
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Convergence Analysis of Natural Gradient Descent for Over-parameterized
Physics-Informed Neural Networks

Anonymous Authors1

Abstract
In the context of over-parameterization, there is a
line of work demonstrating that randomly initial-
ized (stochastic) gradient descent (GD) converges
to a globally optimal solution at a linear conver-
gence rate for the quadratic loss function. How-
ever, the learning rate of GD for training two-layer
neural networks exhibits poor dependence on the
sample size and the Gram matrix, leading to a
slow training process. In this paper, we show that
for training two-layer ReLU3 Physics-Informed
Neural Networks (PINNs), the learning rate can
be improved from O(λ0) to O(1/∥H∞∥2), im-
plying that GD actually enjoys a faster conver-
gence rate. Despite such improvements, the con-
vergence rate is still tied to the least eigenvalue
of the Gram matrix, leading to slow convergence.
We then develop the positive definiteness of Gram
matrices with general smooth activation functions
and provide the convergence analysis of natu-
ral gradient descent (NGD) in training two-layer
PINNs, demonstrating that the learning rate can
be O(1) and at this rate, the convergence rate is
independent of the Gram matrix. In particular, for
smooth activation functions, the convergence rate
of NGD is quadratic.

1. Introduction
In recent years, neural networks have achieved remarkable
breakthroughs in the fields of image recognition (He et al.,
2016), natural language processing (Devlin et al., 2018), re-
inforcement learning (Silver et al., 2016), and so on. More-
over, due to the flexibility and scalability of neural networks,
researchers are paying much attention in exploring new
methods involving neural networks for handling problems
in scientific computing. One long-standing and essential
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problem in this area is solving partial differential equations
(PDEs) numerically. Classical numerical methods, such as
finite difference, finite volume and finite elements methods,
suffer from the curse of dimensionality when solving high-
dimensional PDEs. Due to this drawback, various methods
involving neural networks have been proposed for solving
different type PDEs (Müller & Zeinhofer, 2023; Raissi et al.,
2019; Yu et al., 2018; Zang et al., 2020; Siegel et al., 2023).
Among them, the most representative approach is Physics-
Informed Neural Networks (PINNs) (Raissi et al., 2019). In
the framework of PINNs, one incorporate PDE constraints
into the loss function and train the neural network with
it. With the use of automatic differentiation, the neural net-
work can be efficiently trained by first-order or second-order
methods.

In the applications of neural networks, one inevitable issue
is the selection of the optimization methods. First-order
methods, such as gradient descent (GD) and stochastic gra-
dient descent (SGD), are widely used in optimizing neural
networks as they only calculate the gradient, making them
computationally efficient. In addition to first-order methods,
there has been significant interest in utilizing second-order
optimization methods to accelerate training. These methods
have proven to be applicable not only to regression prob-
lems, as demonstrated in Martens & Grosse (2015), but
also to problems related to PDEs, as shown in Müller &
Zeinhofer (2023); Raissi et al. (2019).

As for the convergence aspect of the optimization meth-
ods, it has been shown that gradient descent algorithm
can even achieve zero training loss under the setting of
over-parameterization, which refers to a situation where a
model has more parameters than necessary to fit the data
(Du et al., 2018; 2019; Allen-Zhu et al., 2019a;b; Arora
et al., 2019; Li & Liang, 2018; Zou et al., 2020; Cao &
Gu, 2019). These works are based on the idea of neural
tangent kernel (NTK)(Jacot et al., 2018), which shows that
training multi-layer fully-connected neural networks via gra-
dient descent is equivalent to performing a certain kernel
method as the width of every layer goes to infinity. As for
the finite width neural networks, with more refined analy-
sis, it can be shown that the parameters are closed to the
initializations throughout the entire training process when
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Convergence of NGD for PINNs

the width is large enough. This directly leads to the linear
convergence for GD. Despite these attractive convergence
results, the learning rate depends on the sample size and the
Gram matrix, so it needs to be sufficiently small to guaran-
tee convergence in practice. However, doing so results in
a slow training process. In contrast to first-order methods,
the second-order method NGD has been shown to enjoy
fast convergence for the L2 regression problems, as demon-
strated in Zhang et al. (2019); Cai et al. (2019). However,
the convergence of NGD in the context of training PINNs
is still an open problem. In this paper, we demonstrate that
when training PINNs, NGD indeed enjoys a faster conver-
gence rate.

1.1. Contributions

The main contributions of our work can are summarized as
follows:

• For the PINNs, we simultaneously improve both the
learning rate η of gradient descent and the requirement
for the width m. The improvements rely on a new re-
cursion formula for gradient descent, which is similar
to that for regression problems. Specifically, we can
improve the learning rate η = O(λ0) required in Gao
et al. (2023) to η = O(1/∥H∞∥2) and the require-
ment for the width m, i.e. m = Ω̃

(
(n1+n2)

2

λ4
0δ

3

)
, can be

improved to m = Ω̃
(

1
λ4
0
(log(n1+n2

δ ))
)

, where Ω̃ in-
dicates that some terms involving log(m) are omitted.

• We present a framework for demonstrating the positive
definiteness of Gram matrices for a variety of com-
monly used smooth activation functions, including the
logistic function, softplus function, hyperbolic tangent
function, and others. This conclusion is not only appli-
cable to the PDE we have considered but can also be
naturally extended to other forms of PDEs.

• We provide the convergence results for natural gra-
dient descent (NGD) in training over-parameterized
two-layer PINNs with ReLU3 activation functions and
smooth activation functions. Due to the distinct op-
timization dynamics of NGD compared to GD, the
learning rate can be O(1). Consequently, the conver-
gence rate is independent of n and λ0, leading to faster
convergence. Moreover, when the activation function
is smooth, NGD can achieve a quadratic convergence
rate.

1.2. Related Works

First-order methods. There are mainly two approaches
to studying the optimization of neural networks and under-
standing why first-order methods can find a global minimum.

One approach is to analyze the optimization landscape, as
demonstrated in Jin et al. (2017); Ge et al. (2015). It has
been shown that gradient descent can find a global minimum
in polynomial time if the optimization landscape possesses
certain favorable geometric properties. However, some un-
realistic assumptions in these works make it challenging to
generalize the findings to practical neural networks. An-
other approach to understand the optimization of neural
networks is by analyzing the optimization dynamics of first-
order methods. For the two-layer ReLU neural networks,
as shown in Du et al. (2018), randomly initialized gradient
descent converges to a globally optimal solution at a linear
rate, provided that the width m is sufficiently large and no
two inputs are parallel. Later, these results were extended
to deep fully-connected feedforward neural networks and
ResNet with smooth activation functions (Du et al., 2019).
Results for both shallow and deep neural networks depend
on the stability of the Gram matrices throughout the train-
ing process, which is crucial for convergence to the global
minimum. In addition to regression and classification prob-
lems, Gao et al. (2023) demonstrated the convergence of
the gradient descent for two-layer PINNs through a similar
analysis of optimization dynamics. However, both Du et al.
(2018) and Gao et al. (2023) require a sufficiently small
learning rate and a large enough network width to achieve
convergence. In this work, we conduct a refined analysis of
gradient descent for PINNs, resulting in milder requirements
for the learning rate and network width.

Second-order methods. Although second-order methods
possess better convergence rate, they are rarely used in
training deep neural networks due to the prohibitive com-
putational cost. As a variant of the Gauss-Newton method,
natural gradient descent (NGD) is more efficient in practice.
Meanwhile, as shown in Zhang et al. (2019) and Cai et al.
(2019), NGD also enjoys faster convergence rate for the L2

regression problems compared to gradient descent. Müller &
Zeinhofer (2023) proposed energy natural gradient descent
for PINNs and deep Ritz method, demonstrating experimen-
tally that this method yields solutions that are more accurate
than those obtained through GD, Adam or BFGS. After ob-
serving the ill-conditioned loss landscape of PINNs, Rathore
et al. (2024) introduced a novel second-order optimizer, Nys-
NewtonCG (NNCG), showing that NNCG can significantly
improve the solution returned by Adam+L-BFGS. More-
over, under the assumption that the PŁ⋆-condition holds,
Rathore et al. (2024) demonstrated that the convergence rate
of their algorithm is independent of the condition number,
which is similar with our result. However, although the PŁ⋆-
condition holds for over-parameterized neural networks in
the context of regression problems (Liu et al., 2022), it re-
mains unclear whether this condition holds for PINNs. In
this paper, we provide the convergence analysis for NGD
in training two-layer PINNs with ReLU3 activation func-
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Convergence of NGD for PINNs

tions or smooth activation functions, showing that it indeed
converges at a faster rate.

1.3. Notations

We denote [n] = {1, 2, · · · , n} for n ∈ N. Given a set
S, we denote the uniform distribution on S by Unif{S}.
We use I{E} to denote the indicator function of the event
E. For two positive functions f1(n) and f2(n), we use
f1(n) = O(f2(n)), f2(n) = Ω(f1(n)) or f1(n) ≲ f2(n)
to represent f1(n) ≤ Cf2(n), where C is a universal con-
stant C. A universal constant means a constant independent
of any variables. Throughout the paper, we use boldface to
denote vectors. Given x1, · · · , xd ∈ R, we use (x1, · · · , xd)
or [x1, · · · , xd] to denote a row vector with i-th component
xi for i ∈ [d] and then (x1, · · · , xd)T ∈ Rd is a column
vector.

1.4. Organization of this Paper

In Section 2, we provide the problem setup for training
two-layer PINNs. We then present the improved conver-
gence results of gradient descent for PINNs in Section 3. In
Section 4, we analyze the convergence of natural gradient
descent in training two-layer PINNs with ReLU3 activation
functions and smooth activation functions. We conclude
in Section 5, and the detailed proofs are provided in the
Appendix for readability and brevity.

2. Problem Setup
In this section, we consider the same setup as Gao et al.
(2023), focusing on the PDE with the following form.

∂u

∂x0
(x)−

d∑
i=1

∂2u

∂x2i
(x) = f(x), x ∈ (0, T )× Ω,

u(x) = g(x), x ∈ {0} × Ω ∪ [0, T ]× ∂Ω,

(1)

where Ω ⊂ Rd is an open and bounded domain, x =
(x0, x1, · · · , xd)T ∈ Rd+1 and x0 ∈ [0, T ] is the time
variable. In the following, we assume that ∥x∥2 ≤ 1 for
x ∈ [0, T ]× Ω̄ and f, g are bounded continuous functions.

Moreover, we consider a two-layer neural network of the
following form.

ϕ(x;w,a) =
1√
m

m∑
r=1

arσ(w
T
r x̃), (2)

where w = (wT
1 , · · · ,wT

m)T ∈ Rm(d+2), a =
(a1, · · · , am)T ∈ Rm and for r ∈ [m], wr ∈ Rd+2

is the weight vector of the first layer, ar is the output
weight and σ(·) is the ReLU3 activation function. Here,
x̃ = (xT , 1)T ∈ Rd+2 is the augmented vector from x and
in the following, we write x for x̃ for brevity.

In the framework of PINNs, given training samples {xp}n1
p=1

and {yj}n2
j=1 that are from interior and boundary respec-

tively, we aim to minimize the following empirical loss
function.

L(w,a) :=

n1∑
p=1

1

2n1

(
∂ϕ

∂x0
(xp;w,a)−

d∑
i=1

∂2ϕ

∂x2i
(xp;w,a)− f(xp)

)2

+

n2∑
j=1

1

2n2
(ϕ(yj ;w,a)− g(yj))

2
.

(3)

Similar to that for the L2 regression problems, we initialize
the first layer vector wr(0) ∼ N (0, I), output weight ar ∼
Unif({−1, 1}) for r ∈ [m] and fix the output weights.
Then the gradient descent updates the hidden weights by the
following formulations:

wr(k + 1) = wr(k)− η
∂L(w(k),a)

∂wr

(4)

for all r ∈ [m] and k ∈ N, where η > 0 is the learning rate.
For brevity, we write L(w) for L(w,a).

To simplify the notations, for the residuals of interior and
boundary, we denote them by sp(w) and hj(w) respectively,
i.e.,

sp(w) =
1

√
n1

(
∂ϕ

∂x0
(xp;w)−

d∑
i=1

∂2ϕ

∂x2i
(xp;w)− f(xp)

)
(5)

and
hj(w) =

1
√
n2

(ϕ(yj ;w)− g(yj)). (6)

Then the empirical loss function can be written as

L(w) =
1

2

(
∥s(w)∥22 + ∥h(w)∥22

)
, (7)

where

s(w) = (s1(w), · · · , sn1
(w))T ∈ Rn1 (8)

and
h(w) = (h1(w), · · · , hn2

(w))T ∈ Rn2 . (9)

At this time, we have

∂L(w)

∂wr
=

n1∑
p=1

sp(w)
∂sp(w)

∂wr
+

n2∑
j=1

hj(w)
∂hj(w)

∂wr

(10)
and the Gram matrix H(w) is defined as H(w) = DTD,
where

D :=

(
∂s1(w)

∂w
, · · · , ∂sn1(w)

∂w
,
∂h1(w)

∂w
, · · · , ∂hn2(w)

∂w

)
.

(11)
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Convergence of NGD for PINNs

3. Improved Results of GD for Two-Layer
PINNs

To simplify the analysis, we make the following assumptions
on the training data.

Assumption 3.1. For p ∈ [n1] and j ∈ [n2], ∥xp∥2 ≤√
2, ∥yj∥2 ≤

√
2, where all inputs have been augmented.

Assumption 3.2. No two samples in {xp}n1
p=1 ∪ {yj}n2

j=1

are parallel.

Under Assumption 3.2, Lemma 3.3 in Gao et al. (2023)
implies that the Gram matrix H∞ := Ew∼N (0,I)[H(w)]
is strictly positive definite and we let λ0 = λmin(H

∞).
Similar to the case of the regression problem in Du et al.
(2018), H∞ plays an important role in the optimization
process. Specifically, under over-parameterization and ran-
dom initialization, we have two facts that (1) at initialization
∥H(0) − H∞∥2 = O(1/

√
m) and (2) for any iteration

k ∈ N, ∥H(k) − H(0)∥2 = O(1/
√
m). The following

two lemmas can be used to verify these two facts, which are
crucial in the convergence analysis.

Lemma 3.3. If m = Ω
(
d4

λ2
0
log
(
n1+n2

δ

))
, we have that

with probability at least 1− δ, ∥H(0)−H∞∥2 ≤ λ0

4 and
λmin(H(0)) ≥ 3

4λ0.

Remark 3.4. Under the premise of deriving the same con-
clusion as Lemma 3.3, Lemma 3.5 in Gao et al. (2023)
requires that m = Ω̃

(
(n1+n2)

4

(n1n2)2λ2
0

(
log( 1δ )

)7)
, where some

terms involving log(m) are omitted. In contrast, on one
hand, our conclusion is independent of n1 and n2, and on
the other hand, our conclusion exhibits a clear dependence
on d. Moreover, the method in Gao et al. (2023) involves
truncating the Gaussian distribution and then applying Ho-
effding’s inequality, which is quite complicated. In contrast,
we utilize the concentration inequality for sub-Weibull ran-
dom variables, which serves as a simple framework for this
class of problems.

Lemma 3.5. Let R ∈ (0, 1], if w1(0), · · · ,wm(0) are i.i.d.
generated from N (0, I), then with probability at least 1−
δ − n1e

−mR, the following holds. For any set of weight
vectors w1, · · · ,wm ∈ Rd+1 that satisfy for any r ∈ [m],
∥wr −wr(0)∥2 < R, then

∥H(w)−H(0)∥F < CM2R, (12)

whereM = 2(d+2) log(2m(d+2)/δ) andC is a universal
constant.

Remark 3.6. Lemma 3.6 in Gao et al. (2023) shows that
when ∥wr −wr(0)∥2 ≤ R = Õ

(
λ0δ

(n1+n2)(logm)3

)
holds

for all r in[m], then ∥H(w)−H(0)∥2 ≤ λ0

4 . In contrast,

Lemma 3.5 only requires R = O
(

λ0

d2(log(m/δ)2

)
to reach

same result.

For the L2 regression problem, as shown in Du et al. (2018),
the convergence of gradient descent requires that the learn-
ing rate η = O(λ0/n

2), where n is the sample size of the
regression problem. It is evident that this requirement on
the learning rate is difficult to satisfy in practical scenarios,
since λ0 is unknown and n2 is too large . For PINNs, Gao
et al. (2023) follows the methodology of Du et al. (2018),
thus inheriting similarly stringent requirements on the learn-
ing rate. Indeed, such stringent requirement stems from an
inadequate decomposition method for the residual. Specifi-
cally, in Gao et al. (2023), the decomposition for the residual
in the (k + 1)-th iteration is same as the one in Du et al.
(2018), i.e.,(

s(k + 1)
h(k + 1)

)
=

(
s(k)
h(k)

)
+

[(
s(k + 1)
h(k + 1)

)
−
(
s(k)
h(k)

)]
,

(13)
which leads to the requirements that η = O(λ0) and m =
Poly(n1, n2, 1/δ). Thus, it requires a new approach to
achieve the improvements for η and m. In fact, we can
derive the following recursion formula.
Lemma 3.7. For all k ∈ N, we have(

s(k + 1)
h(k + 1)

)
= (I − ηH(k))

(
s(k)
h(k)

)
+ I1(k), (14)

where

I1(k) = (I11 (k), · · · , I
n1+n2
1 (k))T ∈ Rn1+n2

and for p ∈ [n1],

Ip1 (k) = sp(k+1)−sp(k)−
〈
∂sp(k)

∂w
,w(k + 1)−w(k)

〉
,

(15)
for j ∈ [n2],

In1+j
1 (k) = hj(k+1)−hj(k)−

〈
∂hj(k)

∂w
,w(k + 1)−w(k)

〉
.

(16)

In the recursion formula (14), I1(k) serves as a resid-
ual term. From the proof, we can see that ∥I1(k)∥2 =
O(1/

√
m) and thus, as m becomes large enough, only the

term I − ηH(k) is significant. This observation is the rea-
son for the requirement of η. With these facts in mind, we
arrive at our main result.
Theorem 3.8. Under Assumption 3.1 and Assumption 3.2,
if we set the number of hidden nodes

m = Ω

(
d8

λ40
log6

(
md

δ

)
log

(
n1 + n2

δ

))
and the learning rate η = O

(
1

∥H∞∥2

)
, then with probabil-

ity at least 1− δ over the random initialization, the gradient
descent algorithm satisfies∥∥∥∥(s(k)h(k)

)∥∥∥∥2
2

≤
(
1− ηλ0

2

)k ∥∥∥∥(s(0)h(0)

)∥∥∥∥2
2

(17)
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for all k ∈ N.
Remark 3.9. It may be confusing that Gao et al. (2023) has
used the same method in Du et al. (2018), yet it only requires
η = O(λ0). Actually, it is because that the loss function of
PINN has been normalized. If we let n1 = n2 = n and H̃∞

be the Gram matrix induced by unnormalized loss function
of PINN, then λmin(H∞) = λmin(H̃

∞)/n, leading to
the convergence rate similar to that of regression problem.
At this point, due to the normalization of loss function,
∥H∞∥2 can be bounded by the trace of H∞, which is
an explicit constant that is independent of the sample size
n1, n2. Therefore, in practice, we can set the learning rate
to satisfy the theoretical convergence requirement, bridging
the gap between theory and practice.
Remark 3.10. Regarding the impact of dimensionality on
the convergence of GD for PINNs, Theorem 3.8 consists
of two parts: one is explicit, namely d8, and the other is
implicit, specifically λ40, whose relationship with dimension-
ality remains unclear. The explicit impact arises from the
form of the PDE. For instance, the PDE (1) we consider
contains O(d) terms. In concurrent work, hoon Song et al.
(2024) investigated the impact of dimensionality and the or-
der of PDEs on convergence under the setting of continuous
gradient flow. Specifically, for PDEs of order 2, the form
they considered includes O(d2) terms, and the explicit de-
pendence on dimensionality is d28. On the one hand, hoon
Song et al. (2024) only addressed the continuous gradient
flow case, while the discrete case requires more refined anal-
ysis as stated in Du et al. (2018). On the other hand, our
results can naturally extend to the PDEs they considered,
where the explicit dependence on dimensionality is d16,
which is better than the result in hoon Song et al. (2024).
Investigating the lower bounds of the smallest eigenvalue of
the NTK for PINNs, similar to what has been done for deep
ReLU neural networks in Nguyen et al. (2021), represents a
promising direction for future research.

Similar to Du et al. (2018) and Gao et al. (2023), we prove
Theorem 3.8 by induction. Our induction hypothesis is the
following convergence rate of the empirical loss and upper
bounds for the weights.
Condition 1. At the t-th iteration, we have that for each
r ∈ [m], ∥wr(t)∥2 ≤ B and

L(t) ≤
(
1− ηλ0

2

)t
L(0), (18)

where B =

√
2(d+ 2) log

(
2m(d+2)

δ

)
+ 1 and L(k) is an

abbreviation of L(w(k)).

From the update formula of gradient descent, we can di-
rectly derive the following corollary, which indicates that
under over-parameterization, the weights are closed to their
initializations.

Corollary 3.11. If Condition 1 holds for t = 0, · · · , k, then
we have for every r ∈ [m],

∥wr(k + 1)−wr(0)∥2 ≤
CB2

√
L(0)√

mλ0
, (19)

where C is a universal constant.

Proof Sketch: Assume that Condition 1 holds for t =
0, · · · , k, it suffices to demonstrate that Condition 1 also
holds for t = k + 1.

From the recursion formula (14), we have that∥∥∥∥(s(k + 1)
h(k + 1)

)∥∥∥∥2
2

=

∥∥∥∥(I − ηH(k))

(
s(k)
h(k)

)
+ I1(k)

∥∥∥∥2
2

≤ ∥I − ηH(k)∥22

∥∥∥∥(s(k)h(k)

)∥∥∥∥2
2

+ ∥I1(k)∥22

+ 2 ∥I − ηH(k)∥2

∥∥∥∥(s(k)h(k)

)∥∥∥∥
2

∥I1(k)∥2 ,

(20)

where the inequality follows from the Cauchy’s inequality.

Combining Corollary 3.11 with Lemma 3.5, we can deduce
that when m is large enough, we have ∥H(k)−H(0)∥2 ≤
λ0/4. Thus, λmin(H(k)) ≥ λ0/2 and I − ηH(k) is
positive definite when η = O(1/∥H∞∥2). On the other
hand, with Corollary 3.11, we can derive that ∥I1(k)∥2 =
O(η

√
L(k)/

√
m). Plugging these results into (20), we have∥∥∥∥(s(k + 1)

h(k + 1)

)∥∥∥∥2
2

=

((
1− ηλ0

2

)2

+O
(
η2

m

)
+O

(
η√
m

))∥∥∥∥(s(k)h(k)

)∥∥∥∥2
2

≤
(
1− ηλ0

2

)∥∥∥∥(s(k)h(k)

)∥∥∥∥2
2

,

(21)
where the last inequality holds when m is large enough.

4. Convergence of NGD for Two-Layer PINNs
Although we have improved the learning rate of gradient
descent for PINNs, it may still be necessary to set the learn-
ing rates to be sufficiently small for some complex PDEs.
Because, although for all PDEs, Trace(H∞) is an explicit
constant, it depends on the form of the PDE, and for com-
plex PDEs, it may be quite large. Moreover, the conver-
gence rate 1− ηλ0

2 also depends on λ0, which depends on
the sample size and may be extremely small. Zhang et al.
(2019) and Cai et al. (2019) have provided the convergence
results for natural gradient descent (NGD) in training over-
parameterized two-layer neural networks for L2 regression
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problems. They showed that the maximal learning rate can
be O(1) and the convergence rate is independent of λ0,
which result in a faster convergence rate. However, their
methods cannot generalize directly to PINNs. In the section,
we conduct the convergence analysis of NGD for PINNs
and demonstrate that it results in a faster convergence rate
for PINNs compared to gradient descent.

In this section, we consider the same setup as described in
Section 2. Specifically, we focus on the PDE of the form
given in (1) and follow the same initialization as described
in Section 2. During the training process, we fix the output
weight a and update the hidden weights via NGD. The opti-
mization objective is the empirical loss function presented
in (7), which is defined as follows:

L(w) =
1

2

(
∥s(w)∥22 + ∥h(w)∥22

)
, (22)

where s(w) and h(w) are defined in (8) and (9), respec-
tively.

The NGD gives the following update rule:

w(k + 1) = w(k)− ηJ(k)T
(
J(k)J(k)T

)−1
(
s(k)
h(k)

)
,

(23)
where

J(k) =
(
J1(k)

T , · · · ,Jn1+n2
(k)T

)T ∈ R(n1+n2)×m(d+2)

is the Jacobian matrix for the whole dataset and η > 0 is the
learning rate. Specifically, for p ∈ [n1],

Jp(k) =

[(
∂sp(k)

∂w1

)T
, · · · ,

(
∂sp(k)

∂wm

)T]
∈ R1×m(d+2)

(24)
and for j ∈ [n2],

Jn1+j(k) =

[(
∂hj(k)

∂w1

)T
, · · · ,

(
∂hj(k)

∂wm

)T]
∈ R1×m(d+2).

(25)
Remark 4.1. Zhang et al. (2019) and Cai et al. (2019) have
independently and concurrently established the convergence
of NGD in the context of regression problems. The dif-
ference lies in the fact that Zhang et al. (2019) focused on
ReLU activation functions, whereas Cai et al. (2019) con-
sidered smooth activation functions and consistently set the
learning rate to 1. Here, following Zhang et al. (2019), we
refer to this approach as NGD. In Cai et al. (2019), the au-
thors derived this method based on NTK kernel regression
and termed it the Gram-Gauss-Newton (GGN) method.

For the activation function of the two-layer neural network

ϕ(x;w,a) =
1√
m

m∑
r=1

arσ(w
T
r x), (26)

we consider settings where σ(·) is either the ReLU3 activa-
tion function or a smooth activation function satisfying the
following assumption.
Assumption 4.2. There exists a constant c > 0 such that
supz∈R |σ(3)(z)| ≤ c and for any z, z

′ ∈ R,

|σ(k)(z)− σ(k)(z
′
)| ≤ c|z − z

′
|, (27)

where k ∈ {0, 1, 2, 3}. Moreover, σ(·) is analytic and is not
a polynomial function.
Lemma 4.3. If no two samples in {xp}n1

p=1 ∪ {yj}n2
j=1 are

parallel, then the Gram matrix H∞ is strictly positive defi-
nite for activation functions that satisfy Assumption 4.2, i.e.,
λ0 := λmin(H

∞) > 0.
Remark 4.4. Assumption 4.2 holds for various commonly
used activation function, including logistic function σ(z) =
1/(1 + e−z), softplus function σ(z) = log(1 + ez), hyper-
bolic tangent function σ(z) = (ez − e−z)/(ez + e−z) and
others. Compared to the ReLU3 activation function, these
smooth activation functions are more popular for PINNs
because solving PDEs typically requires high-order deriva-
tives.

Unlike the approach for gradient descent, Zhang et al. (2019)
focus on the change of the Jacobian matrix for NGD rather
than the Gram matrix. More precisely, they demonstrate
that J(w) is stable with respect to w, where J(w) is the
Jacobian matrix with weight vector w = (wT

1 , · · · ,wT
m)T .

Roughly speaking, they show that when ∥w − w(0)∥2 is
small, then ∥J(w)− J(0)∥2 is also proportionately small.
However, this approach is not applicable to PINNs, because
the loss function involves derivatives. Roughly speaking,
the stability considered in Zhang et al. (2019) is more global
in nature, whereas ours is local. Since the subsequent con-
clusions require the boundedness of local weights, we do not
use this stability. Moreover, from Theorem 1 in Zhang et al.
(2019), we can see that this stability imposes additional con-
straints on the learning rate. Therefore, we instead focus on
the stability of J(w) with respect to each individual weight
vector wr, which provides a more targeted approach.
Lemma 4.5. Let R ∈ (0, 1], if w1(0), · · · ,wm(0) are
i.i.d. generated N (0, I), then with probability at least
1− P (δ,m,R) the following holds. For any set of weight
vectors w1, · · · ,wm ∈ Rd+2 that satisfy for any r ∈ [m],
∥wr −wr(0)∥2 < R, then

(1) when σ(·) is the ReLU3 activation function, we have that

∥J(w)− J(0)∥2 ≤ CM
√
R, (28)

where C is a universal constant, M = 2(d+2) log(2m(d+
2)/δ) and

P (δ,m,R) = δ + n1e
−mR; (29)

(2) when σ(·) satisfies Assumption 4.2, we have that

∥J(w)− J(0)∥2 ≤ CdR (30)

6
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for m ≥ log2(1/δ), where C is a universal constant and
P (δ,m,R) = δ.

As shown in Lemma 4.5, for ReLU3 activation function,
∥J(w) − J(0)∥2 = O(

√
R), whereas for smooth activa-

tion function, ∥J(w) − J(0)∥2 = O(R). Since R is is
sufficiently small, O(R) is more favorable than O(

√
R). In

fact, the difference of (28) and (30) arises from the continu-
ity of σ

′′′
(·).

Remark 4.6. For the regression problems, it is shown in
Zhang et al. (2019) that when σ(·) is the ReLU activation
function, then with probability at least 1− δ, for all weight
vectors w that satisfy ∥w − w(0)∥2 ≤ R

′
, the following

holds.

∥J(w)− J(0)∥2 ≲
(R

′
)1/3

δ1/3m1/6
.

Setting R = R
′
/
√
m in Lemma 4.5, then ∥w −w(0)∥2 ≤

R
′

and (28) becomes

∥J(w)− J(0)∥2 ≲
log( 1δ )(R

′
)1/2

m1/4
.

Since R′ = O(∥y−u(0)∥2/
√
λ0) for regression problems,

our method results in a less favorable dependence on R′ and
more favorable dependence on m and δ. This can improve
m = Poly(1/δ) to m = Poly(log(1/δ)) for the regression
problems.

More importantly, the stability considered in Zhang et al.
(2019) results in that the learning rate must satisfy that
η ≤ 1−C

(1+C)2 , where 0 ≤ C < 1/2 is a constant appearing
in the stability of Jacobian matrix. This requirement for the
learning rate may be difficult to satisfy, as C is unknown.

With the stability of Jacobian matrix, we can derive the
following convergence results.

Theorem 4.7. Let L(k) = L(w(k)), then the following
conclusions hold.

(1) When σ(·) is the ReLU3 activation function, under As-
sumption 3.2, we set

m = Ω

(
1

(1− η)2
d8

λ40
log6

(
md

δ

)
log

(
n1 + n2

δ

))
and η ∈ (0, 1), then with probability at least 1− δ over the
random initialization for all k ∈ N

L(k) ≤ (1− η)kL(0). (31)

(2) When σ(·) satisfies Assumption 4.2, under Assumption
3.2, we set

m = Ω

(
1

1− η

d6

λ30
log2

(
md

δ

)
log

(
n1 + n2

δ

))

and η ∈ (0, 1), then with probability at least 1− δ over the
random initialization for all k ∈ N

L(k) ≤ (1− η)kL(0). (32)

In Theorem 4.7, the requirements of m with ReLU3 and
smooth activation functions exhibit different dependencies
on λ0 and d. The discrepancy is primarily due to the distinct
formulations presented in (28) and (30) of Lemma 4.5.
Remark 4.8. We first compare our results with those of
NGD for L2 regression problems. Given that the conver-
gence results are the same, our focus shifts to examining the
necessary conditions for the width m. As demonstrated in
Zhang et al. (2019) and Cai et al. (2019), it is required
that m = Ω

(
n4

λ4
0δ

3

)
for ReLU activation function and

m = Ω
(
max

{
n4

λ4
0
, n

2d log(n/δ)
λ2
0

})
for smooth activation

function. Clearly, our result has a worse dependence on d,
which is inevitable due to the involvement of derivatives
in the loss function. Moreover, our requirement for m ap-
pears to be almost independent of n, primarily because our
loss function has been normalized. With smooth activation
functions, in addition to the dependence on d, Theorem 4.7
(2) only requires that m = Ω(λ−3

0 ). However, Cai et al.
(2019) demands a more stringent condition, requiring that
m = Ω(λ−4

0 ).

Continuing our analysis, we contrast our results with those
of GD for PINNs. Roughly speaking, Gao et al. (2023)
has shown that when σ(·) is the ReLU3 activation function,
m = Ω̃

(
(n1+n2)

2

λ4
0δ

3

)
and η = O(λ0), then the convergence

result (17) holds. It is evident that our result, i.e, Theorem
4.7 (1), has a milder dependence on n1, n2 and δ. Further-
more, the learning rate and convergence rate are independent
of λ0, resulting in faster convergence.

Comparing with our results in Section 3, the requirement
for m in Theorem 4.7 (1) is the same as in Theorem 3.8,
when we make η less close to 1. On the other hand, since
η = O(1) and the convergence rate only depends on η,
NGD can lead to faster convergence than GD.

Note that as η approaches 1, the width m tends to infinity,
thus, the convergence results in Theorem 4.7 become vac-
uous. In fact, when η = 1, NGD can enjoy a second-order
convergence rate even though m is finite, provided that σ(·)
satisfies Assumption 4.2.
Corollary 4.9. Under Assumption 3.2 and Assumption 4.2,
set η = 1 and

m = Ω

(
d6

λ30
log2

(
md

δ

)
log

(
n1 + n2

δ

))
,

then with probability at least 1− δ, we have∥∥∥∥(s(t+ 1)
h(t+ 1)

)∥∥∥∥
2

≤ CB4√
mλ30

∥∥∥∥(s(t)h(t)

)∥∥∥∥2
2
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for all t ∈ N, where C is a universal constant and B =√
2(d+ 2) log(2m(d+ 2)/δ) + 1.

Remark 4.10. Cai et al. (2019) has demonstrated the second-
order convergence for regression problems with smooth
activation functions. Specifically, it is shown in Cai et al.
(2019) that

∥y − u(t+ 1)∥2 ≲
n3/2√
mλ20

∥y − u(t)∥22.

Actually, when applying our method used in Corollary 4.9,
we can get a more satisfactory result as follows.

∥y − u(t+ 1)∥2 ≲
n3/2√
mλ30

∥y − u(t)∥22.

Instead of inducing on the convergence rate of the empirical
loss function, as shown in Condition 1, we perform induc-
tion on the movements of the hidden weights as follows.
Condition 2. At the t-th iteration, we have ∥wr(t)∥2 ≤ B
and

∥wr(t)−wr(0)∥2 ≤
CB2

√
L(0)√

mλ0
:= R

′

for all r ∈ [m], where C is a universal constant and B =√
2(d+ 2) log

(
2m(d+2)

δ

)
+ 1.

With Condition 2, we can directly derive the following con-
vergence rate of the empirical loss function.

Corollary 4.11. If Condition 2 holds for t = 0, · · · , k and
R

′ ≤ R and R
′′
≲

√
1− η

√
λ0, then

L(t) ≤ (1− η)tL(0),

holds for t = 0, · · · , k, where R is the constant in Lemma
4.5 and R

′′
= CM

√
R is in (28) when σ is the ReLU3

activation function, R
′′
= CdR is in (30) when σ satisfies

Assumption 4.2.

Proof Sketch: First, let u(t) =

(
s(t)
h(t)

)
, then from the

updating formula of NGD (23), we have

u(t+ 1)− u(t)

= u
(
w(t)− ηJ(t)TH(t)−1u(w(t))

)
− u(w(t))

= −
∫ 1

0

〈
∂u(w(s))

∂w
, ηJ(t)TH(t)−1u(w(t))

〉
ds

= −
∫ 1

0

〈
∂u(w(t))

∂w
, ηJ(t)TH(t)−1u(w(t))

〉
ds

+

∫ 1

0

〈
∂u(w(t))

∂w
− ∂u(w(s))

∂w
, ηJ(t)TH(t)−1u(t)

〉
ds

:= I1(t) + I2(t),
(33)

where the second equality is from the fundamental theorem
of calculus and w(s) = sw(t+1)+(1−s)w(t) = w(t)−
sηJ(t)TH(t)−1u(t).

In the proof, we assume that Condition 2 holds for t =
0, · · · , k. Then from Corollary 4.11, to prove Theorem 4.7,
it suffices to demonstrate that this condition also holds for
t = k + 1. Here, we primarily explain the process from
Condition 2 to Corollary 4.11, while other content is placed
in the appendix.

Note that ∂u(w(t))
∂w = J(t), thus I1(t) = ηu(t). Plugging

this into (33) yields that

u(t+ 1) = (1− η)u(t) + I2(t). (34)

From equation (34), we can see the difference between NGD
and GD. Recall that the iteration formula for GD is

u(t+ 1) = (1− ηH(t))u(t) + I1(t).

Precisely because of this, the convergence rate of GD is
inevitably influenced by λ0 , whereas that of NGD is not.

From the stability of the Jacobian matrix, we can deduce
that ∥I2(t)∥2 = O(η∥u(t)∥2/

√
m). Plugging this into (34)

yields that

∥u(t+ 1)∥22
≤ ∥(1− η)u(t)∥22 + ∥I2(t)∥22 + 2(1− η)∥u(t)∥2∥I2(t)∥2

=

(
(1− η)2 +O

(
η2

m

)
+ 2(1− η)O

(
η√
m

))
∥u(t)∥22

≤ (1− η)∥u(t)∥22,
(35)

where the last inequality holds if m is large enough.

5. Conclusion and Discussion
In this paper, we have improved the conditions required for
the convergence of gradient descent for PINNs, showing that
gradient descent actually achieves a better convergence rate.
Furthermore, we demonstrate that natural gradient descent
can find the global optima of two-layer PINNs with ReLU3

or smooth activation functions for a class of second-order
linear PDEs. Compared to gradient descent, natural gradient
descent exhibits a faster convergence rate and its maximal
learning rate is O(1). However, natural gradient descent
is quite expensive in terms of computation and memory in
training neural networks. As a result, several cost-effective
variants have been proposed, such as K-FAC (Martens &
Grosse, 2015) and mini-batch natural gradient descent. It
would be interesting to investigate the convergence of these
methods for PINNs. Additionally, extending the conver-
gence analysis to deep neural networks and studying the
generalization bounds of trained PINNs are important direc-
tions for future research.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Appendix
Before the proofs, we first define the event

Air := {∃w : ∥w −wr(0)∥2 ≤ R, I{wTxi ≥ 0} ≠ I{wr(0)
Txi ≥ 0}} (36)

for all i ∈ [n].

Note that the event happens if and only if |wr(0)
Txi| < ∥xi∥2R, thus by the anti-concentration inequality of Gaussian

distribution, we have

P (Air) = Pz∼N (0,∥xi∥2
2)
(|z| < R) = Pz∼N (0,1) (|z| < R) ≤ 2R√

2π
. (37)

Let Si = {r ∈ [m] : I{Air} = 0} and S⊥
i = [m]\Si.

Then, we need to recall that

∂sp(w)

∂wr
=

ar√
mn1

[
σ

′′
(wT

r xp)wr0xp + σ
′
(wT

r xp)

(
1

0d+1

)
− σ

′′′
(wT

r xp)∥wr1∥22xp − 2σ
′′
(wT

r xp)

(
0

wr1

)]
(38)

and
∂hj(w)

∂wr
=

ar√
mn2

σ
′
(wT

r yj)yj . (39)

A. Proof of Section 3
A.1. Proof of Lemma 3.3

Proof. In the following, we aim to bound ∥H(0)−H∞∥F , as ∥H(0)−H∞∥2 ≤ ∥H(0)−H∞∥F . Note that the entries
of H(0)−H∞ have three forms as follows.

m∑
r=1

〈
∂si(w(0)

∂wr
,
∂sj(w(0))

∂wr

〉
− Ew(0)

[
m∑
r=1

〈
∂si(w(0))

∂wr
,
∂sj(w(0))

∂wr

〉]
, (40)

m∑
r=1

〈
∂si(w(0))

∂wr
,
∂hj(w(0))

∂wr

〉
− Ew(0)

[
m∑
r=1

〈
∂si(w(0))

∂wr
,
∂hj(w(0))

∂wr

〉]
(41)

and
m∑
r=1

〈
∂hi(w(0))

∂wr
,
∂hj(w(0))

∂wr

〉
− Ew

[
m∑
r=1

〈
∂hi(w(0))

∂wr
,
∂hj(w(0))

∂wr

〉]
. (42)

For the first form (40), to simplify the analysis, we let

Zr(i) = σ
′′
(wr(0)

Txi)wr0(0)xi + σ
′
(wr(0)

Txi)

(
1

0d+1

)
− σ

′′′
(wr(0)

Txp)∥wr1(0)∥22xp − 2σ
′′
(wr(0)

Txi)

(
0

wr1(0)

)
and

Xr(ij) = ⟨Zr(i),Zr(j)⟩,
then

m∑
r=1

〈
∂sp(w(0))

∂wr
,
∂sj(w(0))

∂wr

〉
− Ew

[
m∑
r=1

〈
∂sp(w(0))

∂wr
,
∂sj(w(0))

∂wr

〉]
=

1

n1m

m∑
r=1

[Xr(ij)− EXr(ij)] .

Note that |Xr(ij)| ≲ 1 + ∥wr(0)∥42, thus

∥Xr(ij)∥ψ 1
2

≲ 1 +
∥∥∥wr(0)∥42

∥∥
ψ 1

2

≲ 1 +
∥∥∥wr(0)∥22

∥∥2
ψ1

≲ d2.

11
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Here, for more details on the Orlicz norm, see the remarks after Lemma C.1.

For the centered random variable, the property of ψ 1
2

quasi-norm implies that

∥Xr(ij)− E[Xr(ij)]∥ψ 1
2

≲ ∥Xr(ij)∥ψ 1
2

+ ∥E[Xr(ij)]∥ψ 1
2

≲ d2.

Therefore, applying Lemma C.1 yields that with probability at least 1− δ,∣∣∣∣∣
m∑
r=1

1

m
[Xr(ij)− EXr(ij)]

∣∣∣∣∣ ≲ d2√
m

√
log

(
1

δ

)
+
d2

m

(
log

(
1

δ

))2

,

which directly yields that∣∣∣∣∣
m∑
r=1

〈
∂sp(w(0))

∂wr
,
∂sj(w(0))

∂wr

〉
− Ew(0)

[
m∑
r=1

〈
∂sp(w(0))

∂wr
,
∂sj(w(0))

∂wr

〉]∣∣∣∣∣ ≲ d2

n1
√
m

√
log

(
1

δ

)
+

d2

n1m

(
log

(
1

δ

))2

.

(43)

Similarly, for the second form (41) and third form (42), we can deduce that∥∥∥∥〈∂si(w(0)

∂wr
,
∂hj(w(0))

∂wr

〉
− Ew(0)

[〈
∂si(w(0))

∂wr
,
∂hj(w(0))

∂wr

〉]∥∥∥∥
ψ 1

2

≲
d2

√
n1n2m

and ∥∥∥∥〈∂hi(w(0))

∂wr
,
∂hj(w(0))

∂wr

〉
− Ew(0)

[〈
∂hi(w(0))

∂wr
,
∂hj(w(0))

∂wr

〉]∥∥∥∥
ψ 1

2

≲
d2

n2m
.

Thus applying Lemma C.1 yields that with probability at least 1− δ,∣∣∣∣∣
m∑
r=1

〈
∂si(w(0))

∂wr
,
∂hj(w(0))

∂wr

〉
− Ew(0)

[
m∑
r=1

〈
∂si(w(0))

∂wr
,
∂hj(w(0))

∂wr

〉]∣∣∣∣∣ ≲ d2
√
n1n2

√
m

√
log

(
1

δ

)
+

d2
√
n1n2m

log

(
1

δ

)
(44)

and with probability at least 1− δ,∣∣∣∣∣
m∑
r=1

〈
∂hi(w(0))

∂wr
,
∂hj(w(0))

∂wr

〉
− Ew(0)

[
m∑
r=1

〈
∂hi(w(0))

∂wr
,
∂hj(w(0))

∂wr

〉]∣∣∣∣∣ ≲ d2

n2
√
m

√
log

(
1

δ

)
+

d2

n2m
log

(
1

δ

)
.

(45)

Combining (43), (44) and (45), we can deduce that with probability at least 1− δ,

∥H(0)−H∞∥22
≤ ∥H(0)−H∞∥2F

≲
d4

m
log

(
n1 + n2

δ

)
+
d4

m2

(
log

(
n1 + n2

δ

))4

≲
d4

m
log

(
n1 + n2

δ

)
.

Thus when
√

d4

m log
(
n1+n2

δ

)
≲ λ0

4 , i.e.,

m = Ω

(
d4

λ20
log

(
n1 + n2

δ

))
,

we have λmin(H(0)) ≥ 3
4λ0.

12
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A.2. Proof of Lemma 3.5

Proof. We first reformulate the term ∂sp(k)
∂wr

in (38) as follows.

∂sp(w)

∂wr
=

ar√
mn1

[
σ

′′
(wT

r xp)

(
wr0xp0

wr0xp1 − 2wr1

)
+ σ

′
(wT

r xp)

(
1

0d+1

)
− σ

′′′
(wT

r xp)∥wr1∥22xp
]
.

It suffices to bound ∥H(w)−H(0)∥F , which can in turn allows us to bound each entry of H(w)−H(0).

For i ∈ [n1] and j ∈ [n1], we have that

Hij(w) =

m∑
r=1

〈
∂si(w)

∂wr
,
∂sj(w)

∂wr

〉

=
1

n1m

m∑
r=1

〈
σ

′′
(wT

r xi)

(
wr0xi0

wr0xi1 − 2wr1

)
+ σ

′
(wT

r xi)

(
1

0d+1

)
− σ

′′′
(wT

r xi)∥wr1∥22xi,

σ
′′
(wT

r xj)

(
wr0xj0

wr0xj1 − 2wr1

)
+ σ

′
(wT

r xj)

(
1

0d+1

)
− σ

′′′
(wT

r xj)∥wr1∥22xj
〉

After expanding the inner product term, we can find that although it has nine terms, it only consists of six classes. For
simplicity, we use the following six symbols to represent the corresponding classes.

σ
′′
σ

′′
, σ

′′
σ

′
, σ

′
σ

′
, σ

′′′
σ

′′
, σ

′′′
σ

′
, σ

′′′
σ

′′′
.

For instance, σ
′′
σ

′
represents〈

σ
′′
(wT

r xi)

(
wr0xi0

wr0xi1 − 2wr1

)
, σ

′
(wT

r xj)

(
1

0d+1

)〉
,

〈
σ

′
(wT

r xi)

(
1

0d+1

)
, σ

′′
(wT

r xj)

(
wr0xj0

wr0xj1 − 2wr1

)〉
.

In fact, when bounding the corresponding terms for Hij(w)−Hij(0), the first four classes can be grouped into one category.
They are of the form f1(w)f2(w)f3(w)f4(w), where for each i (1 ≤ i ≤ 4), fi(w) is Lipschitz continuous with respect to
∥ · ∥2 and |fi(w)| ≲ ∥w∥2 (Note that σ

′
(·) = (σ

′′
(·))2). On the other hand, when ∥w1 −w2∥2 ≤ R ≤ 1, we can deduce

that
|f1(w1)f2(w1)f3(w1)f4(w1)− f1(w2)f2(w2)f3(w2)f4(w2)| ≲ R(∥w1∥32 + 1).

Thus, for the terms in Hij(w) − Hij(0) that belong to the first four classes, we can deduce that they are less than
CR(∥wr(0)∥32 + 1), where C is a universal constant.

For the classes σ
′′′
σ

′′
and σ

′′′
σ

′
, they are both involving σ

′′′
that is not Lipschitz continuous. To make it precise, we write

the class σ
′′′
σ

′′
explicitly as follows.

σ
′′
(wT

r xi)σ
′′′
(wT

r xj)∥wr1∥22
(

wr0xi0
wr0xi1 − 2wr1

)T
xj .

Note that when ∥wr −wr(0)∥2 < R, we have that

|σ
′′′
(wT

r xj)− σ
′′′
(wr(0)

Txj)| = |I{wT
r xj ≥ 0} − I{wr(0)

Txj ≥ 0}| ≤ I{Ajr},

where the event Ajr has been defined in (36).

Thus, we can deduce that for the terms in Hij(w)−Hij(0) that belong to the classes σ
′′′
σ

′′
and σ

′′′
σ

′
, they are less than

C
[
(I{Air}+ I{Ajr})(∥wr(0)∥32 + 1) +R(∥wr(0)∥32 + 1)

]
,

where C is a universal constant.

Similarly, for the last class σ
′′′
σ

′′′
that are of the form

σ
′′′
(wT

r xi)σ
′′′
(wT

r xj)∥wr1∥42xTi xj ,

13
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we can deduce that

|σ
′′′
(wT

r xi)σ
′′′
(wT

r xj)∥wr1∥42xTi xj − σ
′′′
(wr(0)

Txi)σ
′′′
(wr(0)

Txj)∥wr1(0)∥42xTi xj |
≲ I{Air ∨Ajr}∥wr(0)∥42 +R(∥wr(0)∥32 + 1).

Combining the upper bounds for the terms in the six classes, we have that

|Hij(w)−Hij(0)| ≲
1

n1

[
1

m

(
R

m∑
r=1

∥wr(0)∥32

)
+

1

m

m∑
r=1

(I{Air}+ I{Ajr})(∥wr(0)∥42 + ∥wr(0)∥32 + 1) +R

]

≲
1

n1

[
1

m

(
R

m∑
r=1

∥wr(0)∥42

)
+

1

m

m∑
r=1

(I{Air}+ I{Ajr})(∥wr(0)∥42 + 1) +R

]
,

(46)
where the last inequality follows from that ∥wr(0)∥32 ≲ ∥wr(0)∥42 + 1 due to Young’s inequality for products.

Now, we focus on the term 1
m

m∑
r=1

I{Air}∥wr(0)∥42.

Since

P

(
|wri(0)|2 ≥ 2 log

(
2

δ

))
≤ δ

and then

P

(
∥wr(0)∥22 ≥ 2(d+ 2) log

(
2(d+ 2)

δ

))
≤ δ.

This implies that

P

(
∃r ∈ [m], ∥wr(0)∥22 ≥ 2(d+ 2) log

(
2m(d+ 2)

δ

))
≤ δ. (47)

Let M = 2(d+ 2) log
(

2m(d+2)
δ

)
, then

1

m

m∑
r=1

I{Air}∥wr(0)∥42

=
1

m

m∑
r=1

I{Air}∥wr(0)∥42I{∥wr(0)∥22 ≤M}+ 1

m

m∑
r=1

I{Air}∥wr(0)∥42I{∥wr(0)∥22 > M}

≤ M2

m

m∑
r=1

I{Air}+
1

m

m∑
r=1

∥wr(0)∥42I{∥wr(0)∥22 > M}.

Applying Bernstein’s inequality for the first term yields that with probability at least 1− e−mR,

1

m

m∑
r=1

I{Air} ≤ 4R.

Moreover, from (47), we have that with probability at least 1− δ, I{∥wr(0)∥22 > M} = 0 holds for all r ∈ [m].

Thus from (46), with probability at least 1− δ − n1e
−mR, we have that for any i ∈ [n1] and j ∈ [n1],

|Hij(w)−Hij(0)| ≲
1

n1

[
RM2 +RM2 +R

]
≲

1

n1
M2R.

For i ∈ [n1], j ∈ [n1 + 2, n2] and i ∈ [n1 + 1, n2], j ∈ [n2], from the form of ∂hj(w)
∂wr

, i.e.,

∂hj(w)

∂wr
=

ar√
n2m

σ
′
(wT

r yj)yj ,

14
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we can obtain similar results for the terms
〈
∂si
∂w ,

∂hj

∂w

〉
and

〈
∂hi

∂w ,
∂hj

∂w

〉
.

With all results above, we have that with probability at least 1− δ − n1e
−mR,

∥H(w)−H(0)∥F ≲M2R.

A.3. Proof of Lemma 3.7

Proof. First, we have

sp(k + 1)− sp(k) =

[
sp(k + 1)− sp(k)−

〈
∂sp(k)

∂w
,w(k + 1)−w(k)

〉]
+

〈
∂sp(k)

∂w
,w(k + 1)−w(k)

〉
:= Ip1 (k) + Ip2 (k).

(48)

For the second term Ip2 (k), from the updating rule of gradient descent, we have that

Ip2 (k) =

〈
∂sp(k)

∂w
,w(k + 1)−w(k)

〉
=

〈
∂sp(k)

∂w
,−η ∂L(k)

∂w

〉
= −

m∑
r=1

η

〈
∂sp(k)

∂wr
,
∂L(k)

∂wr

〉

= −
m∑
r=1

η

〈
∂sp(k)

∂wr
,

n1∑
t=1

st(k)
∂st(k)

∂wr
+

n2∑
j=1

hj(k)
∂hj(k)

∂wr

〉

= −η

 n1∑
t=1

〈
∂sp(k)

∂wr
,
∂st(k)

∂wr

〉
st(k) +

n2∑
j=1

〈
∂sp(k)

∂wr
,
∂hj(k)

∂wr

〉
hj(k)


= −η[H(k)]p

(
s(k)
h(k)

)
,

(49)

where [H(k)]p denotes the p-row of H(k).

Similarly, for h(k), we have

hj(k + 1)− hj(k) =

[
hj(k + 1)− hj(k)−

〈
∂hj(k)

∂w
,w(k + 1)−w(k)

〉]
+

〈
∂hj(k)

∂w
,w(k + 1)−w(k)

〉
:= In1+j

1 (k) + In1+j
2 (k)

(50)

and

In1+j
2 (k) = −η[H(k)]n1+j

(
s(k)
h(k)

)
. (51)

Combining (48), (49), (50) and (51) yields that(
s(k + 1)
h(k + 1)

)
−
(
s(k)
h(k)

)
= I1(k) + I2(k)

= I1(k)− ηH(k)

(
s(k)
h(k)

)
.

A simple transformation directly leads to(
s(k + 1)
h(k + 1)

)
= (I − ηH(k))

(
s(k)
h(k)

)
+ I1(k).
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A.4. Proof of Theorem 3.8

Proof. For the sake of completeness in the proof, we restate Condition 1 and Corollary 3.11 from the main text, and label
them as Condition 3 and Corollary A.1, respectively.
Condition 3. At the t-th iteration, we have that for each r ∈ [m], ∥wr(t)∥2 ≤ B and

L(t) ≤
(
1− ηλ0

2

)t
L(0), (52)

where B =

√
2(d+ 2) log

(
2m(d+2)

δ

)
+ 1 and L(k) is an abbreviation of L(w(k)).

From (47), we know that with probability at least 1 − δ, ∥wr(0)∥2 ≤
√

2(d+ 2) log
(

2m(d+2)
δ

)
holds for all r ∈ [m].

Thus, if we can prove that wr(t) is closed enough to wr(0), then ∥wr(t)∥2 ≤ B holds.

Corollary A.1 (Lemma 4.1 in (Gao et al., 2023)). If Condition 3 holds for t = 0, · · · , k, then we have for every r ∈ [m],

∥wr(k + 1)−wr(0)∥2 ≤
CB2

√
L(0)√

mλ0
:= R

′
, (53)

where C is a universal constant.

Corollary A.1 implies that when m is large enough, we have ∥wr(k + 1) −wr(0)∥2 ≤ 1 and then ∥wr(k + 1)∥2 ≤ B.
Thus, in induction, we only need to prove that (52) also holds for t = k + 1, which relies on the recursion formula (14).

Recall that the recursion formula is (
s(k + 1)
h(k + 1)

)
= (I − ηH(k))

(
s(k)
h(k)

)
+ I1(k).

From Corollary A.1 and Lemma 3.5, taking CM2R < λ0

4 in (12) and R
′ ≤ R in (53) yields that λmin(H(k)) ≥

λmin(H(0))− λ0

4 ≥ λ0

2 and

∥H(k)∥2 ≤ ∥H(0)∥2 +
λ0
4

≤ ∥H∞∥2 +
λ0
2

≤ 3

2
∥H∞∥2.

Therefore, if we take η ≤ 2
3

1
∥H∞∥2

, then I − ηH(k) is positive definite and ∥I − ηH(k)∥2 ≤ 1− ηλ0

2 .

Combining these facts with the recursion formula, we have that∥∥∥∥(s(k + 1)
h(k + 1)

)∥∥∥∥2
2

=

∥∥∥∥(I − ηH(k))

(
s(k)
h(k)

)∥∥∥∥2
2

+ ∥I1(k)∥22 + 2

〈
(I − ηH(k))

(
s(k)
h(k)

)
, I1(k)

〉
≤
(
1− ηλ0

2

)2 ∥∥∥∥(s(k)h(k)

)∥∥∥∥2
2

+ ∥I1(k)∥22 + 2

(
1− ηλ0

2

)∥∥∥∥(s(k)h(k)

)∥∥∥∥
2

∥I1(k)∥2.

(54)

Thus, it remains only to bound ∥I1(k)∥2.

For I1(k), recall that I1(k) = (I11 (k), · · · , I
n1
1 (k), In1+1

1 (k), · · · , In1+n2
1 (k))T ∈ Rn1+n2 and for p ∈ [n1],

Ip1 (k) = sp(k + 1)− sp(k)−
〈
∂sp(k)

∂w
,w(k + 1)−w(k)

〉
,

for j ∈ [n2],

In1+j
1 (k) = hj(k + 1)− hj(k)−

〈
∂hj(k)

∂w
,w(k + 1)−w(k)

〉
.
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Recall that

sp(k) =
1

√
n1

(
1√
m

(
m∑
r=1

arσ
′
(wr(k)

Txp)wr0(k)− arσ
′′
(wr(k)

Txp)∥wr1(k)∥22

)
− f(xp)

)

and

∂sp(k)

∂wr
=

ar√
n1m

[
σ

′′
(wr(k)

Txp)wr0(k)xp + σ
′
(wr(k)

Txp)

(
1

0d+2

)
− σ

′′′
(wr(k)

Txp)∥wr1(k)∥22xp

−2σ
′′
(wr(k)

Txp)

(
0

wr1(k)

)]
.

Define χ1
pr(k) := σ

′
(wr(k)

Txp)wr0(k) and χ2
pr(k) := σ

′′
(wr(k)

Txp)∥wr1(k)∥22, i.e., χ1
pr(k) and χ2

pr(k) are related to
the operators ∂u

∂t and ∆u respectively.

Then define

χ̂1
pr(k) = χ1

pr(k + 1)− χ1
pr(k)−

〈
∂χ1

pr(k)

∂wr
,wr(k + 1)−wr(k)

〉
and

χ̂2
pr(k) = χ2

pr(k + 1)− χ2
pr(k)−

〈
∂χ2

pr(k)

∂wr
,wr(k + 1)−wr(k)

〉
.

At this time, we have

Ip1 (k) =
1

√
n1m

m∑
r=1

ar
[
χ̂1
pr(k)− χ̂2

pr(k)
]
.

The purpose of defining χ̂1
pr(k) and χ̂1

pr(k) in this way is to enable us to handle the terms related to the operators ∂u
∂t and

∆u separately.

We first recall some definitions. For p ∈ [n1],

Ap,r = {∃w : ∥w −wr(0)∥2 ≤ R, I{wTxp ≥ 0} ≠ I{wr(0)
Txp ≥ 0}}

and Sp = {r ∈ [m] : I{Ap,r = 0}}, S⊥
p = [n1]\Sp.

In the following, we are going to show that |χ̂1
pr(k)| = O(∥wr(k + 1) − wr(k)∥22) for every r ∈ [m] and |χ̂2

pr(k)| =
O(∥wr(k + 1) − wr(k)∥22) for r ∈ Sp, |χ̂2

pr(k)| = O(∥wr(k + 1) − wr(k)∥2) for r ∈ S⊥
p . Thus, we can prove that

∥I1(k)∥2 = O
(√

L(k)√
m

)
. Then combining with (69) leads to the conclusion.

For χ̂1
pr(k), from its definition, we have that

χ̂1
pr(k) = σ

′
(wr(k + 1)Txp)wr0(k + 1)− σ

′
(wr(k)

Txp)wr0(k)

− ⟨wr(k + 1)−wr(k),xp⟩σ
′′
(wr(k)

Txp)wr0(k)− (wr0(k + 1)− wr0(k))σ
′
(wr(k)

Txp)

= (σ
′
(wr(k + 1)Txp)− σ

′
(wr(k)

Txp))wr0(k + 1)− ⟨wr(k + 1)−wr(k),xp⟩σ
′′
(wr(k)

Txp)wr0(k).

From the mean value theorem, we can deduce that there exists ζ(k) ∈ R such that

σ
′
(wr(k + 1)Txp)− σ

′
(wr(k)

Txp) = σ
′′
(ζ(k))⟨wr(k + 1)−wr(k),xp⟩

and

|σ
′′
(ζ(k))− σ

′′
(wr(k)

Txp)| ≤ |ζ(k)−wr(k)
Txp|

≤
√
2∥wr(k + 1)−wr(k)∥2.
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Convergence of NGD for PINNs

Then, for χ̂1
pr(k), we can rewrite it as follows.

χ̂1
pr(k) = σ

′′
(ζ(k))⟨wr(k + 1)−wr(k),xp⟩wr0(k + 1)− ⟨wr(k + 1)−wr(k),xp⟩σ

′′
(wr(k)

Txp)wr0(k)

=
[(
σ

′′
(ζ(k))− σ

′′
(wr(k)

Txp)
)
⟨wr(k + 1)−wr(k),xp⟩wr0(k + 1)

]
+
[
⟨wr(k + 1)−wr(k),xp⟩σ

′′
(wr(k)

Txp)(wr0(k + 1)− wr0(k))
]
.

This implies that
|χ̂1
pr(k)| ≲ B∥wr(k + 1)−wr(k)∥22.

For χ̂2
pr(k), we write it as follows explicitly.

χ̂2
pr(k) = σ

′′
(wr(k + 1)Txp)∥wr1(k + 1)∥22 − σ

′′
(wr(k)

Txp)∥wr1(k)∥22
− ⟨wr(k + 1)−wr(k),xp⟩σ

′′′
(wr(k)

Txp)∥wr1(k)∥22
− 2⟨wr1(k + 1)−wr1(k),wr1(k)⟩σ

′′
(wr(k)

Txp).

(55)

Note that for the term σ
′′
(wr(k)

Twp)∥wr1(k)∥22, we can rewrite it as follows.

σ
′′
(wr(k)

Txp)∥wr1(k)∥22
= σ

′′
(wr(k)

Txp)∥wr1(k)−wr1(k + 1) +wr1(k + 1)∥22
= σ

′′
(wr(k)

Txp)[∥wr1(k)−wr1(k + 1)∥22 + ∥wr1(k + 1)∥22 − 2⟨wr1(k + 1)−wr1(k),wr1(k + 1)⟩],

(56)

where the first term σ
′′
(wr(k)

Txp)∥wr1(k)−wr1(k + 1)∥22 = O(B∥wr(k + 1)−wr(k)∥22).

Plugging (56) into (55) yields that

χ̂2
pr(k) = [σ

′′
(wr(k + 1)Txp)− σ

′′
(wr(k)

Txp)]∥wr1(k + 1)∥22
− ⟨wr(k + 1)−wr(k),xp⟩σ

′′′
(wr(k)

Txp)∥wr1(k)∥22
+ 2⟨wr1(k + 1)−wr1(k),wr1(k + 1)−wr1(k)⟩σ

′′
(wr(k)

Txp) +O(B∥wr(k + 1)−wr(k)∥22)

= [σ
′′
(wr(k + 1)Txp)− σ

′′
(wr(k)

Txp)− ⟨wr(k + 1)−wr(k),xp⟩σ
′′′
(wr(k)

Txp)]∥wr1(k + 1)∥22
+ ⟨wr(k + 1)−wr(k),xp⟩σ

′′′
(wr(k)

Txp)(∥wr1(k + 1)∥22 − ∥wr1(k)∥22)
+O(B∥wr(k + 1)−wr(k)∥22)

=
[
σ

′′
(wr(k + 1)Txp)− σ

′′
(wr(k)

Txp)− ⟨wr(k + 1)−wr(k),xp⟩σ
′′′
(wr(k)

Txp)
]
∥wr1(k + 1)∥22

+O(B∥wr(k + 1)−wr(k)∥22).

(57)

Thus, we only need to consider the term

σ
′′
(wr(k + 1)Txp)− σ

′′
(wr(k)

Txp)− ⟨wr(k + 1)−wr(k),xp⟩σ
′′′
(wr(k)

Txp).

For r ∈ Sp, since ∥wr(k + 1) − wr(0)∥2 ≤ R, ∥wr(k) − wr(0)∥2 ≤ R, we have that I{wr(k + 1)Txp ≥ 0} =
I{wr(k)

Txp ≥ 0}, which yields that

σ
′′
(wr(k + 1)Txp)− σ

′′
(wr(k)

Txp)− ⟨wr(k + 1)−wr(k),xp⟩σ
′′′
(wr(k)

Txp)

= [(wr(k + 1)Txp)I{wr(k + 1)Txp ≥ 0} − (wr(k)
Txp)I{wr(k)

Txp ≥ 0}]
− ⟨wr(k + 1)−wr(k),xp⟩I{wr(k)

Txp ≥ 0}
= [(wr(k + 1)Txp)I{wr(k)

Txp ≥ 0} − (wr(k)
Txp)I{wr(k)

Txp ≥ 0}]
− ⟨wr(k + 1)−wr(k),xp⟩I{wr(k)

Txp ≥ 0}
= 0.

(58)
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For r ∈ S⊥
p , the Lipschitz continuity of σ

′′
implies that

σ
′′
(wr(k+ 1)Txp)− σ

′′
(wr(k)

Txp)− ⟨wr(k+ 1)−wr(k),xp⟩σ
′′′
(wr(k)

Txp) = O(∥wr(k+ 1)−wr(k)∥2). (59)

Combining (57), (58) and (59), we can deduce that for r ∈ Sp,

|χ̂2
pr(k)| ≲ B∥wr(k + 1)−wr(k)∥22

and for r ∈ S⊥
p ,

|χ̂2
pr(k)| ≲ B∥wr(k + 1)−wr(k)∥22 +B2∥wr(k + 1)−wr(k)∥2.

With the estimations for χ̂1
pr(k) and χ̂2

pr(k), we have

|Ip1 (k)| ≤
1

√
n1m

m∑
r=1

(|χ̂1
pr(k)|+ |χ̂2

pr(k)|)

≲
1

√
n1m

m∑
r=1

B∥wr(k + 1)−wr(k)∥22 +
1

√
n1m

∑
r∈S⊥

p

B2∥wr(k + 1)−wr(k)∥2.
(60)

For j ∈ [n2], we consider In1+j
1 (k), which can be written as follows.

In1+j
1 (k) = hj(k + 1)− hj(k)−

〈
w(k + 1)−w(k),

∂hj(k)

∂w

〉
=

m∑
r=1

ar√
n2m

[
σ(wr(k + 1)Tyj)− σ(wr(k)

Tyj)− ⟨wr(k + 1)−wr(k),yj⟩σ
′
(wr(k)

Tyj)
]
.

From the mean value theorem, we have that there exists ζ(k) ∈ R such that

σ(wr(k + 1)Tyj)− σ(wr(k)
Tyj) = σ

′
(ζ(k))⟨wr(k + 1)−wr(k),yj⟩

and

|σ
′
(ζ(k))− σ

′
(wr(k)

Tyj)| ≤ 2B|ζ(k)−wr(k)
Tyj |

≤ 2
√
2B∥wr(k + 1)−wr(k)∥2.

Thus,

|σ(wr(k + 1)Tyj)− σ(wr(k)
Tyj)− ⟨wr(k + 1)−wr(k),yj⟩σ

′
(wr(k)

Tyj)|

= |σ
′
(ζ(k))⟨wr(k + 1)−wr(k),yj⟩ − σ(wr(k)

Tyj)− ⟨wr(k + 1)−wr(k),yj⟩σ
′
(wr(k)

Tyj)|

= |(σ
′
(ζ(k))− σ

′
(wr(k)

Tyj))⟨wr(k + 1)−wr(k),yj⟩|
≲ B∥wr(k + 1)−wr(k)∥2.

Therefore, for j ∈ [n2],

|In1+j
1 (k)| ≲ B

√
n2m

m∑
r=1

∥wr(k + 1)−wr(k)∥22. (61)

From the updating rule of gradient descent, we can deduce that for every r ∈ [m],

∥wr(k + 1)−wr(k)∥2 =

∥∥∥∥−η ∂L(k)∂wr

∥∥∥∥
2

≲
ηB2

√
m

√
L(k). (62)
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Plugging (62) into (61) and (60), we can deduce that

|Ip1 (k)| ≲
B

√
n1m

m∑
r=1

∥wr(k + 1)−wr(k)∥22 +
B2

√
n1m

∑
r∈S⊥

p

∥wr(k + 1)−wr(k)∥2

≲
B

√
n1m

m∑
r=1

η2B4

m
L(k) +

B2

√
n1m

∑
r∈S⊥

p

ηB2

√
m

√
L(k)

=
η2B5L(k)
√
n1m

+
ηB4

√
L(k)

√
n1

1

m

m∑
r=1

I{r ∈ S⊥
p }

≤
η2B5

√
L(0)

√
L(k)

√
n1m

+
ηB4

√
L(k)

√
n1

1

m

m∑
r=1

I{r ∈ S⊥
p }

(63)

and

|In1+j
1 (k)| ≲ B

√
n2m

m∑
r=1

∥wr(k + 1)−wr(k)∥22

≲
B

√
n2m

m∑
r=1

η2B4

m
L(k)

≤
η2B5

√
L(0)

√
L(k)

√
n2m

.

(64)

Note that
P (Ap,r) ≤

2R√
2π
, Sp = {r ∈ [m] : I{Ap,r} = 0}.

Thus, from Bernstein’s inequality, we have that with probability at least 1− e−mR,

1

m

m∑
r=1

I{r ∈ S⊥
p } =

1

m

m∑
r=1

I{Apr} ≲ 4R.

Then the inequality holds for all p ∈ [n1] with probability at least 1− n1e
−mR. Plugging this into (63), we can conclude

that for every p ∈ [n1]

|Ip1 (k)| ≲
η2B5

√
L(0)

√
L(k)

√
n1m

+
ηB4

√
L(k)

√
n1

R. (65)

Combining (64) and (65), we have that

∥I1(k)∥2 =

√√√√ n1∑
p=1

|Ip1 (k)|2 +
n2∑
j=1

|In1+j
1 (k)|2

≲
η2B5

√
L(0)

√
L(k)√

m
+ ηB4

√
L(k)R.

Plugging this into (54) yields that∥∥∥∥(s(k + 1)
h(k + 1)

)∥∥∥∥2
2

≤
(
1− ηλ0

2

)2 ∥∥∥∥(s(k)h(k)

)∥∥∥∥2
2

+ ∥I1(k)∥22 + 2

(
1− ηλ0

2

)∥∥∥∥(s(k)h(k)

)∥∥∥∥
2

∥I1(k)∥2

≤

(1− ηλ0
2

)2

+ C2

(
η2B5

√
L(0)√

m
+ ηB4R

)2

+ 2C

(
η2B5

√
L(0)√

m
+ ηB4R

)∥∥∥∥(s(k)h(k)

)∥∥∥∥2
2

≤
(
1− ηλ0

2

)∥∥∥∥(s(k)h(k)

)∥∥∥∥2
2

,
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where C is a universal constant and the last inequality requires that

η2B5
√
L(0)√

m
≲ ηλ0, ηB

4R ≲ ηλ0.

Recall that we also require CM2R < λ0

4 for R in (12) and

R
′
=
CB2

√
L(0)√

mλ0
< R

for R
′

in (53) to make sure ∥H(k)−H(0)∥2 ≤ λ0

4 .

Finally, with R = O( λ0

M2 ) and Lemma C.4 for the upper bound of L(0), m needs to satisfies that

m = Ω

(
M4B4L(0)

λ40

)
= Ω

(
d8

λ40
log6

(
md

δ

)
log

(
n1 + n2

δ

))
.

B. Proof of Section 4
B.1. Proof of Lemma 4.3

Proof. Recall that

H(w) = DTD, D =

[
∂s1(w)

∂w
, · · · , ∂sn1

(w)

∂w
,
∂h1(w)

∂w
, · · · , ∂hn2

(w)

∂w

]
,

and H∞ = Ew∼N (0,I)G(w).

We denote φ(x;w) = σ
′
(wTx)w0 − σ

′′
(wTx)∥w1∥22, where w = (w0,w

T
1 )
T , w0 ∈ R,w1 ∈ Rd, then

∂sp(w)

∂wr
=

1√
n1

ar√
m

∂φ(xp;wr)

∂wr
.

Similarly, we denote ψ(y;w) = σ(wTy), then

∂hj(w)

∂wr
=

1√
n2

ar√
m

∂ψ(yj ,wr)

∂wr
.

With the notations, we can deduce that

H∞
p,j =



1

n1
Ew∼N (0,I)

〈
∂φ(xp;w)

∂w
,
∂φ(xj ;w)

∂w

〉
, 1 ≤ p ≤ n1, 1 ≤ j ≤ n1,

1
√
n1n2

Ew∼N (0,I)

〈
∂φ(xp;w)

∂w
,
∂ψ(yj ;w)

∂w

〉
, 1 ≤ p ≤ n1, n1 + 1 ≤ j ≤ n1 + n2,

1

n2
Ew∼N (0,I)

〈
∂ψ(yp;w)

∂w
,
∂ψ(yj ;w)

∂w

〉
, n1 + 1 ≤ p ≤ n1 + n2, n1 + 1 ≤ j ≤ n1 + n2,

where H∞
p,j is the (p, j)-th entry of H∞.

The proof of this lemma requires tools from functional analysis. Let H be a Hilbert space of integrable (d+ 2)-dimensional
vector fields on Rd+2, i.e., f ∈ H if Ew∼N (0,I)[∥f(w)∥22] < ∞. The inner product for any two elements f, g in H is
Ew∼N (0,I)[⟨f(w), g(w)⟩]. Thus, proving H∞ is strictly positive definite is equivalent to show that

∂φ(x1;w)

∂w
, · · · , ∂φ(xn1

;w)

∂w
,
∂ψ(y1;w)

∂w
, · · · , ∂ψ(yn2

;w)

∂w
∈ H
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are linearly independent. Suppose that there are α1, · · · , αn1
, β1, · · · , βn2

∈ R such that

α1
∂φ(x1;w)

∂w
+ · · ·+ αn1

∂φ(xn1 ;w)

∂w
+ β1

∂ψ(y1;w)

∂w
+ · · ·+ βn2

∂ψ(yn2 ;w)

∂w
= 0 inH.

This implies that

α1
∂φ(x1;w)

∂w
+ · · ·+ αn1

∂φ(xn1
;w)

∂w
+ β1

∂ψ(y1;w)

∂w
+ · · ·+ βn2

∂ψ(yn2
;w)

∂w
= 0 (66)

holds for all w ∈ Rd+1, as σ(·) is smooth.

We first compute the derivatives of φ and ψ. Differentiating ψ(y;w) k times with respect to w, we have

∂kψ(y;w)

∂wk
= σ(k)(wTy)y⊗(k),

where ⊗ denotes tensor product.

For φ(x;w), let φ0(x;w) = σ
′
(wTx)w0, φi(x;w) = σ

′′
(wTx)w2

i for 1 ≤ i ≤ d, then

φ(x;w) = φ0(x;w)−
d∑
i=1

φi(x;w).

Differentiating φ0(x;w) k times with respect to w, similar to the Leibniz rule for the k-th derivative of the product of two
scalar functions, we have

∂kφ0(x;w)

∂wk
= σ(k+1)(wTx)w0x

⊗(k) + kσ(k)(wTx)e0 ⊗ x⊗(k−1), (67)

where e0 = (1, 0, · · · , 0)T ∈ Rd+2.

Similarly, for φi(x;w), 1 ≤ i ≤ d, we have

∂kφi(x;w)

∂wk
= σ(k+2)(wTx)w2

ix
⊗(k) + C1

kσ
(k+1)(wTx)2wiei ⊗ x⊗(k−1) + C2

kσ
(k)(wTx)2e

⊗(2)
i ⊗ x⊗(k−2), (68)

where ei ∈ Rd+2, is a vector where all other components are 0, and only the (i+ 1)-th component is 1.

Combining the results in (67) and (68) for the derivatives of φ0(x;w), · · · , φd(x;w) yields that

∂kφ(x;w)

∂wk
=
∂kφ0(x;w)

∂wk
−

d∑
i=1

∂kφi(x;w)

∂wk

= σ(k+1)(wTx)w0x
⊗(k) + kσ(k)(wTx)e0 ⊗ x⊗(k−1)

−
d∑
i=1

(
σ(k+2)(wTx)w2

ix
⊗(k) + C1

kσ
(k+1)(wTx)2wiei ⊗ x⊗(k−1) + C2

kσ
(k)(wTx)2e

⊗(2)
i ⊗ x⊗(k−2)

)
.

(69)

Note that when no two points in {x1, · · · ,xn1
,y1, · · · ,yn2

} are parallel,

x
⊗(n1+n2−1)
1 , · · · ,x⊗(n1+n2−1)

n1
,y

⊗(n1+n2−1)
1 , · · · ,y⊗(n1+n2−1)

n2

are independent (see Lemma G.6 in (Du et al., 2018)). It motivates us to differentiate both sides in (66) (k − 1) times for w
with k = n1 + n2 + 1, then we have

α1
∂kφ(x1;w)

∂wk
+ · · ·+ αn1

∂kφ(xn1
;w)

∂wk
+ β1

∂kψ(y1;w)

∂wk
+ · · ·+ βn2

∂kψ(yn2
;w)

∂wk
= 0. (70)

Since
∂(n1+n2+1)ψ(yj ;w)

∂w(n1+n2+1)
= σ(n1+n2+1)(wTyj)y

⊗(n1+n2+1)
j ,
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we can deduce from the independence of the tensors that for any j ∈ [n2] and w ∈ Rd+2,

βjσ
(n1+n2+1)(wTyj)y

⊗(2)
j = 0.

Now, we can choose a w such that σ(n1+n2+1)(wTyj) ̸= 0, thus

βjσ
(n1+n2+1)(wTyj)∥yj∥22 = Trace

(
βjσ

(n1+n2+1)(wTyj)y
⊗(2)
j

)
= 0,

which implies βj = 0 and then this holds for all j ∈ [n2].

Similarly, for αi, i ∈ [n1], from (67) and (68), we have

αi[σ
(k+1)(wTxi)w0x

⊗(2)
i + kσ(k)(wTxi)e0 ⊗ xi

−
d∑
j=1

(
σ(k+2)(wTxi)w

2
jx

⊗(2)
i + C1

kσ
(k+1)(wTxi)2wjej ⊗ xi + C2

kσ
(k)(wTxi)2e

⊗(2)
j

)
] = 0.

For fixed i, denote xi = (xi0,x
T
i1)

T with xi0 ∈ R and xi1 ∈ Rd+1. We consider two cases: (1) xi1 ̸= 0; (2) xi1 = 0.
Although xi has been augmented so that xi1 ̸= 0, we still consider Case 2 to account for scenarios where we might need to
use neural networks without a bias term.

In the case(1), we can let w0 = 0, thus for k = n1 + n2 + 1,

αi

kσ(k)(wTxi)e0 ⊗ xi −
d∑
j=1

(
σ(k+2)(wTxi)w

2
jx

⊗(2)
i + C1

kσ
(k+1)(wTxi)2wjej ⊗ xi + C2

kσ
(k)(wTxi)2e

⊗(2)
j

) = 0,

which implies that the trace is 0, i.e.,

αi

kσ(k)(wTxi)xi,0 −
d∑
j=1

(
σ(k+2)(wTxi)w

2
j∥xi∥22 + C1

kσ
(k+1)(wTxi)2wjxij + C2

kσ
(k)(wTxi)2

) = 0.

Rearranging it yields that

αi

[
kσ(k)(wTxi)xi0 −

(
σ(k+2)(wTxi)∥w1∥22∥xi∥22 + 2C1

kσ
(k+1)(wTxi)w

T
1 xi1 + 2C2

kσ
(k)(wTxi)

)]
= 0.

Now, we can set wT
1 xi1 = c such that σ(k+1)(c) ̸= 0. Since wTxi = wT

1 xi1 = c, we have

αi

[
kσ(k)(c)xi,0 −

(
σ(k+2)(c)∥w1∥22∥xi∥22 + 2C1

kσ
(k+1)(c)c+ 2C2

kσ
(k)(c)

)]
= 0.

Note that the only variable in above equation is w1 and in the hyperplane {w1 : wT
1 xi,1 = c}, ∥w1∥2 can be selected to

tend infinite, thus αi = 0.

In the case(2), we have that

αi

σ(k+1)(wTxi)w0x
⊗(2)
i + kσ(k)(wTxi)e0 ⊗ xi −

d∑
j=1

(
σ(k+2)(wTxi)w

2
jx

⊗(2)
i + C2

kσ
(k)(wTxi)2e

⊗(2)
j

) = 0.

From the observation of the (t, t)-th entry of the matrix above with t ≥ 2, we have that

αi(−C2
kσ

(k)(wTxi)2) = −2αiC
2
kσ

(k)(w0xi0) = 0.

Then, taking a w0 such that σ(k)(w0xi0) ̸= 0 yields the conclusion.
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B.2. Proof of Lemma 4.5

Proof. Recall that

∂sp(w)

∂wr
=

ar√
n1m

[
σ

′′
(wT

r xp)wr0xp + σ
′
(wT

r xp)

(
1

0d+1

)
− σ

′′′
(wT

r xp)∥wr1∥22xp

−2σ
′′
(wT

r xp)

(
0

wr1

)]
and

∂hj(w)

∂wr
=

ar√
n2m

σ
′
(wT

r yj)yj .

(1) When σ(·) is the ReLU3 activation function.

From the form of ∂sp(w)
∂wr

, we can deduce that∥∥∥∥∂sp(w)

∂wr
− ∂sp(0)

∂wr

∥∥∥∥
2

≲
1

√
n1m

[
R(∥wr(0)∥2 + 1) + |I{wT

r xp ≥ 0} − I{wr(0)
Txp ≥ 0}|(∥wr(0)∥22 + 1)

]
≤ 1

√
n1m

[
R(∥wr(0)∥2 + 1) + I{Apr}(∥wr(0)∥22 + 1)

]
,

(71)

where the second inequality follows from the fact ∥w −wr(0)∥2 < R ≤ 1 and the definition of Apr in (36).

Similarly, we have that ∥∥∥∥∂hj(w)

∂wr
− ∂hj(0)

∂wr

∥∥∥∥
2

≲
1

√
n2m

R(∥wr(0)∥2 + 1). (72)

Combining (71) and (72), we can deduce that

∥J(w)− J(0)∥22
≤ ∥J(w)− J(0)∥2F

=

n1+n2∑
i=1

∥Ji(w)− Ji(0)∥22

=

m∑
r=1

 n1∑
p=1

∥∥∥∥∂sp(w)

∂wr
− ∂sp(0)

∂wr

∥∥∥∥2
2

+

n2∑
j=1

∥∥∥∥∂hj(w)

∂wr
− ∂hj(0)

∂wr

∥∥∥∥2
2


≲

m∑
r=1

 n1∑
p=1

1

n1m

(
R(∥wr(0)∥2 + 1) + I{Apr}(∥wr(0)∥22 + 1)

)2
+

n2∑
j=1

1

n2m
(R∥wr(0)∥2 +R)2


≲
R2

m

m∑
r=1

(∥wr(0)∥22 + 1) +
1

n1m

n1∑
p=1

m∑
r=1

I{Apr}(∥wr(0)∥42 + 1)

=
R2

m

m∑
r=1

(∥wr(0)∥22 + 1)

+
1

n1m

n1∑
p=1

m∑
r=1

I{Apr}
(
∥wr(0)∥42I{∥wr(0)∥22 ≤M}+ ∥wr(0)∥42I{∥wr(0)∥22 > M}+ 1

)
≲
R2

m

m∑
r=1

(∥wr(0)∥22 + 1) +
M2

n1m

n1∑
p=1

m∑
r=1

I{Apr}+
1

m

m∑
r=1

∥wr(0)∥42I{∥wr(0)∥22 > M},
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where M = 2(d+ 2) log(2m(d+ 2)/δ). Note that from (47), we have

P

(
∃r ∈ [m], ∥wr(0)∥22 ≥ 2(d+ 2) log

(
2m(d+ 2)

δ

))
≤ δ.

On the other hand, applying Bernstein’s inequality yields that with probability at least 1− n1e
−mR,

1

m

m∑
r=1

I{Apr} < 4R

holds for all p ∈ [n1].

Therefore, we have that
∥J(w)− J(0)∥22 ≲MR2 +R2 +M2R ≲M2R

holds with probability at least 1− δ − n1e
−mR.

(2) Note that when σ satisfies Assumption 4.2, σ
′
, σ

′′
and σ

′′′
are all Lipschitz continuous and bounded. Thus, we can

obtain that ∥∥∥∥∂sp(w)

∂wr
− ∂sp(0)

∂wr

∥∥∥∥
2

≲
1

√
n1m

R(∥wr(0)∥22 + ∥wr(0)∥2 + 1) ≲
1

√
n1m

R(∥wr(0)∥22 + 1), (73)

where the second inequality is from Young’s inequality.

Similarly, we have ∥∥∥∥∂hj(w)

∂wr
− ∂hj(0)

∂wr

∥∥∥∥
2

≲
1

√
n2m

R(∥wr(0)∥2 + 1). (74)

Combining (73) and (74) yields that

∥J(w)− J(0)∥22

≤
m∑
r=1

 n1∑
p=1

∥∥∥∥∂sp(w)

∂wr
− ∂sp(0)

∂wr

∥∥∥∥2
2

+

n2∑
j=1

∥∥∥∥∂hj(w)

∂wr
− ∂hj(0)

∂wr

∥∥∥∥2
2


≲

m∑
r=1

 n1∑
p=1

1

n1m
(R∥wr(0)∥22 +R)2 +

n2∑
j=1

1

n2m
(R∥wr(0)∥2 +R)2


≲
R2

m

m∑
r=1

(∥wr(0)∥42 + 1)

≲ R2

[
d2 +

d2√
m

√
log

(
1

δ

)
+
d2

m

(
log

(
1

δ

))2
]
,

where the last inequality follows from the fact that
∥∥∥wr(0)∥42

∥∥
ψ 1

2

≲ d2 and Lemma C.4.

B.3. Proof of Theorem 4.7

For the sake of completeness in the proof, we restate Condition 2 and Corollary 4.11 from the main text, and label them as
Condition 4 and Corollary B.1, respectively.
Condition 4. At the t-th iteration, we have ∥wr(t)∥2 ≤ B and

∥wr(t)−wr(0)∥2 ≤
CB2

√
L(0)√

mλ0
:= R

′

for all r ∈ [m], where C is a universal constant and B =

√
2(d+ 2) log

(
2m(d+2)

δ

)
+ 1.
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Corollary B.1. If Condition 3 holds for t = 0, · · · , k and R
′ ≤ R and R

′′
≲

√
1− η

√
λ0, then

L(t) ≤ (1− η)tL(0),

holds for t = 0, · · · , k, where R is the constant in Lemma 4.5 and R
′′
= CM

√
R in (28) when σ is the ReLU3 activation

function, R
′′
= CdR in (30) when σ satisfies Assumption 4.2.

Thanks to Corollary B.1, it is sufficient to prove that Condition 4 also holds for t = k + 1. For readability, we defer the
proof of Corollary B.1 to the end of this section. In the following, we are going to show that the Condition 4 also holds for
t = k + 1, thus combining Condition 4 and Corollary B.1 leads to Theorem 4.7.

Proof of Theorem 4.7. Recall that we letR
′′
= CM

√
R in (28) when σ is the ReLU3 activation function and letR

′′
= CdR

in (30) when σ satisfies Assumption 4.2.

First, we can set R
′ ≤ R and R

′′ ≤
√
3λ0

6 , since R
′′
≲

√
1− η

√
λ0. Then from Lemma 4.5 we have ∥J(t)− J(0)∥2 ≤

√
3λ0

6 , thus

σmin(J(t)) ≥ σmin(J(0))− ∥J(t)− J(0)∥2 ≥
√
3λ0
2

−
√
3λ0
6

=

√
3λ0
3

and then λmin(H(t)) ≥ λ0

3 for t = 0, · · · , k, where σmin(·) denotes the least singular value.

From the updating rule of NGD, we have

wr(t+ 1) = wr(t)− η
[
J(t)T

]
r
(H(t))−1

(
s(t)
h(t)

)
,

where [
J(t)T

]
r
=

[
∂s1(t)

∂wr
, · · · , ∂sn1(t)

∂wr
,
∂h1(t)

∂wr
, · · · , ∂hn2(t)

∂wr

]
.

Therefore, for t = 0, · · · , k and any r ∈ [m], we have

∥wr(t+ 1)−wr(t)∥2
≤ η∥

[
J(t)T

]
r
∥2∥H(t)−1∥2

√
L(t)

≤ 3η

λ0
∥
[
J(t)T

]
r
∥2
√
L(t)

≤ 3η

λ0
∥
[
J(t)T

]
r
∥F
√
L(t)

=
3η

λ0

√√√√ n1∑
p=1

∥∥∥∥∂sp(t)∂wr

∥∥∥∥2
2

+

n2∑
j=1

∥∥∥∥∂hj(t)∂wr

∥∥∥∥2
2

√
L(t)

≲
η

λ0

√
B4 + 1

m

√
L(t)

≲
ηB2

√
mλ0

√
L(t)

≤ ηB2

√
mλ0

(1− η)t/2
√
L(0),

(75)

where the last inequality is due to Corollary B.1.
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Summing t from 0 to k yields that

∥wr(k + 1)−wr(0)∥2

≤
k∑
t=0

∥wr(t+ 1)−wr(t)∥2

≤ C
ηB2

√
mλ0

k∑
t=0

(1− η)t/2
√
L(0)

≤
CB2

√
L(0)√

mλ0
,

where C is a universal constant.

Now, when R
′ ≤ 1, we can deduce that ∥wr(k + 1)∥2 ≤ B, implying that Condition 4 also holds for t = k + 1. Thus, it

remains only to derive the requirement for m.

Recall that we need m to satisfy that R
′
=

CB2
√
L(0)√

mλ0
≤ R and R

′′
≲

√
1− η

√
λ0.

(1) When σ is the ReLU3 activation function, in Corollary B.1, R
′′
= CM

√
R ≲

√
1− η

√
λ0, implying that R ≲ (1−η)λ0

M2 .

Then R
′
=

CB2
√
L(0)√

mλ0
≤ R implies that

m = Ω

(
1

(1− η)2
M4B4L(0)

λ40

)
.

From Lemma C.4 for the estimation of L(0), i.e.,

L(0) ≲ d2 log

(
n1 + n2

δ

)
,

we can deduce that

m = Ω

(
1

(1− η)2
d8

λ40
log6

(
md

δ

)
log

(
n1 + n2

δ

))
.

(2) When σ satisfies Assumption 4.2, we have that

R ≲

√
(1− η)λ0
d

,R
′
=
CB2

√
L(0)√

mλ0
≤ R.

From Lemma C.4, we can deduce that

m = Ω

(
1

1− η

d6

λ30
log2

(
md

δ

)
log

(
n1 + n2

δ

))
.

Proof of Corollary B.1. Similar as before, when R
′ ≤ R and R

′′ ≤
√
3λ0

6 , we have σmin(J(t)) ≥
√
3λ0

3 and then
λmin(H(t)) ≥ λ0

3 for t = 0, · · · , k.

27



1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

Convergence of NGD for PINNs

Let u(t) =
(
s(t)
h(t)

)
, then

u(t+ 1)− u(t)

= u
(
w(t)− ηJ(t)TH(t)−1u(w(t))

)
− u(w(t))

= −
∫ 1

0

〈
∂u(w(s))

∂w
, ηJ(t)TH(t)−1u(w(t))

〉
ds

= −
∫ 1

0

〈
∂u(w(t))

∂w
, ηJ(t)TH(t)−1u(w(t))

〉
ds

+

∫ 1

0

〈
∂u(w(t))

∂w
− ∂u(w(s))

∂w
, ηJ(t)TH(t)−1u(w(t))

〉
ds

:= I1(t) + I2(t),

(76)

where the second equality is from the fundamental theorem of calculus and w(s) = sw(t + 1) + (1 − s)w(t) =
w(t)− sηJ(t)TH(t)−1u(t).

Note that ∂u(w(t))
∂w = J(t), thus I1(t) = ηu(t). Plugging this into (76) yields that

u(t+ 1) = (1− η)u(t) + I2(t). (77)

Therefore, it remains only to bound ∥I2(t)∥2.

∥I2(t)∥2 =

∥∥∥∥∫ 1

0

〈
∂u(w(t))

∂w
− ∂u(w(s))

∂w
, ηJ(t)TH(t)−1u(w(t))

〉
ds

∥∥∥∥
2

≤
∫ 1

0

∥J(w(t))− J(w(s))∥2∥ηJ(t)TH(t)−1u(w(t))∥2ds

≤ η∥J(t)TH(t)−1∥2∥u(w(t))∥2
∫ 1

0

∥J(w(t))− J(w(s))∥2ds

≲
η
√
L(t)√
λ0

∫ 1

0

∥J(w(t))− J(w(s))∥2ds

≲
η
√
L(t)√
λ0

∫ 1

0

(∥J(w(t))− J(0)∥2 + ∥J(w(s))− J(0)∥2)ds

≲
η
√
L(t)√
λ0

R
′′
,

(78)

where the last inequality follows from the fact that

∥wr(s)−wr(0)∥2 ≤ s∥wr(t+ 1)−wr(0)∥2 + (1− s)∥wr(t)−wr(0)∥2 ≤ R
′
≤ R

and Lemma 4.5.

Plugging (78) into the recursion formula (77) yields that

∥u(t+ 1)∥22 = ∥(1− η)u(t) + I2(t)∥22
= (1− η)2∥u(t)∥22 + ∥I2(t)∥22 + 2⟨(1− η)u(t), I2(t)⟩
≤ (1− η)2∥u(t)∥22 + ∥I2(t)∥22 + 2(1− η)∥u(t)∥2∥I2(t)∥2

≤

[
(1− η)2 +

C2η2(R
′′
)2

λ0
+ 2(1− η)

CηR
′′

√
λ0

]
∥u(t)∥22,

where C is a universal constant.
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Then we can choose R
′′

such that

∥I2(t)∥2 ≤
Cη
√
L(t)R

′′

√
λ0

≤ C1η
√
L(t) = C1η

√
u(t),

where C is a universal constant and C1 is a constant to be determined.

Thus, we can deduce that

∥u(t+ 1)∥22 ≤
[
(1− η)2 + (C1η)

2 + 2(1− η)C1η
]
∥u(t)∥22

=
[
(1− η) + η(ηC2

1 + 2(1− η)C1 + η − 1)
]
∥u(t)∥22

≤ (1− η)∥u(t)∥22,

where in the last inequality is due to that we can choose C1 such that ηC2
1 + 2(1− η)C1 + η − 1 ≤ 0.

Note that since η ∈ (0, 1), the quadratic equation ηx2 + 2(1− η)x+ η − 1 = 0 has one negative root and one positive root,
denoted as x0 and x1 respectively. Therefore, the condition C1 ≤ x1 is sufficient to satisfy the requirement. The explicit
form of x1 can be written as:

x1 =
2(η − 1) +

√
4(1− η)2 − 4η(η − 1)

2η
=

√
1− η

1 +
√
1− η

≥
√
1− η

2
.

Thus, C1 =
√
1−η
2 is sufficient to satisfy that ηC2

1 + 2(1− η)C1 + η − 1 ≤ 0.

From this, we can deduce that
R

′′
≲ C1

√
λ0 ≲

√
1− η

√
λ0.

Therefore, we can conclude that ∥u(t)∥22 ≤ (1− η)t∥u(0)∥22 holds for t = 0, · · · , k.

B.4. Proof of Corollary 4.9

Proof. In the proof of Theorem 4.7, we have proved that Condition 4 holds for all t ∈ N. Thus, it is sufficient to prove that
Condition 4 can lead to the conclusion in Corollary 4.9.

Setting η = 1 in (77) yields that
u(t+ 1) = I2(t).

From (78), we have that

∥I2(t)∥2 ≲

√
L(t)√
λ0

∫ 1

0

∥J(w(t))− J(w(s))∥2ds. (79)

Since w(s) = sw(t+1)+(1−s)w(t), then for any r ∈ [m], we have ∥wr(s)∥2 ≤ s∥wr(t+1)∥2+(1−s)∥wr(t)∥2 ≤ B.

When σ(·) is smooth, we can deduce that for any r ∈ [m],∥∥∥∥∂sp(w(s))

∂wr
− ∂sp(w(t))

∂wr

∥∥∥∥
2

≲
1

√
n1m

(B2 + 1)∥wr(s)−wr(t)∥2 ≤ 1
√
n1m

(B2 + 1)∥wr(t+ 1)−wr(t)∥2

and ∥∥∥∥∂hj(w(s))

∂wr
− ∂hj(w(t))

∂wr

∥∥∥∥
2

≲
1

√
n1m

(B + 1)∥wr(s)−wr(t)∥2 ≤ 1
√
n1m

(B + 1)∥wr(t+ 1)−wr(t)∥2.

From (75), we know that for any r ∈ [m],

∥wr(t+ 1)−wr(t)∥2 ≲
B2

√
mλ0

√
L(t).
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Thus for any s ∈ [0, 1], we have

∥J(w(s))− J(w(t))∥22

≤
m∑
r=1

(
n1∑
p=1

∥∥∥∥∂sp(w(s))

∂wr
− ∂sp(w(t))

∂wr

∥∥∥∥2
2

+

∥∥∥∥∂hj(w(s))

∂wr
− ∂hj(w(t))

∂wr

∥∥∥∥2
2

)

≲
1

m

m∑
r=1

(
(B4 + 1)∥wr(t+ 1)−wr(t)∥22 + (B2 + 1)∥wr(t+ 1)−wr(t)∥22

)
≲ B4

(
B2

√
mλ0

√
L(t)

)2

.

Plugging this into (79), we have

∥I2(t)∥2 ≲

√
L(t)√
λ0

∫ 1

0

∥J(w(t))− J(w(s))∥2ds

≲

√
L(t)√
λ0

B4

√
mλ0

√
L(t)

=
B4√
mλ30

L(t).

Combining with the fact u(t+ 1) = I2(t) yields that∥∥∥∥(s(t+ 1)
h(t+ 1)

)∥∥∥∥
2

≤ CB4√
mλ30

∥∥∥∥(s(t)h(t)

)∥∥∥∥2
2

holds for t ∈ N, where C is a universal constant.

In the proof above, we only require that R
′ ≤ R and R

′′
= CdR ≤

√
3λ0

6 , leading to the requirement for m that

m = Ω

(
d6

λ30
log2

(
md

δ

)
log

(
n1 + n2

δ

))
.

C. Auxiliary Lemmas
Lemma C.1 (Theorem 3.1 in Kuchibhotla & Chakrabortty (2022)). If X1, · · · , Xn are independent mean zero random
variables with ∥Xi∥ψα <∞ for all 1 ≤ i ≤ n and some α > 0, then for any vector a = (a1, · · · , an) ∈ Rn, the following
holds true:

P

(∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣ ≥ 2eC(α)∥b∥2
√
t+ 2eL∗

n(α)t
1/α∥b∥β(α)

)
≤ 2e−t, for all t ≥ 0,

where b = (a1∥X1∥ψα , · · · , an∥Xn∥ψα) ∈ Rn,

C(α) := max{
√
2, 21/α}

{√
8(2π)1/4e1/24(e2/e/α)1/α, if α < 1,

4e+ 2(log 2)1/α, if α ≥ 1.

and for β(α) = ∞ when α ≤ 1 and β(α) = α/(α− 1) when α > 1,

Ln(α) :=
41/α√
2∥b∥2

×

{
∥b∥β(α), if α < 1,

4e∥b∥β(α)/C(α), ifα ≥ 1.

and L∗
n(α) = Ln(α)C(α)∥b∥2/∥b∥β(α).
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In the following, we will provide some preliminary information about Orlicz norms.

Let f : [0,∞) → [0,∞) be a non-decreasing function with f(0) = 0. The f -Orlicz norm of a real-valued random variable
X is given by

∥X∥f := inf{C > 0 : E
[
f

(
|X|
C

)]
≤ 1}.

If ∥X∥ψα
<∞, we say that X is sub-Weibull of order α > 0, where

ψα(x) := ex
α

− 1.

Note that when α ≥ 1, ∥ · ∥ψα
is a norm and when 0 < α < 1, ∥ · ∥ψα

is a quasi-norm. Moreover, since (|a| + |b|)α ≤
|a|α + |b|α holds for any a, b ∈ R and 0 < α < 1, we can deduce that

Ee
|X+Y |α

|C|α ≤ Ee
|X|α+|Y |α

|C|α = Ee
|X|α
|C|α e

|Y |α
|C|α ≤

(
Ee

2|X|α
|C|α

)1/2(
Ee

2|Y |α
|C|α

)1/2

.

This implies that
∥X + Y ∥ψα ≤ 21/αmax{∥X∥ψα , ∥Y ∥ψα} ≤ 21/α(∥X∥ψα + ∥Y ∥ψα).

Furthermore, for p, q > 0, we have ∥|X|∥ψp = ∥|X|p/q∥q/pψq
. And in the related proofs, we may frequently use the fact that

for real-valued random variable X ∼ N (0, 1), we have ∥X∥ψ2
≤

√
6 and ∥X2∥ψ1

= ∥X∥2ψ2
≤ 6.

Lemma C.2. If ∥X∥ψα
, ∥Y ∥ψβ

<∞ with α, β > 0, then we have ∥XY ∥ψγ
≤ ∥X∥ψα

∥Y ∥ψβ
, where γ satisfies that

1

γ
=

1

α
+

1

β
.

Proof. Without loss of generality, we can assume that ∥X∥ψα = ∥Y ∥ψβ
= 1. To prove this, let us use Young’s inequality,

which states that

xy ≤ xp

p
+
yq

q
, for x, y ≥ 0, p, q > 1.

Let p = α/γ, q = β/γ, then

E[exp(|XY |γ)] ≤ E
[
exp

(
|X|γp

p
+

|Y |γq

q

)]
= E

[
exp

(
|X|α

p

)
exp

(
|Y |β

q

)]
≤ E

[
exp(|X|α)

p
+

exp(|Y |β)
q

]
≤ 2

p
+

2

q

= 2,

where the first and second inequality follow from Young’s inequality. From this, we have that ∥XY ∥ψγ ≤ ∥X∥ψα∥Y ∥ψβ
.

Lemma C.3 (Bernstein inequality, Theorem 3.1.7 in Giné & Nickl (2021)). Let Xi, 1 ≤ i ≤ n be independent centered
random variables a.s. bounded by c <∞ in absolute value. Set σ2 = 1/n

∑n
i=1 EX2

i and Sn = 1/n
∑n
i=1Xi. Then, for

all t ≥ 0,

P

(
Sn ≥

√
2σ2t

n
+
ct

3n

)
≤ e−u.
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Lemma C.4. For 0 < δ < 1, with probability at least 1− δ, we have that when m ≥ log2
(
n1+n2

δ

)
,

L(0) =

∥∥∥∥(s(0)h(0)

)∥∥∥∥2
2

= O
(
d2 log

(
n1 + n2

δ

))
.

Proof. Recall that for p ∈ [n1],

sp(0) =
1

√
n1

[
1√
m

m∑
r=1

ar

(
σ

′
(wr(0)

Txp)wr0(0)− σ
′′
(wr(0)

Txp)∥wr1(0)∥22
)
− f(xp)

]
and for j ∈ [n2],

hj(0) =
1

√
n2

[
1√
m

m∑
r=1

arσ(wr(0)
Tyj)− g(yj)

]
.

Then

L(0) =

n1∑
p=1

1

2
(sp(0))

2 +

n2∑
j=1

1

2
(hj(0))

2

≤ 1

n1

n1∑
p=1

(
1√
m

m∑
r=1

ar

(
σ

′
(wr(0)

Txp)wr0(0)− σ
′′
(wr(0)

Txp)∥wr1(0)∥22
))2

+
1

n1

n1∑
p=1

f2(xp)

+
1

n2

n2∑
j=1

(
1√
m

m∑
r=1

arσ(wr(0)
Tyj)

)2

+
1

n2

n2∑
j=1

g2(yj).

Note that ∣∣∣ar (σ′
(wr(0)

Txp)wr0 − σ
′′
(wr(0)

Txp)∥wr1(0)∥22
)∣∣∣ ≲ ∥wr(0)∥22|wr(0)

Txp|

and
∣∣arσ(wr(0)

Tyj)
∣∣ ≲ ∥wr(0)∥22|wr(0)

Tyj |.

Since
∥∥∥wr(0)∥22

∥∥
ψ1

= O(d) and ∥wr(0)
Tyj∥ψ2

, ∥wr(0)
Txp∥ψ2

= O(1), from Lemma C.2, we have that

∥∥wr(0)∥22|wr(0)
Txp|∥ψ 2

3

= O(d), |wr(0)
Tyj |∥ψ 2

3

= O(d).

Applying Lemma C.1 yields that for fixed p ∈ [n1] and j ∈ [n2] with probability at least 1− 2e−t,∣∣∣∣∣ 1√
m

m∑
r=1

ar

(
σ

′
(wr(0)

Txp)wr0(0)− σ
′′
(wr(0)

Txp)∥wr1(0)∥22
)∣∣∣∣∣ ≲ d

√
t+

d√
m
t
3
2

and with probability at least 1− 2e−t,∣∣∣∣∣ 1√
m

m∑
r=1

arσ(wr(0)
Tyj)

∣∣∣∣∣ ≲ d
√
t+

d√
m
t
3
2 .

Then taking a union bound for all p ∈ [n1] and j ∈ [n2] with 2(n1 + n2)e
−t = δ yields that

L(0) ≲

(
d
√
t+

d√
m
t
3
2

)2

≲ d2t+
d2t3

m

= d2
(
log

(
n1 + n2

δ

)
+

1

m
log3

(
n1 + n2

δ

))
≲ d2 log

(
n1 + n2

δ

)
,
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since m ≥ log2
(
n1+n2

δ

)
.

33


