadcopter, and Ant
environments. Acting in these environments was facilitated by a set of discrete actions corresponding
to movement in the cardinal directions. Specifically, the actions in the PointMass and Quadcopter
environments output a constant low-level action to accelerate in one of the four or six available
directions for 5 consecutive steps. The actions for our UR5e environment, which we used to train our
real-world-deployed policies, similarly moved the robot’s end effector in the 6 cardinal directions for
a single time step. The actions in the AntMaze environment were policies trained separately using
Proximal Policy Optimization (PPO) [7] for 50000000 environment interactions with the objective of
maximizing velocity in each of the four cardinal directions and would run for 4 consecutive steps
when executed. All further details regarding environment geometry and task definitions for our
simulated and real-world experiments are included in our Anonymized Code Repository1.

Hyper-Parameters Table 3 reports the hyperparameter values most commonly used in our experi-
ments, including hyperparameters for the safety gamma (γc) scheduler described in Appendix B. For
a complete account of hyperparameters, as well as ACQL, baseline, and environment implementation
details, refer to our Anonymized Code Repository21.

Table 3: Hyperparameter values used for experiments in Tables 1 and 2 in our main paper
Hyperparameter Name Value

Episode length (T) 1000
Discount factor (γ) 0.99
Learning rate (α) 1 · 10−4

ϵ-greedy factor (ϵ) 0.1
Safety limit (L) 0.0
Safety Gamma Init Value 0.80
Safety Gamma Update Period 250, 000
Safety Gamma Decay Rate 0.15
Safety Gamma Max. Value 0.98
Target parameter interpolation factor (λ) 0.005

Compute Resource Requirements All experiments were conducted on a single NVIDIA RTX
3090 GPU (24 GB VRAM), using a local workstation equipped with an 12th Gen Intel i7-12700F
CPU, 32 GB RAM. No cloud services or compute clusters were used. Each individual experimental
run required approximately 30 minutes of compute time on the GPU. The full experiment grid consists
of 225 runs for the comparative analysis and 90 runs for the ablations, amounting to approximately 315
GPU-hours. Minor additional compute was used for initial hyperparameter tuning and development.

D Expanded Experimental Results

Figures 6 and 7 show the average reward and success rate throughout training for the baseline
comparison experiments summarized in Table 1. The LOF baseline cannot be depicted on these

1https://anonymous.4open.science/r/acql-4B4C

27

https://anonymous.4open.science/r/acql-4B4C
https://anonymous.4open.science/r/acql-4B4C

plots as it does not learn a single policy in the same MDP as the other methods, and instead learns a
policy that chooses subgoal-specific options for an abstracted state space Q× Sg constructed from
the automaton states Q and the finite set of states Sg ⊂ S corresponding to task subgoals. Figures 8
and 9 show the average reward and success rate throughout training for the experiments summarized
in Table 2 in our main paper. The differences in amount of training steps depicted by the figures is
due to the different design and training pipelines that the two algorithms observe. ACQL collects
complete trajectories to store in the Replay Buffer and CRM-RS just collects individual transitions.
We want to highlight that our algorithm converges earlier during the training and this difference does
not play a significant role in the performance gap reported in Table 1.

28

200

0

200

400

600

800

1000

Av
er

ag
e

Re
wa

rd

PointMass - Sequence Quadcopter - Sequence AntMaze - Sequence

200

0

200

400

600

800

1000

Av
er

ag
e

Re
wa

rd

PointMass - Branch Quadcopter - Branch AntMaze - Branch

200

0

200

400

600

800

1000

Av
er

ag
e

Re
wa

rd

PointMass - Safety Quadcopter - Safety AntMaze - Safety

200

0

200

400

600

800

1000

Av
er

ag
e

Re
wa

rd

PointMass - Until Quadcopter - Until AntMaze - Until

0 1 2 3 4 5
Timesteps 1e6

0

1

2

3

4

5

Av
er

ag
e

Re
wa

rd

PointMass - Loop

0 1 2 3 4 5
Timesteps 1e6

1

0

1

2

3

4

Av
er

ag
e

Re
wa

rd

Quadcopter - Loop

0 1 2 3 4 5
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Av
er

ag
e

Re
wa

rd

AntMaze - Loop

ACQL CRM-RS

Figure 6: Average and one standard deviation of episode reward throughout training for the five runs
per method that are summarized in Table 1 in our main paper.

29

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s R

at
e

PointMass - Sequence Quadcopter - Sequence AntMaze - Sequence

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s R

at
e

PointMass - Branch Quadcopter - Branch AntMaze - Branch

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s R

at
e

PointMass - Safety Quadcopter - Safety AntMaze - Safety

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s R

at
e

PointMass - Until Quadcopter - Until AntMaze - Until

0 1 2 3 4 5
Timesteps 1e6

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s R

at
e

PointMass - Loop

0 1 2 3 4 5
Timesteps 1e6

Quadcopter - Loop

0 1 2 3 4 5
Timesteps 1e6

AntMaze - Loop

ACQL CRM-RS

Figure 7: Average and one standard deviation of episode success rate throughout training for the five
runs per method that are summarized in Table 1 in our main paper.

30

200

0

200

400

600

800

1000

Av
er

ag
e

Re
wa

rd
PointMass - Sequence Quadcopter - Sequence AntMaze - Sequence

200

0

200

400

600

800

1000

Av
er

ag
e

Re
wa

rd

PointMass - Branch Quadcopter - Branch AntMaze - Branch

200

0

200

400

600

800

1000

Av
er

ag
e

Re
wa

rd

PointMass - Safety Quadcopter - Safety AntMaze - Safety

0 1 2 3 4 5
Timesteps 1e6

200

0

200

400

600

800

1000

Av
er

ag
e

Re
wa

rd

PointMass - Until

0 1 2 3 4 5
Timesteps 1e6

Quadcopter - Until

0 1 2 3 4 5
Timesteps 1e6

AntMaze - Until

ACQL No HER No Min. Safety Critic

Figure 8: Average and one standard deviation of episode reward throughout training for the five runs
per ablation group that are summarized in Table 2 in our main paper.

31

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s R

at
e

PointMass - Sequence Quadcopter - Sequence AntMaze - Sequence

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s R

at
e

PointMass - Branch Quadcopter - Branch AntMaze - Branch

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s R

at
e

PointMass - Safety Quadcopter - Safety AntMaze - Safety

0 1 2 3 4 5
Timesteps 1e6

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s R

at
e

PointMass - Until

0 1 2 3 4 5
Timesteps 1e6

Quadcopter - Until

0 1 2 3 4 5
Timesteps 1e6

AntMaze - Until

ACQL No HER No Min. Safety Critic

Figure 9: Average and one standard deviation of episode success rate throughout training for the five
runs per ablation group that are summarized in Table 2 in our main paper.

32

	Introduction
	Related Work
	Preliminaries
	Method
	Augmented Product CMDP Formulation
	Automaton Constrained Q-Learning (ACQL)

	Experiments
	Comparative Analysis
	Real-World Experiments
	Ablative Analysis

	Conclusion
	Proof of Proposition 1
	Setup
	Convergence of Qr and Qc under a fixed c
	Convergence of (Qr, Qc) and c

	Additional ACQL Details and Pseudocode
	Model Architectures, Environment Implementation Details, and Hyper-Parameters
	Expanded Experimental Results

